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Abstract
We study the large deviation behaviors of a stochastic fluid queue with an input being a
generalized Riemann–Liouville (R–L) fractional Brownianmotion (FBM), referred to
asGFBM.TheGFBMis a continuousmean-zeroGaussian processwith non-stationary
increments, extending the standard FBM with stationary increments. We first derive
the large deviation principle for the GFBM by using the weak convergence approach.
We then obtain the large deviation principle for the stochastic fluid queue with the
GFBM as the input process as well as for an associated running maximum process.
Finally, we study the long-time behavior of these two processes; in particular, we show
that a steady-state distribution exists and derives the exact tail asymptotics using the
aforementioned large deviation principle together with some maximal inequality and
modulus of continuity estimates for the GFBM.

Keywords Stochastic fluid queue · Generalized Riemann–Liouville fractional
Brownian motion · (Sample path) large deviation · Running maximum process ·
Self-similar process · Long-range dependence · Long-time behavior

1 Introduction

Stochastic fluid queues have been used to model communication networks, in particu-
lar, the flow of data through the network as a “fluid” continuously over time. The input
of such fluid queues is assumed to be an exogenous random process while the output is
a constant rate. The fluid queue, which is often viewed as the fluid workload process,
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is then modeled via the one-dimensional reflection. See, for example, an overview
of the stochastic fluid queues in [33, Chapter 5] (and an overview of scheduling of
stochastic fluid networks in [7, Chapter 12]). Such models are also used to model the
dynamics in storage or dams [30].

Although the input can be of any general continuous-time stochastic process, in the
telecommunication literature, Gaussian processes with self-similarity and long-range
dependence, such as fractional Brownian motion (FBM), are often used to model the
traffic flow into the system [22, 23, 25, 26, 28, 34]. However, the existing studies
using FBM only model stationary inputs that have these self-similarity and long-
range dependent properties. Many Internet and communication input flows exhibit
non-stationarity (see, e.g., [5, 19, 31]). Therefore, it is desirable to use a process to
capture all these characteristics.

Recently, Pang and Taqqu [27] have introduced a generalized fractional Brownian
motion (GFBM) as the scaling limit of power-law shot noise processes extending [29,
Chapter 3.4] and [21]. The GFBM loses the stationary increments property of the
standard FBM, while exhibiting self-similarity and long-range dependence. In this
paper, we use a special case of GFBM, which is the generalized Riemann–Liouville
(R–L) FBM (see Eq. (2.1)), as the input process for fluid queues.

We particularly focus on the large deviation principles (LDPs) of the fluid queues
with the GFBM input. Large deviations of fluid queues have been well studied (see
an overview in [13]). Our paper is of similar flavor as Chang et al. [6], which studies
the large deviations and moderate deviations properties of fluid queues with an input
process that can be regarded as an extension of the R–L FBM. Specifically, the Brow-
nian motion in the R–L FBM is replaced by a process of stationary increments that
satisfies a large deviations or a moderate deviations principle. That construction obvi-
ously differs from the GFBM. One distinction is that the mapping in that construction
is continuous from the process of stationary increments to the input process, and thus,
the contraction principle can be applied to establish the LDP for the input process.
However, that is not the case for the GFBM. We explain in detail why the contraction
principle cannot be directly used to establish the LDP for the GBM from that of the
driving BM in Sect. 2.2.2.

Therefore, we establish an LDP for the GFBM ({Xε}ε>0 as defined in (2.8)) using
a different approach i.e., the weak convergence approach (see Sect. 2.2.3 for a brief
description). This approach is commonly used in proving LDPs of processes that can
be expressed as a measurable map of a Brownian motion (Xε is clearly an example).
We establish the LDP for {Xε}ε>0 by proving Lemmas 3.1, 3.2 and 3.3 (following
the procedure for LDPs according to Theorem 2.1). The advantage of this approach
lies in the fact that the LDP for {Xε}ε>0 is simply equivalent to tightness of pro-
cesses {Xε,vε }ε>0 (defined in (3.2)), for an appropriate precompact family of processes
{vε}ε>0 and uniqueness of solutions to Eq. (3.2), for an appropriately specified process
v. The aforementioned tightness (which is required to prove Lemma 3.1) is derived
under the assumption that the set of parameters (α, γ ) for the GFBM in (2.1) satisfying
(2.6) (noting that the Hurst parameter H can take values in (0, 1) in this range unlike
the standard FBM BH with H ∈ (1/2, 1) when γ = 0). On the other hand, the rate
function obtained using the weak convergence approach is given in the form of an opti-
mization problem (see (3.1)). In fact, even for standard FBM, the rate function using
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the contraction principal in [6] is also implicitly given via the integral mapping. Here
we present an expression of the rate function for the GFBM using Laplace transform
in Lemma 3.4.

We thenmoveon to prove theLDP for theworkload processV (·)of a stochastic fluid
queue with the GFBM as input and with a constant service rate and the corresponding
running maximum process M(·). See (4.1) and (4.2). It is clear that the sample path
LDP for V (·) and M(·) can be easily obtained by applying the contraction principle
by the continuity of the reflection mapping in the Skorohod topology. However, by
adapting the method in [6, Section 4 & 5], using the LDP result for the GFBM, we
obtain the LDP for V (·) andM(·) at a fixed time, in which the rate function is explicitly
provided (see Theorem 2.2 and Lemma 4.1).

Finally, we analyze the long-time behavior of these processes in Sect. 5. As it is
well known, if the input process as stationary increments, the study of V (t) and M(t)
is equivalent (see (4.3)). Since the GFBM has non-stationary increments, the usual
approach with stationary input to derive the steady-state of the queueing process does
not apply (see, e.g, tail asymptotics of fluid queues with the R–L FBM in [9, 10, 12,
14, 15] and the reference therein).

To study the long-time behavior, we first establish that the laws of V (t) and M(t)
have a weak limit point as t → ∞ (in fact, we show that M(t) converges almost
surely as t → ∞). We first derive an alternative representation of the GFBM in
Lemma 5.1 by using Itô product formula for which we have to use an approximation
approach to avoid an ill-defined issue around time zero.We then derive a newmaximal
inequality for the scaled GFBM (see Lemma 5.3), in particular, the tail asymptotics for
maxδ0≤s≤t

{
s−H X(s)

}
, for some δ0 > 0 and a modulus of continuity type estimates

for X(t), when t is around 0. Moreover, by using this new maximal inequality, we can
show that the tail of laws of V (t) and M(t) at fixed t is sub-exponential (Theorems 5.1
and 5.3), from which we conclude that the laws of V (t) have a weak limit point as
t → ∞. In addition, this sub-exponential tail behavior also implies that expectation of
the M(t) is uniformly bounded in time, and thus conclude that M(t) converges almost
surely.

Now that the existence of a steady-state distribution is proved, we next study the
tail asymptotics of these steady-state distributions. Due to the non-stationarity of the
processes, the steady-state distribution of this process is not necessarily equal to the
steady state of the queuing process mentioned above. We derive tail asymptotics for
the steady states in Theorems 5.2 and 5.4. For this purpose, we derive a maximal
inequality (see Lemma 5.3) and a modulus of continuity estimates (see Lemmas 5.2
and 5.4) for the GFBM.

We also provide alternative proofs for certain results in Sects. 4 and 5 using well-
known results on the extremes of Gaussian processes. Specifically, we give proofs for
Theorem 4.1 and Lemma 4.1 in Sect. 4.1 using Landau–Marcus–Shepp asymptotics
[24, Equation (1.1)], and discuss how it is used to prove Lemma 5.4 in Remark 5.5.
We also give an alternative proof for Theorem 5.2 in Sect. 5.1 using results on the
tail asymptotics for locally stationary self-similar Gaussian processes by Hüsler and
Piterbarg [16]. For this, we show that the GFBM is locally stationary, despite its
non-stationary increments (see Lemma A.2).
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1.1 Notation

Let (�,F, {Ft }t≥0,P) be the filtered probability space with Ft satisfying the usual
conditions.E denotes the expectation with respect to P. For T > 0, let CT be the space
of continuous real-valued functions f on [0, T ] such that f (0) = 0 and equipped
with the uniform topology (‖ · ‖∞ denotes the corresponding norm). When there is
no ambiguity, we write CT as C. L2([0, T ]) denotes the space of square integrable
Lebesgue measurable functions on [0, T ]. PZ denotes the law of the random variable
Z .

1.2 Organization of the paper

In Sect. 2, we introduce theGFBMprocess and give its basic properties. In Sect. 2.2,we
give the definitions and necessary results from the general theory of large deviations.
As mentioned already we use the approach of weak convergence in this work, we
introduce and compare this approach to other well-known approaches proving large
deviation principle. We also state important results used in this approach. In Sect. 3,
we prove that the GFBM process defined in (2.8) satisfies a large deviation principle.
In Sect. 4, we establish a large deviation principle for the workload process and the
running maximum process of a stochastic fluid queue with constant service rate and
scaled GFBM as the arrival process. Finally, in Sect. 5 we study the long-time behavior
of the the running maximum process and the queuing process.

2 Preliminaries

2.1 Generalized Riemann–Liouville FBM

The generalized Riemann–Liouville (R–L) FBM {X(t) : t ≥ 0} is introduced in [27,
Remark 5.1] and further studied in [17, Section 2.2]. The process X(t) is defined by

X(t) = c
∫ t

0
(t − u)αu−γ /2dB(u) , t ≥ 0 , (2.1)

where B(t) is a standard Brownian motion and c ∈ R,

γ ∈ [0, 1), α ∈
(

− 1

2
+ γ

2
,
1

2
+ γ

2

)
.

The normalization constant c is such that E[X(t)2] = t2H (it can be explicitly given as
in Lemma 2.1 of [17]). The process X(t) is a continuous self-similar Gaussian process
with Hurst parameter

H = α − γ

2
+ 1

2
∈ (0, 1).
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It has non-stationary increments; in particular, the second moment for its increments
is

E
[
(X(t) − X(s))2

] = c2
∫ t

s
(t − u)2αu−γ du + c2

∫ s

0
((t − u)α − (s − u)α)2u−γ du,

(2.2)

for any 0 ≤ s < t . It has mean zero and covariance function

Cov(X(t), X(s)) = E[X(s)X(t)] = c2
∫ s

0
(t − u)α(s − u)αu−γ du, (2.3)

for 0 ≤ s ≤ t . For simplicity, we refer to this process as GFBM.
When γ = 0, the process X(t) becomes the standard R–L FBM

BH (t) = c
∫ t

0
(t − u)αB(du), t ≥ 0 . (2.4)

which has

E
[
(BH (s) − BH (t))2

] = c2|t − s|2H ,

and the covariance function

Cov(X(t), X(s)) = E
[
BH (s)BH (t)

] = 1

2
c2
(
t2H + s2H − |t − s|2H ). (2.5)

It is clear that the GFBM X loses the stationary increment property that the standard
FBM BH possess.

Some sample path properties of the GFBM X have been studied. It is shown in [27,
Proposition 5.1] and [17, Theorems 3.1 and 4.1] that X has continuous sample paths
almost surely, and moreover, is Hölder continuous with parameter H − ε for ε > 0;
and the paths of X is non-differentiable if γ ∈ (0, 1) and (γ − 1)/2 < α ≤ 1/2, and
differentiable if γ ∈ (0, 1) and 1/2 < α ≤ (1 + γ )/2, almost surely. In [32], the
additional properties of the exact uniform modulus of continuity are studied.

For standard FBM, the Hurst parameter H not only indicates the self-similarity
property, but also dictates the short and long-range dependences, that is, H ∈ (0, 1/2)
and H ∈ (1/2, 1) for short and long-range dependences, respectively. The usual
definition of long-range dependence is through the autocovariance functions, namely,
letting γs = Cov(Z(t), Z(t + s)) be the covariance function of a stationary process
Z(t) (noting that γs is independent of t due to stationary increments), one says the
process has long-range dependence if

∑∞
s=−∞ γs = ∞. However, for processes with

non-stationary increments this definition does not apply. In [18], a concept of long-
range dependence for self-similar processes (not necessarily stationary) is introduced
via the associated Lamperti transform (which turns the non-stationary process into
a stationary one). Specifically, for a self-similar process Z(t) with Hurst parameter
H and Z(0) = 0, the Lamperti transform Z̃ is defined by Z̃(t) = e−Ht Z(et ) for
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t ∈ R, which is strictly stationary with covariance function γ̃s = E[Z̃(t)Z̃(t + s)]
for any t, s ∈ R. We then say that the process Z has a long-range dependence if
limt→∞ 1

t log |γ̃t | + H > 0. For standard FBM, it can be checked that this condition
is equivalent to 2H − 1 > 0, that is, H > 1/2. It is shown in [18, Proposition 6] that
the GFBM has long range dependence in that sense if and only if α > 0. As a special
case, when γ = 0, the FBM BH is long range dependent if H = α + 1/2 > 1/2.
Observe that, for the GFBM, when

γ ∈ (0, 1), 0 < α < (1 + γ )/2, (2.6)

the value of the Hurst parameter H = α − γ /2 + 1/2 can take any value in (0, 1).
Specifically, for 0 < α < γ/2, H ∈ (0, 1/2) while for γ /2 < α < (1 + γ )/2,
H ∈ (1/2, 1). Our results below in the large deviation of the GFBM and the fluid
queue with the GFBM input assume this parameter range in (2.6).

2.2 Large deviation principle for functionals of BM

Suppose (S,B(S)) is a Polish space with B(S) being the Borel σ -algebra of S. Con-
sider a family of S-valued random variables {Xε}ε>0, whose corresponding family of
probability measures is denoted by με.

