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Abstract
We study reflecting Brownian motion with drift constrained to a wedge in the plane.
Our first set of results provides necessary and sufficient conditions for existence and
uniqueness of a solution to the corresponding submartingale problem with drift, and
show that its solution possesses the Markov and Feller properties. Next, we study a
version of the problem with absorption at the vertex of the wedge. In this case, we
provide a condition for existence and uniqueness of a solution to the problem and
some results on the probability of the vertex being reached.

Keywords Submartingale problem · Absorbed process · RBM with drift · Markov
property · Feller property

Mathematics Subject Classification 60D99 · 60J65

1 Introduction

In this paper, we study 2-dimensional Brownian motion with constant drift μ ∈ R
2

constrained to a wedge S in R
2. This process may also be referred to as reflected

Brownian motion (RBM) with drift in a wedge, and we denote the process itself by
Z . For concreteness, we define the wedge in polar coordinates by {r ≥ 0, 0 ≤ θ ≤ ξ}
for some 0 < ξ < 2π . Loosely speaking, the behavior of Z may be characterized as
follows. In the interior of S, Z behaves as a 2-dimensional Brownian motion. On the
other hand, the behavior of Z on the boundary of S is characterized by two reflection
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angles θ1 and θ2, depending upon whether the lower boundary ∂S1 or upper boundary
∂S2 has been reached. Both −π/2 < θ1, θ2,< π/2 and the angles are measured from
their inward-facing normals, with positive angles corresponding to reflection toward
the vertex of the wedge and negative angles away. See figure below for an illustration.

One way to define RBM in a wedge is using a sample-path approach [9, 10, 19, 34]
where Z is explicitly characterized as the sum of a 2-dimensional Brownian motion
on an arbitrary probability space [22, 24, 31] and a constraining or pushing process
which satisfies the specifications related to the directions of reflection given above.
This sample-path approach works with or without drift for some but not all parameter
regimes of (ξ, θ1, θ2). It tends not to work in regimes where Z is known not to be a
semi-martingale [39] and the pushing process has infinite variation. Recent progress
in this direction has however been made [20, 28].

A more probabilistic approach to defining RBM in a wedge was given by Varadhan
andWilliams [35]. In this case, Z is defined as the solution to a submartingale problem.
This approach yields existence and uniqueness results for all parameter regimes but
at several points the proofs of [35] rely heavily on the assumption that Z behaves as a
standardBrownianmotion inside of S. This is not an issue for parameter regimeswhere
the sample-path approach described above may be applied because it is amenable to
Brownian motions with drift, and the recent paper [21] demonstrates equivalence
between the sample-path and the submartingale approach in such settings. On the
other hand, in parameter regimes where the sample-path approach cannot be applied,
extending the results of [35] in the direction of allowing Z to behave as a Brownian
motionwith drift in the interior of S remains an open problem. In this paper, we resolve
this open problem for the case of a constant drift. We conjecture that our results could
be further generalized for the case when the drift is a bounded function of the current
state, but this generalization is beyond the scope of the present paper.

Our primary motivation comes from queueing theory where semi-martingale RBM
with drift has long been known to serve as the weak limit of both the properly scaled
queue length [5, 17, 18, 30] andworkload [4, 6, 26, 41] processes of different queueing
systems in heavy-traffic. In such queueing settings, the drift term arises as the result of
an imbalance between the input and output processes to the system. The limiting RBM
in these cases is often defined using the sample-path approach via the conventional
Skorokhod map [19, 33, 36]. More recently, using the extended Skorokhod map [28],
RBM with drift which is not a semi-martingale has been proven [29] to be the weak
limit of the properly scaled unfinished work process of the generalized processor
sharing model in heavy traffic. In this example, the sample-path approach is still
employed to define the limiting process with the help of the extended Skorokhod map
[28]. We conjecture however that there exist other applied queueing settings where
the limiting heavy-traffic process is an RBMwith drift which is not a semi-martingale
and cannot be rigorously defined via the sample-path approach. One of these settings
is the coupled processor model [7, 14]. In such situations, before proving any limit
theorems, it is necessary to first establish the existence of RBM with drift through
other means such as the submartingale problem.

We alsomention that there exists a related stream of literature studying the behavior
of reflected Brownian in smooth domains with cusps. The paper [12] appears to be the
first to study reflected Brownian motion confined to a cusp in the plane. In this case,
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RBM is defined as the solution to a corresponding submartingale problem. Existence
and uniqueness results are then proven by conformallymapping RBM in the upper half
plane to the cusp and applying a time change. In the follow-up paper [11], it is shown
that depending on the geometry of the problem in [12], RBM in a cusp in the planemay
or may not turn out to be a semi-martingale. The results in [11] are similar to those in
[39] where a wedge instead of a cusp is considered. The authors in [16] use a Dirichlet
form approach to construct a diffusion process contained in a d-dimensional Lipschitz
domain with cusps. Moreover, conditions are provided under which the constraining
process is of bounded variation. The paper [8] considers RBM in a cusp in the plane as
the solution to a stochastic differential equation with reflection (SDER). It is proven
that in this case there exists a unique weak solution to the corresponding SDER.

The remainder of the paper is organized as follows. Our main results may be found
in Sect. 2. In Sect. 2.1, we provide necessary and sufficient conditions for the existence
and uniqueness of the solution to the submartingale problem with drift (see Definition
2.1), and show that its solution possesses the strongMarkov property and three versions
of the Feller property. Next, in Sect. 2.2, we study the submartingale problemwith drift
absorbed at the vertex of the wedge (see Definition 2.13). We provide results on the
existence and uniqueness of the solution to this problem and results on the probability
of the absorbed process with drift reaching the vertex of the wedge. Sections3 through
7 contain the proofs of our main results.

2 Main results

Before stating our main results, we first set up some notation. Let CS = C(R+, S)

and, for each t ≥ 0, let Z(t) : CS → S denote the coordinate map Z(t)(ω) = ω(t)
for ω ∈ CS . Also, let Z = {Z(t), t ≥ 0} denote the coordinate mapping process on
CS . Let Mt = σ(Z(s), 0 ≤ s ≤ t) be the underlying natural filtration with terminal
σ -algebra M = σ(Z(s), s ≥ 0). For each n ≥ 1 and domain � ⊆ R

2, we denote
by Cn

b (�) the set of n times bounded continuously differentiable functions on �. We
assume that the wedge S is positioned so that one side of it is the positive horizontal
half line, and the angle of the wedge is ξ . We define ∂S1 and ∂S2 as the two sides
of the wedge so that neither includes the vertex, i.e., ∂S1 = {(x, 0) : x > 0} and
∂S2 = {r(cos ξ, sin ξ) : r > 0}. On the other hand, we define ∂S as the boundary of
S, so it includes the vertex. Next (see Fig. 1), we denote by v1 and v2 the reflection
directions on the boundaries ∂S1 and ∂S2, respectively. For convenience, we assume
that each vi is normalized such that vi · ni = 1, where ni is the inward-facing normal
vector on ∂Si for i = 1, 2. Finally, for i = 1, 2, we set the directional derivative
operator Di = vi · ∇, with ∇ being the gradient operator, the dot is the inner product,
and denote by 	 the Laplacian operator.
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Fig. 1 RBM in a Wedge

2.1 The submartingale problemwith drift

Definition 2.1 (Submartingale problem with drift) A family of probability measures
{Pz

μ, z ∈ S} on (CS,M) is said to solve the submartingale problem with drift μ ∈ R
2

if for each z ∈ S, the following three conditions hold,

1. Pz
μ(Z(0) = z) = 1;

2. For each f ∈ C2
b (S), the process

{
f (Z(t)) −

∫ t

0
μ · ∇ f (Z(s))ds − 1

2

∫ t

0
	 f (Z(s))ds, t ≥ 0

}

is a submartingale on (CS,M,Mt ,P
z
μ) whenever f is constant in a neighbour-

hood of the origin and satisfies Di f ≥ 0 on ∂Si for i = 1, 2;

3. Ez
μ

[ ∫ ∞

0
1{Z(t)=0}dt

]
= 0.

The above definition bears a relationship to the extended Skorokhod problem (ESP)
developed in [28]. We shall recall the definition of the ESP below. Let d(·) be a set-
valued map from ∂S, the boundary of S, to the class of subsets of R2 satisfying the
following two conditions:

(d1) for any x ∈ ∂S, the image d(x) is a non-empty closed convex cone in R2 with the
vertex being the origin;

(d2) the graph {(x, d(x)); x ∈ ∂S} is closed.
For convenience, we extend the definition of d(·) to S by setting d(x) = {0} for

all x ∈ S◦, where S◦ is the interior of S. For a set A ⊂ R
2, let co(A) be the closed

convex cone generated by A.
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Intuitively, the set-valued function d(·) represents all the possible directions of
reflection at a given boundary point. If a vector is included in d(x) for some boundary
point x , then that vector represents an allowed direction of reflection whenever the
reflected process hits the boundary point x . The third item below captures exactly this
property. In the case of the present paper we shall always have d(x) = {λvi , λ ≥ 0}
whenever x ∈ ∂Si (recall that the vertex is not included in ∂Si ), i = 1, 2. However,
we shall assume that d(0) = R

2. Despite the fact that we shall use these set functions
only in this special case, we recall below the general definition as it appears in [28].

Definition 2.2 (Extended Skorokhod Problem (ESP)) A pair of processes (φ, η) ∈
CS × C(R+,R2) is said to solve the ESP (S, d(·)) for ψ ∈ C(R+,R2) such that
ψ(0) ∈ S if φ(0) = ψ(0), and if for all t ∈ R+, the following properties hold,

1. φ(t) = ψ(t) + η(t);
2. φ(t) ∈ S;
3. For every s ∈ [0, t];

η(t) − η(s) ∈ co
[

∪u∈(s,t] d(φ(u))
]
.

Item 2 in the above definition is redundant since we already required that φ ∈ CS ,
but we kept that item as it appears in the original definition in [28].

Just like in [35], let

α = θ1 + θ2

ξ
.

The quantity α plays a prominent role. A visual description in a table form of the
way various values of α determines the properties of the solution of the submartingale
problem without drift is available in [3], Fig. 2.

From here on in this paper we shall always have

d(x) = {λvi , λ ≥ 0} whenever x ∈ ∂Si , i = 1, 2, (1)

Fig. 2 The stopping times σ̄
ε,T
k

and τ̄
ε,T
k

Z(τ̄ ε,T
2 )

S

Z(0) = Z(σ̄ε,T
1 )

∂S1

∂S2

∂Sε
2

∂S
2ε/3
2

Z(τ̄ ε,T
1 )

Z(σ̄ε,T
2 )
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d(x) = {0}, whenever x ∈ S0, (2)

and
d(0) = R

2, (3)

except in Remark 8.3, where we revert to the general case. In (2) S0 represents the
interior of the wedge S.

Theorem 2.3 If α < 2, then for eachμ ∈ R
2 there exists a unique solution {Pz

μ, z ∈ S}
to the submartingale problem with drift. In addition, the following statements hold:

1. There exists a process X defined on (CS,M,Mt ) which, for each z ∈ S, is a
2-dimensional Brownian motion with drift μ starting at z under Pz

μ;
2. Setting Y = Z − X, the pair (Z ,Y ) solves the ESP (S, d(·)) for X, Pz

μ-a.s., for
each z ∈ S, where the set function d(·) is specified in (1)–(3).

The above theorem establishes a decomposition

Z = X + Y , (4)

such that for all z ∈ S under Pz
μ the process X is a standard Brownian motion with

driftμ starting at z. In the following two theorems we shall establish several properties
of the process Y appearing in the above decomposition. In order to state the first of
these two results, we need the definition of the strong p-variation of a function. Let
T > 0 arbitrary. We call an ordered set (t0, t1, . . . , tn) a partition of the interval [0, T ],
if 0 = t0 < t1 < · · · < tn = T , for an arbitrary n ∈ N+. Let π(T ) denote the set of all
partitions of the interval [0, T ]. We define the mesh of a partition ρ = (t0, . . . , tn) ∈
π(T ) by setting

‖ρ‖ = max{ti − ti−1 : i = 1, . . . , n}.

