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Abstract
In the literature, retrial queues with batch arrivals and heavy-tailed service times have
been studied and the so-called equivalence theorem has been established under the
condition that the service time is heavier than the batch size. The equivalence theorem
provides the distribution (or tail) equivalence between the total number of customers in
the system for the retrial queue and the total number of customers in the corresponding
standard (non-retrial) queue. In this paper, under the assumption of regularly varying
tails, we eliminate this condition by allowing that the service time can be either heavier
or lighter than the batch size. Themain contributionmade in this paper is an asymptotic
characterization of the difference between two tail probabilities: the probability of
the total number of customers in the system for the MX/G/1 retrial queue and the
probability of the total number of customers in the corresponding standard (non-retrial)
queue.
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1 Introduction

Studies of tail asymptotic properties, expressed in terms of simple functions, often
lead to approximations, error bounds for system performance, and computational
algorithms, besides their own interest. These studies become more important when
closed-form or explicit solutions are not expected. On the one hand, except for a very
limited number of basic queueing models, it is not in general expected to have a simple
closed-form or explicit solution for the stationary queue length or waiting time distri-
bution when it exists, but on the other hand, expressions of transformations, in many
cases, do exist for the distribution, say expressions in terms of the generating function
(GF) for the stationary queue length distribution or the Laplace–Stieltjes transform
(LST) of the stationary waiting time distribution. Mathematically, the transformation
of the distribution contains all information about the distribution, but for the applica-
tion purpose, we often need the inversion of the transformation. Once again, simple
or closed formulas or expressions for the inversion do not exist for most of the cases.
Many retrial queues are such examples, for which we do not expect, in general, closed-
form or explicit solutions for the stationary distribution of the queue length process or
the waiting time under a stability condition. However, expressions for the transform of
the distribution are available, in terms of which tail asymptotic analysis might prevail.

The focus of this paper is to carry out an asymptotic analysis for a type of retrial
queues with batch arrivals, referred to as MX/G/1 retrial queues. Studies on retrial
queues are extensive during the past 30 years or so. Research outcomes and progress
have been reported in more than 100 publications due to the importance of retrial
queues in applications, as such in the areas of call centres, computer and telecom-
munication networks among many others. Early surveys or books include Yang and
Templeton [38], Falin [12], Kulkarni and Liang [26], Falin and Templeton [13],
Artalejo [1, 2], while Artajelo and Gómez-Corral [4], Artalejo [3] and Kim and
Kim [21] are among the recent ones. Studies on tail behaviour can be classified into two
categories: light tail and heavy tail. For light-tailed behaviour, references include Kim
et al. [25], Liu and Zhao [29], Kim et al. [22], Liu et al. [27], Kim et al. [24], Kim and
Kim [20], Artalejo and Phung-Duc [5], Kim [19], while for heavy-tailed behaviour,
we refer to Shang et al. [35], Kim et al. [23], Yamamuro [37], Liu et al. [28], and
Masuyama [32]. In addition, there are many references in the literature for asymptotic
analysis for the corresponding non-retrial queues, e.g. Asmussen et al. [6], and Boxma
andDenisov [9]. For more references, wewould like tomention two excellent surveys:
Borst et al. [8], and Boxma and Zwart [10].

Closely related to the model of our interest in this paper are the following three
references. In [35], it was proved that if the number of customers in the standard
M/G/1 queue has a subexponential distribution, then the number of customers in the
corresponding M/G/1 retrial queue has the same tail asymptotic behaviour (referred
to as the equivalence theorem). In [37], the same result as in [35] was proved for
the batch arrival MX/G/1 retrial queue under the condition that the batch size has
a finite exponential moment, and in [32], the main result in [37] was extended to a
BMAP/G/1 retrial queue.

It has been noticed that in the literature, for a retrial queue with batch arrivals and
general service times, the impact of the arrival batch on the tail equivalence property
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has not been sufficiently addressed. For example, in [37] for the MX/G/1 retrial
queue, it is assumed that the arrival batch has a finite exponential moment, or in [32]
for the BMAP/G/1 retrial queue, the light-tailed condition was relaxed to possibly
moderately heavy-tailed batches (see, for example, [6] for a definition, i.e. the batch
size has a tail not heavier than e−√

x ). The common feature in both situations is the
fact that compared to the batch size, the tail of the service time is heavier. To the best
of our knowledge, in the literature, there is no report on the tail equivalence between
a standard batch arrival queue and its corresponding retrial queue if the arrival batch
size has a tail heavier than or as heavy as the service time.

For showing the equivalence theorem, it is common practice to establish a stochastic
decomposition first. This decomposition writes the total number of customers in the
system for the retrial queue as the sum of the total number of customers in the system
for the corresponding (non-retrial) queue and another independent random variable.
The equivalence theorem is to prove that the total number of customers in the system for
the retrial queue and the total number of customers in the system for the corresponding
non-retrial queue have the same type of tail asymptotic behaviour. That has been done
in the literature for the M/G/1 case and extended to the MX/G/1 and BMAP/G/1
cases under the assumption that the batch size is lighter than the service time. In terms
of the decomposition, it implies that the other variable is simply dominated by the total
number of customers in the system of the standard (non-retrial) model. Therefore, no
detailed analysis for the other variable is needed for establishing the equivalence.

In this paper,we consider theMX/G/1 retrial queue, just as in [37]. The equivalence
theorem is now proved for the case in which the batch size has regularly varying tail,
so it is heavier than the moderately heavy tail and without the assumption that the
service time has a tail heavier than the batch size, which is a challenging problem and
has not been considered in the literature. Another more interesting result (our main
contribution in this paper, see Theorem 6.1), is an asymptotic characterization of the
difference between two tail probabilities: the tail probability of the total number Lμ of
customers in the system for the MX/G/1 retrial queue and the tail probability of the
total number L∞ of customers in the corresponding standard (non-retrial) queue. The
literature result in the classical equivalence theorem states that P{Lμ > t} ∼ P{L∞ >

t}, which is a first-order asymptotic result (i.e. the difference P{Lμ > t}−P{L∞ > t}
is a small quantity dominated by P{L∞ > t}). This result provides no information
about the measurement of this difference, which is the target of our main theorem. In
this sense, our result can be viewed as a refinement of the first-order asymptotic result.

The exhaustive version of stochastic decomposition approach was also used in a
companion paper Liu and Zhao [31] for a different model with a different focus.
The model studied in [31] is not a batch arrival queueing system, so the MX/G/1
model considered in this paper is not a special case of [31]. Moreover, the proof of
Theorem 1(1) in [31] relies on the important property established in Theorem 5.1 of
the present paper. The same exhaustive decomposition approach has also been applied
to a model with Bernoulli schedule in [30].

Since the presentation of the exhaustive decomposition involves many details, and
the asymptotic analysis and the achievement of the refined asymptotic result require
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non-trivial technical efforts, we provide the following step by step analysis/proofs for
a better presentation.

Step 1: This is the starting point. We assume that an expression of the transform of
the target random variable’s distribution exists. Very often, we need to rewrite
the expression of the transformation in a form in favour of decompositions;

Step 2: For eachof the components in the rewritten formof the transformation, provide
probabilistic interpretations, or prove that each component is the transforma-
tion of a probability distribution;

Step 3: Carry out asymptotic analysis for each probabilistic component in the decom-
position to obtain its tail asymptotic expression;

Step 4: Prove a key tail asymptotic property of an involved random variable, which
is required in the final step;

Step 5: Prove the main theorem by identifying all components which provide domi-
nant contributions to the tail asymptotic expression of the target quantity.

The rest of the paper is organized as follows: in Sect. 2, we describe the MX/G/1
retrial queue model and rewrite the GF (a literature result) for D(0) (we indeed have
Lμ = L∞+D(0) in terms of the stochastic decomposition; in Sect. 3, a further decom-
position, together with its analysis, of each component in the decomposition in Sect. 2
is provided; in Sect. 4, asymptotic analysis on the components in the decompositions
given in Sect. 3 is carried out; we complete the proof of our key property (the tail
asymptotic behaviour of D(0)) in Sect. 5; the refined tail equivalence theorem (main)
for the total number of customers is proved in Sect. 6; the asymptotic tail behaviour
for D(1) is provided in Sect. 7; discussion on the key condition of Lemma 6.1 and
two examples is provided in Sect. 8; and concluding remarks are made in the final
Sect. 9. Appendix A contains some of the literature results, together with our verified
preliminary results, needed for proving our main theorem; some detailed proofs are
organized in Appendix B; and Appendix C provides the proofs for the �-analyticity,
required for the discussions of two examples in Sect. 8.

2 Preliminaries

In this section, we provide details in the first step of making an exhaustive stochastic
decomposition. Two transformations (D(0) and D(1)) are for our target distributions.
The key is to decompose D(0) since D(1) can be easily expressed by D(0). An expres-
sion of D(0) was obtained in [13]. For the decomposition purpose, we need to rewrite
it. Before doing so, we need to describe the model and introduce necessary notations
first.

In this paper, we consider theMX/G/1 retrial queue (the samemodel considered in
[37]), in which the primary customers arrive in batches, the successive arrival epochs
form a Poisson process with rate λ, and the generic batch size X has the probability
distribution P{X = k} for k ≥ 1 with a finite mean χ1. If the server is free at the
arrival epoch, then one of the arriving customers receives service immediately and the
others join the orbit becoming repeated customers, whereas if the server is busy, all
arriving customers join the orbit becoming repeated customers. Each of the repeated
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customers in the orbit independently retries for receiving service after an exponential
time with rate μ until it finds the server idle and then starts its service immediately.
The customer in service leaves the system immediately after the completion of its
service. Both primary and repeated customers require the same amount of the service
time. Assume the generic service time B has the probability distribution B(x) with
B(0) = 0 with a finite mean β1. Let ρ = λβ1χ1. It is well known that the system is
stable if and only if (iff) ρ < 1, which is assumed to hold throughout the paper.

We use β(s) and βn to represent the LST and the nth moment of B(x), respectively.
The generating function (GF) of X is denoted by X(z) = E(zX ) = ∑∞

k=1 P{X =
k}zk . In addition, we define X0 = X − 1, and then, it is clear that X0(z) = E(zX0) =
X(z)/z.

Let Norb be the number of the repeated customers in the orbit, and Cser = 1 or 0
corresponds to the server being busy or idle, respectively. Let D(0) (D(1)) be a random
variable (rv) (see Table 1) having the same distribution as the conditional distribution
of the number of repeated customers in the orbit given that the server is free (busy).