Definition 2.1 The family of S-valued random variables {Xε}ε>0 (or the family of
probability measures {με}ε>0) is said to satisfy a large deviation principle (LDP), if
there is a lower semicontinuous function I : S → [0,∞] and the following is satisfied:
(1) For every A ∈ B(S),

− inf
x∈A◦ I (x) ≤ lim inf

ε→0
ε logμε(A) ≤ lim sup

ε→0
ε logμε(A) ≤ − inf

x∈ Ā
I (x),

where A◦ and Ā denote the interior and closure of the measurable set A.
(2) For l ≥ 0, {x : I (x) ≤ l} is a compact set in S.

We refer to I as the rate function and ε as the rate.

It is well known that an equivalent way of defining the LDP is given by the result
below (see [4, Theorem 1.5 and 1.8]).

Theorem 2.1 A family of probability measures {με}ε>0 satisfies an LDP with rate
function I and rate ε if and only if for every bounded continuous function	 : S → R,

lim
ε→0

−ε log
∫

S
exp

(
−1

ε
	(x)

)
με(dx) = inf

x∈S [I (x) + 	(x)] . (2.7)

and for every l ≥ 0, {x ∈ S : I (x) ≤ l} is compact in B(S).

The following result is used often in the sections that follow [4, Theorem 1.16].
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Theorem 2.2 (Contraction principle) Suppose (S′,B(S′)) is another Polish space and
F : (S,B(S)) → (S′,B(S′)) be a continuous map. If the family {με}ε>0 satisfies LDP
with rate function I and rate ε, then the family {νε .= με ◦ F−1}ε>0 also satisfies LDP
on S′ with the rate ε and the rate function I ′ given by

I ′(y) = inf
x∈S:F(y)=x

I (x).

One of the main goals of this work is to prove that

Xε .= εX (2.8)

satisfies the LDP with appropriate rate and rate function for the GFBM X in (2.1).
From the existing literature, three common approaches can be used to arrive at the
desired result. We briefly describe these approaches and point out the difficulties or
lack thereof in adopting these approaches to our case.

2.2.1 Using Gartner-Ellis theorem [11, Section 4.5.3]

In this approach, we study the logarithm of moment generating function of finite
dimensional distribution of Xε and its limiting behavior as ε → 0. It is also required
to prove the exponential tightness (See [11, Page 8]) of the process. In contrast, using
the weak convergence approach described briefly below, we are only required to show
tightness of some appropriate family of processes.

2.2.2 Using LDP of {"B}">0 and Theorem 2.2

It is well known that the family of C- valued random variables {εB}ε>0 satisfies LDP
[11, Theorem 5.2.3] with rate ε2 and rate function IB : C → [0,∞] given by

IB(ξ)
.=
{

1
2

∫ T
0 ξ̇ (s)2ds, whenever ξ is absolutely continuous and ξ(0) = 0,

∞, otherwise.

Remark 2.1 Fix b(ε) such that

√
ε

b(ε)
→ 0 and b(ε) → 0, as ε → 0.

Suppose an S-valued process A on [0, T ] such that {εA(ε−1·)}ε>0 satisfies an
LDP with rate function I and rate ε and {√εA(ε−1·)}ε>0 is weakly convergent
to a non-trivial distribution. Then it is of interest to study the asymptotic behavior
{b(ε)√εA(ε−1·)}ε>0 which is in some sense, in-between the above behaviors. The
process {b(ε)√εA(ε−1·)}ε>0 is said to satisfy a moderate deviations principle if it
satisfies an LDP with some rate function Ī and rate b(ε)2.

Clearly, both the families {√εB}ε>0 and {b(ε)B}ε>0 satisfy LDP with same rate
function IB and rates ε and b(ε)2, respectively. But the LDP of {b(ε)B} can be framed
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as the MDP by noting that the laws of {b(ε)√εB(·ε−1)} and {b(ε)B} are equal. In
other words, the rate functions corresponding to LDP and MDP are the same. It is
just the rates that change accordingly. Since GFBM X as defined in (2.1) is a linear
function of Brownian motion B, similar comments can be made for X . Hence, without
loss of generality, we just consider the large deviation behavior as the driving noise in
our case is a Brownian motion.

Suppose a C-valued process defined by Y ε .= F(εB), for a continuous function
F : C → C. Using Theorem 2.2, we can conclude that {Y ε}ε>0 satisfies LDP with rate
ε2 and rate function IY : C → [0,∞] given by

IY (η) = 1

2
inf

ξ∈C:η=F(ξ)

∫ T

0
ξ̇ (s)2ds.

This approach was used in [6, Theorem 3.1] to prove the LDP of the standard FBM:

Y ε(t) = F(εB)(t)
.= ε

∫ t

0
(t − s)H− 1

2 dB(s), for H >
1

2
. (2.9)

It can be checked that F as defined above is a continuous map from C to C. (In fact, a
more general class of processes are considered in [6] where the Brownian motion B is
replaced by any process with stationary increments satisfying an LDP.) Unfortunately,
we cannot adopt this method to our case as the map defined by

G(ξ)(t)
.=
∫ t

0
(t − s)αs− γ

2 dξ(s)

fails to be continuous from C to C. This is mainly due to the presence of the term
s− γ

2 in the integral and without having strong decaying behavior of ξ(s) as s → 0,
the above integral may not be well-defined. Indeed, we consider the following: Fix
γ ∈ (0, 1) and choose ξ ∈ C such that ξ(s) = sβ on [0, δ1], with 0 < δ1 < t and
0 < β <

γ
2 . This choice is sufficient to illustrate the effect of s− γ

2 , although ξ with
a more general form can also be considered. With the above choice of ξ , we have for
any 0 < δ < δ1 < t ,

∫ t

0
(t − s)αs− γ

2 ξ(ds) ≥ β

∫ δ1

δ

(t − s)αs− γ
2 sβ−1ds

≥ β(t − δ1)
α

∫ δ1

δ

s− γ
2 sβ−1ds

= β(t − δ)α

− γ
2 + β

(
δ
− γ

2 +β

1 − δ− γ
2 +β

)

↑ ∞, as δ → 0.

It is easy to see that the set of all functions ξ ∈ C satisfying the above property form an
open set in C. Therefore, we can conclude that the mapG is not well defined on at least
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an open set of C. In other words, we cannot use Theorem 2.2 on the map G. However,
we note that the rate function corresponding to Y ε is obtained from the rate function
corresponding to Xε by directly evaluating it as γ = 0. Compare [6, Theorem 3.1]
and Theorem 3.1.

2.2.3 Using weak convergence approach [4, Section 3.2]

This approach can be used to study the large deviation behavior of any C-valued family
of random variables defined as {Z ε .= R(εB)}, where R : C → C is Borel measur-
able. The key tool used in this approach is the following variational representation of
exponential functionals of Brownian motion B.

Theorem 2.3 [3, Theorem 3.1] For a bounded Borel measurable functional � : C →
R,

− logE

[
exp
(

− �(B)
)]

= inf
v∈AE

[
1

2

∫ T

0
v(s)2ds + �

(
B +

∫ ·

0
v(s)ds

)]
.

(2.10)

Here, A is the set of Ft - progressively measurable processes v(·) such that

E

[∫ T

0
v(s)2ds

]
< ∞.

In what follows, we sometimes refer to elements ofA as controls. Using the above
result, we are set to prove the LDP of Z ε = R(εB) in the following way.

For ε > 0 and any bounded continuous function	 : C → R, we first rewrite (2.10)
by choosing �(B) = ε−2	 ◦ R(εB) = ε−2	(Z ε) and defining Z ε,v .= R(εB +∫ ·
0 v(s)ds):

−ε2 logE

[
exp

(
− 1

ε2
	(Z ε)

)]
= −ε2 logE

[
exp
(
−ε−2	 ◦ R(εB)

)]

= ε2 inf
v∈AE

[
1

2

∫ T

0
v(s)2ds

+ε−2	 ◦ R(εB + ε

∫ ·

0
v(s)ds)

]

= inf
v∈AE

[
ε2

2

∫ T

0
v(s)2ds + 	(Z ε,v)

]
(2.11)

= inf
v∈AE

[
1

2

∫ T

0
v(s)2ds + 	(Z ε,v)

]
. (2.12)

To get the final equality, we re-defined εv as v. Note that this does not change the
right-hand side. To prove the LDP for {Z ε}ε>0, we now work with the expression on
the left hand side above. Note that this resembles the left-hand side of (2.7) without
the limit.
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Using Theorem 2.1, to conclude that {Z ε}ε>0 satisfies LDP, it remains to show that

(1) the expression in (2.11) has a limit;
(2) this limit is equal to

inf
x∈C [I (x) + 	(x)] ,

for some lower semi-continuous function I : C → [0,∞]with compact level sets.

To this end, we require the following lemma [4, Page 62] which states that there
are nearly optimal controls of the right-hand side in (2.11) which are almost surely
finite in L2([0, T ]) norm.

Lemma 2.1 For every δ > 0, there is M < ∞ such that

−ε2 logE

[
exp

(
− 1

ε2
	(Z ε)

)]
≥ inf

v∈Ab,M
E

[
1

2

∫ T

0
v(s)2ds + 	(Z ε,v)

]
− δ,

for every δ > 0. Here, Ab,M is a subset of A that contains v ∈ A such that∫ T
0 v(s)2ds ≤ M, P− a.s.

In the above, the maps F and R are chosen to be C-valued for simplicity. They are
allowed to take values in any Polish space.

3 LDP for the generalized R–L FBM

In this section, we prove the LDP result of the process {Xε}ε>0 in (2.8).

Theorem 3.1 Assuming that (α, γ ) satisfy (2.6), {Xε}ε>0 satisfies an LDP with rate
ε2 and rate function IX : C → [0,∞] given by

IX (ξ)
.=
{

infv∈Sξ

1
2

∫ T
0 v(s)2ds,

∞, whenever Sξ = ∅.
(3.1)

Here Sξ , for ξ ∈ C, is the collection of all v ∈ L2([0, T ]) such that

ξ(t) = c
∫ t

0
(t − s)αs− γ

2 v(s)ds.

Remark 3.1 This result for the case where γ = 0 can be obtained as a special case of
[6, Theorem 3.1]. In the above theorem, we get the rate function in an implicit form.
This is not a consequence of the s− γ

2 term in the definition of X(·), but because of the
(t − s)α term. To see this, one can take α = 0 and proceed with the same proof. The
rate function in this case turns out to be

IX (ξ) = 1

2

∫ T

0
sγ ξ̇ (s)2ds,
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whenever ξ is absolutely continuous on [0, T ] and∞, otherwise. Note that the hypoth-
esis of the above theorem assumes α > 0, but this will not be an issue in adopting the
same proof.

Remark 3.2 This result is used repeatedly in the sections that follow. The techniques
of the proof break down as γ → 1. This is mainly because the process

∫ t

0
(t − s)αs− 1

2 dB(s)

is not well defined, P− a.s.

Define

Xε,v(t)
.= ε

∫ t

0
(t − s)αs− γ

2 dB(s) + c
∫ t

0
(t − s)αs− γ

2 v(s)ds. (3.2)

This process will be used in the following two lemmas.

Lemma 3.1 For any bounded continuous function 	 : C → R,

lim inf
ε→0

−ε2 logE

[
exp

(
− 1

ε2
	(Xε)

)]
≥ inf

x∈C [IX (x) + 	(x)] ,

with IX as defined in the statement of Theorem 3.1.

Proof Fix δ > 0. From Lemma 2.1, we have

−ε2 logE

[
exp

(
− 1

ε2
	(Xε)

)]
≥ inf

v∈Ab,M
E

[
1

2

∫ T

0
v(s)2ds + 	(Xε,v)

]
− δ,

for every δ > 0. Recall that Ab,M is a subset of A that contains v ∈ A such that∫ T
0 v(s)2ds ≤ M, P − a.s.
Now consider a δ-optimal control vε ∈ Ab,M to the above infimum, that is, vε

satisfies

−ε2 logE

[
exp

(
− 1

ε2
	(Xε)

)]
≥ E

[
1

2

∫ T

0
vε(s)2ds + 	(Xε,vε

)

]
− 2δ.

Since
∫ T
0 vε(s)2ds ≤ M , {vε}ε>0 is weakly compact in L2([0, T ]), i.e., there exists a

subsequence εn and a v ∈ L2([0, T ]) such that
∫ T
0 vεn (s)u(s)ds → ∫ T

0 v(s)u(s)ds,
for every u ∈ L2([0, T ]).

For now, let us assume that the family of C× L2([0, T ]) - valued random variables
{(Xε,vε

, vε)}ε is tight. Let εn be the converging subsequence with (X̄v, v) as the corre-
sponding weak limit and write (Xεn ,v

εn
, vεn ) as (Xn, vn) when there is no ambiguity.
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From the Skorohod representation theorem, we have a probability space
(
�∗,F∗,P∗)

in which

(
Xn, vn

)→ (
X̄v, v

)
, P

∗ − a.s.

and the distributions of B, {Xn}, {vn}, X̄v and v remain the same under P∗ and P. We
have

lim inf
εn→0

−ε2n logE

[
exp

(
− 1

ε2n
	(Xεn )

)]
≥ lim inf

n→∞ E

[
1

2

∫ T

0
vn(s)2ds + 	(Xn)

]
− 2δ

≥ E

[
1

2

∫ T

0
v(s)2ds + 	(X̄v)

]
− 2δ

≥ E

[
inf

v∈SX̄v

1

2

∫ T

0
v(s)2ds + 	(X̄v)

]
− 2δ

≥ inf
x∈C [IX (x) + 	(x)] − 2δ.

Here the second inequality follows from Fatou’s lemma. From the arbitrariness of δ,
we have the result. The construction of (�∗,F∗,P∗) is necessary to characterize the
limit points (X̄v, v).

It now remains to show that {(Xε,vε
, vε)}ε>0 is in fact tight in C × L2([0, T ]). To

that end, {vε}ε>0 is precompact in L2([0, T ]) under weak∗ topology. Indeed, since any
closed ball is compact in L2([0, T ]) under weak∗ topology and

∫ T
0 vε(s)2ds ≤ M . Let

εn (denoted simply by n) be the converging subsequence and v be the corresponding
limit. Note that we have only concluded that the laws of vn converge weakly to the
law of v. From the Skorohod representation theorem, we can infer that

vn → v, P
∗ − a.s.