Definition 2.4 Let T > 0 and p > 0. The strong p-variation of a function f : R+ 
→
R
k on [0, T ] is defined by

Vp( f , [0, T ]) = sup

⎧⎨
⎩

∑
ti∈ρ, i≥1

‖ f (ti ) − f (ti−1)‖p : ρ ∈ π(T )

⎫⎬
⎭ .

Theorem 2.5 Suppose that 1 < α < 2. Then for each p > α and z ∈ S,

P
z
μ(Vp(Y , [0, T ]) < +∞) = 1, T > 0, (5)

and, for each 0 < p ≤ α,

P
0
μ(Vp(Y , [0, T ]) < +∞) = 0, T > 0. (6)
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A 2-dimensional continuous process U defined on (Cs,M,Mt ,P
z
μ) is said to be

of zero energy if for each T > 0 and each sequence of partitions (ρm) ⊂ π(T ) such
that ‖ρm‖ → 0 as m → ∞ we have

n(m)∑
i=1

‖U (tmi ) −U (tmi−1)‖2
P
z
μ−→ 0 as m → ∞,

whereρm = (tm0 , . . . , tmn(m)). Aprocess D on (Cs,M,Mt ,P
z
μ) is said to be aDirichlet

process if it has a decomposition D = M + U , where M is a local martingale on the
same probability space, and U is a continuous zero-energy process with U (0) = 0.

Theorem 2.6 Let 1 < α < 2, and z ∈ S arbitrary. Then the process Y in decomposi-
tion (4) is a zero-energy process, and Z is a Dirichlet process.

Theorem 2.7 If 1 ≤ α < 2, then Z is not a semimartingale on (CS,M,Mt ,P
z
μ), for

any z ∈ S.

Theorem 2.8 If α ≥ 2, then for any μ ∈ R
2 there is no solution to the submartingale

problem with drift.

Let {Pz
μ, z ∈ S} be the solution to the submartingale problem for some μ ∈ R

2. We
say that {Pz

μ, z ∈ S} possesses the strong Markov property if for each stopping time τ

and z ∈ S, and each bounded M-measurable function h : CS → R we have that

E
z
μ[1{τ<∞} f (ω(· + τ))|Mτ ] = 1{τ<∞}Eω(τ)

μ [ f (w(·))], P
z
μ-a.s. (7)

Theorem 2.9 Ifα < 2, then for eachμ ∈ R
2 the solution to the submartingale problem

with drift has the strong Markov property.

The last subject of this subsection is the Feller property of {Pz
μ, z ∈ S}. There are

various, slightly differing definitions of the Feller property available in the literature.
For clarity we list below three definitions.
1.We say that {Pz

μ, z ∈ S} has the Feller property if for any {zn, n ≥ 1} ⊂ S converging
to z ∈ S, Pzn

μ ⇒ P
z
μ as n → ∞ (see Varadhan and Williams [35]).

2. Let Ĉ(S) be the set of continuous functions on S vanishing at infinity. We say that
{Pz

μ, z ∈ S} has the Ĉ(S)-Feller property if for any f ∈ Ĉ(S), and t ≥ 0, the function

z 
→ E
z
μ[ f (Z(t))] is also in Ĉ(S).

3. LetCb(S) be the set of bounded continuous functions on S. We say that {Pz
μ, z ∈ S}

has the Cb(S)-Feller property if for any f ∈ Cb(S), and t ≥ 0, the function z 
→
E
z
μ[ f (Z(t))] is also in Cb(S).

Remark 2.10 The Feller property obviously implies the Cb(S)-Feller property. The
Ĉ(S)-Feller property implies the Cb(S)-Feller, but the converse is not true (cf. Theo-
rems 1.9 and 1.10 in [2]).

Theorem 2.11 If α < 2, then the solution to the submartingale problem for each
μ ∈ R

2 has the Feller property.
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Theorem 2.12 If α < 2, then the solution to the submartingale problem for each
μ ∈ R

2 has the Ĉ(S)-Feller property.

We note that for the μ = 0 case the Feller property is known ([35], Theorem 3.13).
However, the Ĉ(S)-Feller property is new even in the μ = 0 case.

2.2 The absorbed process

Let

τ0 = inf{t ≥ 0 : Z(t) = 0}

be the stopping time with respect to {Mt , t ≥ 0} representing the first time that Z
reaches the vertex of the wedge. Results in this subsection concern the RBM in a
wedge up until τ0. Results of this type were provided in [35] for the drift-less case. In
particular, it has been shown there that for the drift-less case Pz

0(τ0 < ∞) is equal to
zero if α ≤ 0, and equal to 1 if α > 0. We shall begin the study of τ0 in the presence
of a constant drift μ with the following definition.

Definition 2.13 (The Absorbed Process Problem) A family of probability measures
{Pz,0

μ , z ∈ S} on (CS,M) is said to solve the absorbed process problem with drift
μ ∈ R

2 if for each z ∈ S, the following three conditions hold,

1. Pz,0
μ (Z(0) = z) = 1;

2. The process

{
f (Z(t ∧ τ0)) −

∫ t∧τ0

0
μ · ∇ f (Z(s))ds − 1

2

∫ t∧τ0

0
	 f (Z(s))ds, t ≥ 0

}

is a submartingale on (CS,M,Mt ,P
z,0
μ ), for each f ∈ C2

b (S) such that Di f ≥ 0
on ∂Si for i = 1, 2;

3. Pz,0
μ (Z(t) = 0,∀t ≥ τ0) = 1.

Notice that in the above definition in item 2 the upper limit of the integral is not t
but t ∧ τ0. In other words, in this definition we require that the process specified in
item 2 of Definition 2.1 is a submartingale only up to τ0. Item 3 in the above definition
specifies that the reflected process is absorbed at the vertex once the vertex is reached.
This definition requires less then Definition 2.1, hence it is possible that the absorbed
process problem with drift has a solution for α ≥ 2, despite the fact stated in Theorem
2.8, namely that the submartingale problem with drift has no solution in that case.
This is exactly the subject of the next theorem.

Theorem 2.14 For each μ ∈ R
2 and α ∈ R, there exists a unique solution to the

absorbed process problem.

The above theorem is particularly interesting if α ≥ 2, since Theorem 2.3 does not
cover that case. The existence of a solution to the absorbed process problem easily
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follows from the existence of a solution to the submartingale problemwheneverα < 2.
However, the uniqueness part of Theorem 2.14 does not follow in an obvious way from
Theorem 2.3 even in the α < 2 case. Our proof for Theorem 2.14 applies to all α ∈ R.

Next we state a series of results on the hitting probability of the vertex for the
absorbed process in the case of a constant drift.

Theorem 2.15 If α ≤ 0, then for each μ ∈ R
2 and z ∈ S, Pz,0

μ (τ0 = ∞) = 1.

The hitting probability of the vertex is more varied in the case of α ≥ 1, and before
proceeding wemust make some observations on the geometry of the wedge. For n ≥ 1
and a set of vectors {a1, . . . , an} ⊂ R

2, let co(a1, . . . , an) denote the closed convex
cone generated by {a1, . . . , an}. We illustrate two relevant cases for α below.

S
ξv1

v2

A

S
ξ−v2

−v1

B

In the above diagrams, case A corresponds to α = 1, which occurs if and only
if co(v1, v2) is a line. Case B corresponds to α > 1, which occurs if and only
if co(−v1,−v2) contains S. In both cases, that is, whenever α ≥ 1 we have that
co(v1, v2) ∩ S = {0}. We have α < 1 if and only if co(−v1,−v2) ∩ S = {0} and
co(v1, v2) is not a line. The cases α ≤ 0, α ≥ 2 play significant roles in the results
in this section, but unfortunately we don’t have a simple geometric interpretation
for these cases. Intuitively, small value for α means that the combined impact of the
reflections on ∂S1 and ∂S2 are driving the reflected process more away from the vertex
than towards it. Large value for α means that the combined effect of the reflections is
driving the reflected process more towards the vertex than away from the vertex. Note
also that α ≥ 1 implies ξ < π .

Theorem 2.16 If α ≥ 1, then

P
z,0
μ (τ0 < ∞) > 0 for each μ ∈ R

2 and z ∈ S. (8)

Moreover, if in addition to the α ≥ 1 condition we also have that

co(v1, v2, μ) ∩ S = {0}, (9)

then for each z ∈ S,
P
z,0
μ (τ0 < ∞) = 1. (10)

We note that in the case of α > 1 condition (9) can be cast in an algebraic form.
Let R be the 2 × 2 matrix such that its i-th column vector is vi , for i = 1, 2. If α > 1
then condition (9) is equivalent to the requirement the vector R−1μ has at least one
non-negative component.
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Remark 2.17 Theorem 2.16 leaves open the possibility that Pz,0
μ (τ0 < ∞) = 1 when-

ever α ≥ 1. This however is not the case as the following counterexample shows. Let
α ∈ R be arbitrary and let the drift μ ∈ R

2 be given by μ = ||μ||(cos η, sin η) �= 0,
where η ∈ (0, ξ). Then, it is not hard to show using the proposition below that
P
z,0
μ (τ0 < ∞) < 1 for each z ∈ S\{0}.

Proposition 2.18 Let S be the 2-d wedge defined above, let S0 be the interior of S, let
B be a 2-d standard Brownian motion with zero drift starting at the origin under a
probability measure P, and let μ ∈ R

2 given by μ = ||μ||(cos η, sin η) �= 0, where
η ∈ (0, ξ). Then, if 0 < ξ < π , for each z ∈ S0,

P(z + Bt + μt ∈ S0, t ≥ 0) > 0.

Using the proposition above and Theorem 2.16, we may now deduce that if α ≥ 1,
η ∈ (0, ξ), and μ = ||μ||(cos η, sin η) �= 0, we obtain that

P
z,0
μ (τ0 < ∞) ∈ (0, 1) for each z ∈ S \ {0}.

This implies that when α ≥ 1, hitting the vertex is no longer a 0-1 event for certain
values of μ, which contrasts with the drift-less result of [35]. An explicit formula for
the hitting probability of the vertex can be found in [15] assuming that S is a quadrant,
α = 1, and μ points inside of the quadrant (the result of that paper is actually stated in
a dimension possibly higher than 2, but we quoted it in the 2-dimensional case, since
that is the relevant case in the present paper).

3 Proof of Theorems 2.3, 2.5, 2.6, 2.7, and 2.8

The first two propositions in this section will provide proofs for all statements in
Theorem 2.3, except the uniqueness. The proof of these propositions is based on
Girsanov’s theorem.We know that all these statements hold forμ = 0, and Girsanov’s
theorem implies that a Brownian motion X with drift μ exists under the transformed
probability measures, and (X ,Y ) solves a particular ESP. Then a result of Kang and
Ramanan will imply that the family of transformed probability measures solves the
submartingale problem.The exact steps of this plan are below.
Recall that d(·) has been specified in (1)–(3). It is known that in the case of μ = 0
the submartingale problem has a unique solution whenever α < 2 (see [35]). In
accordance with our notation, that solution will be denoted by {Pz

0, z ∈ S}. We then
have the following.

Proposition 3.1 Let (CS,M,Mt ) and Z be defined as in Sect.2, that is, Z(t) : CS 
→
S is the coordinate map Z(t)(ω) = ω(t) for ω ∈ CS. Then, if α < 2,

1. There exists a process X defined on (CS,M,Mt ) which, for each z ∈ S, is a
2-dimensional Brownian motion starting at z under Pz

0;
2. Setting Y = Z − X, the pair (Z ,Y ) solves the ESP (S, d(·)) for X, Pz

0-a.s.
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Proof Let α < 2. Then, Condition 1 is immediate fromTheorem 2.4 in [23]. It remains
to show that for each z ∈ S, Pz

0-a.s., Z and Y = Z − X together solve the ESP (see
Definition 2.2 as above) for X with d as defined immediately preceding the statement
of the proposition. For α ∈ (1, 2), this follows by Theorem 2.8 in [23]. We now claim
that if α ≤ 1, (Z ,Y ) also solves the ESP (S, d(·)) for X , Pz-a.s. For any two real
numbers 0 < s < t , if (s, t) belongs to a single excursion from the origin then by a
similar proof to the one in part 2 of Theorem 4.2 in [23], one can conclude that item 3
in the definition of the ESP holds. If (s, t) doesn’t belong to one excursion, then item
3 is obviously satisfied by d(0) = R

2. ��
We are now ready to prove the existence of a solution to the submartingale problem

with drift, and some of the properties of the solution we create. In the following
Proposition X and Y are the processes whose existence is guaranteed by Proposition
3.1. In particular, for each z ∈ S the process X is a 2-dimensional Brownian motion
with no drift under Pz

0, and Y = Z − X .