It is clear that D(0) takes nonnegative integers with the GF D(0)(z) = E(zD
(0)

)
def=

E(zNorb |Cser = 0). Note that P{Cser = 0} = 1 − ρ. The following result on D(0)(z)
(p. 174 of [13]) is our starting point:

D(0)(z) = exp

{

− λ

μ

∫ 1

z

1 − β(λ − λX(u))X0(u)

β(λ − λX(u)) − u
du

}

. (2.1)

Our particular interest is to analyse the asymptotic behaviour of the tail probabil-
ity for D(0) which is the independent increment from L∞ to Lμ in the stochastic
decomposition, see, for example, [37] and also Sect. 6, from which the tail asymptotic
behaviour (refined equivalence theorem) for the total number of customers is proved
in Sect. 6, and the tail asymptotic behaviour for D(1) is also a consequence of the above
asymptotic result (see Sect. 7). To proceed, we first rewrite (2.1). Let

K ∗(u) = 1 − β(λ − λX(u))X0(u)

(ρ + χ1 − 1)(1 − u)
, (2.2)

K ◦(u) = (1 − ρ)(1 − u)

β(λ − λX(u)) − u
, (2.3)

K (u) = K ∗(u) · K ◦(u), (2.4)

ψ = λ(ρ + χ1 − 1)

μ(1 − ρ)
. (2.5)

It immediately follows from (2.1) that

D(0)(z) = exp

{

−ψ

∫ 1

z
K (u)du

}

. (2.6)

We have now completed the first step of applying the exhaustive decomposition
method. The rewritten form of the transformation function D(0)(z) suggests to decom-
pose it to more detailed components at different levels: K in the first level, K ∗ and
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Table 1 A list of notations introduced in Sect. 2

λ Poisson arrival rate

X Arrival batch size

X(z) GF of X

χ1 Mean of X

X0 X0 = X − 1

X0(z) GF of X0

B Service time

B(x) Distribution of B

β(s) LST of B

βn nth moment of B

ρ Traffic intensity

Norb Number of the repeated customers in the orbit

Cser Server status, 1 or 0 corresponding to busy or idle, respectively

D(1) rv having the same distribution as that for Norb|Cser = 1

D(1)(z) GF of D(1)

D(0) rv having the same distribution as that for Norb|Cser = 0

D(0)(z) GF of D(0) satisfying (2.6)

ψ A constant given in (2.5)

K ◦ in the second level, and more detailed compositions in both K ∗ and K ◦. The anal-
ysis of D(0) will be carried out in the following three sections (representing Step 2
to Step 4, respectively): in Sect. 3 we first prove that both K ∗ and K ◦ are probability
transformations, and establish further stochastic decompositions for each of these two
components; in Sect. 4, asymptotic analysis on the components in the decomposition
is carried out; and we complete the proof of the key property (the tail asymptotic
behaviour of D(0)) in Sect. 5.

To conclude this section, we provide Table 1 for a list of notations introduced in
this section.

3 Stochastic decompositions related to K(z)

In this section, we carry out the second step in applying the exhaustive version of the
stochastic decomposition, which is a key step in the whole analysis. We first prove
that both K ∗(z) and K ◦(z) are the GFs of the probability distributions for two discrete
nonnegative random variables (rvs), denoted by K ∗ and K ◦, respectively. Assume
that K ∗ and K ◦ are independent. Therefore, according to (2.4), K (z) is the GF of
K = K ∗ + K ◦. We then further decompose K ∗ and K ◦, respectively, into sums of
independent rvs, for which we can carry out tail asymptotic analysis (given in the next
section).

To see K ∗(z) is the GF for a probability distribution, we need to see the following:
(1) β(λ−λX(z)) is the GF for a discrete nonnegative random variable (rv), so is β(λ−
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λX(z))X0(u), and (2) for a GF Q(z) of a discrete nonnegative rv, 1− Q(z)/(1− z) is
essentially (up to a constant factor) the GF of its equilibrium distribution. Specifically,
we have the following facts (Facts A–D).
Fact A: Let NB and NBX be the number of batches and the total number of customers
arrived within a service time B, respectively. It is then clear that NBX = X (1) + X (2) +
· · · + X (NB ), where X (1), X (2), · · · , X (NB ) are independent copies of the batch size
X . It is well known that

E(zNB ) =
∫ ∞

0

∞∑

k=0

(λx)k

k! e−λx zkdB(x) = β(λ − λz), (3.1)

E(zNBX ) =
∫ ∞

0

∞∑

k=0

(λx)k

k! e−λx (X(z))kdB(x) = β(λ − λX(z)). (3.2)

Let X0 and NBX be independent. Then, β(λ − λX(z))X0(z) is the GF of NBX X0

d=
NBX + X0, where

d= stands for equality in distribution.

Fact B: E(NB) = λβ1, E(NBX ) = limz↑1 d
dzβ(λ − λX(z)) = λβ1χ1 = ρ, and for

NBX X0 ,
E(NBX X0) = E(NBX + X0) = ρ + χ1 − 1. (3.3)

Fact C: Let N be an arbitrary discrete nonnegative rv with the GF Q(z) =∑∞
n=0 q(n)zn , where q(n) = P{N = n}. Denote by q(n) the tail probability of N , i.e.

q(n) = P{N > n} = ∑∞
k=n+1 q(k), n ≥ 0. Under the assumption that E(N ) < ∞,

the discrete equilibrium probability distribution q(de)(n) associated with {q(n)}∞n=0 is
defined by

q(de)(n) = q(n)/E(N ) = P{N > n}/E(N ). (3.4)

Let us use the notation N (de) to represent a rv having the distribution {q(de)(n)}∞n=0.
Then, the GF of {q(de)(n)}∞n=0 is given by

Q(de)(z) = 1

E(N )
· 1 − Q(z)

1 − z
, (3.5)

which follows from the fact that

∞∑

n=0

( ∞∑

k=n+1

q(k)

)

zn =
∞∑

k=1

k−1∑

n=0

q(k)zn =
∞∑

k=0

q(k)(1 − zk)

1 − z
= 1 − Q(z)

1 − z
. (3.6)

Now, according to (2.2) and the above Facts, we have

K ∗ d= N (de)
BX X0

. (3.7)

where K ∗(z) is the GF of the discrete equilibrium distribution of NBX X0 .
Fact D: It can be shown that K ◦(z) is also the GF of a discrete probability distribution.
Let B(e)(x) be the equilibrium distribution of B(x), which is defined by 1−B(e)(x) =
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β−1
1

∫∞
x (1 − B(t))dt . It is well known that the LST of B(e)(x) is β(e)(s) = (1 −

β(s))/(β1s). Moreover, by Fact C, we know that X (de)(z)
def= (1− X(z))/(χ1(1− z))

is the GF of a discrete nonnegative rv, denoted by X (de). Therefore, (2.3) can be
rewritten as

K ◦(z) = (1 − ρ)

[

1 − 1 − β(λ − λX(z))

1 − X(z)
· 1 − X(z)

1 − z

]−1

= 1 − ρ

1 − ρβ(e)(λ − λX(z)) · X (de)(z)

=
∞∑

k=0

(1 − ρ)ρk
(
β(e)(λ − λX(z)) · X (de)(z)

)k
. (3.8)

Let B(e) be a rv with probability distribution function B(e)(x). Denote by NB(e) and
N
B(e)
X
the number of batches and the total number of customers arrivingwithin a random

time B(e), respectively. By Fact A, we immediately know that β(e)(λ − λX(z)) is the
GFof a discrete nonnegative rv, denoted by N

B(e)
X
. Therefore,β(e)(λ−λX(z))·X (de)(z)

is the GF of N
B(e)
X X (de)

d= N
B(e)
X

+ X (de), where N
B(e)
X

and X (de) are independent. From

(3.8), K ◦ can be viewed as the geometric sum of i.i.d. rvs (or the number of rvs in the
summation is geometrically distributed), i.e.

K ◦ = N (1)

B(e)
X X (de)

+ N (2)

B(e)
X X (de)

+ · · · + N (J )

B(e)
X X (de)

for J ≥ 1, and K ◦ = 0 if J = 0,

(3.9)

where P(J = k) = (1 − ρ)ρk (k ≥ 0), rvs N (i)

B(e)
X X (de)

(i ≥ 1) are independent copies

of N
B(e)
X X (de) , and J and N (i)

B(e)
X X (de)

(i ≥ 1) are independent.

Finally, it follows from Facts C and D, and the expression in (2.4) that K can be
regarded as the sum of independent rvs K ∗ and K ◦, i.e.

K
d= K ∗ + K ◦ (3.10)

having the GF given in (2.4).

4 Asymptotic tail probability for the rv K

In this section, we present the third step of the analysis by providing tail asymptotic
results for the components in the stochastic decompositions for K ∗ and K ◦, based on
which our key property (Theorem 5.1) on the asymptotic tail behaviour for D(0) is
proved. For convenience of readers, a collection of literature results, required in this
paper, are provided in Appendix A.
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Throughout the rest of the paper, Rσ and S are the collections of the regularly
varying (at∞) functions with index σ and subexponential functions, respectively, and
L(x) is a slowly varying (at ∞) function. Refer to Appendix A for more details. It is
also worthwhile to mention that for a distribution F on (0,∞), if 1− F(x) ∈ R−α for
α ≥ 0, then F ∈ S (see, for example, Embrechts et al. [11], p. 50; or Appendix A).

Our discussion is based on the assumption that both service time B and the batch
size X have regularly varying tails. Specifically, we make the following assumptions:

A1. P{B > x} ∼ x−dB L(x) as x → ∞ where dB > 1; and
A2. P{X > j} ∼ cX · j−dX L( j) as j → ∞ where dX > 1 and cX ≥ 0.

Remark 4.1 Throughout the paper, unless otherwise specified, all L’s stand for the
same slowly varying function. It is a convention that in A2, we allow cX = 0, which
means that

lim
j→∞

P{X > j}
j−dX L( j)

= 0.

By Karamata’s theorem (see Lemma A.3) and the Assumption A1, we know that∫∞
x (1− B(t))dt ∼ (dB − 1)−1x−dB+1L(x) as x → ∞, which implies 1− B(e)(x) ∼

((dB − 1)β1)
−1x−dB+1L(x) as x → ∞. By the definitions of NB and NB(e) in Fact

A and Lemma A.4, we have

P{NB > j} ∼ 1 − B( j/λ) ∼ λdB j−dB L( j), (4.1)

P{NB(e) > j} ∼ 1 − B(e)( j/λ) ∼ λdB−1

(dB − 1)β1
j−dB+1L( j). (4.2)

Next, let us state a result on tail asymptotics for K , which will be used in later
sections.

Theorem 4.1 Under Assumptions A1 and A2,

P{K > j} ∼ cK · j−a+1L( j), as j → ∞, (4.3)

where
a = min(dB, dX ) > 1 (4.4)

and

cK =
⎧
⎨

⎩

(λχ1)
aχ1/((a − 1)(1 − ρ)(ρ + χ1 − 1)), if dX > dB > 1,

cX /((a − 1)(1 − ρ)(ρ + χ1 − 1)), if 1 < dX < dB and cX > 0,
((λχ1)

aχ1 + cX )/((a − 1)(1 − ρ)(ρ + χ1 − 1)), if dX = dB > 1 and cX > 0.
(4.5)

Proof Based on whether or not the batch size X has a tail lighter than the service
time B, we divided our proof to Theorem 4.1 into the three cases, details of which are
organized in Appendix B. ��
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5 Key property—asymptotic tail probability for the rvD(0)

This section provides the fourth step, in which a key tail asymptotic property is estab-
lished, which is required for the final step (proof of the main theorem). Note that
D(0)(z) is explicitly expressed by K (z) in (2.6), based on which we are able to study
the asymptotic property for the tail probability of D(0) using the result on K in Theo-
rem 4.1. This is a key property of this paper since the refined asymptotic properties in
the main theorem (Theorem 6.1) and the asymptotic property of D(1) in Theorem 7.1
can be readily proved by using Theorem 5.1

Theorem 5.1 (Key property) Under Assumptions A1 and A2,

P{D(0) > j} ∼ (1 − 1/a)cKψ · j−a L( j) = cD(0) · j−a L( j), as j → ∞, (5.1)

where a = min(dB, dX ) > 1,

cD(0) =
⎧
⎨

⎩

(λχ1)
a+1/(aμ(1 − ρ)2), if dX > dB > 1,

λcX/(aμ(1 − ρ)2), if 1 < dX < dB and cX > 0,
((λχ1)

a+1 + λcX )/(aμ(1 − ρ)2), if dX = dB > 1 and cX > 0,
(5.2)

and ψ and cK are expressed in (2.5) and (4.5), respectively.