Finally, we show that Xεn ,v
εn (written as Xn) converges almost surely in C and also

characterize the limit. Note that

εn B → 0 in C, P
∗ − a.s.

Recall that

Xn(t) = εnc
∫ t

0
(t − s)αs− γ

2 B(ds) + c
∫ t

0
(t − s)αs− γ

2 vn(s)ds.

.= Xn
1 (t) + Xn

2 (t)

and from the P∗− a.s. convergence of {vn}, we know that for any u ∈ L2([0, T ]),
∫ T

0
u(s)vεn (s)ds →

∫ T

0
u(s)v(s)ds, P

∗ − a.s.
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And since (t − s)αs− γ
2 ∈ L2([0, T ]), for every t ∈ [0, T ], we have

∫ T

0
1s∈[0,t](t − s)αs− γ

2 vεn (s)ds →
∫ T

0
1s∈[0,t](t − s)αs− γ

2 v(s)ds.

Consider the following: for 1 > h > 0, P∗− a.s., we have

|Xn
2 (t + h) − Xn

2 (t)| ≤ c

∣∣∣∣

∫ t+h

t
(t + h − s)αs− γ

2 vn(s)ds

∣∣∣∣

+ c

∣∣∣∣

∫ t

0

[
(t + h − s)α − (t − s)α

]
s− γ

2 vn(s)ds

∣∣∣∣

≤ chα

∣∣∣∣

∫ t+h

t
s− γ

2 vn(s)ds

∣∣∣∣+ c max
0≤s≤t

{|(t + h − s)α − (t − s)α |}
∣∣∣∣

∫ t

0
s− γ

2 vn(s)ds

∣∣∣∣

≤ chα

√∫ t+h

t
s−γ ds

√∫ T

0
|vn(s)|2ds + c max

0≤s≤t
{|(s + h)α − sα |}

∣∣∣∣

∫ t

0
s− γ

2 vn(s)ds

∣∣∣∣

≤ chα

√
1

1 − γ

(
(t + h)1−γ − t1−γ

)
√∫ T

0
|vn(s)|2ds + chα

∣∣∣∣

∫ t

0
s− γ

2 vn(s)ds

∣∣∣∣

≤ chα

√
1

1 − γ
h1−γ

√∫ T

0
|vn(s)|2ds + chα

∣∣∣∣

∫ t

0
s− γ

2 vn(s)ds

∣∣∣∣

≤ chα− γ−1
2

√
M

1 − γ
+ chα

∣∣∣∣

∫ t

0
s− γ

2 vn(s)ds

∣∣∣∣

≤ cK max
{
hα, hα− γ−1

2

}

≤ cKhα, (3.3)

where

K
.= sup

n∈N
sup

0≤t≤T

{√
M

1 − γ
+
∣∣∣∣

∫ t

0
s− γ

2 vn(s)ds

∣∣∣∣

}

and the last inequality follows since α > 0 and 0 ≤ γ < 1. In the above, we have
used the fact that

∣∣∣∣

∫ t

0
s− γ

2 vεn (s)ds

∣∣∣∣ and

√∫ T

0
|vεn (s)|2ds

are uniformly bounded in n. To summarize, we have proved that Xn
2 is α-Hölder

continuous, P∗− a.s. Xn
2 is clearly uniformly bounded in n. Indeed, from (3.3) (note

that this is valid for every 0 ≤ h ≤ T ) with t = 0,

sup
0≤h≤T

|Xn
2 (h)| ≤ K max

{
T α, T α− γ−1

2

}
.
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Since {Xn
2 } is uniformly bounded and equicontinuous in C, P∗− a.s., the Arzelà-

Ascoli theorem gives us the precompactness of {Xn
2 }, P∗− a.s.

We now show that any limit point of {Xn
2 } is given by

X̄v
2(t)

.= c
∫ t

0
(t − s)αs− γ

2 v(s)ds.

In other words, {Xn
2 } is convergent in C, P∗− a.s. To show this, for t ∈ [0, T ], we have

|Xn
2 (t) − X̄v

2(t)| = c

∣∣∣∣

∫ t

0
(t − s)αs− γ

2 (vεn (s) − v(s))ds

∣∣∣∣

→ 0, as n → ∞,

since vn → v, P∗− a.s.
We now shift our focus on to Xn

1 . Note that from [2, Theorem 1.6], for every δ > 0,
there is a compact set Kδ ⊂ C such that P(X ∈ Kδ) > 1 − δ. For every n,

1 − δ < P(εn X ∈ εK) ≤ P(εn X ∈ K).

To understand the second inequality, note that for every compact set K ⊂ C, from the
Arzelà-Ascoli theorem, there are two parameters that correspond to K: C , the uniform
bound in n of the ‖.‖∞ norm and ρ(·), the modulus of continuity of the elements in K.
Checking the following parameters for {εn X}, we can clearly see that C and ρ(·) can
be used to conclude the uniform boundedness and equicontinuity of {εn X}. Hence,
{εn X ∈ εnK} ⊂ {εn X ∈ K}. Therefore, {εn X} is tight in C. This completes the proof
of the lemma. ��

Lemma 3.2 For any bounded continuous function 	 : C → R,

lim sup
ε→0

−ε2 logE

[
exp

(
− 1

ε2
	(Xε)

)]
≤ inf

x∈C [IX (x) + 	(x)] , (3.4)

where IX is as defined in the statement of Theorem 3.1.

Proof Choose a δ-optimal x∗ ∈ C of the right-hand side of (3.4), i.e.,

IX (x∗) + 	(x∗) ≤ inf
x∈C [IX (x) + 	(x)] + δ

and also choose a δ-optimal v∗ ∈ Sx∗ , i.e.,

1

2

∫ T

0
v∗(s)2ds ≤ inf

v∈Sx∗

1

2

∫ T

0
v(s)2ds + δ.
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We note here that v∗ is non-random, from the definition of S∗
x , as x

∗ is non-random.
Now by (2.12), we obtain

lim sup
ε→0

−ε logE

[
exp

(
−1

ε
	(Xε)

)]

= lim sup
ε→0

inf
v∈AE

[
1

2

∫ T

0
v(s)2ds + 	(Xε,v))

]

≤ lim sup
ε→0

E

[
1

2

∫ T

0
v∗(s)2ds + 	(Xε,v∗

))

]

≤ 1

2

∫ T

0
v∗(s)2ds + lim sup

ε→0
E
[
	(Xε,v∗

)
]
. (3.5)

To proceed further, recall the fact from the proof of Lemma 3.1 that Xε,v∗
(·) converges

weakly to

X0,v∗
(t)

.=
∫ t

0
(t − s)αs− γ

2 v∗(s)ds,

which is non-random. Since v∗ ∈ Sx∗ ,

x∗(t) =
∫ t

0
(t − s)αs− γ

2 v∗(s)ds = X0,v∗
(t).

Thus we obtain

lim sup
ε→0

−ε logE

[
exp

(
−1

ε
	(Xε)

)]
≤ 1

2

∫ T

0
v∗(s)2ds + lim sup

ε→0
E
[
	(X0,v∗

)
]

≤ 1

2

∫ T

0
v∗(s)2ds + 	(X0,v∗

)

≤ IX (x∗) + δ + 	(x∗) + δ

≤ inf
x∈C [IX (x) + 	(x)] + 2δ.

Here the first inequality follows from the last display in (3.5) by applying the con-
tinuous mapping theorem and the weak convergence of Xε,v∗

(·) to X0,v∗
(·), and the

second inequality follows since X0,v∗
is non-random. From the arbitrariness of δ, we

have the result. ��
Lemma 3.3 For every l ≥ 0, {x ∈ C : IX (x) ≤ l} is compact in C.
Proof Fix l ≥ 0 and consider a sequence {ξn}n∈N ⊂ {ξ : IX (ξ) ≤ l}. Now, for every
n ∈ N, there exists vn ∈ Sξn such that

1

2

∫ T

0
vn(s)

2ds ≤ IX (ξn) + 1

n
≤ l + 1

n
.
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Therefore, {vn}n∈N is precompact in L2([0, T ]) under weak∗ topology. Denote the
converging subsequence again by n and the limit by v̄.

Consider

ξn(t) = c
∫ t

0
(t − s)αs− γ

2 vn(s)ds.

From the proof of Lemma 3.1, it is clear that {ξn}n∈N is precompact in C. Let ξ̄ be a
sequential limit of {ξn} along a subsequence, which we again denote by n. Also, we
have

ξ̄ (t) = c
∫ t

0
(t − s)αs− γ

2 v̄(s)ds.

Clearly, v̄ ∈ Sξ̄ and IX (ξ̄ ) ≤ 1
2

∫ T
0 v̄(s)2ds ≤ l. Hence, ξ̄ ∈ {ξ : IX (ξ) ≤ l}. This

proves the desired result. ��
Proof of Theorem 3.1 Combining Lemmas 3.1, 3.2 and 3.3, it is clear that from Theo-
rem 2.1, we have the LDP of {Xε}ε>0. ��

The following result gives the expression for the rate function IX at ξ explicitly in
terms of ξ , rather than as an optimal value to an optimization problem.

Lemma 3.4 SupposeL[ f ] denotes the Laplace transform of f , whenever it is defined.
Then,

IX (ξ) = �(α + 1)2

2

∫ T

0
sγ
(
L−1[pα+1L[ξ̄ ](p)](s)

)2
ds, (3.6)

whenever ξ is absolutely continuous on [0, T ].
Proof To begin with, we consider ū ∈ L2([0,∞)) such that s− γ

2 ū ∈ L2([0,∞)).
Now define a continuous function ξ̄ on [0,∞) in the following way:

ξ̄ (t) =
∫ t

0
(t − s)αs− γ

2 ū(s)ds.

Recall that the Laplace transform of a function f on [0,∞) is defined as

L[ f ](p) .=
∫ ∞

0
e−pt f (t)ds,

whenever the integral is finite. Since |ξ̄ (t)| ≤ Ct1+α , for some C > 0, then L[ξ̄ ] is
well defined. We are now in a position to consider the Laplace transform of ξ̄ . We
have

L[ξ̄ ](p) = L
[∫ t

0
(t − s)αs− γ

2 ū(s)ds

]
(p)
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= L[tα](p)L
[
t−

γ
2 ū(t)

]
(p)

= �(α + 1)

pα+1 L
[
t−

γ
2 ū(t)

]
(p).

Therefore,

L[t− γ
2 ū(t)](p) = 1

�(α + 1)
pα+1L[ξ̄ ](p).

Now, suppose the inverse Laplace transform L−1 of the right hand side above exists.
Then,

ū(t) = �(α + 1)s
γ
2 L−1[pα+1L[ξ̄ ](p)](t),

where L−1[F(p)](t) is defined (see [8, Page 42]) as

L−1[F(p)](t) = 1

2π i

∫ c+i∞

c−i∞
F(p)eptdp, for c > η, (3.7)

whenever F(p) is analytic for�(p) > η. Since |ξ̄ (t)| < Ct1+α ,wehave the following:

|L[ξ̄ ](p)| ≤ C
∫ ∞

0
e−pt tα+1dt < ∞, for some C1 > 0 and every p > 0.

From [8, Section 2.1],L[ξ̄ ](p) is analytic for�(p) > 0. Therefore, |pα+1L[ξ̄ ](p)| ≤
C1|p|α and pα+1L[ξ̄ ](p) is analytic for �(p) > 0. Hence, taking c > 0 in (3.7) gives
a convergent integral. In other words, the definition in (3.7) is well defined for c > 0
and the inverse Laplace transform of pα+1L[ξ̄ ](p) exists. To summarize, we have our
desired result in (3.6). ��

4 LDP for fluid queues with GFBM input

The main content of this section is the study of LDPs in the context of a stochastic
fluid queue with GFBM input. In particular, we focus our attention on two processes:
workload process and running maximum process which will be defined below.

We consider a stochastic fluid queue with the GFBM X in (2.1) as the arrival
process, and a deterministic service rate k > 0. In particular, the workload process
V (t) (assuming that V (0) = 0) is given by

V (t)
.= sup

0≤s≤t
(X(t) − X(s) − k(t − s))

= X(t) − kt − inf
0≤s≤t

(X(s) − ks)
.= F(X)(t). (4.1)
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Wealso define another process that is closely related toV (t) viz., the runningmaximum
process

M(t)
.= max

0≤s≤t
(X(s) − ks) . (4.2)

Recall that for a stationary input process X (stationary increments), the workload
process V (t) in (4.1) has the same distribution as the following:

V (t)
d= max

0≤s≤t
(−X(−s) − ks) . (4.3)

This equivalent-in-distribution expression is often used to derive the stationary distri-
bution of V (t) as t → ∞ (we defer the analysis of steady state of V (t) to Sect. 5).
It can be shown that for an input process with stationary increments, it is also equiv-
alent in distribution to the running maximum process M(t). However, this approach
does not apply to the queueing process with GFBM input, since it has non-stationary
increments.

In [6], as a special case of [6, Theorem 4.1], the authors have studied the LDP for
the workload process V (t) with the FBM process Y in (2.9) as the input, and proved
that F(εY )(T ) satisfies an LDP with rate ε2 and an appropriate rate function. (In fact,
their result applies to a more general process for Y in (2.9) with the Brownian motion
B being replaced by a stationary process satisfying an LDP.) It is well known that
the map F : C → C (reflection mapping) is continuous (see, e.g., [7, Chapter 6],
[33, Chapter 13.5]). Therefore, we can apply the contraction principle and obtain the
sample path LDP for the process {F(εX)(t) : t ≥ 0}. In the following, we study the
LDP of F(εX)(T ) at a fixed time T , for which the rate function can be characterized
explicitly.

Let

V ε .= V ε(T ) = F(εX)(T ).