Proposition 3.2 If α < 2, then for each μ ∈ R
2 the submartingale problem with drift

has a solution {Pz
μ, z ∈ S}, which satisfies the following properties. With X and Y

defined in Proposition 3.1, for every z ∈ S the following hold:

• Under Pz
μ the process X is a standard Brownian motion with drift μ starting at z;

• The pair (Z ,Y ) solves the ESP (S, d(·)) for X, Pz
μ-s.s.

Proof Let α < 2 and note that by Proposition 3.1 there exists a process X defined on
(CS,M,Mt ) which, for each z ∈ S, is a 2-dimensional Brownian motion starting
at z under Pz

0. Now let T ≥ 0 and for each z ∈ S, let Pz
μ,T be a probability measure

on (CS,M,Mt ) equivalent (mutually absolutely continuous) to P
z
0 such that under

P
z
μ,T , X is a standard Brownian motion with driftμ up to time T , starting at z. In other

words, {X(t) − μt, t ≤ T } is a standard (drift-less) Pz
μ,T -Brownian motion starting

at z. The measure Pz
μ,T is defined by

dPz
μ,T

dPz
0

= ζ(T ), (11)

where ζ(T ) = exp{μ · (X(T ) − X(0)) − 1
2 |μ|2T }.

One can easily show that the family of probability measures {Pz
μ,T , T ∈ [0,∞)}

is consistent. That is, if S < T , then P
z
μ,T (A) = P

z
μ,S(A), whenever A ∈ MS . From

[25], Theorem 4.2 (page 143), it follows that there exists a single probability measure
P
z
μ such that Pz

μ(A) = P
z
μ,T (A)whenever A ∈ MT . Since {X(t)−X(0)−μt, t ≤ T }

is a P
z
μ,T -Brownian motion starting at zero for every T ∈ [0,∞), it follows that

{X(t) − X(0) − μt, t < ∞} is also a P
z
μ-Brownian motion starting at zero. Also,

(Z ,Y ) solves the ESP (S, d(·)) for X under Pz
μ-a.s., because by Proposition 3.1 it is

true under Pz
0, and the measures Pz

0 and P
z
μ constrained toMT are mutually absolutely

continuous for every T ∈ [0,∞). Now let

W (t) = X(t) − X(0) − μt, t ∈ [0,∞),
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and consider the definition of a weak solution to an SDER (see Definition 2.4 of Kang
and Ramanan [21]. The triplet (CS,M,Mt ), Pz

μ, (Z ,W ) is a weak solution to the
SDERwith initial condition z associated with (S, d(·)), b(·) and σ(·), where b(x) = μ

and σ(x) = Id2×2. For the convenience of the reader we recalled the definition of a
weak solution of an SDER from [21] in Remark 8.3. Condition 4 in that remark is
satisfied by Lemma 4.2 in [37]. Indeed, it follows from that lemma that for every t ≥ 0
the set {s ∈ [0, t) : Z(s) ∈ ∂S} has zero LebesguemeasurePz

0-a.s. Then by themutual
absolute continuity of Pz

μ and Pz
0 the same is true under Pz

μ, and then by taking limits
as t → ∞we get the required property.We note that the “closed graph condition" (see
Kang and Ramanan [21], page 5) is satisfied, because we defined d(0) = R

2. From
Theorem 2 in [21], it now follows that {Pz

μ, z ∈ S} solves the submartingale problem
with drift μ. ��

We shall use the Lemmas 3.3, 3.4, 3.5, 3.6, and 3.7 for the proof of both the
uniqueness part of Theorem 2.3, and for the proof of Theorem 2.8. In these lemmas α

may be an arbitrary real number. On the other hand, in these lemmas we start with a
probability measure Pz

μ that satisfies conditions 1, 2, and 3 of Definition 2.1. This may
be surprising, since Theorem 2.8 states that such probability measure does not exist for
α ≥ 2. However, for such α’s we use these lemmas to derive a contradiction, thereby
proving Theorem 2.8. A simple use of Girsanov’s theorem is not sufficient for proving
uniqueness. The reason is that assuming that there is another probability measure,
Qz

μ besides Pz
μ that satisfies conditions 1–3 in Definition 2.1, we do not know that

Qz
μ and Pz

μ constrained to MT are mutually absolutely continuous for T ∈ [0,∞),
thus we do not know that X is a Brownian motion with drift μ under Qz

μ, and do
not know that the ESP is satisfied under Qz

μ either. Therefore the uniqueness proof
is a bit more complicated. In the lemma below we shall show that for any solution
{Pz

μ, z ∈ S} to the submartingale problem satisfies (12). We showed at the end of the
proof of Proposition 3.2 that this can be done easily for the solution we created using
Girsanov’s theorem. But the point is that for the uniqueness proof now we need to
show that (12) holds for any solution to the submartingale problem.

Lemma 3.3 Suppose that {Pz
μ, z ∈ S} is a solution to the submartingale problem with

drift μ ∈ R
2. Then, for all z ∈ S,

E
z
μ

[ ∫ ∞

0
1{Z(t)∈∂S}dt

]
= 0. (12)

Proof Let z ∈ S be arbitrary. In this proofwe shall use theDoob–Meyer decomposition
for submartingales, which requires that the probability space is augmented. For this
reason we denote by (CS,F z, (F z

t )) the augmentation of the space (CS,M, (Mt ))

under Pz
μ, using the concept of augmentation as it is defined in [32], Definition II.67.3.

For some technical details on the augmentation of probability spaces see Remark 8.2
in the Appendix. Condition 3 of the submartingale problem gives

E
z
μ

[ ∫ ∞

0
1{Z(t)=0}dt

]
= 0,
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for each z ∈ S, thus in order to complete the proof it suffices to prove that

E
z
μ

[ ∫ ∞

0
1{Z(t)∈∂Si,}dt

]
= 0 for i = 1, 2. (13)

We prove this result for i = 1; the result then follows for i = 2 by symmetry. The
essence of the proof is the following. First we select an area within S that is bounded
away from the vertex, and prove that the statement holds while Z is in this area in the
following way. By selecting a test function which in this area is simply the projection
to the vertical axis we show that Z2(t) has a decomposition M(t)+ A(t)+μ2t , where
M is a 1-dimensional martingale and A is an increasing process. Then we show that
A can increase at t only if Z2(t) = 0, and M is a Brownian motion. These facts make
Z2 a reflected Brownian motion with a drift while Z is in that particular area, hence by
the well-known result for a 1-dimensional reflected Brownian motion, the Lebesgue
measure of the set of times such process spends on the boundary is zero. Then (13)
follows for i = 1 by taking limits. Below are the exact steps of this proof.
For each ε > 0, define Sε ⊂ S by Sε = S + (ε, 0), i.e., a wedge with vertex at (ε, 0)
and edges ∂Sε

1 = {(x, 0) ∈ R
2, x > ε} and ∂Sε

2 = {(ε, 0) + λ(cos ξ, sin ξ), λ > 0}
(recall that ξ is the angle of the wedge S).

Next we shall recursively define the (F z
t ) stopping times σ̄

ε,T
k , τ̄

ε,T
k for k ≥ 1, for

every T > 0. We define

σ̄
ε,T
1 = inf

{
t ≥ 0 : Z(t) ∈ Sε

}
∧ T ,

and

τ̄
ε,T
k = inf

{
t ≥ σ̄

ε,T
k : Z(t) ∈ ∂S2ε/32

}
∧ T , k ≥ 1,

σ̄
ε,T
k = inf

{
t ≥ τ̄

ε,T
k−1 : Z(t) ∈ ∂Sε

2

}
∧ T , k ≥ 2;

Let Z(t) = (Z1(t), Z2(t)). LetC > z2 be an arbitrary constant. We define the (F z
t )

stopping time

TC = inf
{
t ≥ 0 : Z2(t) ≥ C

}
,

and in order to simplify the notation, we also introduce the stopping times σ̄k =
σ̄

ε,T
k ∧ TC and τ̄k = τ̄

ε,T
k ∧ TC . Notice that for all t ≤ T , t ∈ [σ̄k, τ̄k] implies that

Z(t) ∈ S2ε/3 and Z2(t) ≤ C (Fig. 2).
Next, as described in the plan above, we would like to study the process Z2. We

shall select a function which maps (z1, z2) to z2 on S2ε/3 ∩ {z2 ≤ C} which is
bounded away from the vertex, and make sure that in addition this function satisfies
all conditions imposed on f in item 2 of Definition 2.1. Then we use this function to
create a submartingale as in item 2 of Definition 2.1.
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Let fε,C ∈ C2
b (S) such that

fε,C (x, y) =
{
0, if (x, y) ∈ S \ Sε/3,

y, if (x, y) ∈ S2ε/3, y ≤ C .
(14)

In addition we require that fε,C (x, 0) = 0 for all x ≥ 0, and D2 fε,C ≥ 0 on ∂S2. It
follows from (14) that D1 fε,C = 0 on ∂S1. We show in Lemma 8.1 in the Appendix
that such function indeed exists. By the definition of the submartingale problem

V1 =
{
V1(t) = fε,C (Z(t)) −

∫ t

0

(
μ · ∇ fε,C (Z(s)) − 1

2
� fε,C (Z(s))

)
ds; t ≥ 0

}

(15)
is a regular submartingale under Pz

μ on (F z
t ), thus by Theorem 1.4.14 in [22] it has a

unique Doob–Meyer decomposition

V1(t) = M(t) + A(t) (16)

where M is a continuous martingale and A is a continuous increasing (not strictly
increasing) process. For the definition of regular submartingales see Definition 1.4.12
in [22]. For an arbitrary k ≥ 1 we have fε,C (Z(t)) = Z2(t), μ · ∇ fε,C (Z(t)) = μ2,
and � fε,C (Z(t)) = 0 whenever t ∈ [σ̄k, τ̄k], hence by (16) and (15)

Z2(t) = Z2(σ̄k) + M(t) − M(σ̄k) + A(t) − A(σ̄k) + μ2(t − σ̄k) (17)

for t ∈ [σ̄k, τ̄k]. Next we are going to establish the following two properties. The first
is that ∫ τ̄k

σ̄k

1{Z2(t)>0}d A(t) = 0, P
z
μ−a.s., (18)

and the second is that

∫ τ̄k

σ̄k

d (〈M〉t − t) = 0, P
z
μ−a.s. (19)

We start with proving (18). For any δ > 0 and k ≥ 1 we define a sequence of (F z
t )

stopping times

θδ
1 = inf{t ≥ σ̄k : Z2(t) ≥ δ} ∧ τ̄k, ϑδ

1 = inf

{
t ≥ θδ

1 : Z2(t) = δ

2

}
∧ τ̄k,

θδ
n = inf

{
t ≥ ϑδ

n−1 : Z2(t) = δ
} ∧ τ̄k, n ≥ 2,

ϑδ
n = inf

{
t ≥ θδ

n : Z2(t) = δ

2

}
∧ τ̄k, n ≥ 2.