Proof See Appendix B, in which we divide the proof of Theorem 5.1 into two parts,
depending on whether a is an integer or not. ��

6 Refined equivalence theorem

As the final step, we will prove our main theorem in this section. Under assumptions
A1 and A2, we first present the asymptotic tail equivalence in (6.11) for the total
numbers of customers in an MX/G/1 retrial queue and the corresponding standard
MX/G/1 queue without retrial. This is a generalization (under the assumption of
regularly varying tails) of the equivalence theorem in the literature since we allow the
batch size to have a tail probability heavier than that of the service time. Then, we focus
on the difference between the tail probability of the total number of customers in the
system for the retrial queue and the tail probability of the total number of customers
in the corresponding non-retrial queue and provide a characterization (6.12) for the
asymptotic behaviour of this difference, which is our main contribution: a refined
result for the tail equivalence between the two systems.

As mentioned in introduction, in order to establish the equivalence theorem for a
retrial queueing system, people often use a stochastic decomposition result (e.g. [35],
[37] and [32]). For the MX/G/1 retrial queue, the total number Lμ of customers in
the system can be written as the sum of two independent random variables, the total
number L∞ of customers in the corresponding MX/G/1 queueing system (without
retrial) and D(0), i.e.

Lμ
d= L∞ + D(0). (6.1)
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It is well known (see, for example, [37]) that

EzL∞ = β(λ − λX(z)) · (1 − ρ)(1 − z)

β(λ − λX(z)) − z
. (6.2)

The equality (6.1) can be verified easily because

EzLμ =
∞∑

n=0

zn P{Cser = 0, Norb = n} +
∞∑

n=0

zn+1P{Cser = 1, Norb = n}

= p0(z) + zp1(z), (6.3)

where pi (z)
def= ∑∞

n=0 z
n P{Cser = i, Norb = n}, i = 0, 1, are explicitly expressed

on p. 174 of [13], with which (6.3) leads to EzLμ = EzL∞ · EzD(0)
and subsequently

to (6.1).
It follows from (6.2) and (2.3) that

E(zL∞) = β(λ − λX(z)) · K ◦(z), (6.4)

which implies that L∞
d= NBX + K ◦, where NBX and K ◦ are assumed to be indepen-

dent. Note that, from (B.9), (B.16) and (B.21), under Assumptions A1 and A2,

P{K ◦ > j} ∼ cK ◦ · j−a+1L( j), as j → ∞, (6.5)

where a = min(dB, dX ) > 1 and

cK ◦ =
⎧
⎨

⎩

(λχ1)
a/((a − 1)(1 − ρ)), if dX > dB > 1,

λβ1cX/((a − 1)(1 − ρ)), if 1 < dX < dB and cX > 0,
((λχ1)

a + λβ1cX )/((a − 1)(1 − ρ)), if dX = dB > 1 and cX > 0.

(6.6)

It follows from (B.5), (B.12), (B.19) and (6.5) that P{NBX > j} = o(P{K ◦ > j}).
So,

P{L∞ > j} ∼ P{K ◦ > j} ∼ cK ◦ · j−a+1L( j). (6.7)

By Theorem 5.1, we have P{D(0) > j} = o(P{L∞ > j}), and therefore,

P{Lμ > j} ∼ P{L∞ > j}. (6.8)

Next, we refine the asymptotic equivalence (6.8). Precisely, we will characterize
the asymptotic behaviour of the difference P{Lμ > j} − P{L∞ > j} as j → ∞.
Towards this end, we provide the following lemma, which will be used to confirm our
assertion later. We use the notation F(·) = 1 − F(·).

123



76 Queueing Systems (2023) 104:65–105

Lemma 6.1 Let X1 and X2 be independent nonnegative rvs with distribution functions
F1 and F2, respectively. Assume that F1(t) ∼ c1t−d+1L1(t) and F2(t) ∼ c2t−d L2(t)
as t → ∞, where c1 > 0, c2 > 0, d > 1 and both L1(t) and L2(t) are slowly
varying functions at infinity. Suppose that F1(t) = ∫∞

t f1(x)dx and f1(x) is ultimately
decreasing. Then, as t → ∞,

P{X1 + X2 > t} = F1(t) + (d − 1)μF2 · t−1F1(t)(1 + o(1)) + F2(t)(1 + o(1)),

(6.9)

where μF2 < ∞ is the mean value of X2.

Proof See Appendix B. ��
Remark 6.1 In Lemma 6.1, if X1 is a nonnegative integer valued rv, then the condition
that f1(x) is ultimately decreasing should be replaced by that P{X1 = j} is ultimately
decreasing, because we can define f1(t) = P{X1 = j} for j ≤ t < j + 1 and j ≥ 0.

Remark 6.2 The ultimately decreasing condition imposed in Lemma 6.1 is, in general,
a non-trivial one to justify. We will discuss this condition in Sect. 8.

Recalling (6.1), (6.7) and (5.1), applying Lemma 6.1 with the setting of X1 = L∞,
X2 = D(0) and X1 + X2 = Lμ, and noting that E(X2) = d

dz D
(0)(z)

∣
∣
z=1 = ψ (see

(2.6)), we conclude that

P{Lμ > j} − P{L∞ > j} ∼ (a − 1)ψ · j−1P{L∞ > j} + P{D(0) > j}.
(6.10)

The results (6.7), (6.8), (6.10) and (5.1) are summarized in the following theorem.

Theorem 6.1 (Main theorem—a refined equivalence) For the stable MX/G/1 retrial
queue with assumptions A1 and A2, we have the following asymptotic properties. As
j → ∞,

P{Lμ > j} ∼ P{L∞ > j} ∼ cK ◦ · j−a+1L( j). (6.11)

Furthermore, if P{L∞ = j} is ultimately decreasing in j , then

P{Lμ > j} − P{L∞ > j} ∼ [(a − 1)ψcK ◦ + cD(0)

] · j−a L( j), (6.12)

where ψ , cK ◦ and cD(0) are given in (2.5), (6.6) and (5.2), respectively.

Remark 6.3 It is worth mentioning that in the first part of Theorem 6.1, the asymptotic
equivalence P{Lμ > j} ∼ P{L∞ > j} is proved without the assumption of a lighter
tail for the batch size than that for the service time. This equivalence was verified with
the assumption of a light-tailed batch size in [37] or a moderately heavy-tailed batch
size in [32], but in both cases the batch size distribution has a tail lighter than the tail
of the service time distribution.
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7 Asymptotic property for the tail probability of the rvD(1)

Recall the definition of the rv D(1) in Sect. 2, i.e. D(1) is a rv having the distribution
equal to the conditional distribution of the number of repeated customers in the orbit
given that the server is busy. Note that P{Cser = 1} = ρ. The following result on
D(1)(z) is from [13] (p. 174):

D(1)(z)
def= E(zNorb |Cser = 1) = 1 − β(λ − λX(z))

β(λ − λX(z)) − z
· 1 − ρ

ρ
· D(0)(z), (7.1)

where D(0)(z) is given in (2.1). Rewriting (7.1) gives

D(1)(z) = 1 − β(λ − λX(z))

(λ − λX(z))β1
· 1 − X(z)

(1 − z)χ1
· (1 − ρ)(1 − z)

β(λ − λX(z)) − z
· D(0)(z)

= β(e)(λ − λX(z)) · X (de)(z) · K ◦(z) · D(0)(z), (7.2)

where K ◦(·) is defined in (2.3), β(e)(λ − λX(z)) · X (de)(z) is stated in Fact D.
It follows from (7.2) that

D(1) d= N
B(e)
X X (de) + K ◦ + D(0), (7.3)

where N
B(e)
X X (de) , K

◦ and D(0), stated in Sects. 2 and 3, are independent rvs having

GFs β(e)(λ−λX(z)) · X (de)(z), K ◦(z) and D(0)(z), respectively. It follows from (5.1)
and (6.5) that P{D(0) > j} = o(P{K ◦ > j}), hence

P{D(1) > j} ∼ P{N
B(e)
X X (de) + K ◦ > j}. (7.4)

Similar to the developments for P{D(0) > j}, our discussion on P{D(1) > j}
distinguishes three cases, which is essentially based on whether the batch size X has
a tail lighter than, heavier than, or equally heavy as the tail of the service time B.
Case 1. dX > dB in Assumptions A1 and A2:

In this case, the asymptotic property for the tail probabilities of P(N
B(e)
X X (de) > j)

and P{K ◦ > j} as j → ∞ is given in (B.8) and (B.9), respectively. Applying Part
(ii) of Lemma A.7, we get

P{D(1) > j} ∼ (λχ1)
dB

(dB − 1)(1 − ρ)ρ
· j−dB+1L( j), j → ∞. (7.5)

Case 2. dX < dB and cX > 0 in Assumptions A1 and A2:
In this case, the asymptotic property for the tail probabilities of P(N

B(e)
X X (de) > j)

and P{K ◦ > j} as j → ∞ is given in (B.15) and (B.16), respectively. Applying
Lemma A.7, we get

P{D(1) > j} ∼ λβ1cX
(dX − 1)(1 − ρ)ρ

· j−dX+1L( j), j → ∞. (7.6)
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Case 3. dX = dB = a and cX > 0 in Assumptions A1 and A2:
In a manner similar to Cases 1 and 2, one can prove

P{D(1) > j} ∼ (λχ1)
a + λβ1cX

(a − 1)(1 − ρ)ρ
· j−a+1L( j), j → ∞, (7.7)

where we have skipped detailed derivations to avoid repetition.
The above results in three cases are summarized in the following theorem.

Theorem 7.1 Under A1 and A2,

P{D(1) > j} ∼ cD(1) · j−a+1L( j), as j → ∞, (7.8)

where a = min(dB, dX ) > 1 and

cD(1) =
⎧
⎨

⎩

(λχ1)
a/((a − 1)(1 − ρ)ρ), if dX > dB > 1,

λβ1cX/((a − 1)(1 − ρ)ρ), if 1 < dX < dB and cX > 0,
((λχ1)

a + λβ1cX )/((a − 1)(1 − ρ)ρ), if dX = dB > 1 and cX > 0.

(7.9)

8 Worked examples

The ultimately decreasing property of P{L∞ = j} is the condition for applying
Theorem 6.1. In general, verifications of this condition can be non-trivial, since the
probability distribution P{L∞ = j} is only given in the form of EzL∞ by (6.2). In
spite of this, its verification may still be possible for specific cases. In this section, we
demonstrate a procedure for verifying the ultimately decreasing condition of P{L∞ =
j} for two special cases: in thefirst case, the tail probability of the service time is heavier
than that of the batch size, and the second case is the opposite. This procedure is based
on the high-order asymptotic expansion of EzL∞ as z goes to 1.

8.1 Monotonicity condition

Before proceeding to the examples, we prove the following lemma, and present a few
literature results, which will be used later.

Lemma 8.1 Suppose that xn = c0n−d0 +∑k
i=1 cin

−di + o(n−d0−1) for n ≥ 0, where
c0 > 0, d0 > 0, k ≥ 0, d0 < di ≤ d0 + 1 and −∞ < ci < ∞ for i = 1, · · · , k. Then,
{xn}∞n=0 is an ultimately decreasing sequence, i.e. xn+1 − xn is negative for n large
enough.