Theorem 4.1 Assume that (α, γ ) satisfy (2.6). {V ε} satisfies an LDP with rate ε2 and
rate function IV : R+ → [0,∞],

IV (x) = inf
ξ∈C:F(ξ)(T )=x

IX (ξ). (4.4)

Moreover, for λ ≥ 0, we have

lim
ε→0

−ε2 logP
(
V ε ≥ λ

) = − inf
0≤s≤T

(k(T − s) + λ)2

v1(T , s) + v2(T , s)
, (4.5)

where

v1(T , s)
.= c
∫ s

0

[
(T − τ)α − (s − τ)α

]2
τ−γ dτ, (4.6)
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and

v2(T , s)
.= c
∫ T

s
(T − τ)2ατ−γ dτ. (4.7)

Proof From the continuity of the map F : C → C and Theorem 2.2, we know that V ε

satisfies the LDP with rate ε2 and rate function IV : R+ → [0,∞] given in (4.4).
The proof for the result in (4.5) follows exactly along the lines of the proof of

[6, Theorem 4.1]. We adapt that proof for our process. From the LDP of {V ε} and
Theorem 2.1, we know that for any Borel set A ⊂ R+,

− inf
x∈A◦ IV (x) ≤ lim inf

ε→0
ε2 logP

(
V ε ∈ A

)

≤ lim sup
ε→0

ε2 logP
(
V ε ∈ A

) ≤ − inf
x∈ Ā

IV (x).

For λ ≥ 0, taking A = [λ,∞), we have

− inf
x∈(λ,∞)

IV (x) ≤ lim inf
ε→0

ε2 logP
(
V ε ≥ λ

)

≤ lim sup
ε→0

ε2 logP
(
V ε ≥ λ

) ≤ − inf
x∈[λ,∞)

IV (x).

To prove (4.5), it suffices to show that

inf
x∈[λ,∞)

I TV (x) = inf
x∈(λ,∞)

I TV (x) = inf
0≤s≤T

(k(T − s) + λ)2

v1(T , s) + v2(T , s)
.

Since

inf
0≤s≤T

(k(T − s) + λ)2

v1(T , s) + v2(T , s)

is continuous in λ, proving that

inf
x∈[λ,∞)

I TV (x) = inf
0≤s≤T

(k(T − s) + λ)2

v1(T , s) + v2(T , s)
(4.8)

automatically implies that

inf
x∈(λ,∞)

I TV (x) = inf
0≤s≤T

(k(T − s) + λ)2

v1(T , s) + v2(T , s)
.

Therefore, we only show (4.8).
The left-hand side of (4.8) can be rewritten as

inf
x∈[λ,∞)

I TV (x) = inf
u∈Rλ

1

2

∫ T

0
u(s)2ds,
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where,

Rλ
.=
{
u ∈ L2[0, T ] : sup0≤s≤T

(
c
∫ T
0 (T − τ)ατ− γ

2 u(τ )dτ

−c
∫ s
0 (s − τ)ατ− γ

2 u(τ )dτ − k(T − s)
)

≥ λ
}

.

Clearly,

Rλ = ∪0≤s≤TRλ(s)

with

Rλ(s)
.=
{
u ∈ L2[0, T ] : c

∫ T

0
(T − τ)ατ− γ

2 u(τ )dτ − c
∫ s

0
(s − τ)ατ− γ

2 u(τ )dτ

−k(T − s) ≥ λ}
=
{
u ∈ L2[0, T ] : c

∫ s

0

[
(T − τ)α − (s − τ)α

]
τ− γ

2 u(τ )dτ

− c
∫ T

s
(T − τ)ατ− γ

2 u(τ )dτ ≥ λ + k(T − s)

}
.

Then,

inf
u∈Rλ

1

2

∫ T

0
u(s)2ds = inf

0≤s≤T
inf

u∈Rλ(s)

1

2

∫ T

0
u(s)2ds.

The infimum inside can be solved explicitly using [6, Lemma 3.3 (ii)]. We then get

inf
u∈Rλ(s)

1

2

∫ T

0
u(s)2ds = (k(T − s) + λ)2

v1(T , s) + v2(T , s)
,

and the minimizer is given as follows:

u(τ ) =
{
c k(T−s)+λ

v1(T ,s)+v2(T ,s) [(T − τ)α − (s − τ)α] τ− γ
2 , τ ∈ [0, s),

c k(T−s)+λ
v1(T ,s)+v2(T ,s) (T − τ)ατ− γ

2 , τ ∈ [s, T ].

This proves the result. ��

We now prove an LDP for the running maximum process M(·). Define Mε by

Mε = Mε(T ) = J (εX)(T )
.= sup

0≤s≤T
(εX(s) − ks).
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Lemma 4.1 Assume that (α, γ ) satisfy (2.6). {Mε} satisfies an LDP with rate ε2 and
rate function IM : R+ → [0,∞] given by

IM (x) = inf
ξ∈C:J (ξ)(T )=x

IX (ξ).

Moreover, we have

lim
ε→0

−ε2 logP(Mε ≥ λ) = χ(λ, T ), (4.9)

where

χ(λ, T ) =
{

(λ+kT )2

2T 2H , T < λH
k(1−H)

,

k2H

2H2H (1−H)2(1−H) λ
2(1−H), otherwise.

(4.10)

Proof The proof for the result in (4.9) follows exactly along the lines of the proof of
[6, Corollary 3.4]. We adapt that proof for our process. From the LDP of {Mε} and
Theorem 2.1, we know that for any Borel set A ⊂ R+,

− inf
x∈A◦ IM (x) ≤ lim inf

ε→0
ε2 logP

(
Mε ∈ A

)

≤ lim sup
ε→0

ε2 logP
(
Mε ∈ A

) ≤ − inf
x∈ Ā

IM (x).

For λ ≥ 0, taking A = [λ,∞), we have

− inf
x∈(λ,∞)

IM (x) ≤ lim inf
ε→0

ε2 logP
(
Mε ≥ λ

)

≤ lim sup
ε→0

ε2 logP
(
Mε ≥ λ

) ≤ − inf
x∈[λ,∞)

IM (x).

To prove (4.9), it suffices to show that

inf
x∈[λ,∞)

I TM (x) = inf
x∈(λ,∞)

I TM (x) = inf
0≤s≤T

(λ + ks)2

s2H
= χ(λ, T ).

Since

inf
0≤s≤T

(λ + ks)2

s2H

is continuous in λ, proving that

inf
x∈[λ,∞)

I TM (x) = inf
0≤s≤T

(λ + ks)2

s2H
(4.11)
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automatically implies that

inf
x∈(λ,∞)

I TM (x) = inf
0≤s≤T

(λ + ks)2

s2H
.

Therefore, we only show (4.11).
The left-hand side of (4.11) can be rewritten as

inf
x∈[λ,∞)

I TM (x) = inf
u∈Qλ

1

2

∫ T

0
u(s)2ds,

where

Qλ
.=
{
u ∈ L2[0, T ] : sup

0≤s≤T

(
c
∫ s

0
(s − τ)ατ− γ

2 u(τ )dτ − ks

)
≥ λ

}
.

Clearly,

Qλ = ∪0≤s≤TQλ(s)

with

Qλ(s)
.=
{
u ∈ L2[0, T ] : c

∫ s

0
(s − τ)ατ− γ

2 u(τ )dτ − ks ≥ λ

}

=
{
u ∈ L2[0, T ] : c

∫ s

0
(s − τ)ατ− γ

2 u(τ )dτ ≥ λ + ks

}
.

Then,

inf
u∈Qλ

1

2

∫ T

0
u(s)2ds = inf

0≤s≤T
inf

u∈Qλ(s)

1

2

∫ T

0
u(s)2ds.

The infimum inside on the right-hand side can be solved explicitly using [6, Lemma
3.3 (i)]. We then get

inf
u∈Qλ(s)

1

2

∫ T

0
u(s)2ds = λ + ks

2c2
∫ s
0 (s − τ)2ατ−γ dτ

= (λ + ks)2

2s2H

and the minimizer is given as follows:

u(τ ) = λ + ks

c2
∫ s
0 (s − τ)2ατ−γ dτ

(s − τ)ατ− γ
2 , for τ ∈ [0, s].
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Therefore,

inf
x∈[λ,∞)

I TM (x) = inf
0≤s≤T

(λ + ks)2

2s2H
=
{

(λ+kT )2

2T 2H , T < λH
k(1−H)

,

k2H

2H2H (1−H)2(1−H) λ
2(1−H), otherwise.

This proves the result. ��

4.1 Alternative proofs of Theorem 4.1 and Lemma 4.1 using
Landau–Marcus–Shepp Asymptotics

In the proofs of Theorem 4.1 and Lemma 4.1, we have used the large deviation asymp-
totics of Xε = εX in Theorem 3.1. Alternatively, these proofs can also be given
by using a straightforward application of the well-known Landau–Marcus–Shepp
asymptotics [24, Equation (1.1)] which is given as follows. For T > 0, suppose
{Gt : 0 ≤ t ≤ T } is a centered Gaussian process. Then we have

lim
ε→0

−ε2 logP

(
sup

0≤s≤T
Gs > ε−1

)
= 1

2σ 2 , (4.12)

where σ 2 .= sup0≤s≤T E[G2
s ].

To apply (4.12) in Theorem 4.1 and Lemma 4.1 (below, we only illustrate this to
prove (4.1) using (4.12) as the other case follows exactly along the same lines), we
make the following observation:

P

(
sup

0≤s≤T

(
εX(T ) − εX(s) − k(T − s)

)
> λ

)
= P

(
sup

0≤s≤T

X(T ) − X(s)

λ + k(T − s)
> ε−1

)
.

Since X(T )−X(s)
λ+k(T−s) is a centered Gaussian process, from (4.12), we have

lim
ε→0

−ε2 logP

(
sup

0≤s≤T

(
εX(T ) − εX(s) − k(T − s)

)
> λ

)
= 1

2σ 2 ,

where

σ 2 .= sup
0≤s≤T

E

[(
X(T ) − X(s)

)2
(
λ + k(T − s)

)2

]
=
(

inf
0≤s≤T

(k(T − s) + λ)2

v1(T , s) + v2(T , s)

)−1

.

In the last equality, we have used (2.2), and v1 and v2 are defined in (4.6), (4.7). This
gives (4.5).

Even though using (4.12) gives us a shorter proof of Theorem 4.1 and Lemma 4.1,
we believe that using the LDP (Theorem 3.1) of {εX}ε>0 is a general and robust
approach. To see this, we note that (4.12) can be obtained as a consequence of LDP
of a general Gaussian process (see [1, Pages 53 and 57]).
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5 Long-time behavior ofM(·) and V(·)
In this section, we first study the existence of the steady state for the processes M and
V . Upon showing the existence, we derive the tail asymptotics of the steady state M∗
and V ∗ of M(t) and V (t), respectively.

We now briefly describe the method that is adopted.

(1) We first derive a certain type of maximal inequalities and modulus of continuity
estimates for the GFBM process X(t) in Lemmas 5.3 and 5.4. Using these and
exploiting the self-similarity of X (Lemma 5.5), we establish (uniform in time)
sub-exponential tail bounds of M(t) and V (t) for each fixed t > 0.

(2) We next prove the existence of a weak limit of the laws of V (t) as t → ∞, and
the almost sure convergence of M(t) as t → ∞. Then using the LDPs of {Mε}ε>0
and {V ε}ε>0, we derive the tail asymptotics of M∗ and V ∗ (a weak limit point of
{V (t)}t∈R+).

Remark 5.1 In this section, for any analysis related to M(t), we assume that (α, γ )

satisfy (2.6) and for any analysis related to V (t) we assume a stronger assumption:
α >

γ
2 , in which case, the Hurst parameter H ∈ (1/2, 1).

Remark 5.2 Throughout the section, δ0 is always the positive constant inCorollaryA.1.
We still occasionally remind the reader of this.

We first give an alternate expression for X that is easily amenable for analysis.

Lemma 5.1 Assume that (α, γ ) satisfy (2.6). Then, for t ≥ 0, P− a.s., the GFBM X
in (2.1) can be equivalently represented as

X(t) = αc
∫ t

0
B(u)(t − u)α−1u− γ

2 du + γ c

2

∫ t

0
(t − u)αu− γ

2 −1B(u)du. (5.1)

Proof We begin by recalling Itô’s product rule: for semi-martingales Z1 and Z2, for
0 ≤ s ≤ t ,

Z1(t)Z2(t) = Z1(s)Z2(s) +
∫ t

s
Z1(u)dZ2(u) +

∫ t

s
Z2(u)dZ1(u)

+1

2

∫ t

s
d[Z1, Z2](u),

where [Z1, Z2](·) is the cross-quadratic variation of the corresponding martingale
component.

Let

Xρ(t) = c
∫ t

ρ

(t − u)αu− γ
2 dB(u).

Define

Z1(u) = c(t − u)αu− γ
2 , and Z2(u) = B(u).
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Even though Z1(u) depends on t , we drop this dependence, because t is fixed through-
out. Also observing that Z1(t) = 0. Moreover, [Z1, Z2](·) ≡ 0. Note that we cannot
apply the Itô’s product rule with s = 0 since Z1(0) is ill-defined for γ > 0. To over-
come this issue, we set s = ρ and then take ρ → 0, and therefore define the process
Xρ(t) above. Thus applying the Itô’s product rule, we obtain

(t − ρ)αρ− γ
2 B(ρ) + Xρ(t) − αc

∫ t

ρ

B(u)(t − u)α−1u− γ
2 du

− cγ

2

∫ t

ρ

(t − u)αu− γ
2 −1B(u)du = 0. (5.2)

Now, we take ρ → 0 (or along a subsequence). First of all, we have

lim
ρ→0

ρ− γ
2 B(ρ) = 0.