Notice that [θδ
n , ϑ

δ
n ] is a sub-interval of [σ̄k, τ̄k] such that for t ∈ [θδ

n , ϑ
δ
n ] we have

Z2(t) ≥ δ/2. All these stopping times are finite because by definition τ̄k ≤ T . Let
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g1 ∈ C2
b (R) be an arbitrary function such that g′

1(0) = 0, and g1(x) = x whenever
x ≥ δ/2. Relation g′

1(0) = 0 implies that ∇(g1 ◦ fε,C ) is zero on the boundary of S,
henceMeyerdecomposition

V2 =
{
V2(t) = g1

(
fε,C (Z(t))

) −
∫ t

0

(
μ · ∇(g1 ◦ fε,C )(Z(s))

−1

2
�(g1 ◦ fε,C )(Z(s))

)
ds, t ≥ 0

}

is a martingale with respect to the filtration (F z
t ) under P

z
μ. Therefore,

{
V2

(
(t ∨ θδ

n )∧
ϑδ
n

)
, t ≥ 0

}
is also a martingale with respect to the filtration

{
F z

(t∨θδ
n )∧ϑδ

n
, t ≥ 0

}
under P

z
μ. For all s ∈ [θδ

n , τ
δ
n ] we have g1( fε,C (Z(s))) = Z2(s), μ · ∇(g1 ◦

fε,C )(Z(s)) = μ2 and �(g1 ◦ fε,C )(Z(s)) = 0, hence for all t ≥ 0

V2
(
(t ∨ θδ

n ) ∧ ϑδ
n

) = V2(θ
δ
n ) − Z2(θ

δ
n ) + Z2

(
(t ∨ θδ

n ) ∧ ϑδ
n

) − μ2
(
(t ∨ θδ

n ) ∧ ϑδ
n − θδ

n

)

thus
{
Z2

(
(t ∨ θδ

n ) ∧ ϑδ
n

) − μ2
(
(t ∨ θδ

n ) ∧ ϑδ
n

)
, t ≥ 0

}
is also a martingale with

respect to the filtration
{
F z

(t∨θδ
n )∧ϑδ

n
, t ≥ 0

}
under Pz

μ. On the other hand, from (17)

follows that

Z2
(
(t ∨ θδ

n ) ∧ ϑδ
n

) − μ2
(
(t ∨ θδ

n ) ∧ ϑδ
n

)
= Z2(θ

δ
n ) − μ2θ

δ
n + M((t ∨ θδ

n ) ∧ ϑδ
n ) − M(θδ

n ) + A((t ∨ θδ
n ) ∧ ϑδ

n ) − A(θδ
n ),

for all t ≥ 0. However, the left-hand side in the above identity is a martingale with

respect to the filtration
{
F z

(t∨θδ
n )∧ϑδ

n
, t ≥ 0

}
under Pz

μ, and so is M((t ∨ θδ
n ) ∧ ϑδ

n ) on

the right-hand side (t ≥ 0). Therefore, A must be constant on [θδ
n , τ

δ
n ], Pz

μ-a.s. This
holds for all n ≥ 1, hence

∫ τ̂k

σ̂k

∞∑
n=1

1[θδ
n ,ϑδ

n ](t)d A(t) = 0, P
z
μ−a.s. (20)

If t ∈ [σ̄k, τ̄k] and Z2(t) > δ, then Z2(t) ∈ [θδ
n , ϑ

δ
n ] for some n ≥ 1, hence by (20)

∫ τ̂k

σ̂k

1{Z2(t)>δ}(t)d A(t) = 0, P
z
μ−a.s.,

and (18) follows.
Next we are going to show (19). Let g2 ∈ C2

b (R) arbitrary such that g2(x) = x2

whenever |x | ≤ C . Then

V3 =
{
V3(t) = g2

(
fε,C (Z(t))

) −
∫ t

0

(
μ · ∇(g2 ◦ fε,C )(Z(s))
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−1

2
�(g2 ◦ fε,C )(Z(s))

)
ds, t ≥ 0

}
(21)

is a martingale under Pz
μ with respect to the filtration (F z

t ), and for t ∈ [σ̄k, τ̄k] we
have g2

(
fε,C (Z(t))

) = (Z2(t))2, μ · ∇(g2 ◦ fε,C )(Z(t)) = 2μ2Z2(t) and �(g2 ◦
fε,C )(Z(t)) = 2, hence by Ito’s rule applied to g2( fε,C (Z(t))) and by (17)

Z2
2(t) = Z2

2(σ̄k) +
∫ t

σ̄k

2Z2(s)dM(s) +
∫ t

σ̄k

2μ2Z2(s)ds + 〈M〉t − 〈M〉σ̄k ,

for t ∈ [σ̄k, τ̄k]. We note that the
∫ t
σ̄k
2Z2(s)d A(s) term vanished because of (18).

From this and from (21) follows that

V3(t) = V3(σ̄k) +
∫ t

σ̄k

2Z2(s)dM(s) +
∫ t

σ̄k

d (〈M〉s − s) ,

for t ∈ [σ̄k, τ̄k]. The process {V3 ((t ∨ σ̄k) ∧ τ̄k) , t ≥ 0} is a martingale with respect

to the filtration
{
F(t∨θδ

n )∧ϑδ
n
, t ≥ 0

}
under Pz

μ, and can be written by substituting

(t ∨ σ̄k) ∧ τ̄k for t in the above identity as

V3(t ∨ σ̄k) ∧ τ̄k) = V3(σ̄k) +
∫ t∨σ̄k )∧τ̄k

σ̄k

2Z2(s)dM(s) +
∫ t∨σ̄k )∧τ̄k

σ̄k

d (〈M〉s − s) ,

for all t ≥ 0. Since the left-hand side is a martingale with respect to the filtration{
F z

(t∨θδ
n )∧ϑδ

n
, t ≥ 0

}
under Pz

μ, (19) follows. Then by (17), Z2 is a 1-dimensional

Brownian motion with drift μ2 reflected at zero in [σ̄k, τ̄k]. Therefore,
∫ τ̄k

σ̄k

1{Z2(t)=0}dt = 0, P
z
μ-a.s.

This holds for every k ≥ 1, hence we also have

∞∑
k=1

∫ τ̄k

σ̄k

1{Z2(t)=0}dt = 0, P
z
μ-a.s.,

and from this

∫ T∧TC

0
1{Z1(t)≥ε,Z2(t)=0}dt = 0, P

z
μ-a.s.

The last identity follows because t ≤ T ∧ Tc, Z1(t) ≥ ε and Z2(t) = 0 implies that
t ∈ [σ̄k, τ̄k] for some k ≥ 1. The statement of the Lemma now follows by T ,C ↑ ∞
and ε ↓ 0. ��
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Let {Pz
μ, z ∈ S} be a solution to the submartingale problem with a drift μ. Next

we shall create a process X which is a Brownian motion with drift μ starting at z on
(CS,M, (Mt ),P

z
μ), for every z ∈ S. We already know that such process exists for

the solution that we created in Proposition 3.2. However, for proving the uniqueness
of the solution, we need to show the existence of such process X for every solution of
the submartingale problem. Such construction has been carried out in [23] and in [21]
for the case of zero drift. The generalization to the case of non-zero drift requires only
a few obvious changes to the proofs in the case of zero drift, so here we shall only
state the results (Lemmas 3.4 and 3.5) without proofs. The corresponding results for
the zero drift case are available in [23], Lemma 4.5 and Proposition 4.7.

For each δ > 0, let Sδ ⊂ S be the closed set defined in the complex plane by
Sδ = S + δeiξ/2. So Sδ is a wedge with vertex at δ (cos (ξ/2) , sin (ξ/2)), such that it
is included in S and has edges parallel with the respective edges of S.

Set τ δ
0 = 0, and, for each k ≥ 1, recursively define

σ δ
k = inf{t ≥ τ δ

k−1 : Z(t) ∈ S2δ} and τ δ
k = inf{t ≥ σ δ

k : Z(t) ∈ S\Sδ}.

By Problem 1.2.7 in Karatzas and Shreve [22], σ δ
k and τ δ

k are stopping times relative
to {Mt , t ≥ 0} for every k ≥ 1.

For each k ≥ 1 and δ > 0, define the process {W δ
(k)(t), t ≥ 0} by setting

W δ
(k)(t) = Z(t ∧ τ δ

k ) − Z(t ∧ σ δ
k ) − (t ∧ τ δ

k − t ∧ σ δ
k )μ, t ≥ 0,

and then define the process {W δ(t), t ≥ 0} by setting

W δ(t) =
∞∑
k=1

W δ
(k)(t), t ≥ 0.

Lemma 3.4 For every δ > 0 and z ∈ S the process W δ is a square-integrable martin-
gale on (CS,M, (Mt ),P

z
μ).

Lemma 3.5 There exists a process W on (CS,M,Mt ) such that for every z ∈ S it is
a standard 2-dimensional Brownian motion under Pz

μ starting at zero, and for every
fixed T > 0 we have

E
z
μ

[
|W (T ) − W δ(T )|2

]
→ 0, as δ → 0. (22)

Next we shall define the process X by

X(t, ω) = ω(0) + W (t, ω) + μt, t ≥ 0. (23)

We define the process Y by

Y (t) = Z(t) − X(t), t ≥ 0. (24)
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We shall say that a function f : R+ 
→ R
2 is flat on an interval [s, t] ⊂ R+, if for

every u ∈ [s, t] we have f (u) = f (s).

Lemma 3.6 Let {Pz
μ; z ∈ S} be an arbitrary solution of the submartingale problem,

and let X and Y be the processes defined above. Then the following two statements
hold for every z ∈ S:

1. Under P
z
μ the process X is a standard 2-dimensional Brownian motion on

(CS,M,Mt ) with drift μ, starting at z;
2. for every n ∈ N+, and δ > 0, the sample paths of Y are flat on [σ δ

n , τ δ
n ], Pz

μ-a.s.

Proof The first statement follows from Lemma 3.5 and property 1 in the definition of
the submartingale problem. Next we shall prove the second statement. In this proof
we shall first study the properties of the process {Z(t)−W δ(t)−μt, t ≥ 0}, then take
limits to conclude. By the definition of W δ , the sample paths of

{Z(t) − W δ(t) − μt, t ≥ 0} are flat on [σ δ
n , τ δ

n ], (25)

for each δ > 0, n ≥ 1. On the other hand, for every δ > 0, n ≥ 1 there exists k ≥ 1
(depending on the sample path) such that [σ δ

n , τ δ
n ] ⊂ [σ δ/2

k , τ
δ/2
k ]. This implies that

the sample paths of {Z(t) − W δ/2(t) − μt, t ≥ 0} are also flat on [σ δ
n , τ δ

n ]. Iterating
this we get that for every m ≥ 1 the sample paths of {Z(t) − W δ/2m (t) − μt, t ≥ 0}
are also flat on [σ δ

n , τ δ
n ]. Comparing this with (25) we conclude that the sample paths

of W δ − W δ/2m are also flat on [σ δ
n , τ δ

n ], thus for every t ≥ 0

∫ t

0
1[σδ

n ,τ δ
n ](s)dW δ/2m (s) =

∫ t

0
1[σδ

n ,τ δ
n ](s)dW δ(s).

Taking limit as m → ∞ and using (22) we get that

∫ t

0
1[σδ

n ,τ δ
n ](s)dW (s) =

∫ t

0
1[σδ

n ,τ δ
n ](s)dW δ(s),

P
z
μ-a.s. This identity and (25) imply that the sample paths of {Z(t)−W (t)−μt, t ≥ 0}

are flat on [σ δ
n , τ δ

n ]∩ [0, t], Pz
μ-a.s. Since t ≥ 0 was arbitrary, this and (23) imply what

we wanted to prove. ��
In our proof for the uniqueness of the submartingale problem with drift we want to

use the known result that such uniqueness holds in the case of μ = 0. The following
lemma will be essential in carrying out this plan. It states that two solutions for the
submartingale problem with drift yield two solutions for the submartingale problem
with no drift using Girsanov-type changes of measures, and in addition, the Radon–
Nicodym derivatives associated with these changes of measures are the same.