Proof Let �xn = xn+1 − xn for n ≥ 0. Then,

�xn = c0n
−d0
[
(1 + 1/n)−d0 − 1

]+
k∑

i=1

ci n
−di
[
(1 + 1/n)−di − 1

]+ o(n−d0−1)

= −c0d0n
−d0−1 + o(n−d0−1), (8.1)
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which is ultimately negative. ��
It is worthwhile to mention that identifying c0 and d0, which satisfies the condition

of Lemma 8.1, is the key for verifying the ultimately decreasing condition of xn , while
specific values for ci and di for i > 0 are of no importance as long as they satisfy the
condition of Lemma 8.1.

8.2 Flajolet–Sedgewick’s result on tail behaviour of expansion coefficients

Recalling (6.4) and (3.8), we have

EzL∞ = β(λ − λX(z)) · K ◦(z), (8.2)

K ◦(z) = 1 − ρ

1 − ρβ(e)(λ − λX(z)) · X (de)(z)
. (8.3)

Remember that P{L∞ = j} is given as the coefficient of the term z j in the generat-
ing function EzL∞ . To study the tail asymptotic property of the coefficient sequence, it
is convenient to establish the correspondence between the asymptotic property of the
generating function at its singularity z = 1 and the tail asymptotic property in the coef-
ficient sequence. For this purpose, the following facts are useful. Readers may refer to
pages 380–392, Theorem VI.1 and Theorem VI.3(ii) in Flajolet and Sedgewick [14]
for details of facts (ii) and (iii), respectively. For the concepts of the �-domain and
the �-analyticity, see Definition C.1 in Appendix C.

Lemma 8.2 (Theorem VI.1 and Theorem VI.3(ii) in [14])

(i) Let P(s) be any polynomial of degree k ≥ 0, i.e. P(s) = p0 + p1s + p2s2 +
· · ·+ pksk . Assume that F(z) =∑∞

n=0 fnzn = P(1− z). Then, there exists some
n0 (= k + 1) such that fn ≡ 0 for n ≥ n0. A special case is F(z) = (1 − z)m,
where m is a non-negative integer.

(ii) Assume that F(z) = ∑∞
n=0 fnzn = (1 − z)σ , where σ �= 0, 1, 2, · · · . Then,

fn = n−σ−1/
(−σ)
(
1 + σ(σ+1)

2 n−1 + o(n−1)
)
as n → ∞.

(iii) Assume that F(z) =∑∞
n=0 fnzn is�-analytic at 1, and F(z) = o((1− z)σ ) as z

goes to 1within the�-domain at 1, whereσ �= 0, 1, 2, · · · . Then, fn = o(n−σ−1)

as n → ∞.

Part (i) of the above lemma reveals that for the purpose of asymptotic analysis, there
is no need to specify the expression of coefficient fn for any polynomial P(1 − z)
because it eventually becomes zero, so we will pay no attention to such polynomials
in our later asymptotic analysis.

8.3 Example 1: Pareto service time and geometric batch size

In this subsection, we demonstrate the procedure by an example for the case that the
tail probability of the service time is heavier than the tail probability of the batch size.
Specifically, assume that the service time B has a Pareto distribution with non-integer
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shape parameter a > 1 and scale parameter b > 0, i.e. B(x) = 1 − (1 + x/b)−a for
x ≥ 0, and β1 = E(B) = b/(a − 1). Suppose that the batch size X has a geometric
distribution P{X = n} = (1 − q)qn−1, 0 < q < 1, n = 1, 2, . . ., with mean
χ1 = E(X) = 1/(1 − q) and the GF X(z) = (1 − q)z/(1 − qz).

Let C denote the complex plane and D = C\(−∞, 0] denote the complex plane
C with the negative real axis (−∞, 0] (the branch cut) removed. By the result of
Goovaerts et al. (see (3.15) in [17]), the LSTs β(s) and β(e)(s) can be defined by
analytical continuation for s ∈ D as follows:

β(s) = 1 +
∞∑

n=1

(−bs)n

(a − 1) · · · (a − n)
− 
(1 − a)(bs)aebs, (8.4)

β(e)(s) = 1 − β(s)

β1s
= 1 +

∞∑

n=1

(−bs)n

(a − 2) · · · (a − 1 − n)
− 
(2 − a)(bs)a−1ebs .

(8.5)
Using the fact that ebs = 1 + bs + o(s) as s → 0, we have

β(s) = 1 + sR(s) − 
(1 − a)(bs)a + o(sa), (8.6)

β(e)(s) = 1 + sQ(s) − 
(2 − a)
[
(bs)a−1 + (bs)a

]+ o(sa), (8.7)

whereR(s) andQ(s) are two polynomials of degree �a�−1 (the symbol �a� denotes
the integral part of a).

It can be proved that EzL∞ , given in (8.2) and (8.3), can be analytically continued
to C\[1,∞) (see Appendix C for details). In addition,

1 − X(z) = (1 − z)/(1 − q)

1 + q(1 − z)/(1 − q)
= 1 − z

1 − q

[

1 +
∞∑

k=1

(

−q · 1 − z

1 − q

)k
]

,

(8.8)
(
1 − X(z)

)a =
(
1 − z

1 − q

)a
+ o((1 − z)a), as z ↑ 1,

(8.9)

(
1 − X(z)

)a−1 =
(
1 − z

1 − q

)a−1

− (a − 1)q

(
1 − z

1 − q

)a
+ o((1 − z)a), as z ↑ 1,

(8.10)

where the fact that (1 − x)b = 1 − bx + o(x) as x → 0 was used.
By (8.7), (8.8), (8.9), and (8.10), we have

β(e)(λ − λX(z)) = 1 + (1 − z)Q1(1 − z) − 
(2 − a)

(

bλ · 1 − z

1 − q

)a−1

+h1 · (1 − z)a + o((1 − z)a), as z ↑ 1, (8.11)

where Q1(s) is a polynomial of degree �a� − 1 and h1 is a real number.
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By the definition (see Fact D) of X (de)(z) and (8.8),

X (de)(z) = 1 − X(z)

χ1(1 − z)
= 1 +

∞∑

k=1

(

−q · 1 − z

1 − q

)k

. (8.12)

It follows from (8.11) and (8.12) that

β(e)(λ − λX(z))X (de)(z) = 1 + (1 − z)Q2(1 − z) − 
(2 − a)

(

bλ · 1 − z

1 − q

)a−1

+h2 · (1 − z)a + o((1 − z)a), as z ↑ 1, (8.13)

where Q2(s) is a polynomial of degree �a� − 1 and h2 is a real number.
Substituting (8.13) into (8.3), we get, as z ↑ 1,

K ◦(z) = 1

1+ ρ
1−ρ

[
1 − β(e)(λ−λX(z)) · X (de)(z)

]

= 1

1 − (1 − z)Q3(1 − z)+ ρ
1−ρ


(2 − a)
(
bλ · 1−z

1−q

)a−1 − h3 · (1 − z)a+o((1 − z)a)
,

(8.14)

where Q3(s) is a polynomial of degree �a� − 1 and h3 is a real number.
Applying 1/(1 − x) = 1 + x + x2 + · · · to (8.14), we obtain

K ◦(z) = 1 + (1 − z)Q4(1 − z) − ρ

1 − ρ

(2 − a)

(

bλ · 1 − z

1 − q

)a−1

+ h4 · (1 − z)a

+
∑

k∈S
gk · (1 − z)k(a−1) + o((1 − z)a), as z ↑ 1, (8.15)

where Q4(s) is a polynomial of degree �a� − 1, S = {k | k ≥ 2, k(a − 1) ≤ a}, h4
and gk’s are real numbers.

Similarly, by (8.6), (8.8) and (8.9), we have

β(λ − λX(z)) = 1 + R1(1 − z) + h5 · (1 − z)a + o((1 − z)a), as z ↑ 1.

(8.16)

where R1(s) is a polynomial of degree �a� − 1 and h5 is a real number.
It follows from (8.2), (8.15) and (8.16) that

EzL∞ = 1 + R2(1 − z) − ρ

1 − ρ

(2 − a)

(

bλ · 1 − z

1 − q

)a−1

+ r2 · (1 − z)a

+
∑

k∈S
gk · (1 − z)k(a−1) + o((1 − z)a), as z ↑ 1, (8.17)
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where R2(s) is a polynomial of degree �a� − 1 and r2 is a real number.
Since the analyticity of EzL∞ in C\[1,∞) implies the �-analyticity of EzL∞

at 1, we are able to immediately obtain the following lemma by applying proper-
ties (i)–(iii) of Lemma 8.2 to (8.17), in which the facts ρ = λβ1χ1 = λ b

a−1
1

1−q and

− ρ
1−ρ


(2−a)

(1−a)

( bλ
1−q

)a−1 = 1
1−ρ

( bλ
1−q

)a are used.

Lemma 8.3 For the MX/G/1 model defined in Example 1, we have, as j → ∞,

P{L∞ = j} = 1

1 − ρ

(
bλ

1 − q

)a
j−a + l1 j

−a−1 +
∑

k∈S
lk j

−k(a−1)−1 + o( j−a−1),

(8.18)

where S = {k|k ≥ 2, k(a − 1) ≤ a}, and lk’s are real numbers.
The following proposition is a direct consequence of applying Lemma 8.1 to (8.18).

Proposition 8.1 For the MX/G/1 model defined in Example 1, P{L∞ = j} is ulti-
mately decreasing.

Remark 8.1 (i) Let q → 0. The batch size X has a degenerative distribution P{X =
1} = 1. So, for the M/G/1 queue with Pareto service, P{L∞ = j} is ultimately
decreasing. This result can also be directly verified from an exact formula for P{L∞ =
j} (see (29) and (39) in Ramsay [33]). (ii) For the M/G/1 queue with Pareto service,
P{L∞ = j} ∼ (bλ)a

1−ρ
j−a (by (8.18) with q = 0), it follows that P{L∞ > j} ∼

(bλ)a

(1−ρ)(a−1) j
−a+1 = ρ

1−ρ
( j/bλ)−a+1 ∼ 1

1−ρ
P{B(e) > j/λ} as j → ∞, which is

consistent with (1.4) in [6].

Further, by Theorem 6.1, P{Lμ > j} = P{L∞ > j} + c · j−a(1 + o(1)), which

along with (8.18) leads to P{Lμ = j} = P{L∞ = j}+o( j−a) = 1
1−ρ

(
bλ
1−q

)a
j−a+

o( j−a).