This follows from the property of Brownian motion: lim supρ→0
B(ρ)√

ρ log log(ρ−1)
= √

2,

P− a.s.; see, e.g., [20, Theorem 2.9.23]. We then have

I 1ρ
.=
∫ t

ρ

(t − u)αu− γ
2 −1B(u)du

ρ→0−−−→ I 1
.=
∫ t

0
(t − u)αu− γ

2 −1B(u)du, P − a.s.

Indeed,

E

[
|I 1ρ − I 1|

]
≤ E

[∫ ρ

0
(t − u)αu− γ

2 −1|B(u)|du
]

≤
∫ ρ

0
(t − u)αu− γ

2 −1
E[|B(u)|]du

≤ tα
∫ ρ

0
u− γ

2 −1+ 1
2 du

≤ tαρ− γ
2 + 1

2

ρ→0−−−→ 0, as 0 ≤ γ < 1,

where the second inequality follows from Tonelli’s theorem. Similarly, one can show
that

I 2ρ
.=
∫ t

ρ

(t − u)α−1u− γ
2 B(u)du

ρ→0−−−→ I 2
.=
∫ t

0
(t − u)α−1u− γ

2 B(u)du, in L1([0, T ]).

Using Ito’s isometry along with similar analysis as above, we can also show that

E

[
|Xρ(t) − X(t)|2

]
→ 0, as ρ → 0.
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Therefore, we can find a subsequence ρn → 0 along which we will have

I 1ρ → I 1, I 2ρ → I 2, Xρ(t) → X(t) and ρ− γ
2 B(ρ) → 0, P − a.s.

From these and (5.2), we obtain the expression of X(t) in (5.1). ��
As mentioned earlier we require a maximal inequality for X which is the content

of Lemma 5.4 below. For our purposes, we only estimate the maximal inequality over
0 ≤ s ≤ 1. In the following, without loss in generality, we assume δ0 in Corollary A.1
is less than one. In the following, B(x1, x2) denotes the Beta function with parameters
x1, x2 > 0. We also use the inequality given below, often in what follows. For 0 <

x < 1,

√
log (1/x) ≤ Kηx

−η, (5.3)

for some Kη, depending on η > 0.
In the next two lemmas, we study the the behavior of X(t) in two subintervals,0 ≤

t ≤ δ0 and δ0 < t ≤ 1. These results are used in Theorem 5.1 to ensure that if
we condition that maximum of X(t) − kt over [0, T ] is appropriately large, then the
maximizer is almost surely attained in the complement of [0, δ0].
Lemma 5.2 Assume that (α, γ ) satisfy (2.6) and 1−γ

2 > η > 0. Then,

X(t) ≤ CtH−η, P − a.s.,

for 0 ≤ t ≤ δ0 and

C
.= 2(1 + ρ)Kη

(
αcB

(3
2

− γ − η, α
)

+ γ c

2
B
(1
2

− γ

2
− η, α + 1

))
.

Here, δ0 is as in Corollary A.1.

Proof Fix ρ > 0 and choose δ0 from the Corollary A.1 corresponding to ρ > 0. Then,
from Corollary A.1,

B(s) ≤ (1 + ρ)

√
2s log(s−1), for s ≤ δ0, P − a.s.

Using this, for t ≤ δ0, we have

X(t) = αctα− γ
2

∫ 1

0
B(vt)(1 − v)α−1v− γ

2 dv + γ c

2
tα+ γ

2

∫ 1

0
(1 − v)αv− γ

2 −1B(vt)dv

≤ √
2(1 + ρ)αctα− γ

2

∫ 1

0

√
(vt) log((vt)−1)(1 − v)α−1v− γ

2 dv

+
√
2(1 + ρ)γ c

2
tα− γ

2

∫ 1

0
(1 − v)αv− γ

2 −1
√

(vt) log((vt)−1)dv
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≤ √
2(1 + ρ)Kηαct

α− γ
2 + 1

2−η

∫ 1

0
(1 − v)α−1v− γ

2 + 1
2−ηdv

+
√
2(1 + ρ)Kηγ c

2
tα− γ

2 + 1
2−η

∫ 1

0
(1 − v)αv− γ

2 − 1
2−ηdv

≤ 2(1 + ρ)Kηt
H−η

(
αcB(

3

2
− γ − η, α) + γ c

2
B(

1

2
− γ

2
− η, α + 1)

)
.

In the above, we chose 1−γ
2 > η > 0 and used the fact in (5.3). This completes the

proof. ��
Lemma 5.3 Assume that (α, γ ) satisfy (2.6) and 1−γ

2 > η > 0. For δ0 < t ≤ 1 and
K > 0,

P

(
max

δ0≤s≤t

X(s)

sH
≥ K

)
≤ exp

(

−1

2

(
Kt−η − �

�

)2
t2η
)

, (5.4)

where

�
.= �(δ0, α, γ, η, c) = αcB

(
1 − γ

2
, α
)

+ γ c

2δ
1
2−η

0

B
(3
2

− γ

2
− η, α + 1

)
, (5.5)

and

�
.= �(δ0, γ, η, c, ρ, Kη) = γ c

√
2(1 + ρ)Kη

2
δ0

− γ
2 + 1

2−η. (5.6)

Here, δ0 is as in Corollary A.1.

Remark 5.3 Since
{
ω : max

δ0≤s≤t

X(s)(ω)

sH
≤ K

}
⊂
{
ω : max

δ0≤s≤t
X(s)(ω) ≤ K

}
, for t ≤ 1,

we have

P

(
max

δ0≤s≤t
X(s) ≥ K

)
≤ P

(
max

δ0≤s≤t

X(s)

sH
≥ K

)
≤ exp

(

−1

2

(
Kt−η − �

�

)2
t2η
)

.

Proof Fix t > δ0. From Lemma 5.1, using the expression of X(t) in (5.1), we have
P− a.s.

X(t) ≤ αc max
0≤s≤t

B(s)
∫ t

0
(t − u)α−1u− γ

2 du + γ c

2

∫ t

0
(t − u)αu− γ

2 −1B(u)du

≤ αctα− γ
2 max
0≤s≤t

B(s)
∫ 1

0
(1 − v)α−1v− γ

2 dv
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+ γ c

2
tα− γ

2

∫ 1

0
(1 − v)αv− γ

2 −1B(vt)dv

≤ tα− γ
2 αc max

0≤s≤t
B(s)B

(
1 − γ

2
, α
)

+ γ c

2
tα− γ

2

∫ 1

0
(1 − v)αv− γ

2 −1B(vt)dv,

(5.7)

where we have used change of variables from u to vt in the integral terms to obtain
the second inequality.

We now focus on the integral in (5.7). We observe that we cannot directly pull
max0≤s≤t B(s) out of the integral as

∫ 1
0 (1 − v)αv− γ

2 −1dv is not well-defined. So

fixing some 1−γ
2 > η > 0, we obtain

∫ 1

0
(1 − v)αv− γ

2 −1B(vt)dv

=
∫ 1

δ0
t

(1 − v)αv− γ
2 −1(vt)

1
2−η B(vt)

(vt)
1
2−η

dv +
∫ δ0

t

0
(1 − v)αv− γ

2 −1B(vt)dv

≤ max
δ0≤s≤t

B(s)

s
1
2−η

∫ 1

δ0
t

(1 − v)αv− γ
2 + 1

2−ηdv

+ √
2(1 + ρ)

∫ δ0
t

0
(1 − v)αv− γ

2 −1

√

v log
(1

v

)
dv

≤ max
δ0≤s≤t

B(s)

s
1
2−η

∫ 1

δ0
t

(1 − v)αv− γ
2 + 1

2−ηdv

+ √
2(1 + ρ)Kη

∫ δ0
t

0
(1 − v)αv− γ

2 − 1
2−ηdv. (5.8)

Here the first inequality follows from Corollary A.1 and the second inequality
uses (5.3).

Thus, by (5.7) and (5.8), we obtain for t > δ0,

X(t) ≤ αctα− γ
2 max
0≤s≤t

B(s)B
(
1 − γ

2
, α
)

+ γ c

2
tα− γ

2

(

max
δ0≤s≤t

B(s)

s
1
2−η

∫ 1

δ0
t

(1 − v)αv− γ
2 + 1

2−ηdv

+√
2(1 + ρ)Kη

∫ δ0
t

0
(1 − v)αv− γ

2 − 1
2−ηdv

)

≤ αctα− γ
2 max
0≤s≤t

B(s)B
(
1 − γ

2
, α
)

+ γ c

2
tα− γ

2

(
1

δ
1
2−η

0

max
δ0≤s≤t

B(s)
∫ 1

δ0
t

(1 − v)αv− γ
2 + 1

2−ηdv

+ √
2(1 + ρ)Kη

∫ δ0
t

0
(1 − v)αv− γ

2 − 1
2−ηdv

)
.
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Consider the following event:

A(K , η)
.=
{

ω : sup
0<s≤t

B(s)(ω) ≤ Kt
1
2+η

}

. (5.9)

On this event,

X(t) ≤ αcK t H+η B(1 − γ

2
, α)

+ γ c

2
t H+η

⎛

⎝ 1

δ
1
2−η

0

K
∫ 1

δ0
t

(1 − v)αv− γ
2 + 1

2−ηdv

+√
2(1 + ρ)t−

1
2−ηKη

∫ δ0
t

0
(1 − v)αv− γ

2 − 1
2−ηdv

)

≤ t H+η

(
αcKB(1 − γ

2
, α) + γ c

2

( K

δ
1
2−η

0

B(
3

2
− γ

2
− η, α + 1)

+ √
2(1 + ρ)Kη(δ0

− γ
2 + 1

2−ηt−
γ
2 +1+η)

))
≤ t H+η

(
K� + �

)
. (5.10)

In the above, we used the fact that

∫ δ0
t

0
(1 − v)αv− γ

2 − 1
2−ηdv ≤

∫ δ0
t

0
v− γ

2 − 1
2−ηdv ≤ δ0

− γ
2 + 1

2−ηt
γ
2 − 1

2+η.

The quantities � and � are as given in (5.5) and (5.6), and in the last inequality, we
bound the terms involving t (inside the parenthesis) by 1 to make the quantity inside,
uniform in t .

From the above inequality, we have

max
δ0≤s≤t

X(s)

sH
≤ tη (�K + �) .

Therefore,

P

(
max

δ0≤s≤t

X(s)

sH
> tη(K� + �)

)
≤ P

({
ω : max

0≤s≤t
B(s)(ω) > Kt

1
2+η
})

≤ P

(

sup
0<s≤t

B(s) > Kt
1
2+η

)

≤ exp

(
−1

2
K 2t2η

)
,
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where the second inequality uses (5.9) and the last uses the maximal inequality of

Brownian motion, i.e., P
(
sup0≤s≤t B(s) > λ

) ≤ exp
(
−λ2

2t

)
. Therefore, the inequal-

ity in (5.4) holds. ��
Remark 5.4 In Lemma 5.2 and Eq. (5.10) in the proof of Lemma 5.3, the exponents
are H −η and H +η are the consequence of behavior of Brownian motion near t = 0
(see Theorem A.1) and away from zero (the maximal inequality of Brownian motion).

The following modulus of continuity type estimate is used in establishing the uni-
form in t sub-exponential tail bounds of V (t).

Lemma 5.4 Assume that α >
γ
2 . Then, we have the following:

P

(

sup
1−δ0≤s≤1

|X(1) − X(s)|
|1 − s|α− γ

2
≥ C(K )

)

≤ e− K2
2 , (5.11)

for some C = C(K ) > 0 such that C(K ) ↑ ∞ as K → ∞.

Proof Consider the event:

A(K ) =
{

ω : sup
0≤v≤1

B(v)(ω) ≤ K

}

.

We consider the following on A(K ). For 1 − δ0 ≤ s ≤ 1, by (5.1),

X(1) − X(s) = αc
∫ 1

0
(1 − v)α−1v− γ

2

(
B(v) − sα− γ

2 B(vs)
)
dv

+ γ c

2

∫ 1

0
(1 − v)αv− γ

2 −1
(
B(v) − sα− γ

2 B(vs)
)
dv.

We estimate the first integral using Theorem A.1 and Corollary A.1. Choose η <
γ
2 + 1

2 − α = 1 − H . We have
∫ 1

0
(1 − v)α−1v− γ

2

(
B(v) − sα− γ

2 B(vs)
)
dv

=
(
1 − sα− γ

2

) ∫ 1

0
(1 − v)α−1v− γ

2 B(v)dv

+ sα− γ
2

∫ 1

0
(1 − v)α−1v− γ

2 (B(v) − B(vs)) dv

≤
(
1 − sα− γ

2

)
K
∫ 1

0
(1 − v)α−1v− γ

2 dv

+ √
2(1 + ρ)sα− γ

2 (1 − s
1
2−η)

∫ 1

0
(1 − v)α−1v− γ

2 + 1
2−ηdv

≤ (KC1 + C2)(1 − s)α− γ
2 , (5.12)
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for some C1,C2 > 0. To get (5.12), we applied Remark A.2 to uniformly bound
|B(v) − B(vs)|. Finally, we estimate the second term in the similar way:

∫ 1

0
(1 − v)αv− γ

2 −1
(
B(v) − sα− γ

2 B(vs)
)
dv

=
(
1 − sα− γ

2

) ∫ 1

0
(1 − v)αv− γ

2 −1B(v)dv

+ sα− γ
2

∫ 1

0
(1 − v)αv− γ

2 −1 (B(v) − B(vs)) dv, from Remark A.2

≤
(
1 − sα− γ

2

) ∫ 1

0
(1 − v)αv− γ

2 −1B(v)dv

+ √
2(1 + ρ)sα− γ

2 (1 − s
1
2−η)

∫ 1

0
(1 − v)αv− γ

2 − 1
2−ηdv

≤ (KC3 + C4)(1 − s)α− γ
2 ,

In the above, to arrive at the final inequality, we bounded the first integral using (5.8),
noting that sup0≤v≤1 B(v)(ω) ≤ K on the event A(K ) and used the fact that η <
γ
2 + 1

2 − α. C3 and C4 are appropriate constants that are independent of K and s.
Defining C(K )

.= max{αc(KC1 + C2),
γ c
2 (KC3 + C4)} gives the result. ��

Remark 5.5 In the following, we observe that

X̃
.= X(1) − X(s)

(1 − s)α− γ
2

is a centered Gaussian process and hence, symmetric (i.e., X̃ and −X̃ have the same
distribution). Therefore,

P

(
sup

1−δ0≤s≤1
|X̃(s)| ≥ K

)
= RKP

(
sup

1−δ0≤s≤1
X̃(s) ≥ K

)
.