Lemma 3.7 Suppose that Q1 and Q2 are mutually absolutely continuous probability
measures on M, both satisfying properties 1, 2, and 3 of Definition 2.1 with P

z
μ

replaced by Qi (i = 1, 2). Then there exist probability measures Q̃i onM for i = 1, 2,
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such that conditions 1, 2, and 3 of Definition 2.1 are satisfied with Pz
μ replaced by Q̃i

andμ replaced by the zero vector. Furthermore, for every T ≥ 0 there exist probability
measures Q̃T

1 and Q̃T
2 onM such that for all T ≥ 0, A ∈ MT , and i = 1, 2 we have

Q̃T
i (A) = Q̃i (A), Q̃T

i and Qi are mutually absolutely continuous, and

d Q̃T
1

dQ1
= d Q̃T

2

dQ2
. (26)

Proof Let Q1 and Q2 as above, and let (Xi ,Y i ) be as in Lemma 3.6 defined under Qi .
Since Xi is defined by L2(Qi ) convergence, this implies that (X1,Y 1) = (X2,Y 2),
which we shall from here on denote by (X ,Y ). Our main goal in this proof is to
write the process f (Z(t)) − ∫ t

0 ∇ f (Z(s)) · μds − 1/2
∫ t
0 	 f (Z(s))ds as a sum of

a martingale Ni and an increasing process Ai under the measure Qi for i = 1, 2 in
such a way that after a Girsanov type change of measure that eliminates the second
term, Ni still remains a martingale. The proof of this is quite technical, and the exact
steps follow. We shall use the Doob–Meyer decomposition which requires that the
probability space satisfies the “usual conditions", and for this purpose we have to
augment the probability space (CS,M, (Mt ), Qi ), i = 1, 2; let this augmentation
be (CS,F , (Ft ), Qi ). The measures Q1 and Q2 are mutually absolutely continuous,
hence the filtration (Ft ) and the sigma fieldF do not depend on i = 1, 2. For technical
details concerning the augmentation of a probability space please see Remark 8.2 in
the Appendix. In this proof all processes live on the augmented space (CS,F , (Ft )),
unless specified otherwise.

Next, note that for each T > 0 and δ > 0 and n ≥ 1,

{
Z(τ δ

n ∧ t) − Z(σ δ
n ∧ t), t ∈ [0, T ]

}

is a semimartingale under both Q1 and Q2 with respect to the filtration (Ft ). Indeed,
it can be written by Lemma 3.6 and by (24) as

Z(τ δ
n ∧ t) − Z(σ δ

n ∧ t) = X(τ δ
n ∧ t) − X(σ δ

n ∧ t), t ∈ [0, T ].

Now let f ∈ C2
b (S) such that Di f ≥ 0 on ∂Si for i = 1, 2, and f is constant in a

neighborhood of the origin. Then, by Itô’s rule we have that for t ∈ [0, T ],

f (Z(t ∧ τ δ
n )) = f (Z(t ∧ σ δ

n )) +
∫ t∧τ δ

n

t∧σδ
n

∇ f (Z(s))dX(s) + 1

2

∫ t∧τ δ
n

t∧σδ
n

	 f (Z(s))ds,

(27)
Qi -a.s., i = 1, 2. On the other hand, by condition 2 of Definition 2.1 and by Theorems
I.4.10 and I.4.14 in [22], we have for i = 1, 2, the unique Doob–Meyer decomposition

f (Z(t)) = f (z)+
∫ t

0
∇ f (Z(s)) ·μds+ 1

2

∫ t

0
	 f (Z(s))ds+Mi (t)+ Ai (t), t ≤ T ,

(28)
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where Mi is a continuous martingale and Ai is a continuous, increasing process on
(CS,F , (Ft ), Qi ), with Mi (0) = Ai (0) = 0. By Proposition 16.32 in Bass [1], we
also have that for T ≥ 0,

E
Qi [||Mi (T )||2] < ∞, i = 1, 2.

Let W as in (23), that is, W (t) = X(t) − z − μt , and for i = 1, 2, let Si (W ) be
the class of R2-valued processes on (CS,F , (Ft )) such that U ∈ Si (W ) if it has the
form

U (t) =
∫ t

0
G(s)dW (s), t ∈ [0, T ],

for some 2-dimensional process G such that

E
Qi

[ ∫ T

0
||G(s)||2ds

]
< ∞.

Then, by Theorem IV.36 and Corollary 1 to Theorem IV.37 in [27], there exists a
R
2-valued process Hi such that

Mi (t) =
∫ t

0
Hi (s)dW (s) + Ni (t), t ∈ [0, T ],

where

(i) Ni is a square-integrable martingale under Qi ,
(ii) Ni is strongly orthogonal to every member of Si (W ) under Qi , that is, NiU is

a Qi -martingale for each U ∈ Si (W ),

(iii) E
Qi

[ ∫ T

0
||Hi (s)||2ds

]
< ∞.

Now, by (28) we have for t ∈ [0, T ],

f (Z(t)) = f (z) +
∫ t

0
∇ f (Z(s)) · μds + 1

2

∫ t

0
	 f (Z(s))ds

+
∫ t

0
Hi (s)dW (s) + Ni (t) + Ai (t), Qi − a.s. (29)

The main objective of the rest of the proof is to show that in the above equation Hi (s)
can be replaced by ∇ f (Z(s)). First we shall show that Ni is flat on [σ δ

n , τ δ
n ], and

Hi (s) = ∇ f (Z(s)) for s ∈ [σ δ
n , τ δ

n ]. By (29) we have for t ∈ [0, T ],

f (Z(t ∧ τ δ
n )) = f (Z(t ∧ σ δ

n )) +
∫ t∧τ δ

n

t∧σδ
n

∇ f (Z(s)) · μds + 1

2

∫ t∧τ δ
n

t∧σδ
n

	 f (Z(s))ds
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+
∫ t∧τ δ

n

t∧σδ
n

Hi (s)dW (s) + Ni (t ∧ τ δ
n ) − Ni (t ∧ σ δ

n ) + Ai (t ∧ τ δ
n ) − Ai (t ∧ σ δ

n ),

(30)

Qi -a.s. Now, for each i = 1, 2, we have two Doob–Meyer decompositions of the
submartingale

{
f (Z(t ∧ τ δ

n )) − f (Z(t ∧ σ δ
n )) −

∫ t∧τ δ
n

t∧σδ
n

∇ f (Z(s)) · μds

−1

2

∫ t∧τ δ
n

t∧σδ
n

	 f (Z(s))ds, t ∈ [0, T ]
}

,

(27) and (30). Hence, by the uniqueness of the Doob–Meyer decomposition, for each
t ∈ [0, T ]

Ni (t ∧ τ δ
n ) − Ni (t ∧ σ δ

n ) +
∫ t∧τ δ

n

t∧σδ
n

Hi (s)dW (s) =
∫ t∧τ δ

n

t∧σδ
n

∇ f (Z(s))dW (s),

(31)

Qi - a.s. Ni is strongly orthogonal to every member of Si (W ), and from [27], Theorem
IV.37 follows that {Ni (t ∧τ δ

n )−Ni (t ∧σ δ
n ), t ∈ [0, T ]} is also strongly orthogonal to

every member of Si (W ) under Qi . However, by the above relation it is also a member
of Si (W ), hence it follows that Ni (t ∧ τ δ

n ) − Ni (t ∧ σ δ
n ) = 0 for t ∈ [0, T ]. Then by

(31) we also have

E
Qi

[ ∫ t∧τ δ
n

t∧σδ
n

||Hi (s) − ∇ f (Z(s))||2ds
]

= 0.

Next we show that Hi (s) = ∇ f (Z(s)) for all s ≤ T . Indeed,

E
Qi

[ ∫ t

0
||Hi (s) − ∇ f (Z(s))||2ds

]

= E
Qi

[ ∫ t

0

∞∑
n=2

1{
s∈[τ δ

n−1,σ
δ
n ]

}||Hi (s) − ∇ f (Z(s))||2ds
]

≤ E
Qi

[ ∫ t

0
1{

Z(s)∈Sc2δ
}||Hi (s) − ∇ f (Z(s))||2ds

]
, (32)

where Sc2δ = S\S2δ . Moreover, by the dominated convergence theorem,

(32) → E
Qi

[ ∫ t

0
1{

Z(s)∈∂S
}||Hi (s) − ∇ f (Z(s))||2ds

]
= 0 as δ → 0,
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where the last identity is by Lemma 3.3. By (29), now follows that for t ∈ [0, T ],

f (Z(t)) = f (z) +
∫ t

0
∇ f (Z(s)) · μds + 1

2

∫ t

0
	 f (Z(s))ds

+
∫ t

0
∇ f (Z(s))dW (s) + Ni (t) + Ai (t), Qi−a.s. (33)

Next, for each t ≥ 0 let

ζ̃ (t) = exp

{
− μ · (X(t) − z) + 1

2
||μ||2t

}
,

and for each i = 1, 2, and T ≥ 0 define the measure Q̃T
i by setting

d Q̃T
i

dQi
= ζ̃ (T ). (34)

Then, under Q̃T
i , {X(t), t ∈ [0, T ]} is a Brownian motion (without drift) starting at z,

and by (33) we have

f (Z(t)) = f (z) +
∫ t

0
∇ f (Z(s))dX(s)

+1

2

∫ t

0
	 f (Z(s))ds + Ni (t) + Ai (t), Qi−a.s. (35)

However, note that Ni is also a Q̃T
i -martingale on [0, T ]. Indeed, by (34), Ni is a

Q̃T
i -martingale if Ni ζ̃ is a Qi -martingale on [0, T ]. But this follows from the fact that

Ni is strongly orthogonal to every member of Si (W ) under Qi , and by its definition
ζ̃ − 1 ∈ Si (W ) under Qi . Just like in the proof of Proposition 3.2, there exists a
probability measure Q̃i onM such that Q̃i (A) = Q̃T

i (A), whenever A ∈ MT . Thus,
by (35) both Q̃1 and Q̃2 satisfy property 2 of Definition 2.1 with Pz

μ replaced by either

Q̃1 or Q̃2, and μ replaced by the zero vector. Q̃T
i and Qi are mutually absolutely

continuous because of (34) and because ζ̃ (T ) > 0, a.s. under Qi . Relation (26) also
follows from (34). Properties 1 and 3 of Definition 2.1 are satisfied if Pz

μ is replaced

by Q̃i because they are satisfied if we replace Pz
μ by Qi , and we already established

that Q̃T
i and Qi are mutually absolutely continuous. Property 1 follows immediately

from this. Property 3 can be shown by first showing it with the ∞ in the upper limit
of the integral replaced by T , then taking T → ∞. ��

Proof of Theorem 2.3 In light of Propositions 3.1 and 3.2 the only missing part is the
proof of uniqueness. Let z ∈ S and suppose thatPz

1 andP
z
2 are twoprobabilitymeasures

satisfying conditions 1, 2 and 3 in Definition 2.1 of the submartingale problem with
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drift. Let

Q1 = 1

3
P
z
1 + 2

3
P
z
2 and Q2 = 2

3
P
z
1 + 1

3
P
z
2.

Then, one can check that each Qi also satisfies conditions 1, 2, and 3 in Definition
2.1 of the submartingale problem with drift. In addition, Q1 and Q2 are mutually
absolutely continuous. In order to complete the proof, it is therefore sufficient to show
that Q1 ≡ Q2. By Lemma 3.7 there exist probability measures Q̃i , i = 1, 2, such
that properties 1, 2, and 3 of Definition 2.1 are satisfied with Pz

μ replaced by Q̃i ,
and μ replaced by the zero vector. The uniqueness result in Sect. 3.1 of [35] implies
Q̃1 = Q̃2. Using the probability measures Q̃T

i from the same proposition, we have
now that

Q̃T
1 |MT = Q̃T

2 |MT .

From (26) follows that

Q1|MT = Q2|MT .

Since T was arbitrary, Q1 = Q2 follows. ��
Next we prove Theorems 2.5, 2.6, and 2.7. These results essentially follow from

the facts that we created our solution to the submartingale problem using Girsanov’s
theorem, and the corresponding results hold for the drift-less case.