8.4 Example 2: Pareto service time and batch size heavier than service time

In this subsection, we apply the same procedure, used in the previous subsection, to
another example for the case that the tail of the batch size distribution is heavier than
that of the service time distribution. Specifically, we assume that the service time B has
a Pareto distribution with shape parameter 1 < a < 2 and scale parameter b > 0, i.e.
B(x) = 1 − (1 + x/b)−a for x ≥ 0, and β1 = E(B) = b/(a − 1). For the batch size
X = X0+1, we assume that X0(z) = E(zX0) = τ(1−z), where τ(s) is the LST of the
continuous-time distribution of another Pareto rv T with P{T ≤ t} = 1−(1 + t/v)−u

for t ≥ 0, v > 0 and 1 < u < 2. So, τ1 = E(T ) = v/(u − 1). In addition, we assume
that u < a. Clearly, X0 can be regarded as the number of Poisson arrivals at rate 1
within a random time T . Since P{X > j} ∼ P{X0 > j} ∼ P{T > j} as j → ∞ (see
Lemma A.1), the condition u < a implies that X has a tail heavier than B. Moreover,
E(X0) = E(T ) = τ1, so χ1 = E(X) = 1 + τ1.
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In a way similar to obtaining (8.4), and using evs = 1 + vs + o(s), we have, for
s ∈ D, as s → 0,

τ(s) = 1 − τ1s − w1s
2 − 
(1 − u)

[
(vs)u + (vs)u+1]+ o(su+1), (8.19)

where w1 is a real number.
It can be proved that EzL∞ given in (8.2) and (8.3) can be analytically continued

to C\[1,∞) (a detailed proof is given in Appendix C).
Note that 1− X(z) = 1− zτ(1− z) = 1− τ(1− z) + (1− z)τ (1− z). Therefore,

as z ↑ 1,

1 − X(z) = χ1(1 − z)
[
1 + w2(1 − z) + (vu/χ1)
(1 − u)(1 − z)u−1

+w3(1 − z)u + o((1 − z)u)
]
, (8.20)

where w2 and w3 are real numbers. It follows that

(
1 − X(z)

)a = O((1 − z)a) = o((1 − z)u), (8.21)
(
1 − X(z)

)a−1 =
∑

k∈S1
gk · (1 − z)a−1+k(u−1) + o((1 − z)u), (8.22)

where S1 = {k | k ≥ 0, a − 1 + k(u − 1) ≤ u}, and gk’s are real numbers.
Substituting (8.20), (8.21), and (8.22) into (8.7) leads to

β(e)(λ − λX(z))

= 1 + w4(1 − z) +
∑

k∈S1
ek · (1 − z)a−1+k(u−1) + o((1 − z)u), (8.23)

where w4 and ek’s are real numbers. In addition, by (8.20), we have

X (de)(z) = 1 + w2(1 − z) + (vu/χ1)
(1 − u)(1 − z)u−1

+w3(1 − z)u + o((1 − z)u). (8.24)

It follows from (8.23) and (8.24) that

β(e)(λ − λX(z))X (de)(z) = 1 + w5(1 − z)

+(vu/χ1)
(1 − u)(1 − z)u−1 + w3(1 − z)u

+
∑

k∈S1
rk · (1 − z)a−1+k(u−1) + o((1 − z)u), (8.25)
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where w5 and rk’s are real numbers. In a way similar to obtaining (8.15), we get

K ◦(z) = 1 + w6(1 − z) + ρ

1 − ρ
(vu/χ1)
(1 − u)(1 − z)u−1 + w7(1 − z)u

+
∑

(k1,k2)∈S2
gk1,k2 · (1 − z)k1(a−1)+k2(u−1) +

∑

k∈S3
hk · (1 − z)k(u−1)

+o((1 − z)u), as z ↑ 1, (8.26)

where S2 = {(k1, k2) | k1 ≥ 1, k2 ≥ 0, k1(a − 1) + k2(u − 1) < u}, S3 = {k | k ≥
2, k(u − 1) < u} and gk1,k2 ’s and hk’s are real numbers.

Substitute (8.21) into (8.4) to give

β(λ − λX(z)) = 1 − β1(1 − z) + o((1 − z)u), as z ↑ 1. (8.27)

It follows from (8.2), (8.26) and (8.27) that

EzL∞ = 1 + w8(1 − z) + ρ

1 − ρ
(vu/χ1)
(1 − u)(1 − z)u−1 + w9(1 − z)u

+
∑

(k1,k2)∈S2
g∗
k1,k2 · (1 − z)k1(a−1)+k2(u−1) +

∑

k∈S3
h∗
k · (1 − z)k(u−1)

+o((1 − z)u), as z ↑ 1, (8.28)

where w8, w9, g∗
k1,k2

’s, and h∗
k ’s are real numbers.

Once again, the analyticity of EzL∞ inC\[1,∞) implies the�-analyticity of EzL∞

at 1; we are able to immediately obtain the following lemma by applying Lemma 8.2
to (8.28).

Lemma 8.4 For the MX/G/1 queue defined in Example 2, we have

P{L∞ = j} = λβ1v
u

1 − ρ
j−u + w10 j

−u−1 +
∑

(k1,k2)∈S2
lk1,k2 · j−k1(a−1)−k2(u−1)−1

+
∑

k∈S3
lk · j−k(u−1)−1 + o( j−u−1), as j → ∞, (8.29)

where we have used the fact ρ
1−ρ

vu

χ1
j−u = λβ1v

u

1−ρ
j−u, and w10, lk1,k2 ’s and lk’s are

real numbers.

The following proposition is a direct consequence of applying Lemma 8.1 to (8.29).

Proposition 8.2 For the MX/G/1 model defined in Example 2, P{L∞ = j} is ulti-
mately decreasing.

Further, by Theorem 6.1, P{Lμ > j} = P{L∞ > j} + c · j−u(1 + o(1)), which

alongwith (8.29) leads to P{Lμ = j} = P{L∞ = j}+o( j−u) = λβ1v
u

1−ρ
j−u+o( j−u).
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9 Concluding remarks

In this paper, in terms of the exhaustive version of stochastic decompositions, we,
through a step by step process, proved a generalized equivalence theorem to the batch
arrivalMX/G/1 queueingmodel ((6.11) in Theorem 6.1) and a refined tail asymptotic
result ((6.12) in Theorem 6.1) of the equivalence theorem.

The monotone condition imposed in Lemma 6.1 and Theorem 6.1 is a commonly
required condition by a “standard” Tauberian theorem, or in Heaviside operational
calculus. Such information is in general not available since the probability sequence
of interest is unknown. It is not expected that one can verify this monotonicity for a
general case. Instead, this property could be shown to hold for specific cases through
non-trivial efforts as illustrated in the previous section.

One may notice that the asymptotic property given in Lemmas 8.3 and 8.4 is for
the local probability P{L∞ = j} (also P{Lμ = j}), which is stronger than that for
the tail probability P{L∞ > j} (also P{Lμ > j}) in these two special cases. It is of
interest to investigate this local asymptotic for more general cases in separate work.

We expect that the exhaustive version of stochastic decompositions can be applied
to other queueingmodels with a closed-form solution for the transformation of a target
variable for characterizing its tail asymptotic behaviour, such as retrial queues with a
linear control policy (a more generalized version of the retrial queueing model with
constant retrial policy), queueing models with a gated control, queues with unreliable
servers, polling systems among possible others.
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A Collection of concepts and results

Definition A.1 (e.g. see [11], pp. 564–565) A measurable function U : (0,∞) →
(0,∞) is regularly varying at ∞ with index σ ∈ (−∞,∞), denoted by U ∈ Rσ ,
iff limx→∞ U (t x)/U (x) = tσ for all t > 0. If σ = 0 we call U slowly varying, i.e.
limx→∞ U (t x)/U (x) = 1 for all t > 0.

Furthermore, the class of the regularly varying distributions is defined as (see, for
example, [11], p. 50)

R = {F df on (0,∞) : 1 − F ∈ Rσ for some σ ≤ 0}.

The following lemma is referred to the uniform convergence theorem for regularly
varying functions.

Lemma A.1 (Bingham et al. [7], p. 22) If f is regularly varying at ∞ with index
σ ≤ 0,then for σ < 0, f (t x)/ f (x) → tσ as x → ∞ uniformly in t on each [a,∞)
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(0 < a < ∞); for σ = 0, f (t x)/ f (x) → 1 as x → ∞ uniformly in t on each [a, b]
(0 < a ≤ b < ∞).

The following lemma is referred to the monotone density theorem for regularly
varying functions.

Lemma A.2 ([11], p. 568) Let U (x) = ∫∞
x u(y)dy (or

∫ x
0 u(y)dy) where u is ulti-

mately monotone (i.e. u is monotone on (z,∞) for some z > 0). If U (x) ∼ cxσ L(x)
as x → ∞ with c > 0, σ ∈ (−∞,∞), then u(x) ∼ cσ xσ−1L(x) as x → ∞.

Definition A.2 (e.g. see Foss et al. [16], p. 40) A distribution F on (0,∞) belongs
to the class of the subexponential distributions, denoted by F ∈ S, if limx→∞(1 −
F (2)(x))/(1 − F(x)) = 2, where F (n) = F ∗ F ∗ · · · ∗ F︸ ︷︷ ︸

n

denotes the n-fold convo-

lution of F to itself.

Note that R is a subset of S, i.e. R ⊂ S (see, e.g., [11], p. 50).

Definition A.3 (Grandell [18], p. 146) A distribution F on (0,∞) is called light-tailed,
if there exists s0 > 0 such that

∫∞
0 esxdF(x) < ∞ for all s < s0.

Lemma A.3 ([11], p. 567) Let L be a slowly varying function on (0,∞). Then, for
b > 1,

∫∞
x t−bL(t)dt ∼ (b − 1)−1x−b+1L(x) as x → ∞.

Lemma A.4 ([6], or Foss and Korshunov [15]) Assume that Nt is a Poisson process
with rate λ > 0, and T > 0 is a rv independent of Nt with tail P{T > x} heavier
than e−√

x . Then, P(NT > j) ∼ P{T > j/λ}, j → ∞.

Note that by Assumption A1, both the service time B and the equilibrium service
time B(e) have tails heavier than e−√

x .

Lemma A.5 Let N be a discrete non-negative integer-valued rv, and let {Yk}∞k=1 be a
sequence of non-negative, independently and identically distributed rvs. Define S0 ≡ 0
and Sn =∑n

k=1 Yk.

(i) If P{Yk > x} ∼ cY x−h L(x) as x → ∞ and P{N > n} ∼ cNn−h L(n) as
n → ∞, where h > 1, cY ≥ 0 and cN ≥ 0, then

P{SN > x} ∼
(
cNμh

Y + cYμN

)
x−h L(x), x → ∞, (A.1)

where E(N ) = μN < ∞ and E(Yk) = μY < ∞.
(ii) If P{N > n} ∼ cNn−hN L(n) as n → ∞, where 0 ≤ hN < 1, cN ≥ 0, and

E(Yk) = μY < ∞, then

P{SN > x} ∼ cN (x/μY )−hN L(x), x → ∞. (A.2)

(iii) If P{N > n} ∼ cNn−1L(n) as n → ∞, where cN ≥ 0, and xbP{Yk > x} ≤
c < ∞ for some b > 1, then

P{SN > x} ∼ cN (x/μY )−1L(x), x → ∞, (A.3)

where E(Yk) = μY < ∞.
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In Lemma A.5, Parts (i) and (ii) are directly from Corollary 8.1 and Corollary 8.2
in [18] (pp. 163–165), and Part (iii) is due to Lemma 2.8 in Stam [36], p. 315.

Lemma A.6 is the discrete version of Karamata’s Theorem and Monotone Density
Theorem.

Lemma A.6 ([11], pp. 567–568) Let {q( j)}∞j=0 be a nonnegative sequence, and b > 1.

If q( j) ∼ j−bL( j) as j → ∞, then
∑∞

k= j+1 q(k) ∼ 1

b − 1
j−b+1L( j) as j →

∞. Conversely, if
∑∞

k= j+1 q(k) ∼ 1

b − 1
j−b+1L( j) as j → ∞ and {q( j)}∞j=0 is

ultimately monotonic (i.e. q( j) is monotone except for first finite many terms), then
q( j) ∼ j−bL( j) as j → ∞.