Here,

RK
.= 2 −

P

({
sup1−δ0≤s≤1 X̃(s) ≥ K

} ∩ { inf1−δ0≤s≤1 X̃(s) ≤ −K
})

P

(
sup1−δ0≤s≤1 X̃(s) ≥ K

)

and the ratio of probabilities is simply the conditional probability of the event{
inf1−δ0≤s≤1 X̃(s) ≤ −K

}
conditioned on the occurrence of the event

{
sup1−δ0≤s≤1

X̃(s) ≥ K
}
. Since the paths of X̃ are almost surely continuous, this probability

approaches 0 as K → ∞. Therefore, RK → 2 as K → ∞.

123



78 Queueing Systems (2023) 105:47–98

Now by a similar argument in Sect. 4.1, we obtain the following:

lim
K→∞ − 1

K 2 logP

(
sup

1−δ0≤s≤1
X̃(s) ≥ K

)
= 1

2σ̃ 2 ,

where

σ̃ 2 .= sup
δ0≤s≤1

E[X̃2(s)] = sup
δ0≤s≤1

E[(X(1) − X(s))2]
(1 − s)α− γ

2
= sup

δ0≤s≤1

v1(1, s) + v2(1, s)

(1 − s)α− γ
2

.

Again in the last equality, we have used (2.2), with the definitions of v1 and v2 in (4.6)
and (4.7). From the above, we can conclude that for every δ > 0, there is K0 > 0 such
that

P

(
sup

1−δ0≤s≤1
X̃(s) ≥ K

)
≤ e− K2

2σ2 , for K > K0. (5.13)

We remark that Lemma 5.4 is only used in the proof of Theorem 5.3. Even though
the alternative estimate in (5.13) is different from that in (5.11), it is still sufficient for
the proof of Theorem 5.3. Note that (5.11) is used in Eqs. (5.22) and (5.23) in the proof
of Theorem 5.3. Now following the same arguments of the proof with (5.13) instead
of (5.11) gives us the similar result to (5.21) with appropriately different constants.
We do not give the exact modified version of (5.21) as this estimate is only used to
prove tightness of {V (t)}t≥0 in Corollary 5.1 and this estimate is sufficient.

In the following, we exploit the self-similarity of X and show that the random
variables M(t) and V (t) at fixed time t > 0, are equal in laws to respective random
variables which involve C([0, 1],R)-valued processes Z̄ and Z which have the same
lawas that of X when it is defined on [0, 1].That is, for T = 1, Z̄ and Z areC([0, 1],R)

such that

Z̄
d= Z

d= X .

Lemma 5.5 For any fixed t > 0, we have

M(t)
d= max

0≤v≤1
(t H Z̄(v) − kvt) (5.14)

V (t)
d= max

0≤v≤1

(
t H Z(1) − t H Z(v) − kt(1 − v)

)
. (5.15)

Proof Fix t > 0. Using self-similarity of X and Lemma A.1, the following holds:

PX (t−H A) = PX ◦ Jt (A),

where PX is the law of X and Jt is as defined in (A.1). Then the equal in law relation-
ships in (5.14) and (5.15) follow directly. ��
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Remark 5.6 We stress that the statement of the above lemma only states that for every
given t > 0, the laws of M(t) and V (t) are expressed as above. To study the sample
path of M and V , more detailed analysis is needed, which we do not pursue in this
paper.

Theorem 5.1 Assume that (α, γ ) satisfy (2.6). There exist t0
.= t0(δ0, k, H , η,C) and

Q
.= Q(δ0, H ,C, η, k) such that the following holds:

P (M(t) > ρ) ≤ exp

(
− 1

2

(
�̂ρ1−H − �

�

)2)
,

for t > t0 and ρ > Q. Here,

�̂ = �̂(δ0, H)
.= δH0

(1 − H)1−H HH
.

Proof We fix t throughout the proof after choosing it large enough. In the rest of the
proof, we suppress the dependence on ω for all the random processes that follow. The
method of the proof goes as follows: We prove that the maximum

max
0≤v≤δ0

(t H Z̄(v) − kvt)

is almost surely less than a positive constant Q (uniformly in large t). This implies
that the maximizers for

max
0≤v≤1

(t H Z̄(v) − kvt)

conditioned on the event
{
ω : max

0≤v≤1
(t H Z̄(v) − kvt) > Q

}

are greater than δ0, P− a.s. Indeed, if the maximum satisfies

max
0≤v≤1

(t H Z̄(v) − kvt) > Q,

then from the hypothesis,

max
0≤v≤δ0

(t H Z̄(v) − kvt) ≤ Q < max
0≤v≤1

(t H Z̄(v) − kvt).

This implies that the maximizers on [0, 1] are strictly greater than δ0.
To that end, we recall from Lemma 5.2 that P− a.s.,

Z̄(v) ≤ CvH−η,
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for 0 ≤ v ≤ δ0 with 0 < η <
1−γ
2 . Thus, P− a.s.,

t H Z̄(v) − kvt ≤ CvH−ηt H − kvt, for 0 ≤ v ≤ δ0.

The maximum of the right-hand side is attained at v = min{δ0,
(

kt
Ct H

) 1
1+η−H }. For

t > t0
.=
(

δ
1+η−H
0 C

k

) 1
1−H

,

(this ensures that maximum is attained at δ0), we have

max
0≤v≤δ0

(t H Z̄(v) − kvt) ≤ Cδ
H−η
0 t H − kδ0t

≤ (1 − H)H
H

1−H

(
Cδ

H−η
0

) 1
1−H

(kδ0)
H

H−1
.= Q. (5.16)

It is thus clear that for

max
0≤v≤1

(
t H Z̄(v) − kvt

)
> ρ > Q,

the maximizer cannot be in [0, δ0]. Therefore, for ρ > Q and t > t0,

P

(
max
0≤v≤1

(
t H Z̄(v) − kvt

)
> ρ

)

≤ P

(
t H max

δ0≤v≤1
Z̄(v) − ktδ0 > ρ

)

≤ P

(
max

δ0≤v≤1
Z̄(v) >

ρ + kδ0t

t H

)

≤ P

(
max

δ0≤v≤1
Z̄(v) > min

t>0

{
ρ + kδ0t

t H

})

= P

(

max
δ0≤v≤1

Z̄(v) >
ρ1−H δH0

(1 − H)1−H HH

)

≤ exp

(
− 1

2

(ρ1−H �̂ − �

�

)2)
,

where the last inequality follows from Remark 5.3 and �̂ is as in the hypothesis. In
the first inequality, we used the following: For ρ > Q, t > t0 and v ∈ [0, 1], from the
inequality in (5.16) and the definition of Q,

Q < ρ < max
0≤v≤1

(t H Z̄(v) − kvt) = max
δ0≤v≤1

(t H Z̄(v) − ktv)

≤ t H max
δ0≤v≤1

Z̄(v) − ktδ0. ��
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Lemma 5.6 Assume that (α, γ ) satisfy (2.6). Then,

M(∞)
.= lim

t→∞ M(t) exists P − a.s.

Proof Since M(t) is nondecreasing and is a submartingale with respect to its own
filtration, if

sup
t>0

E[M(t)] < ∞, (5.17)

then from the submartingale convergence theorem ([20, Theorem 1.3.15]), we know
that M(∞)

.= limt→∞ M(t) exists P− a.s. From Theorem 5.1, it is easy to see that
sub-exponential tail behavior of M(t) ensures that (5.17) holds. ��

We will next study the tail behavior of M∗ .= M(∞).

Theorem 5.2 Assume that (α, γ ) satisfy (2.6). Then,

lim
x→∞

1

x2(1−H)
logP(M∗ > x) = −θ∗, (5.18)

where

θ∗ .= k2H

2H2H (1 − H)2(1−H)
. (5.19)

Proof We first prove the lower bound. For λ > 0,

lim inf
x→∞

1

x2(1−H)
logP

(
M∗ > x

) = lim inf
ε→0

ε2(1−H)

λ2(1−H)
logP

(
M∗ > λε−1)

≥ lim inf
ε→0

ε2(1−H)

λ2(1−H)
logP

(
X(ε−1) − kε−1 > λε−1)

≥ lim inf
ε→0

ε2(1−H)

λ2(1−H)
logP

(
εX(ε−1) − k > λ

)

≥ lim inf
ε→0

ε2(1−H)

λ2(1−H)
logP

(
X(1) > εH−1(λ + k)

)
.

In the above, we used the fact that X(ε−1)
d= ε−H X(1). Since X(1) is a Gaussian

random variable with zero mean and unit variance (recall that the choice of c ensures
this), we have

1

λ2(1−H)
lim inf

ε→0
ε2(1−H) logP

(
X(1) > εH−1(λ + k)

)
≥ − (λ + k)2

2λ2(1−H)
, for every λ > 0,

�⇒ lim inf
x→∞

1

x2(1−H)
logP

(
M∗ > x

) ≥ − inf
λ>0

(λ + k)2

2λ2(1−H)
= −θ∗.

A simple computation gives us that the above infimum is θ∗ and attained at λ = 1−H
H k.

123



82 Queueing Systems (2023) 105:47–98

To prove the upper bound, we again write for λ > 0,

lim sup
x→∞

1

x2(1−H)
logP

(
M∗ > x

) = lim sup
ε→0

ε2(1−H) logP
(
M∗ > ε−1

)
.

Choose T0 > H
k(1−H)

. Clearly, for any ε > 0,

P

[
M∗ > ε−1

]

= P

(

sup
0≤s≤T0ε−1

(X(s) − ks) > ε−1

)

+ P

(

sup
0≤s≤T0ε−1

(X(s) − ks) ≤ ε−1, sup
s>T0ε−1

(X(s) − ks) > ε−1

)

.

We now compute the above terms individually,

P

(

sup
0≤s≤T0ε−1

(X(s) − ks) > ε−1

)

= P

(

sup
0≤s≤T0

(ε1−H X(s) − ks) > 1

)

, from self-similarity of X .

and as earlier in Lemma 4.1,

lim sup
ε→0

ε2(1−H) logP

(

sup
0≤s≤1

(ε1−H X(s) − ks) > 1

)

≤ − k2H

2H2H (1 − H)2(1−H)
= −θ∗.

In the above, we applied Lemma 4.1, for T = T0 and λ = 1.
We now estimate

P

(

sup
0≤s≤T0ε−1

(X(s) − ks) ≤ ε−1, sup
s>T0ε−1

(X(s) − ks) > ε−1

)

≤ P

(

sup
s>T0ε−1

(X(s) − ks) > ε−1

)

≤ P

(

sup
s>�T0ε−1�

(X(s) − ks) > ε−1

)

= P

(

∪n>�T0ε−1�
{

sup
n−1<s≤n

(X(s) − ks) > ε−1
})
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≤
∞∑

n=�T0ε−1�+1

P

(

sup
n−1<s≤n

(X(s) − ks) > ε−1

)

.

In the fourth line above, we partitioned (�T0ε−1�,∞) into sets of the form (n − 1, n],
for integer n > �T0ε−1�.

In the following, we bound the individual terms. To that end, define

U (t)
.= sup

t−1<s≤t
(X(s) − ks).

We have

lim sup
ε→0

ε2(1−H) logP
(
εU (ε−1) > λ

)

= lim sup
ε→0

ε2(1−H) logP

(

sup
1−ε<s≤1

(ε1−H X(s) − ks) > λ

)

≤ lim sup
ε→0

ε2(1−H) logP

(

sup
1−δ≤s≤1

(ε1−H X(s) − ks) > λ

)

≤ − inf
1−δ≤s≤1

(λ + ks)2

2s2H
, (5.20)

where 0 < δ < 1. In the first equality, we used the following:

U (ε−1) = sup
ε−1−1<s<ε−1

(X(s) − ks)

d= sup
1−ε<s<1

(ε1−H X(s) − ks),

where we have changed s to ε−1s and applied Corollary A.1. The inequality 5.20 is
obtained in the similar way as it was done in the proof of Lemma 4.1. Taking δ ↓ 0,
we have

lim sup
ε→0

ε2(1−H) logP
(
εU (ε−1) > λ

)
= −(λ + k)2.

Therefore, for δ > 0, there exists ε0 > 0 such that for every ε < ε0,

∞∑

n=�T0ε−1�
P

(

sup
n<s≤n+1

(X(s) − ks) > ε−1

)

≤
∞∑

n=�T0ε−1�
P

(

n−1 sup
n<s≤n+1

(X(s) − ks) > 0

)
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≤
∞∑

n=�T0ε−1�
exp
(
−n2(1−H)(k2 + δ)

)

≤ exp
(
−�T0ε−1�2(1−H)(k2 + δ)

)

∞∑

n=�T0ε−1�
exp
(
−(n2(1−H) − �T0ε−1�2(1−H))(k2 + δ)

)

≤ exp
(
−�T0ε−1�2(1−H)(k2 + δ)

)
C,

for some constant C > 0. This gives us

lim sup
ε→0

ε2(1−H) log

⎛

⎝
∞∑

n=�T0ε−1�
P

(

sup
n<s≤n+1

(X(s) − ks) > ε−1

)⎞

⎠

≤ −T 2(1−H)
0 (k2 + δ).