Proof of Theorem 2.5 Recall from the proof of Proposition 3.2 that for every T ≥ 0
there exists the probability measure P

z
μ,T which is mutually absolutely continuous

with respect to Pz
0, and coincides with P

z
μ onMT . By Theorem 2.6 in [23], formulas

(5) and (6) hold for μ = 0. Then by the mutual absolute continuity of Pz
0 and P

z
μ,T ,

(5) and (6) also hold with Pz
μ replaced by Pz

μ,T . Since P
z
μ and Pz

μ,T coincide onMT ,
both formulas follow. ��
Proof of Theorem 2.6 This follows from Theorem 2.4 in [23] using the measure Pz

μ,T
for every T > 0, just like in the proof of Theorem 2.5. ��
Proof of Theorem 2.7 Suppose that 1 ≤ α < 2, and Z is a continuous semimartingale
on (CS,M,Mt ,P

z
μ) for some z ∈ S. Then there exists a decomposition

Z(t) = z + M(t) + A(t), t ∈ [0,∞), (36)

where M is a continuous local martingale and A is a finite variation (FV) process on
(CS,M,Mt ,P

z
μ) (see [27], Corollary to Theorem II.31). We know from the proof of

Proposition 3.2 that for every T ∈ [0,∞) there exists a probability measure Pz
μ,T on

Mwhich ismutually absolutely continuous with respect toPz
0, andP

z
μ,T (A) = P

z
μ(A)

for all A ∈ MT . In addition,

dPz
0

dPz
μ,T

= 1

ζ(T )
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where ζ is defined under (11). We cast (36) in the form

Z(t) = z + M̃(t) + Ã(t), t ∈ [0,∞), (37)

where

M̃(t) = M(t) −
∫ t

0
ζ(s)d

[
1

ζ
, M

]
s
,

Ã(t) = A(t) +
∫ t

0
ζ(s)d

[
1

ζ
, M

]
s
.

For the definition of the square bracket process we refer to [27], Chapter II, Sect. 6. By
the Girsanov–Meyer theorem ([27], Theorem III.31) M̃ is a local martingale on [0, T ]
and Ã is a FV process under Pz

0. But this implies that M̃ is a local martingale on [0,∞)

under Pz
0, hence Z must be a semimartingale under Pz

0, which is in contradiction with
the result of [39], Theorem 5. ��

The proof of Theorem 2.8 follows from Lemma 3.7, because based on a solution to
the submartingale problemwith an arbitraryμ, that lemmawould guarantee a solution
for the drift-less case, but it is known that such solution does not exist for α ≥ 2.

Proof of Theorem 2.8 Suppose thatα ≥ 2, let z ∈ S and suppose thatPz
μ is a probability

measure onM satisfying properties 1, 2 and 3 in Definition 2.1 of the submartingale
problem with drift. Selecting Q1 = Q2 = P

z
μ in Lemma 3.7, it follows that there

exists a probability measure Q̃ onM such that properties 1, 2, and 3 of Definition 2.1
are satisfied with Pz

μ replaced by Q̃, and μ replaced by the zero vector. However, this
is in direct contradiction with Theorem 3.11 in [35]. ��

4 Proof of Theorems 2.11 and 2.9

First we shall prove Theorem 2.11. A simple application to Girsanov’s theorem does
not work for the following reason. Suppose that (zn) ⊂ S is a sequence of points such
that zn → z as n → ∞. In order to prove the Feller property we need to show that
E
zn
μ [F] → E

z
μ[F] as n → ∞, for every bounded, continuous functional F on CS . We

know that this result holds for the case of μ = 0. However, what we need to show,
written under the Pz

0 measure is thatEzn
0 [Fζ(T )] → E

z
0[Fζ(T )] as n → ∞, assuming

that F ∈ MT (the Radon–Nicodym derivative ζ is given below (11)). But in order to
conclude this last convergence, ζ(T ) needs to be a continuous functional on CS . The
problem is that ζ(T ) is defined in terms of the process X , and we don’t know that
X depends on Z continuously. Hence instead of using the Girsanov transformation,
we shall show that the family {Pz

μ, z ∈ S} satisfies the Feller property in a different
way. The technique of this proof is quite standard. First we show that the family of
probability measures {Pzn

μ } is tight whenever zn → z, then we show that any limit
point satisfies requirements 1–3 of Definition 2.1. Then the Feller property follows
from our uniqueness result.
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Proposition 4.1 The family of probability measures {Pzn
μ } is tight for any sequence

{zn, n ≥ 1} in S which converges to some z ∈ S.

Proof By Theorem 2.4.10 in [22], it is sufficient to show that

lim
δ↓0 supn

P
zn
μ (ω : mT (ω, δ) ≥ ε) = 0, for any T > 0, ε > 0. (38)

In the above,

mT (ω, δ) = sup
|t−s|≤δ
0≤s,t≤T

|ω(s) − ω(t)|.

Using (11) and the Cauchy–Schwarz inequality,

P
zn
μ (ω : mT (ω, δ) ≥ ε)

= E
zn
0

[
1{mT (ω,δ)>ε} exp

{
μ · (X(T ) − X(0)) − 1

2
||μ||2T

}]

≤
(
E
zn
0

[
exp

{
2μ · (X(T ) − X(0)) − ||μ||2T

}]
P
zn
0 (mT (ω, δ) > ε)

)1/2

= exp

{
1

2
||μ||2T

} (
P
zn
0 (mT (ω, δ) > ε)

)1/2
. (39)

By Theorem 3.13 in [35], {Pzn
0 } is tight hence

lim
δ↓0 supn

P
zn
0 (ω : mT (ω, δ) ≥ ε) = 0, for any T > 0, ε > 0,

combining with inequality (39), we have (38). ��
Proof of Theorem 2.11 Given Proposition 4.1, it only remains to show that any weak
limit point P∗

μ of the family {Pzn
μ } is a solution to the submartingale problem starting

from z, then by the uniqueness part of Theorem 2.3, Pzn
μ ⇒ P

z
μ as n → ∞.

It is straightforward thatP∗
μ satisfies condition 1 inDefinition 2.1 (the submartingale

problem), since for any k ≥ 1 and the closed set Ck = {ω ∈ CS : |ω(0) − z| ≤ 1
k },

1 = lim supn P
zn
μ (Ck) ≤ P

∗
μ(Ck) hence P

∗
μ concentrates on {ω ∈ CS : ω(0) = z}.

The condition 2 is also satisfied, since the submartingale property is preserved under
the weak convergence. Now we prove P∗

μ satisfies condition 3, we need to show that
if {zn, n ≥ 1} ⊂ S, z ∈ S such that limn→∞ zn = z and P

zn
μ ⇒ P

∗
μ, then

E
∗
μ

[∫ ∞

0
1{Z(t)=0}dt

]
= 0. (40)

Let ε > 0 and t ≥ 0 be arbitrary. Under the local uniform topology the event {w ∈
CS : |Z(t, ω)| < ε} is an open set, and {w ∈ CS : |Z(t, ω)| ≤ ε} is a closed set. By
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the Portmanteau Theorem, (11), and the Cauchy–Schwarz inequality

P
∗
μ (|Z(t)| < ε) ≤ lim inf

n
P
zn
μ (|Z(t)| < ε) = lim inf

n
E
zn
0

[
ζ(t)1{|Z(t)|<ε}

]

≤ lim inf
n

(
E
zn
0

[
(ζ(t))2

]
P
zn
0 (|Z(t)| < ε)

)1/2

≤ exp

{
1

2
|μ|2t

}
lim sup

n

(
P
zn
0 (|Z(t)| ≤ ε)

)1/2

≤ exp

{
1

2
|μ|2t

} (
P
z
0 (|Z(t)| ≤ ε)

)1/2
.

The process ζ is the Radon-Nykodim derivative defined below (11). The last inequality
follows from the Feller property for the drift-less case ([35], Theorem 3.13). We now
let ε ↓ 0, and then from property 3 in the definition of the submartingale problem
follows that

P
∗
μ (Z(t) = 0) = 0,

for Lebesgue-almost every t ≥ 0. Identity (40) follows. ��

In the following proof we could have possibly used Girsanov’s theorem in the
following way. In order to show the strong Markov property, we essentially need
to show that Pz

μ[Z(T + t) ∈ �|MT ] = P
Z(T )
μ (Z(t) ∈ �), for every Borel-subset

� of S and every stopping time T . This can be written under the P
z
0 measure as

E
z
0[ζ(T + t)/ζ(T )1Z(T+t)∈�|MT ] = E

Z(T )
0 [ζ(t)1Z(t)∈�]. In order to show that this

is true, we would need to prove that ζ(T + t)/ζ(T ) depends only on Z(T + ·), and it
depends on Z(T + ·) the same way as ζ(t) depends on Z(·). This is intuitively true,
and indeed would be possible to show, but instead we proceed in a simpler fashion.
The proof presented below is essentially very similar to the corresponding proofs in
[35].

Proof of Theorem 2.9 This follows in the standardway from the uniqueness of the solu-
tion to the submartingale problem, using the regular conditional probability measures
forM givenMτ under Pz

μ. In particular, Lemma 3.1, and Corollary 3.3 in [35] remain
true in the presence of a drift, without changing a single word in their proofs. Then
the strong Markov property follows, again exactly the same way as in [35], Theorem
3.14. ��

5 Proof of Theorem 2.12

In this proof we first show that it is sufficient to prove the Ĉ(S)-Feller property for the
drift-less case, using the fact that our solution for the submartingale problemwith drift
has been derived from the solution for the drift-less case usingGirsanov’s theorem. The
proof for the drift-less case boils down to estimating the probability that |Z(t)| ≤ n
under Pz

μ.
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Proof of Theorem 2.12 It is sufficient to show that the Ĉ(S)-Feller property holds in the
case when the drift is zero. Indeed, suppose that for the drift-less case the Ĉ(S)-Feller
property holds. By Theorem 1.10 in Bottcher, Schilling, andWang [2], the Ĉ(S)-Feller
property holds for {Pz

μ, z ∈ S} if and only if there exists an increasing sequence of
bounded sets Bn ∈ B(S) with ∪n≥1Bn = S such that for every t > 0 and n ≥ 1

lim|z|→∞P
z
μ(Z(t) ∈ Bn) = 0.

Since we already know that uniqueness holds for the submartingale problemwith drift
μ, we may assume that {Pz

μ, z ∈ S} is exactly the family we created in the existence
part of this paper using Girsanov’s theorem. By Theorem 1.10 in [2], there exists an
increasing sequence of bounded sets Bn ∈ B(S) with ∪n≥1Bn = S such that for every
t > 0 and n ≥ 1,

lim|z|→∞P
z
0(Z(t) ∈ Bn) = 0,

where {Pz
0, z ∈ S} is the solution of the submartingale problem without drift. By

formula (11), using a calculation similar to (39) we have that

P
z
μ(Z(t) ∈ Bn) = E

z
0

[
ζ(t)1{Z(t)∈Bn}

] ≤
(
E
z
0

[
(ζ(t))2

]
P
z(Z(t) ∈ Bn)

)1/2

= exp

{ |μ|2
2

t

} (
P
z
0 (Z(t) ∈ Bn)

)1/2
,

which shows that the Ĉ(S)-Feller property holds for {Pz
μ, z ∈ S}.

In the rest of this proof we shall show that in the case of μ = 0 the Ĉ(S)-Feller
property holds. Let X be the process identified in Proposition 3.1. It has been shown
in Williams and Varadhan [35] that the Feller property holds, hence the Cb(S)-Feller
property holds, so by Theorem 1.10 in [2], it is sufficient to show that for every t > 0

P
z
0(Z(t) ∈ Bn) → 0

as |z| → ∞, where Bn = {z ∈ S : |z| ≤ n}, for n ≥ 1. Note that

P
z
0(Z(t) ∈ Bn) = P

z
0(Z(t) ∈ Bn, τ ≤ t) + P

z
0(Z(t) ∈ Bn, τ > t),

where

τ = inf{t ≥ 0 : Z(t) ∈ ∂S}.