Lemma A.7 ([16], p. 48) Suppose that F(x) ∈ S.
(i) If1−G(x) = o(1−F(x))as x → ∞, then F∗G ∈ S and1−F∗G(x) ∼ 1−F(x).
(ii) If (1 − Gi (x))/(1 − F(x)) → ci as x → ∞ for some ci ≥ 0, i=1,2, then

(1 − G1 ∗ G2(x))/(1 − F(x)) → c1 + c2 as x → ∞.

Lemma A.8 ([11], pp. 580–581) Suppose 0 < b < 1, and distribution functions F
and G are related as G(x) = (1−b)

∑∞
n=1 b

nF (n)(x). Then, the following statements
are equivalent:

(i) F ∈ S;
(ii) G ∈ S;
(iii) limx→∞(1 − G(x))/(1 − F(x)) = b/(1 − b).

For proving our key property, Theorem 5.1, we need the following concepts and
properties. Let {g( j)}∞j=0 be a discrete probability distribution with the GF G(z) =
∑∞

j=0 g( j)z
j . Denote by γn(n ≥ 0) the nth factorial moment of {g( j)}∞j=0, i.e,

γ0 = 1 and γn =
∞∑

k=n

k(k − 1) · · · (k − n + 1)g(k), n ≥ 1. (A.4)

It is well known that if γn < ∞, then γn = limz↑1 dnG(z)/dzn and

G(z) =
n∑

k=0

(−1)k
γk

k! (1 − z)k + o((1 − z)n) as z ↑ 1. (A.5)

Next, if γn < ∞, we introduce notations Gn(·) and Ĝn(·) as follows:

Gn(z)
def= (−1)n+1

(

G(z) −
n∑

k=0

(−1)k
γk

k! (1 − z)k
)

, n ≥ 0, (A.6)

Ĝn(z)
def= Gn(z)

(1 − z)n+1 , n ≥ 0. (A.7)
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So,

G(z) =
n∑

k=0

(−1)k
γk

k! (1 − z)k + (−1)n+1Gn(z). (A.8)

It follows that if γn < ∞, then for n ≥ 1,

Gn−1(z) = γn

n! (1 − z)n − Gn(z), (A.9)

Ĝn−1(z) = γn

n! − (1 − z)Ĝn(z), (A.10)

Ĝn−1(1) = γn

n! − lim
z↑1

Gn(z)

(1 − z)n
= γn

n! . (A.11)

In the following Lemma, we verify that Ĝn(z) is the GF of a nonnegative sequence.
To this end, we define recursively

g0( j) = g( j), j ≥ 0, (A.12)

gn+1( j) =
∞∑

i= j+1

gn(i), j ≥ 0; n ≥ 0. (A.13)

Lemma A.9 Suppose that {g( j)}∞j=0 is a discrete probability distribution with γn <

∞, n ≥ 0. Then, Ĝk(z) is the GF of sequence {gk+1( j)}∞j=0 for 0 ≤ k ≤ n, that is,

∞∑

j=0

gk+1( j)z
j = Ĝk(z), 0 ≤ k ≤ n. (A.14)

Proof Notice that

∞∑

j=0

gk+1( j)z
j =

∞∑

j=0

⎛

⎝
∞∑

i= j+1

gk(i)

⎞

⎠ z j =
∞∑

i=1

i−1∑

j=0

gk(i)z
j

= 1

1 − z

∞∑

i=0

gk(i)(1 − zi ). (A.15)

Next, we proceed with the mathematical induction on k. For k = 0,

∞∑

j=0

g1( j)z
j = 1 − G(z)

1 − z
= Ĝ0(z) (by (A.15), (A.6) and (A.7)).
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Under the induction hypothesis that (A.14) holds for k = i − 1 ∈ {0, 1, · · · , n − 1},
we have

∞∑

j=0

gi+1( j)z
j = Ĝi−1(1) − Ĝi−1(z)

1 − z
(by (A.15) and the induction hypothesis )

= γi/i ! − Ĝi−1(z)

1 − z
(by (A.11))

= Ĝi (z) (by (A.10)).

Therefore, (A.14) holds for k = i ∈ {1, 2, · · · , n}. ��
The following lemma is referred to the Karamata’s Tauberian theorem for power

series.

Lemma A.10 ([7], pp. 40)Let {q( j)}∞j=0 be a non-negative sequence such that Q(z)
def=

∑∞
j=0 q( j)z j converges for 0 ≤ z < 1, let L(·) be slowly varying at ∞, and b ≥ 0,

then the following two statements are equivalent:

(i) Q(z) ∼ (1 − z)−bL (1/(1 − z)) , z ↑ 1; and (A.16)

(ii)
j∑

k=0

q(k) ∼ 1


(b + 1)
jbL( j), j → ∞. (A.17)

Furthermore, if the sequence {q( j)}∞j=0 is ultimately monotonic and b > 0, then
both (i) and (ii) are equivalent to

(iii) q( j) ∼ 1


(b)
jb−1L( j), j → ∞. (A.18)

Lemma A.11 Let {g( j)}∞j=0 be a discrete probability distribution with the GF G(z).
Assume that n < d < n + 1 for some n ∈ {0, 1, 2, · · · }. The sequence {gn+1( j)}∞j=0
is defined by (A.13). Let L(·) be slowly varying. The following two statements are
equivalent:

(i) Gn(z) ∼ (1 − z)d L(1/(1 − z)), z ↑ 1; and (A.19)

(ii) g1( j) ∼ 
(d)


(d − n)
(n + 1 − d)
j−d L( j), j → ∞. (A.20)

Proof By the definition of Ĝn(z) in (A.7), (A.19) is equivalent to

Ĝn(z) ∼ (1 − z)−(n+1−d)L (1/(1 − z)) . (A.21)

Note that 0 < n + 1 − d < 1 and the sequence {gn+1( j)}∞j=0 is decreasing with the

GF Ĝn(z) (by Lemma A.9). Applying Lemma A.10 (taking b = n + 1 − d in (A.16)
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and (A.18)), we know that (A.21) is equivalent to

gn+1( j) ∼ 1


(n + 1 − d)
j−d+nL( j), j → ∞. (A.22)

Next, we prove the equivalence of (A.20) and (A.22). Noting the recursive relation
(A.13) and repeatedly applying Lemma A.6, (A.22) is equivalent to

g1( j) ∼ (d − 1) · · · (d − n)


(n + 1 − d)
j−d L( j), j → ∞. (A.23)

Note that 
(d) = (d − 1) · · · (d − n)
(d − n). ��
Lemma A.12 (e.g. [7], p. 172) Suppose that {q( j)}∞j=0 is a nonnegative sequence with

GF Q(z) = ∑∞
j=0 q( j)z j . Let r(t) = ∑

0≤ j≤t q( j), t ∈ [0,∞). The following two
statements are equivalent:

(i) lim
t↑∞

r(xt) − r(t)

L(t)
= log x, for all x > 0; and (A.24)

(ii) lim
s↓0

Q(e−xs) − Q(e−s)

L(1/s)
= − log x, for all x > 0. (A.25)

Lemma A.13 Suppose that {q( j)}∞j=0 is a nonnegative sequence with GF Q(z) =
∑∞

j=0 q( j)z j . The above (A.25) is equivalent to

lim
u↓0

Q(1 − xu) − Q(1 − u)

L(1/u)
= − log x, for all x > 0. (A.26)

Proof By taking u = 1 − e−s in (A.25), we know that (A.25) is equivalent to

lim
u↓0

Q((1 − u)x ) − Q(1 − u)

L(1/u)
= − log x, for all x > 0. (A.27)

So we only need confirm the equivalence of (A.26) and (A.27).
Suppose that (A.26) holds. Note that (1 − u)x = 1 − xu + o(u). For 0 < ε < x ,

we have 1− (x + ε)u ≤ (1− u)x ≤ 1− (x − ε)u for u > 0 small enough. Therefore,

Q(1 − (x + ε)u) ≤ Q((1 − u)x ) ≤ Q(1 − (x − ε)u), (A.28)

which, along with (A.26), implies

− log(x + ε) ≤ lim inf
u↓0

Q((1 − u)x ) − Q(1 − u)

L(1/u)

≤ lim sup
u↓0

Q((1 − u)x ) − Q(1 − u)

L(1/u)
= − log(x − ε).
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Letting ε ↓ 0, we get (A.27).
Conversely, suppose that (A.27) holds. Note that for 0 < ε < x , (1 − u)x+ε ≤

1 − xu ≤ (1 − u)x−ε for u > 0 small enough, by which (A.26) can be verified
similarly. ��

B Details of some proofs

B.1 Proof of Theorem 4.1

Case 1: dX > dB > 1 in Assumptions A1 and A2
This is the case, in which the batch size X has a tail lighter than the service time

B. It is worthwhile to mention that in this case X is not necessarily light-tailed (see
Definition A.3).

Lemma B.1 If dX > dB > 1 in Assumptions A1 and A2, then as j → ∞,

P{X > j} = o( j−dB L( j)), (B.1)

P{X0 > j} = o( j−dB L( j)), (B.2)

P{X (de) > j} = o( j−dB+1L( j)). (B.3)

Proof Because of dX > dB , (B.1) and (B.2) directly follow fromAssumptions A1 and
A2. We now prove (B.3). By Assumption A2, P{X > j} ≤ c′

X j−dX L( j) for some
c′
X > 0. Since P{X (de) = j} = P{X > j}/χ1 (by the definition of the equilibrium

distribution),

P{X (de) > j} ≤ (c′
X/χ1)

∞∑

k= j+1

k−dX L(k) ∼ c′
X/χ1

dX − 1
j−dX+1L( j)

(by Lemma A.6) (B.4)

which leads to (B.3) due to dX > dB . ��

By (4.1), (4.2), (B.1), and (B.3), we immediately have P{X > j} = o(P{NB > j})
and P{X (de) > j} = o(P{NB(e) > j}). By the definitions of NBX and N

B(e)
X

in Facts

A and D, and applying Lemma A.5, we have

P{NBX > j} ∼ (λχ1)
dB j−dB L( j), (B.5)

P{N
B(e)
X

> j} ∼ (λχ1)
dB−1

(dB − 1)β1
j−dB+1L( j). (B.6)

By the definitions in Facts B and D, NBX X0 = NBX + X0 and N
B(e)
X X (de) = N

B(e)
X

+
X (de), and (B.5) and (B.6) lead to P{X0 > j} = o(P{NBX > j}) and P{X (de) >
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j} = o(P{N
B(e)
X

> j}) due to dX > dB . Applying Part (i) of Lemma A.7, we have

P{NBX X0 > j} ∼ P{NBX > j} ∼ (λχ1)
dB j−dB L( j), (B.7)

P{N
B(e)
X X (de) > j} ∼ P{N

B(e)
X

> j} ∼ (λχ1)
dB−1

(dB − 1)β1
j−dB+1L( j). (B.8)

Now we are ready to present the asymptotic property for the tail probability of K .
By (3.9) and (B.8), and applying Lemma A.8, we get

P{K ◦ > j} = ρ

1 − ρ
P{N

B(e)
X X (de) > j} ∼ (λχ1)

dB

(dB − 1)(1 − ρ)
j−dB+1L( j), (B.9)

where in the first equality we have used the fact that ρ/(1− ρ) is the mean of rv J in
(3.9). By Facts B and C, and (B.7),

P{K ∗ = j} = P{N (de)
BX X0

= j} = P{NBX X0 > j}
E(NBX X0)

∼ (λχ1)
dB

ρ + χ1 − 1
j−dB L( j).