Putting all the terms together, we have

lim sup
x→∞

1

x2(1−H)
logP

(
M∗ > x

)

= lim sup
ε→0

ε2(1−H) logP
(
M∗ > ε−1

)

≤ max

{

lim sup
ε→0

ε2(1−H) logP

(

sup
0≤s≤1

(ε1−H X(s) − ks) > 1

)

,

lim sup
ε→0

ε2(1−H) log

⎛

⎝
∞∑

n=�T0ε−1�
P

(

sup
n<s≤n+1

(X(s) − ks) > ε−1

)⎞

⎠

⎫
⎬

⎭

≤ max
{

− θ∗,−T 2(1−H)
0 (k2 + δ)

}
.

Now, we take T0 ↑ ∞ (the second term goes to −∞), to get the result. ��
We now study the tail asymptotics and long-time behavior of {V (t)}t∈R+ .

Theorem 5.3 Assume that α >
γ
2 . For every K > 0, there exist t0 = t0(K , δ0, k, α, γ )

and Q = Q(K , δ0, k, α, γ ) such that the following holds.

P (V (t) > ρ) ≤ exp

(
− 1

2

( 1
2ρ

1−H �̂ − �

�

)2)
+ e− K2

2 , (5.21)

for t > t0 and ρ > Q. Here, �̂ is as given in Theorem 5.1.
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Proof Consider the following set:

S = S(K , δ0) =
{

ω : sup
1−δ0≤s≤1

|X(1)(ω) − X(s)(ω)|
|1 − s|α− γ

2
≤ C(K )

}

. (5.22)

Here, C(K ) is the same constant that appears in Lemma 5.4. On the event S, we
consider the following: We follow a similar argument as in the proof of Theorem 5.1.
We fix t throughout the proof after choosing it large enough. In the rest of the proof,
we suppress the dependence on ω for all the random processes that follow. We now
show that on S,

max
1−δ0≤v≤1

(t H Z(1) − t H Z(v) − kt(1 − v))

is less than a positive constant Q (uniformly in large t). This implies that the maxi-
mizers for

max
0≤v≤1

(t H Z(1) − t H Z(v) − kt(1 − v))

conditioned on the event

{
ω : max

0≤v≤1
(t H Z(1) − t H Z(v) − kt(1 − v)) > Q

}
∩ S

are less than 1 − δ0. Indeed, if

max
0≤v≤1

(t H Z(1) − t H Z(v) − kt(1 − v)) > Q,

then from the hypothesis,

max
1−δ0≤v≤1

(t H Z(1) − t H Z(v) − kt(1 − v)) ≤ Q < max
0≤v≤1

(t H Z(1)

−t H Z(v) − kt(1 − v)).

This implies that the maximizers are strictly less than 1 − δ0. To that end, we recall
that on the event S,

Z(1) − Z(v) ≤ C(1 − v)α− γ
2 , (5.23)

for 1 − δ0 ≤ v ≤ 1. Hence, on S,

(t H Z(1) − t H Z(v) − kt(1 − v)) ≤ C(1 − v)α− γ
2 t H − k(1 − v)t,

for 1 − δ0 ≤ v ≤ 1.
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The maximum of the right-hand side is attained at

v = 1 − min

{
δ0,

(
kt

Ct H

) 1
1+ γ

2 −α

}
.

For

t > t0
.=
(

δ
1+ γ

2 −α

0 C

k

) 1
1−H

(this ensures that maximum is attained at 1 − δ0), we have

max
1−δ0≤v≤1

(t H Z(1) − t H Z(v) − kt(1 − v)) ≤ Cδ
α− γ

2
0 t H − kδ0t

≤ (1 − H)H
H

1−H

(
Cδ

α− γ
2

0

) 1
1−H

(kδ0)
H

H−1
.= Q.

It is thus clear that for

max
0≤v≤1

(t H Z(1) − t H Z(v) − kt(1 − v)) > ρ > Q,

the maximizer cannot be in [1 − δ0, 1].
Therefore, for ρ > Q and t > t0,

P (V (t) > ρ) = P

(
max
0≤v≤1

(
t H Z(1) − t H Z(v) − kt(1 − v)

)
> ρ

)

= P

({
max
0≤v≤1

(
t H Z(1) − t H Z(v) − kt(1 − v)

)
> ρ

}
∩ S

)

+ P

({
max
0≤v≤1

(
t H Z(1) − t H Z(v) − kt(1 − v)

)
> ρ

}
∩ Sc

)

≤ P

(
t H max

0≤v≤1−δ0
(Z(1) − Z(v)) − ktδ0 > ρ

)
+ P(Sc)

≤ P

(
max

0≤v≤1−δ0
(Z(1) − Z(v)) >

ρ + kδ0t

t H

)
+ P(Sc)

≤ P

(
max

0≤v≤1−δ0
(Z(1) − Z(v)) > min

t>0

{
ρ + kv0t

t H

})
+ P(Sc)

= P

(

max
0≤v≤1−δ0

(Z(1) − Z(v)) >
ρ1−H δH0

(1 − H)1−H HH

)

+ P(Sc) (5.24)

≤ P

(

max
0≤v≤1−δ0

Z(v) >
ρ1−H δH0

2(1 − H)1−H HH

)

+ P(Sc) (5.25)

≤ exp

(
− 1

2

( 1
2ρ

1−H �̂ − �

�

)2)
+ exp

(
− K 2

2

)
. (5.26)
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Above, �̂ is as in hypothesis of Theorem 5.1. To get (5.24), we used the following:
For t > t0 and ρ > Q, from the above analysis

P

({
max
0≤v≤1

(
t H Z(1) − t H Z(v) − kt(1 − v)

)
> ρ

}
∩ S

)

= P

({
max

0≤v≤1−δ0

(
t H Z(1) − t H Z(v) − kt(1 − v)

)
> ρ

}
∩ S

)
.

To get (5.25), we used

max
0≤v≤1−δ0

(Z(1) − Z(v)) ≤ 2 max
0≤v≤1−δ0

Z(v).

Finally, to get (5.26), we applied Lemmas 5.3 and 5.4. ��
Corollary 5.1 The laws ofR+ valued random variables {V (t)} have a weak limit point
as t → ∞.

Proof From Theorem 5.3, it is clear that for any ε > 0, there exists ρ0 and such that
for t > t0, for some t0 such that the upper bound in (5.21) is less than ε. From this
and Prohorov’s theorem, we have the existence of weak limit point of the law of V (t)
as t → ∞. ��

In the following, without loss of generality, we assume that V (t) converges to along
every subsequence, almost surely to respective limit points.

Theorem 5.4 Let V ∗ be a weak limit point of {V (t)}t∈R+ as t → ∞. Then,

lim
ε→0

ε2(1−H) logP
(
V ∗ > ε−1

)
= − inf

0≤s≤1

(k(1 − s) + 1)2

v1(1, s) + v2(1, s)
.

Proof We have already seen from Lemma 5.5 that for t > 0,

V (t)
d= t max

0≤v≤1

(
t H−1Z(1) − t H−1Z(v) − k(1 − v)

)
.= V̄ (t).

Now we consider a sequence tn ↑ ∞ such that V (tn) converges weakly to V ∗.
From the above equality of laws, V̄ (tn) also converges weakly to V ∗. From Skorohod
representation theorem, we can without loss of generality, assume that

V̄ (tn) converges to V ∗, P − a.s.

Therefore, we have

V ∗ = lim
t→∞ V̄ (t) = lim

t→∞ t max
0≤v≤1

(
t H−1Z(1) − t H−1Z(v) − k(1 − v)

)
, P − a.s.
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Now we replace t in V̄ (t) by ε−1 and treat t → ∞ as ε → 0. In other words, we
have

V ∗ = lim
εn→0

V̄ (ε−1
n ) = lim

εn→0
ε−1
n max

0≤v≤1

(
ε1−H
n Z(1) − ε1−H

n Z(v) − k(1 − v)
)

, P − a.s.

(5.27)

From Theorem 4.1, we know that εV̄ (ε−1) satisfies an LDP. From (5.27), we also
know that

|V ∗ − V̄ (ε−1
n )| = f (εn),

where f is a deterministic positive function such that f (x) → 0, as x → 0, P− a.s.
Then, we have |εnV ∗ − εn V̄ (ε−1

n )| = εn f (εn).
Now we are in a position to derive the tail behavior of V ∗:

lim sup
εn→0

ε2(1−H)
n logP

(
εnV

∗ > 1
) ≤ lim sup

εn→0
ε2(1−H)
n logP

(
εn V̄ (ε−1

n ) > 1 − εn f (εn)
)
.

Similarly,

lim inf
εn→0

ε2(1−H)
n logP

(
εn V̄ (ε−1

n ) > 1
) ≤ lim inf

εn→0
ε2(1−H)
n logP

(
εnV

∗ > 1 − εn f (εn)
)
.

From Theorem 4.1, we have

lim
εn→0

ε2(1−H)
n logP

(
εnV

∗ > 1
) = lim

εn→0
ε2(1−H)
n logP

(
εn V̄ (ε−1

n ) > 1
)

= − inf
0≤s≤1

(k(1 − s) + 1)2

v1(1, s) + v2(1, s)
.

Since the right-hand side of the above equation is independent of the sequence εn → 0,
we can replace εn in the above equation with ε. This gives us

lim
ε→0

ε2(1−H) logP
(
V ∗ > ε−1

)
= − inf

0≤s≤1

(k(1 − s) + 1)2

v1(1, s) + v2(1, s)
.

This completes the proof. ��

5.1 Alternative proof of Theorem 5.2 using the results of Hüsler and Piterbarg [16]

The proof of Theorem 5.2 uses the large deviation asymptotics of the processes
{Mε}ε>0 (Lemma 4.1) and {V ε}ε>0 (Theorem 4.1). But to use these results, it was
necessary in the proofs to establish the existence of the limit points of {M(t)}t>0 and
{V (t)}t>0 which was the content of Theorems 5.1 and 5.3, respectively. Alternatively,
the proof can be given as a direct application of a result by Hüsler and Piterbarg [16].
Before we state the result in [16], we recall the following definition: A centered self-
similar Gaussian process (with Hurst parameter 0 < H < 1) with continuous sample
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paths {Z(t)}t>0 is called locally stationary self-similar if for some positive K and
0 < η ≤ 2,

lim
t1→t
t2→t

E

[(
Z(t1)t

−H
1 − Z(t2)t

−H
2

)2]

|t1 − t2|η = Kt−2H . (5.28)

Theorem 5.5 [16, Theorem 1] Suppose that {Z(t)}t>0 is a locally stationary self-
similar Gaussian process. Then, as λ → ∞,

P

(
sup
t≥0

(
Z(t) − kt

)
> λ

)
∼ Cη(A)

1
H − 1

2 λH�(Aλ1−H ).

Here, Cη is a positive constant (its explicit form is given in [16]) and

A
.= kH

HH (1 − H)(1−H)

and � is the tail distribution function of standard normal random variable.

In Lemma A.2, we show that the GFBM X(·) is locally stationary. Hence, from
Theorem 5.5, we have the following: In this case, with A = √

2θ∗,

lim
λ→∞

1

λ2(1−H)
logP

(
sup
t>0

(
Z(t) − kt

)
> λ

)
= lim

λ→∞
1

λ2(1−H)
log�(

√
2θ∗λ1−H ) = −θ∗.

(5.29)

In the last equality, we used the tail behavior of a standard normal random variable
(� is its tail distribution function). This shows that [16, Theorem 1] can be applied to
prove Theorem 5.2.

Acknowledgements We thank the editor and referees for the helpful comments which resulted in the
addition of Sects. 4.1 and 5.1 and Remark 5.5. This work is partly supported by the US National Science
of Foundation grant DMS-2216765.

Appendix A: Auxiliary results

In the following, we present a few results that used in the Sect. 5. Define a following
continuous map from CT to C1:

JT : ξ(·) �→ ξ(T ·). (A.1)

Lemma A.1 For the GFBM X in (2.1), and for any T > 0,

PX ◦ J−1
T (·) = PX (T−H ·),

where PX is the law of X.
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Proof For a given n ∈ N, consider 0 < u1 < u2 < u3 < · · · < un < 1. Now from
the self-similarity of X [27, Proposition 5.1], it is clear that for n = 1,

Z(Tu1)
d= T H Z(u1).

In other words,

PX ◦ J−1
T (ξ(u1) ∈ ·) = PX (ξ(u1) ∈ T−H ·).

For n > 1, assume that

((Z(Tu1), Z(Tu2), . . . , Z(Tun−1)) ∈ A)
d=
(
(Z(u1), Z(u2), . . . , Z(un−1)) ∈ T−H A

)
,

(A.2)

for any A ⊂ B(Rn−1). Now consider the Borel set B ∈ B(R). Then, we have

((Z(Tu1), Z(Tu2), . . . , Z(Tun, Z(Tun))) ∈ A × B)

d=
(
(Z(u1), Z(u2), . . . , Z(un−1)) ∈ T−H A × T−H B

)
.

Since the sets of the form A × B generate all the Borel sets of Rn , the self-similarity
property (A.2) holds for n and therefore by induction, all finite dimensional distri-
butions. It is trivial to see that the finite dimensional distributions of PX ◦ J−1

T and
PX are consistent families of measures. Therefore, using the Kolmogorov consistency
theorem, we get the desired result. ��
Remark A.1 The above statement and proof can be generalized to processeswithRCLL
(right continuous with left limits) paths. Indeed, we construct a similar map JT onDT

to D1 (here, DT is space of functions that right continuous with left limits equipped
with the Skorohod topology). We can then proceed exactly as above.

Theorem A.1 [20, Theorem 9.25] For a standard Brownian motion B on [0, 1],

P

⎛

⎝lim sup
δ↓0

1
√
2δ log( 1

δ
)

max
0≤s≤t≤1
t−s≤δ

|B(t) − B(s)| = 1

⎞

⎠ = 1.