We treat the second term first. It is bounded above by

P
z
0(X(t) ∈ Bn) ≤ P

z
0(|X(t) − z| ≥ |z| − n) = P

0
0(|X(t)| > |z| − n) → 0,
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as |z| → ∞, because under P0
0 the process X is a standard 2-dimensional Brownian

motion without drift starting at zero. Next we treat the first term. Let Tn = inf{t ≥ 0 :
Z(t) ∈ Bn}. Then the first term can be written as a sum of three terms

P
z
0

(
Z(t) ∈ Bn, τ ≤ t, |Z(τ )| <

|z|
2

)

+P
z
0

(
Z(t) ∈ Bn, τ ≤ t, Tn ≤ τ, |Z(τ )| ≥ |z|

2

)

+P
z
0

(
Z(t) ∈ Bn, τ ≤ t, Tn > τ, |Z(τ )| ≥ |z|

2

)

Again, we treat the three terms separately. By Proposition 3.1 we have that Z(τ ) =
X(τ ), where X is a standard Brownian motion with zero drift starting at z under Pz

0,
thus the first term is bounded above by

PPz
0

(
τ ≤ t, |X(τ )| <

|z|
2

)
≤ P

z
0

(
τ ≤ t, |X(τ ) − z| >

|z|
2

)

≤ P
0
0

(
max
s≤t

|X(s)| >
|z|
2

)
→ 0,

as |z| → ∞. The second term is bounded above by

P
z
0(Tn ≤ τ ≤ t) ≤ P

z
0(X − z reaches Bn − z by time t)

= P
0
0(X reaches Bn − z by time t) → 0

as |z| → ∞.
For analyzing the third term we define the stopping time T τ

n = inf{t ≥ τ : Z(t) ∈
Bn}. The third term is bounded above by

P
z
0

(
τ < Tn ≤ t, |Z(τ )| >

|z|
2

)
≤ P

z
0

(
τ < Tn ≤ τ + t, |Z(τ )| >

|z|
2

)

≤ P
z
0

(
T τ
n ≤ t, |Z(τ )| >

|z|
2

)
.

By the strong Markov property this can be written as

∫
∂S∩Bc|z|/2

P
x
0(Tn ≤ t)Pz

0(Z(τ ) ∈ dx).

By the scaling property (Lemma 2.1 in [40]), the process {Z(t), t ≥ 0} under Px
0

induces the same measure on M as {|x |Z(t/|x |2), t ≥ 0} induces under Px/|x |
0 , for

every non-zero x ∈ S. Then the above expression can be written as

∫
∂S∩Bc|z|/2

P
x/|x |
0

(
|x |2Tn/|x | ≤ t

)
P
z
0(Z(τ ) ∈ dx)
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=
∫

∂S1∩Bc|z|/2
P
u1
0

(
|x |2Tn/|x | ≤ t

)
P
z
0(Z(τ ) ∈ dx)

+
∫

∂S2∩Bc|z|/2
P
u2
0

(
|x |2Tn/|x | ≤ t

)
P
z
0(Z(τ ) ∈ dx),

where u1 and u2 are the unit vectors u1 = (1, 0), and u2 = (cos ξ, sin ξ). By symmetry
it is sufficient to show that the first term converges to 0 as |z| → ∞. If |z|/2 > 2n,
then it is bounded above by

sup
|x |>|z|/2

P
u1
0 (|x |2T1/2 ≤ t) = P

u1
0

( |z|2
4

T1/2 ≤ t

)
→ 0,

as |z| → ∞, which completes the proof of the proposition. ��

6 Proof of Theorem 2.14

Before proving the existence part of Theorem 2.14, we must first establish some
preliminary results. Let {Bt , t ≥ 0} be the coordinate mapping process onC(R+,R2),
whose natural filtration is given by Wt = σ(Bs, 0 ≤ s ≤ t) for t ≥ 0, and let
W = σ(Bs, s ≥ 0). Recall that vi is the reflection direction on ∂Si for i = 1, 2, and
let R be the 2 × 2 matrix defined by Ri j = the i-th component of v j . The following
result is adapted from Theorem 3.1 in [38]. This result has two parts. The first part
is deterministic, and it states that the Skhorohod problem in S for any continuous
function has a unique solution up to the first time the vertex is reached. In the second
part some purely technical results are stated when the space of continuous functions
is considered with its natural filtration and terminal sigma field.

Proposition 6.1 For any w ∈ C(R+,R2) with w(0) ∈ S, there exists a unique triple
(φ, η, T0), where φ ∈ CS, η ∈ C(R+, [0,+∞]2) and T0 : C(R+,R2) → [0,+∞],
satisfying the following four conditions,

1. φ(t) = w(t) + Rη(t) for each t ∈ [0, T0);
2. φ(t) �= 0 for all t < T0 and φ(t) = 0 for all t ≥ T0;
3. For j = 1, 2, η(0) = 0 and η j (·) is non-decreasing and finite for t ∈ [0, T0);
4. For j = 1, 2, η j only increases when φ(t) is on ∂S j\{0}.
Furthermore, we have the following two properties

(i) T0 is a stopping time on (C(R+,R2),W,Wt );
(ii) Define the map � : C(R+,R2) 
→ CS such that �(w) = φ. Then, τ0 ◦ � = T0,

the map �t ≡ �(·)(t) isWt -measurable and � isW/M-measurable.

The main idea of the existence proof is the following. We start with a measure P̂z
0

under which the coordinate mapping process is a standard drift-less Brownian motion,
then transform this measure into P̂

z
μ in such way that under the transformed measure

it becomes a Brownian motion with drift μ. Then we prove that the reflected process

123



262 Queueing Systems (2023) 105:233–270

from the above Proposition induces a measure under P̂z
μ that satisfies the conditions

of Definition 2.13. The exact details are below.
For each z ∈ S, let P̂z

0 be the unique measure on (C(R+,R2),W,Wt ) under which
{Bt , t ≥ 0} is a standard Brownian motion starting at z (the subscript 0 indicates that
the Brownian motion has zero drift under P̂z

0). Next, for each μ ∈ R
2 and T ≥ 0,

define the measure P̂z
μ,T onWT by

dP̂z
μ,T

dP̂z
0

= exp

(
μ(BT − z) − 1

2
||μ||2T

)
,

and define also

B̂t = Bt − μt,

and note that B̂ is a standard 2-dimensional Brownian motion starting at z under
P̂
z
μ,T on [0, T ]. Then, by Theorem 4.2 in [25] there exists a measure P̂z

μ onW which

coincides with P̂
z
μ,T on WT for all T ≥ 0. For every z ∈ S and μ ∈ R

2 the process

B is a Brownian motion with drift μ starting at z under the probability measure P̂z
μ.

Moreover, since by Proposition 6.1,� is ameasurablemap from (C(R+,R2),W,Wt )

to (CS,M,Mt ), we may introduce our candidate solution Pz,0
μ : the measure induced

onM by the mapping � under P̂z
μ, i.e.,

P
z,0
μ (A) ≡ P̂

z
μ(�−1(A)), for each A ∈ M. (41)

We next prove that the family of measures {Pz,0
μ , z ∈ S} is a solution to the absorbed

process problem of Definition 2.13. Since conditions 1 and 3 of Definition 2.13 are
trivially satisfied by {Pz,0

μ , z ∈ S}, it remains to prove that condition 2 is satisfied as
well. This is achieved in Lemma 6.2.

Lemma 6.2 Let the family of measures {Pz,0
μ , z ∈ S} be defined as in (41) and let Z

be the coordinate-mapping process on (CS,M,Mt ). Then, the process

{
f (Z(t ∧ τ0)) −

∫ t∧τ0

0
μ · ∇ f (Z(s))ds − 1

2

∫ t∧τ0

0
	 f (Z(s))ds, t ≥ 0

}
(42)

is a submartingale on (CS,M,Mt ,P
z,0
μ ), for each f ∈ C2

b (S) such that Di f ≥ 0 on
∂Si for i = 1, 2.

Proof For each w ∈ C(R+,R2), let φ(w) = �(w) and note that by Proposition 6.1
we may write φ(t) = w(t) + Rη(t) for all t ≥ 0. Now, on (C(R+,R2),Wt ,W),
we consider the process {φ(t), t ≥ 0} with φ(t) = �t (w) for any w ∈ C(R+,R2).
Recall that the coordinate mapping process {Bt , t ≥ 0} is a Brownian motion on
(C(R+,R2),Wt ,W) under P̂

z , and {Bt − μt, t ≥ 0} is a Brownian motion on
(C(R+,R2),Wt ,W) under P̂z

μ. Notice, by Theorem 1 in [39], that Rη(t) is of finite
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variation on [0, t ∧ T0] for any t ≥ 0, and w(t) = B(w)(t), we get that {φ(t), t ≥ 0}
is a semimartingale under P̂z . On the other hand, the Girsanov transform keeps the
semimartingale property, so {φ(t), t ≥ 0} is also a semimartingale under P̂z

μ. Hence,
for each f ∈ C2

b (S) such that Di f ≥ 0 on ∂Si for i = 1, 2, we use Itô’s formula

under P̂z
μ and get

f (φ(t ∧ T0)) − f (φ(0))

=
2∑

i=1

∫ t∧T0

0

∂ f

∂xi
(φ(s))d(wi (s) − μi s) +

∫ t∧T0

0
μ · ∇ f (φ(s))ds

+
∫ t∧T0

0
(D1 f (φ(s)), D2 f (φ(s))) · dη(s) + 1

2

∫ t∧T0

0
	 f (φ(s))ds.

Since we have by Proposition 6.1 that for i = 1, 2,

dηi (s) = 1{φ(s)∈∂Si\{0}}dηi (s), s ≥ 0,

and by the assumption on f that for i = 1, 2,

Di f (φ(s))1{φ(s)∈∂Si } ≥ 0, s ≥ 0,

it follows that the process

{∫ t∧T0

0
(D1 f (φ(s)), D2 f (φ(s))) · dη(s), t ≥ 0

}

is increasing. On the other hand since {Bt − μt, t ≥ 0} is a Brownian motion under
P̂
z
μ, the process

{
2∑

i=1

∫ t∧T0

0

∂ f

∂xi
(φ(s))d(wi (s) − μi s), t ≥ 0

}

is a martingale under P̂z
μ, so

f (φ(t ∧ T0)) −
∫ t∧T0

0
μ · ∇ f (φ(s))ds − 1

2

∫ t∧T0

0
	 f (φ(s))ds

= f (φ(0)) +
2∑

i=1

∫ t∧T0

0

∂ f

∂xi
(φ(s))d(wi (s) − μi s)

+
∫ t∧T0

0
(D1 f (φ(s)), D2 f (φ(s))) · dη(s)

is a submartingale under P̂z
μ. It follows from (41) that the process under (42) is also a

submartingale under the induced measure P̄z
μ. ��
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Proof of the existence part of Theorem 2.14 The existence of a solution to the absorbed
process problem follows from Lemma 6.2. ��
Proof of the uniqueness part of Theorem 2.14 The proof of the uniqueness of the solu-
tion to the absorbed process problem is very similar to that of the solution of the
submartingale problem, hence in this section we shall state the appropriate lemmas
and indicate the necessary changes in order to adapt the proofs in Sect. 3 to the absorbed
process problem.

Lemma 6.3 Let α ∈ R arbitrary, and suppose that {Pz,0
μ , z ∈ S} is a solution to the

absorbed process problem with drift μ ∈ R
2. Then, for all z ∈ S,

E
z,0
μ

[ ∫ τ0

0
1{Z(t)∈∂S}dt

]
= 0.

Proof The proof is almost identical to that of Lemma 3.3 with the modification that
all processes must be stopped at τ0. ��
Lemma 6.4 Let α ∈ R be arbitrary. Suppose that {Pz,0

μ , z ∈ S} is a solution to

the absorbed process problem with drift μ ∈ R
2. Then there exists a process X on

(CS,M,Mt ) such that for all z ∈ S, X is a Brownian motion with drift μ under Pz,0
μ

starting at z and stopped at τ0. In addition, Y = Z − X is flat on [σ δ
n , τ δ

n ].
Proof The proof is very similar to the proofs of Lemmas 3.4, 3.5, and 3.6, with the
difference that all processes must be stopped at τ0. ��
Proof of the uniqueness part of Theorem 2.14 The proof is basically a copy of the proof
of the uniqueness of the solution to the submartingale problem (Lemma 3.7 and the
proof of Theorem 2.3). The necessary changes in order to adapt that proof to the
present situation are the following:

• All processes must be stopped at τ0;
• The constraint that the test function f is constant in a neighborhood of the vertex
must be erased (above (27) in the adapted proof);

• At the end of the proof, instead of using the uniqueness of the solution to the
submartingale problem with no drift, we must use the uniqueness of the solution
to the absorbed process problem with no drift ([35], Theorem 2.1).