Applying Lemma A.6 gives

P{K ∗ > j} ∼ (λχ1)
dB

(dB − 1)(ρ + χ1 − 1)
j−dB+1L( j). (B.10)

By (3.10), (B.10), and (B.9) and using Part (ii) of Lemma A.7, we have

P{K > j} ∼ (λχ1)
dBχ1

(dB − 1)(1 − ρ)(ρ + χ1 − 1)
· j−dB+1L( j), (B.11)

which is the conclusion in Theorem 4.1 for Case 1.
Case 2: 1 < dX < dB and cX > 0 in Assumptions A1 and A2
This is the case, in which the batch size X has a tail heavier than the service time

B. By the definitions of NB , NBX and NBX X0 in Facts A and B, and applying Lemma
A.5 and Part (ii) of Lemma A.7, we have

P{NBX > j} ∼ λβ1 · cX j−dX L( j), (B.12)

P{NBX X0 > j} ∼ (1 + λβ1) · cX j−dX L( j), (B.13)

where we have used the facts E(NB) = λβ1 and P{X0 > j} ∼ P{X > j}.
By (4.2) and the definition of N

B(e)
X

in Fact D, and applying Lemma A.5,

P{N
B(e)
X

> j} ≤ c′′
X max

(
j−dB+1L( j), j−dX L( j)

)
for some c′′

X > 0. (B.14)

By Lemma A.6, we have P{X (de) > j} ∼ (χ1(dX − 1))−1cX j−dX+1L( j), which
implies P{N

B(e)
X

> j} = o(P{X (de) > j}). By the definition N
B(e)
X X (de) in Fact D, and

123



Queueing Systems (2023) 104:65–105 93

applying Part (i) of Lemma A.7, we get

P{N
B(e)
X X (de) > j} ∼ P{X (de) > j} ∼ cX

χ1(dX − 1)
j−dX+1L( j). (B.15)

Now we are ready to present the asymptotic property for the tail probability of K .
By (3.9) and (B.15), and applying Lemma A.8, we get

P{K ◦ > j} = ρ

1 − ρ
P{N

B(e)
X X (de) > j} ∼ λβ1cX

(1 − ρ)(dX − 1)
j−dX+1L( j). (B.16)

By Facts B and C, and (B.13),

P{K ∗ = j} = P{N (de)
BX X0

= j} = P{NBX X0 > j}
E(NBX X0)

∼ (1 + λβ1)cX
ρ + χ1 − 1

j−dX L( j).

Applying Lemma A.6,

P{K ∗ > j} ∼ (1 + λβ1)cX
(dX − 1)(ρ + χ1 − 1)

j−dX+1L( j). (B.17)

By (3.10), (B.17)–(B.16) and using Part (ii) of Lemma A.7,

P{K > j} ∼ cX
(dX − 1)(1 − ρ)(ρ + χ1 − 1)

· j−dX+1L( j), (B.18)

which is the conclusion in Theorem 4.1 for Case 2.
Case 3: dX = dB = a > 1 and cX > 0 in Assumptions A1 and A2
This is the case, in which the batch size X has a tail equivalent to the service time

B. Following the same procedure as in Cases 1 and 2, we can prove that

P{NBX > j} ∼ ((λχ1)
a + λβ1cX ) · j−a L( j), (B.19)

P{N
B(e)
X X (de) > j} ∼ (λχ1)

a + λβ1cX
(a − 1)ρ

· j−a+1L( j), (B.20)

P{K ◦ > j} ∼ (λχ1)
a + λβ1cX

(a − 1)(1 − ρ)
· j−a+1L( j), (B.21)

P{K ∗ > j} ∼ (λχ1)
a + (1 + λβ1)cX

(a − 1)(ρ + χ1 − 1)
· j−a+1L( j), (B.22)

P{K > j} ∼ (λχ1)
aχ1 + cX

(a − 1)(1 − ρ)(ρ + χ1 − 1)
· j−a+1L( j), (B.23)

where we have skipped detailed derivations to avoid repetition.
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B.2 Proof of Theorem 5.1

First let us rewrite (2.6) as follows:

D(0)(z) = 1 − ψ

∫ 1

z
K (u)du +

∞∑

k=2

(−ψ)k

k!
(∫ 1

z
K (u)du

)k

. (B.24)

As shown in Facts A–D, K (z) is the GF of the rv K with the discrete probability
distribution k( j) = P{K = j}, j ≥ 0. In the proof, we use the notation κn to
represent the nth factorial moment of K (see (A.4) in Appendix A for the definition
of nth factorial moment).

Proof for the case of non-integer a > 1
Suppose m < a < m + 1, m ∈ {1, 2, · · · }. By Theorem 4.1, P{K > j} ∼

cK · j−a+1L( j). So κm−1 < ∞ and κm = ∞.
Define Km−1(z) in a manner similar to the definition of Gn(z) in (A.6). Corre-

sponding to the sequence {k( j)}∞j=0, we also define kn( j), n ∈ {0, 1, · · · ,m − 1} in a
way similar to the definition of gn( j) in (A.12) and (A.13). Note that k1( j) = P{K >

j} ∼ cK · j−a+1L( j). By Lemma A.11,

Km−1(z) ∼ 
(a − m)
(m + 1 − a)


(a − 1)
cK (1 − z)a−1L(1/(1 − z)), z ↑ 1. (B.25)

By Karamata’s theorem (see, Lemma A.3),

∫ 1

z
Km−1(u)du ∼ 
(a − m)
(m + 1 − a)


(a − 1)a
cK (1 − z)a L(1/(1 − z)), z ↑ 1.

(B.26)

Next, we present a relation between D(0)
m (z) and Km−1(z). By the definition of

Km−1(z),

K (z) =
m−1∑

k=0

(−1)k
κk

k! (1 − z)k + (−1)mKm−1(z), (B.27)

∫ 1

z
K (u)du = −

m∑

k=1

(−1)k
κk−1

k! (1 − z)k + (−1)m
∫ 1

z
Km−1(u)du. (B.28)

Note that
∫ 1
z Km−1(u)du/(1 − z)m → 0 and

∫ 1
z Km−1(u)du/(1 − z)m+1 → ∞ as

z ↑ 1.
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From (B.24) and (B.28), there are constants {vk; k = 0, 1, 2, · · · ,m} satisfying

D(0)(z) =
m∑

k=0

(−1)kvk(1 − z)k + (−1)m+1ψ

∫ 1

z
Km−1(u)du + O((1 − z)m+1), z ↑ 1.

(B.29)

Define D(0)
m (z) in a manner similar to the definition of Gn(z) in (A.6). By (B.29),

D(0)
m (z) = ψ

∫ 1

z
Km−1(u)du + O((1 − z)m+1)

∼ ψ

∫ 1

z
Km−1(u)du, z ↑ 1. (B.30)

By (B.26) and (B.30),

D(0)
m (z) ∼ 
(a − m)
(m + 1 − a)


(a)
· (a − 1)cKψ

a
(1 − z)a L(1/(1 − z)), z ↑ 1.

(B.31)

By applying Lemma A.11,

P{D(0) > j} ∼ (a − 1)cKψ

a
j−a L( j), j → ∞, (B.32)

which completes the proof of Theorem 5.1 for non-integer a > 1.
Proof for the case of integer a > 1
Suppose a = m ∈ {2, 3, · · · }. By Theorem 4.1, P{K > j} ∼ cK · j−m+1L( j).

So, κm−2 < ∞. Unfortunately, whether κm−1 is finite or not remains uncertain, which
is determined essentially by whether

∑∞
k=1 k

−1L(k) is convergent or not. For this
reason, we have to sharpen our analytical tool by introducing the following lemma.

Lemma B.2 Suppose that {q( j)}∞j=0 is a nonnegative non-increasing sequence with
GF Q(z). Let r(t) = ∑

0≤ j≤t q( j), t ∈ [0,∞). The following three statements are
equivalent:

(i) q( j) ∼ j−1L( j), j → ∞; (B.33)

(ii) lim
t↑∞

r(xt) − r(t)

L(t)
= log x, for all x > 0; and (B.34)

(iii) lim
u↓0

Q(1 − xu) − Q(1 − u)

L(1/u)
= − log x, for all x > 0. (B.35)
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Proof Set f (t) = q(k + 1) for t ∈ (k, k + 1], k = 0, 1, · · · , and f (t) = 0 for t ≤ 0.
So f (t) ≥ 0 is a nonincreasing function. For t ≥ 1, we have

r(t) = q(0) +
∫ �t�

0
f (y)dy, (B.36)

r(xt) − r(t) =
∫ �xt�

�t�
f (y)dy, for all x > 0, (B.37)

where �t� represents the greatest integer less than or equal to t . Note that for ε > 0,
we have (x − ε)t ≤ �xt� ≤ (x + ε)t and (1− ε)t ≤ �t� ≤ (1+ ε)t for t large enough.
Therefore,

∫ (x−ε)t

(1+ε)t
f (y)dy ≤ r(xt) − r(t) ≤

∫ (x+ε)t

(1−ε)t
f (y)dy, for x > 1, 0 < 2ε < x − 1,

(B.38)
∫ (1−ε)t

(x+ε)t
f (y)dy ≤ r(t) − r(xt) ≤

∫ (1+ε)t

(x−ε)t
f (y)dy, for 0 < x < 1, 0 < 2ε < 1 − x .

(B.39)

Apparently, (B.33) is equivalent to

f (t) ∼ t−1L(t), t → ∞. (B.40)

Next, we will prove the equivalence of (B.40) and (B.34). Suppose that (B.40)
holds. It follows from (B.38) that, for x > 1,

lim sup
t→∞

r(xt) − r(t)

L(t)
≤ lim

t→∞

∫ x+ε

1−ε

t f (t y)

L(t)
dy =

∫ x+ε

1−ε

1/ydy = log
x + ε

1 − ε
,

(B.41)

lim inf
t→∞

r(xt) − r(t)

L(t)
≥ lim

t→∞

∫ x−ε

1+ε

t f (t y)

L(t)
dy =

∫ x−ε

1+ε

1/ydy = log
x − ε

1 + ε
,

(B.42)

where we have used the uniform convergence theorem (see Lemma A.1) on slowly
varying functions for interchanging the limit and the integral. Letting ε ↓ 0 in (B.41)
and (B.42) implies (B.34) for x > 1. (B.34) for 0 < x < 1 can be similarly proved
by using (B.39), and the proof of (B.34) for x = 1 is trivial.