Remark A.2 Clearly, for every ρ > 0, there is 1 > δ0 > 0 such that for every δ < δ0,
we have

max
0≤s≤r≤1
r−s≤δ

|B(r) − B(s)| ≤ (1 + ρ)

√

2δ log
(1

δ

)
, P − a.s.

123



Queueing Systems (2023) 105:47–98 91

Corollary A.1 For ρ > 0, there is 1 > δ0 = δ0(ρ) > 0 such that whenever t > δ0,

sup
0<s≤t

B(s)
√
s log

(
1
s

) ≤ max

⎧
⎪⎪⎨

⎪⎪⎩

√
2(1 + ρ),

1
√

δ0 log
(

1
δ0

) sup
0≤s≤t

B(s)

⎫
⎪⎪⎬

⎪⎪⎭
, P − a.s.

Otherwise,

sup
0<s≤t

B(s)
√
s log

(
1
s

) ≤ √
2(1 + ρ), P − a.s.

Proof From Theorem A.1, as seen already for every ρ > 0, there is a 1 > δ0 > 0,
such that for every δ < δ0, we have

max
0≤s≤r≤1
r−s≤δ

|B(r) − B(s)| ≤ (1 + ρ)

√

2δ log
(1

δ

)
, P − a.s.

In particular,

B(r) − B(0) = B(r) ≤ (1 + ρ)

√

2δ log
(1

δ

)
, for every r ≤ δ, P − a.s.

This implies that we have

B(r) ≤ (1 + ρ)

√

2δ log
(1

δ

)
, for every r = δ ≤ δ0, P − a.s

Assuming that t > δ0, we have

sup
0<s≤t

B(s)
√
s log

(
1
s

) ≤ max

⎧
⎪⎪⎨

⎪⎪⎩

√
2(1 + ρ),

1
√

δ0 log
(

1
δ0

) sup
δ0≤s≤t

B(s)

⎫
⎪⎪⎬

⎪⎪⎭

≤ max

⎧
⎪⎪⎨

⎪⎪⎩

√
2(1 + ρ),

1
√

δ0 log
(

1
δ0

) sup
0≤s≤t

B(s)

⎫
⎪⎪⎬

⎪⎪⎭
, P − a.s.

It is easy to see that for t ≤ δ0,

sup
0<s≤t

B(s)
√
s log

(
1
s

) ≤ √
2(1 + ρ), P − a.s.
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Hence, the proof is complete. ��
Using the technique similar to Theorem 5.4, we have the following.

Alternate proof of Theorem 5.2 We follow the argument almost exactly as in Theo-
rem 5.4. We have already seen from Lemma 5.5 that for t > 0,

M(t)
d= t max

0≤v≤1

(
t H−1Z(v) − kv

)
.= M̄(t).

And from Lemma 5.6, we know that M(t) P− a.s. converges to M∗ as t → ∞.
Therefore, we have

M∗ = lim
t→∞ M̄(t) = lim

t→∞ t max
0≤v≤1

(
t H−1Z(v) − kv

)
, P − a.s.

Now we replace t in M̄(t) by ε−1 and treat t → ∞ as ε → 0. In other words, we
have

M∗ = lim
ε→0

M̄(ε−1) = lim
ε→0

ε−1 max
0≤v≤1

(
ε1−H Z(v) − kv

)
, P − a.s. (A.3)

M̄(ε−1) = ε−1 max
0≤v≤1

(
ε1−H Z(v) − kv

)
.

From Lemma 4.1, we know that εM̄(ε−1) satisfies an LDP. From (A.3), we also know
that

|M∗ − M̄(ε−1)| = g(ε),

where g is a deterministic positive function such that g(x) → 0 as x → 0, P− a.s.
Then, we have |εM∗ − εM̄(ε−1)| = εg(ε).

Now we are in a position to derive the tail behavior of M∗:

lim sup
ε→0

ε2(1−H) logP
(
εM∗ > 1

) ≤ lim sup
ε→0

ε2(1−H) logP
(
εM̄(ε−1) > 1 − εg(ε)

)
.

Similarly,

lim inf
ε→0

ε2(1−H) logP
(
εM̄(ε−1) > 1

)
≤ lim inf

ε→0
ε2(1−H) logP

(
εM∗ > 1 − εg(ε)

)
.

From Lemma 4.1 with T = 1, we have

lim
ε→0

ε2(1−H) logP
(
εM∗ > 1

) = lim
ε→0

ε2(1−H) logP
(
εM̄(ε−1) > 1

)
.
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We now notice that

lim
ε→0

ε2(1−H) logP
(
εM∗ > 1

) = λ2(H−1) lim
ε̄→0

ε̄2(1−H) logP
(
ε̄M∗ > λ

)
, (A.4)

by changing ε to λ−1ε̄. With the same argument as above, for λ > 0, we have the
following

λ2(H−1) lim
ε̄→0

ε̄2(1−H) logP
(
ε̄M∗ > λ

) = λ2(H−1) lim
ε→0

ε2(1−H) logP
(
εM̄(ε−1) > λ

)

=
{

− (λ+k)2

2 , 1 < λH
k(1−H)

,

− k2H

2H2H (1−H)2(1−H) λ
2(1−H), otherwise.

Therefore, choosing λ >
k(1−H)

H , from (A.4), we have

lim
ε→0

ε2(1−H) logP
(
M∗ > ε−1

)
= − k2H

2H2H (1 − H)2(1−H)
.

This completes the proof. ��
Remark A.3 The intuition for the choiceλ >

k(1−H)
H in the end of the proof is that (A.4)

suggests us a scale invariance of the tail of M∗. Therefore, the decay rate of tail
asymptotics is always one of the two cases in (4.10) which scales in λ as λ2(1−H).
This case happens when λ >

k(1−H)
H .

The next lemma concerns the locally stationary property of the GFBM process
and is used in the proof in Sect. 5.1. Recall the definition of local stationarity for a
self-similar Gaussian process in (5.28).

Lemma A.2 The GFBM X(·) defined in (2.1) is locally stationary.

Proof For 0 ≤ s ≤ t ,

E[|t−H X(t) − s−H X(s)|2] = t−2H
E[|X(t) − X(s)|2] − (t−H − s−H )2E[|X(s)|2]

+ 2t−H (t−H − s−H )E[(X(t) − X(s))X(s)]
= t−2H

E[|X(t) − X(s)|2]
− (ts)−2H (t H − sH )2E[|X(s)|2]
+ 2t−2Hs−H (sH − t H )E[(X(t) − X(s))X(s)]

(A.5)

To check that

lim
t→t0
s→t0

E[|t−H X(t) − s−H X(s)|2]
(t − s)2H

exists, (A.6)
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it suffices to prove that the corresponding limits exist for the three terms on the right-
hand side of (A.5). Before we proceed to do that, using (2.2) and (2.3), we rewrite
E[|X(t) − X(s)|2] and E[(X(t) − X(s))X(s)] by making the following change of
variables: u = s − (t − s)v and v = xw with x = s

t−s for integrals over [0, s] and
u = s + (t − s)v for integrals over [s, t]. We have

E[|X(t) − X(s)|2] = c2
∫ t

s
(t − u)2αu−γ du

+ c2
∫ s

0
((t − u)α − (s − u)α)2u−γ du

= c2(t − s)2H
(∫ 1

0
(1 − v)2α

(
v + s

t − s

)−γ

dv

+
∫ 1

0
(1 − w)−γ

(
(1 + xw)α − (xw)α

)2
x1−γ dw

)
,

(A.7)

E[(X(t) − X(s))X(s)] = c2
∫ s

0

(
(t − u)α − (s − u)α

)
(s − u)αu−γ du

= c2(t − s)2H
∫ 1

0
(1 − w)−γ

(
(1 + xw)α

− (xw)α
)
(xw)αx1−γ dw. (A.8)

It is clear that

∫ 1

0
(1 − v)2α

(
v + s

t − s

)−γ

dv ≤
∫ 1

0
(1 − v)2αv−γ dv = B(1 + 2α, 1 − γ ) < ∞.

(A.9)

Recall that B(a, b) is the Beta function for a, b > 0. Since − 1
2 + γ

2 < α <
1+γ
2 , we

have

sup
y>0

{ ∫ 1

0
(1 − w)−γ

(
(1 + yw)α − (yw)α

)2
y1−γ dw

}
< KB(1 − γ, γ ) < ∞,

for some K > 0. (A.10)

Indeed, we have

sup
y>0

{ ∫ 1

0
(1 − w)−γ

(
(1 + yw)α − (yw)α

)2
y1−γ dw

}

≤ ( sup
y>0

g(y)
)2
∫ 1

0
(1 − w)−γ w1−γ dw

≤ ( sup
y>0

g(y)
)2B(1 − γ, γ ).
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Here,

g(y)
.= ((1 + y)α − (y)α

)
y

1
2− γ

2 for y ∈ (0,∞).

Now showing that supy>0 g(y) < ∞, we are done. To that end, we show that
limy→0 g(y) and limy→∞ g(y) both exist and are finite. Then from continuity of
g(·) in (0,∞), we know that g(y) is finite for every y ∈ (0,∞) and it will then imply
that supy>0 g(y) < ∞. Consider

lim
y→0

g(y) = lim
y→0

(
(1 + y)α y

1
2− γ

2 − yα+ 1
2− γ

2

)
= 0,

where we used 1
2 − γ

2 > 0 and α > − 1
2 + γ

2 . Now consider

lim
y→∞ g(y) = lim

y→∞
(1 + y−1)α − 1

y−α− 1
2+ γ

2

H= lim
y→∞

−α(1 + y−1)α−1y−2

(−α − 1
2 + γ

2 )y−α− 1
2+ γ

2 −1

= lim
y→∞

−α(1 + y−1)α−1yα− 1
2− γ

2

(−α − 1
2 + γ

2 )

= 0.

In the above,
H= denotes that we used L’Hôpital’s rule, as the we have a 0

0 form (recall
that α + 1

2 − γ
2 > 0). To get the final equality, we used the fact that α < 1

2 + γ
2 .

Now consider (observe that it is (t − s)H , instead of (t − s)2H ),

(t − s)H
( ∫ 1

0
(1 − w)−γ

(
(1 + xw)α − (xw)α

)
(xw)αx1−γ dw

)

≤ sH sup
y>0

{
y−H+α−γ+1((1 + y)α − yα

)} ∫ 1

0
(1 − w)−γ wγ−1dw

≤ sHB(1 − γ, γ ) sup
y>0

{
y

1
2− γ

2
(
(1 + y)α − yα

)}
, since H = α − γ

2
+ 1

2
,

≤ sHB(1 − γ, γ ) sup
y>0

{
y

1
2− γ

2 +α
(
(1 + y−1)α − 1

)}
< ∞. (A.11)

The finiteness of

sup
y>0

{
y

1
2− γ

2 +α
(
(1 + y−1)α − 1

)}

can be proved in the similar way as done for g(y). From (A.9) and (A.10) ((A.11),
respectively.), we can conclude that quantity in parenthesis of (A.7) ((A.8), respec-
tively) is continuous in (s, t) when δ < s ≤ t , for every δ > 0.
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We are finally in a position to prove local stationarity of X(·). For the first term in
(A.5), from (A.7) and continuity of the term in the parenthesis, we know that

lim
t→t0
s→t0

t−2H E[|X(t) − X(s)|2]
(t − s)2H

exists uniformly for t0 > δ, for any δ > 0. To see that the corresponding limit of the
second term in (A.5) exists uniformly for t0 > δ, for any δ > 0, we write

lim
t→t0
s→t0

(ts)−2H (t H − sH )2E[|X(s)|2]
(t − s)2H

= lim
t→t0
s→t0

( t H − sH

(t − s)H

)2
(ts)−2H

E[|X(s)|2]

and from H -Hölder continuity of function f (t) = t H , we can conclude the existence
of the above limit.

Now, to see that the corresponding limit of the third term in (A.5) exists uniformly
for t0 > δ, for any δ > 0, we write

lim
t→t0
s→t0

t−2Hs−H (sH − t H )E[(X(t) − X(s))X(s)]
(t − s)2H

= lim
t→t0
s→t0

t−2Hs−H (sH − t H )

(t − s)H
E[(X(t) − X(s))X(s)]

(t − s)H
.

From the H -Hölder continuity of function f (t) = t H , we obtain

lim
t→t0
s→t0

t−2Hs−H (sH − t H )

(t − s)H
exists

uniformly for t0 > δ, for any δ > 0 and from (A.8) and continuity of the quantity
inside the parenthesis, we know that

lim
t→t0
s→t0

E[(X(t) − X(s))X(s)]
(t − s)H

exists.

Thus, we have proved that (A.6) holds. This proves the result. ��

References

1. Azencott, R., Guivarc’h, Y., Gundy R.: Grandes déviations et applications. In: Ecole d’été de proba-
bilités de Saint-Flour VIII-1978, pp. 1–176. Springer (1980)

2. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
3. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann.

Probab. 26(4), 1641–1659 (1998)

123



Queueing Systems (2023) 105:47–98 97

4. Budhiraja, A., Dupuis P.: Analysis and approximation of rare events. Representations and Weak Con-
vergence Methods. Series Prob. Theory and Stoch. Modelling, 94 (2019)

5. Cao, J., Cleveland, W.S., Lin, D., Sun, D.X.: On the nonstationarity of Internet traffic. In: Proceedings
of the 2001 ACM SIGMETRICS international conference onMeasurement and modeling of computer
systems, pp. 102–112 (2001)

6. Chang, C.-S., Yao, D.D., Zajic, T.: Large deviations, moderate deviations, and queues with long-range
dependent input. Adv. Appl. Probab. 31(1), 254–278 (1999)

7. Chen, H., Yao, D.D.: Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimiza-
tion. Stochastic Modelling and Applied Probability (SMAP, volume 46). Springer (2001)

8. Davies B.: Integral Transforms and Their Applications. Texts in Applied Mathematics (TAM, volume
41). Springer (2002)
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