��

7 Proof of Theorems 2.15, 2.16, and Proposition 2.18

We need to recall Proposition 6.1. According to this proposition, for every w ∈
C(R+,R2)withw(0) ∈ S there exists a triple (φ, η, T0) such that items 1–4 and (i),(ii)
hold. Since B is the coordinate mapping process on C(R+,R2), we may replace w in
item 1 with B, and write

φ(t) = B(t) + Rη(t), t ∈ [0, T0).
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We also know that B is a 2-dimensional Brownian motion with drift μ starting at z
under P̂z

μ for every z ∈ S, hence we can write

φ(t) = z + W (t) + μt + Rη(t), t ∈ [0, T0), (43)

whereW is a standard 2-dimensional Brownian motion starting at zero under P̂z
μ. The

measure P
z,0
μ was defined as the measure induced by � on M under P̂z

μ. From this
and from τ0 ◦ � = T0 follows that

P
z,0
μ (τ0 < ∞) = P̂

z
μ(T0 < ∞). (44)

We shall use (44) repeatedly in the coming proofs. The proof of Theorem 2.15 hinges
on the fact that it is known to be true in the drift-less case.

Proof of Theorem 2.15 By Theorem 2.2 in [35], we have that Pz,0
0 (τ0 = ∞) = 1, thus

by (44) also P̂z
0(T0 = ∞) = 1. For every n ∈ N+ the measures P̂z

0 and P̂
z
μ are mutually

absolutely continuous on Wn , so P̂
z
0(T0 < n) = 0 implies P̂z

μ(T0 < n) = 0. Then

P̂
z
μ(T0 = ∞) = 1 follows, and this and (44) give the required result. ��
The first statement of Theorem 2.16 could have been shown by a simple application

of Girsanov’s theorem. However, the appearance of the drift in the secont statement is
essential, that is, there is no corresponding fact for the μ = 0 case, and in the present
proof below the two parts form an organic unit, thus we elected not to use Girsanov’s
theorem even in the first part of the proof.

Proof of Theorem 2.16 First we are going to show (8). By the α ≥ 1 condition there
exists a vector b ∈ R

2 such that b · z < 0 for all z ∈ S, z �= 0, and b · vi ≥ 0 for
i = 1, 2. Indeed, if α ≥ 1 then co(−v1,−v2) is either a line containing S within one
side, or it is a wedge with angle less than π containing S. In either case the existence
of such a vector follows. Then, by identity (43), for each z ∈ S,

0 ≥ b · φ(t) = b · z + b · Wt + b · v1η1(t) + b · v2η2(t) + b · μt

≥ b · z + b · Wt + b · μt,

for t < T0, P̂z
μ-a.s., and so

P̂
z
μ(0 ≥ b · z + b · Wt + b · μt, t < T0) = 1.

Therefore,

P̂
z
μ(0 ≥ b · z + b · Wt + b · μt, t < ∞)

≥ P̂
z
μ({0 ≥ b · z + b · Wt + b · μt, t < T0} ∩ {T0 = ∞})

= P̂
z
μ(T0 = ∞).

123



266 Queueing Systems (2023) 105:233–270

Fig. 3 Selection of the vector b

v1

v1
v2

−v1

−v2

b

−μ

v2

This implies

P̂
z
μ(−b · z ≥ b · Wt + b · μt, t < ∞) ≥ P̂

z
μ(T0 = ∞). (45)

However, P̂z
μ(−b·z ≥ b·Wt+b·μt, t < ∞) < 1, and togetherwith (44) this proves

the result. Suppose now that (9) also holds, in addition to α ≥ 1. Then co(v1, v2, μ) is
either a wedge with angle less than π , or a half-space, or a line. Then the same is true
for co(−v1,−v2,−μ), and if it is a wedge or a half-space then it contains S, and if it
is a line then it contains S in one side. In all cases we can select b so that in addition to
b·z < 0 for all z ∈ S, z �= 0, and b·vi ≥ 0 for i = 1, 2, we also have b·μ ≥ 0. Figure3
illustrates the case when co(−v1,−v2,−μ) is a wedge containing S. In that case we
select b such that it points into the complement of the wedge co(−v1,−v2,−μ), and
bisects the angle of the complement of co(−v1,−v2,−μ). Once such b has been
selected, we have that P̂z

μ(−b · z ≥ b · Wt + b · μt, t < ∞) = 0, so (45) and (44)
imply (10). ��

Proof of Proposition 2.18 Suppose first that 0 < ξ ≤ π/2. Let z ∈ S0 and μ ∈ R
2 be

given by μ = ||μ||(cos η, sin η) �= 0, where η ∈ (0, ξ). Next, set

Xt = z + Bt + μt, t ≥ 0, (46)

where Bt is a standard 2-d Brownian motion.
Now translate the origin of the coordinate axes to z and then rotate the axis in a

counterclockwise direction by the angle η. By the translational and rotational invari-
ance of Brownian motion, in these new coordinates the process X may be written
as

X̂t = B̂t + |μ|ê1t, t ≥ 0,
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where B̂ is a standard Brownian motion and ê1 = (1, 0). Next, in the new coordinate
system denote by L1 the line corresponding ∂S1, and by L2 the line corresponding to
∂S2. Then, in the new coordinate system the interior of S may be expressed as

S0 = {ẑ ∈ R
2 : L1(ẑ1) < ẑ2 < L2(ẑ1)},

where Li (ẑ1) is a coordinate uniquely determined by the relation (ẑ1,Li (ẑ1)) ∈ Li ,
for i = 1, 2. Hence, in order to complete the proof for the case of 0 < ξ ≤ π/2 it
suffices to show that

P(L1(X̂
1
t ) < X̂2

t < L2(X̂
1
t ), t ≥ 0) > 0.

First note that since 0 < η < ξ ≤ π/2, we may write

L1(ẑ1) = −a − bẑ1 and L2(ẑ1) = c + dẑ1,

for a, b, c, d > 0. Hence,

{L1(X̂
1
t ) < X̂2

t < L2(X̂
1
t ), t ≥ 0}

= {−a − b|μ|t − bB̂1
t < B̂2

t < c + d|μ|t + d B̂1
t , t ≥ 0}. (47)

From (47), it now follows after some algebra that

{B̂1
t > max(−a/2b,−c/2d) − (‖μ‖/2)t, t ≥ 0}
∩{−(a/2) − (b/2)‖μ‖t < B̂2

t < (c/2) + (d/2)‖μ‖t, t ≥ 0}
⊆ {L1(X̂

1
t ) < X̂2

t < L2(X̂
1
t ), t ≥ 0}.

Next, by the independence of B̂1 and B̂2, we have that

P(L1(X̂
1
t ) < X̂2

t < L2(X̂
1
t ), t ≥ 0)

≥ P(B̂1
t > max(−a/2b,−c/2d) − (‖μ‖/2)t, t ≥ 0)

×P(−(a/2) − (b/2)‖μ‖t < B̂2
t < (c/2) + (d/2)‖μ‖t, t ≥ 0).

However, since a, b, c, d, ‖μ‖ > 0, it follows by (4.3) of Doob [13] that the two
probabilities on the right-hand side above are greater than zero. This completes the
proof for the case of 0 < ξ ≤ π/2.

Now suppose that π/2 < ξ < π and z ∈ S0 and 0 < η < ξ . In this case we show
that there exists a wedge S̄ ⊂ S such that z ∈ S̄0 and P(Xt ∈ S̄0, t ≥ 0) > 0, which
is sufficient to complete the proof. First, suppose that 0 < η < π/2. In this case the
wedge S̄ can be defined in the usual way by setting ξ = π/2 and placing the vertex of S̄
at a point z̄ ∈ S0 such that z̄ < z. The results above then yield the desired result. Next,
suppose π/2 ≤ η < ξ . Then, set S̄ = v + {r ≥ 0, π − (ξ + η)/2 ≤ θ ≤ (ξ + η)/2},
where the vertex v = (v1, v2) ∈ S0 is such that v1 = z1 and v2 < z2. The results
above again yield the desired result. ��
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Appendix

Lemma 8.1 There exists a function fε,C ∈ C2
b (S) satisfying

fε,C (x, y) =
{
0, if (x, y) ∈ S \ Sε/3,

y, if (x, y) ∈ S2ε/3, y ≤ C,

such that in addition fε,C (x, 0) = 0 for all x ≥ 0, and Di fε,C ≥ 0 on ∂Si .

Proof Let h1 ∈ C2
b (R) such that h1(x) ≥ 0 for all x ∈ R and

h1(x) =
{
0, if x ≤ ε/3,

1, if x ≥ 2ε/3.

Let h2 ∈ C2
b (R) such that h2(y) = y if y ≤ C . Then

fε,C = h1

(
x − y

tan ξ

)
h2(y) (x, y) ∈ S

satisfies the requirements of the lemma. Note that for any δ > 0 we have (x, y) ∈ Sδ

if and only if x − y/ tan ξ ≥ δ. Using this fact repeatedly one can verify the above
statement by straightforward calculation. ��
Remark 8.2 There are slightly different definitions for the term “augmented filtra-
tion" in the literature; we use this term as defined in [32], Definition II.67.3. Let P
be an arbitrary probability measure on M, and let (CS,F , (Ft ),P) be the augmen-
tation of the probability space (CS,M, (Mt ),P), in the above sense. It is known
that right-continuous martingales (submartingales) on (CS,M, (Mt ),P) are also
right-continuous martingales (submartingales) on (CS,F , (Ft ),P) (Lemma II.67.10
in [32]). The probability measure P in the second probability space is the extension of
P from M to F , without changing the notation. Also, it follows from the martingale
characterization of Brownianmotion (Theorem 3.3.16 in [22]) that a Brownianmotion
on (CS,M, (Mt ),P) is also a Brownian motion on (CS,F , (Ft ),P).

Remark 8.3 For the convenience of the reader in this remark we shall recall the notion
of the Stochastic Differential Equation with Reflection (SDER) from Definition 2.4 of
Kang and Ramanan [21]. In that paper the definition appears for arbitrary dimension
and for a more general domain, but here we specify it to our case for the domain given
by S in 2 dimensions. Let d : S → R

2 be a set-valued map from ∂S to the class
of subsets of R2 satisfying conditions (d1) and (d2) in Sect. 2.1, then extend it to the
interior of S by defining d(x) = {0} if x lies in the interior of S. The other inputs of
the SDER are the drift and dispersion coefficients b : S 
→ R

2 and σ : S 
→ R
2×2.

A weak solution to the SDER consists of a filtered probability space (�,F , {Ft }), a
family of probability measures {Pz, z ∈ S}, and a pair of continuous adapted processes
(Z ,W ) (each Z and W 2-dimensional), satisfying the following conditions for each
z ∈ S:
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1. W is a standard 2-dimensional Brownian motion on the above filtered probability
space starting at zero under Pz ;

2.
∫ t
0 |b(Z(s))|ds + ∫ t

0 |σ(Z(s))|2ds < ∞, for all t ∈ [0,∞), Pz-a.s.;
3. Defining the 2-dimensional processes X and Y as

X(t) = z +
∫ t

0
b(Z(s))ds +

∫ t

0
σ(Z(s))dW (s), t ∈ [0,∞) (48)

and Y = Z − X , the couple (Z ,Y ) solves the ESP for X associated with (S, d(·)),
almost surely under Pz ;

4. The set {t ∈ [0,∞) : Z(t) ∈ ∂S} has zero Lebesgue measure, Pz-a.s.
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