Conversely, suppose that (B.34) holds. By (B.38), for x > 1,

r(xt) − r(t) ≤
∫ (x+ε)t

(1−ε)t
f (y)dy ≤ f ((1 − ε)t)(x − 1 + 2ε)t, for 0 < 2ε < x − 1,

(B.43)
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which, along with (B.34), implies

log x = lim
t→∞

r(xt) − r(t)

L(t)
≤ x − 1 + 2ε

1 − ε
lim inf
t→∞

t f (t)

L(t)
. (B.44)

Taking ε ↓ 0 gives log x
x−1 ≤ lim inf t→∞ t f (t)

L(t) . Then, letting x ↓ 1 leads to 1 ≤
lim inf t→∞ t f (t)

L(t) . Similarly, for the case of 0 < x < 1, by (B.39) we have

r(t) − r(xt) ≥
∫ (1−ε)t

(x+ε)t
f (y)dy ≥ f ((1 − ε)t)(1 − x − 2ε)t, for 0 < 2ε < 1 − x,

(B.45)

from which, again by (B.34),

− log x = − lim
t→∞

r(xt) − r(t)

L(t)
≥ 1 − x − 2ε

1 − ε
lim sup
t→∞

t f (t)

L(t)
. (B.46)

Taking ε ↓ 0 gives − log x
1−x ≥ lim supt→∞

t f (t)
L(t) . Then, letting x ↑ 1 leads to

lim supt→∞
t f (t)
L(t) ≤ 1. Therefore, limt→∞ t f (t)

L(t) = 1, which is (B.40).
The equivalence of (B.34) and (B.35) is immediate by using Lemma A.12 and

Lemma A.13. ��
Lemma B.3 Let {g( j)}∞j=0 be a discrete probability distribution with GF G(z), and
n ∈ {1, 2, · · · }. The following two statements are equivalent:

(i) g1( j) ∼ j−nL( j) as j → ∞; (B.47)

(ii) lim
u↓0

Ĝn−1(1 − xu) − Ĝn−1(1 − u)

L(1/u)/(n − 1)! = − log x for all x > 0, (B.48)

where g1( j) and Ĝn(x) are defined in (A.13) and (A.7), respectively.

Proof By using Lemma A.6 repeatedly, (B.47) is equivalent to

gn( j) ∼ j−1L( j)/(n − 1)! as j → ∞. (B.49)

Note that the sequence {gn( j)}∞j=0 has the GF Ĝn−1(z) (by Lemma A.9). The equiv-
alence of (B.48) and (B.49) is proved by applying Lemma B.2. ��

Since κm−2 < ∞, we can define Km−2(z) in a manner similar to the definition of
Gn(z) in (A.6). Then, by comparing (A.8), we have

K (z) =
m−2∑

k=0

(−1)k
κk

k! (1 − z)k + (−1)m−1Km−2(z), (B.50)
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where Km−2(z) = o
(
(1 − z)m−2

)
as z ↑ 1. Furthermore,

∫ 1

z
K (u)du = −

m−1∑

k=1

(−1)k
κk−1

k! (1 − z)k + (−1)m−1
∫ 1

z
Km−2(u)du, (B.51)

where
∫ 1
z Km−2(u)du = o((1 − z)m−1) as z ↑ 1.

It follows from (B.24) and (B.51) that for some constants {vk; k = 0, 1, 2, · · · ,m},

D(0)(z) =
m∑

k=0

(−1)kvk(1 − z)k + (−1)mψ

∫ 1

z
Km−2(u)du + o((1 − z)m), z ↑ 1.

(B.52)

Define D̂(0)
m−1(z) in a manner similar to the definition of Ĝn(z) in (A.7). Then, we

have

D̂(0)
m−1(z) = vm + ψ

(1 − z)m

∫ 1

z
(1 − u)m−1 K̂m−2(u)du + o(1), z ↑ 1,

(B.53)

which immediately leads to:

D̂(0)
m−1(1 − w) = vm + ψ

wm

∫ w

0
um−1 K̂m−2(1 − u)du + o(1), w ↓ 0,

(B.54)

D̂(0)
m−1(1 − xw) = vm + ψ

(xw)m

∫ xw

0
um−1 K̂m−2(1 − u)du + o(1)

= vm + ψ

wm

∫ w

0
um−1 K̂m−2(1 − xu)du + o(1), w ↓ 0. (B.55)

By (B.54) and (B.55)

D̂(0)
m−1(1 − xw) − D̂(0)

m−1(1 − w)

= ψ

wm

∫ w

0
um−1 (K̂m−2(1 − xu) − K̂m−2(1 − u)

)
du + o(1) w ↓ 0. (B.56)

Note that k1( j) = P{K > j} ∼ cK · j−m+1L( j). By Lemma B.3, we obtain

K̂m−2(1 − xu) − K̂m−2(1 − u) ∼ −(log x)cK L(1/u)/(m − 2)! u ↓ 0.

(B.57)
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By Karamata’s theorem (see Lemma A.3), we know

∫ w

0
um−1 (K̂m−2(1 − xu) − K̂m−2(1 − u)

)
du ∼ −(log x)

cK
m

wmL(1/w)/(m − 2)! w ↓ 0.

(B.58)

Therefore,

lim
w↓0

D̂(0)
m−1(1 − xw) − D̂(0)

m−1(1 − w)

L(1/w)/(m − 1)! = −m − 1

m
cKψ log x (by (B.56) and (B.58)).

(B.59)

By applying Lemma B.3, we obtain from (B.59) that

p{D(0) > j} ∼ m − 1

m
cKψ j−mL( j) as j → ∞, (B.60)

which completes the proof of Theorem 5.1 for integer a = m ∈ {2, 3, · · · }.

B.3 Proof of Lemma 6.1

The proof method presented here resembles that for Lemma 1.3.1 in [11], p. 37. For
0 < ε < 1 and t > 0, we have

P{X1 + X2 > t} = P{X1 > (1 − ε)t, X2 > εt}
+P{X1 + X2 > t, X2 ≤ εt} + P{X1 + X2 > t, X1 ≤ (1 − ε)t}

= F1((1 − ε)t)F2(εt) + P{X1 > t, X2 ≤ εt} + P{X1 + X2 > t, X1 ≤ t, X2 ≤ εt}
+P{X1 ≤ (1 − ε)t, X2 > t} + P{X1 + X2 > t, X1 ≤ (1 − ε)t, X2 ≤ t}

= F1((1 − ε)t)F2(εt) + F1(t) − F1(t)F2(εt) + π1(t, ε)

+F2(t) − F2(t)F1((1 − ε)t) + π2(t, ε), (B.61)

where

π1(t, ε) =
∫ εt

0
(F1(t − y) − F1(t))dF2(y),

π2(t, ε) =
∫ (1−ε)t

0
(F2(t − y) − F2(t))dF1(y).

By the monotone density theorem (Lemma A.2), we know that f1(t) ∼ (d −
1)c1t−d L1(t) ∼ (d − 1)t−1F1(t). By the mean value theorem, there exists θ =
θ(t, y) ∈ (0, 1) such that F1(t − y) − F1(t) = f1(t − θ y) · y for 0 ≤ y ≤ εt . The
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decreasing property of f1 yields f1(t) ≤ f1(t − θ y) ≤ f1((1 − ε)t) for 0 ≤ y ≤ εt .
Therefore,

f1(t)
∫ εt

0
ydF2(y) ≤ π1(t, ε) ≤ f1((1 − ε)t)

∫ εt

0
ydF2(y), (B.62)

from which it follows that

(d − 1)μF2 = lim inf
t→∞

π1(t, ε)

t−1F1(t)
≤ lim sup

t→∞
π1(t, ε)

t−1F1(t)
= (d − 1)(1 − ε)−dμF2

(B.63)

Next, we prove the following asymptotic result:

π2(t, ε)

F2(t)
=
∫ (1−ε)t

0

[
F2(t − y)

F2(t)
− 1

]

dF1(y) = o(1). (B.64)

Note that

∫ (1−ε)t

0

[
F2(t − y)

F2(t)
− 1

]

dF1(y) −
∫ (1−ε)t

0

[(
1 − y

t

)−d − 1

]

dF1(y)

=
∫ (1−ε)t

0

(
1 − y

t

)−d
[
L2(t(1 − y/t))

L2(t)
(1 + o(1)) − 1

]

dF1(y)

= o(1) (B.65)

where the last equality is due to the fact: by the uniform convergence theorem for
slowly varying functions, L2(t(1 − y/t))/L2(t) → 1 uniformly on y ∈ [0, (1 − ε)t]
(or 1 − y/t ∈ [ε, 1]).

Since for b > 0 and 0 ≤ w ≤ 1 − ε,

(1 − w)−b − 1 = b
∫ 1

1−w

v−b−1dv ≤ bw(1 − w)−b−1 (B.66)

we have

0 ≤
∫ (1−ε)t

0

[(
1 − y

t

)−d − 1

]

dF1(y) ≤ d

εd+1 · 1
t

∫ (1−ε)t

0
ydF1(y) = o(1),

(B.67)

where the last equality is due to
∫ t
0 xdF1(x) = −t F1(t) + ∫ t0 F1(x)dx . Now, (B.64)

follows from (B.65) and (B.67).
Now, let us recall (B.61). Note that for all 0 < ε < 1, F1((1 − ε)t)F2(εt) =

o(F2(t)), F1(t)F2(εt) = o(F2(t)), F2(t)F1((1 − ε)t) = o(F2(t)) and π2(t, ε) =
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o(F2(t)) (by B.64)). So, (B.61) can be rewritten as

P{X1 + X2 > t} = F1(t) + π1(t, ε) + F2(t)(1 + o(1)).

Using (B.63) and taking ε → 0+, we complete the proof.

C Proof of1-analyticity of EzL∞ for Examples 1 and 2

Definition C.1 ([14], p. 389) An open domain is called a �-domain at 1 if it is in the
form � = {z| |z| < R, z �= 1, |Arg(z − 1)| > φ} for some R > 1 and 0 < φ < π

2 .
A function is called �-analytic at 1 if it is analytic in some �-domain at 1.

In the following, for Example 1 and Example 2, we will prove, respectively, that
EzL∞ can be analytically continued to C\[1,∞), which immediately implies its �-
analyticity at 1.

C.1 Example 1

Recall that (8.2) and (8.3). Note that β(s) and β(e)(s) are analytic inD = C\(−∞, 0],
and both X(z) and X (de)(z) can be analytically continued to C\[1,∞). For EzL∞ to
be analytic in C\[1,∞), we only need to verify two things: (i) λ(1 − X(z)) ∈ D for
any z ∈ C\[1,∞); (ii) 1 − ρβ(e)(λ − λX(z)) · X (de)(z) is nonzero in C\[1,∞).

(i) Let s = (1 − z)/(1 − q) = x + iy. By (8.8),

1 − X(z) = s

1 + qs
= (x + iy)(1 + qx − iqy)

(1 + qx)2 + (qy)2
= x(1 + qx) + qy2 + iy

(1 + qx)2 + (qy)2
.

It follows that if Im(z) �= 0 (or say y �= 0), then Im
(
1 − X(z)

) �= 0. Additionally,
for any real z ∈ (−∞, 1) (or say s > 0), 1 − X(z) = s/(1 + qs) > 0. Hence,
λ(1 − X(z)) ∈ D for any z ∈ C\[1,∞).

(ii) By (11) in [33], for s ∈ D,

β(e)(s) = a − 1


(a)

∫ ∞

0

ta−1e−t

t + bs
dt . (C.1)

Set s = (1 − z)/(1 − q) = x + iy. By the expressions of 1 − X(z) = s/(1 + qs)
and X (de)(z) = 1/(1 + qs), and using (C.1), we have

β(e)(λ − λX(z)) · X (de)(z) = β(e)
( λs

1 + qs

)
· 1

1 + qs

= a − 1


(a)

∫ ∞

0

ta−1e−t

(1 + qs)t + λbs
dt

= a − 1


(a)

∫ ∞

0

ta−1e−t

(1 + qx)t + λbx + iy(qt + λb)
dt
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= a − 1


(a)

∫ ∞

0

[(1 + qx)t + λbx − iy(qt + λb)]ta−1e−t

[(1 + qx)t + λbx]2 + [y(qt + λb)]2 dt, (C.2)

fromwhichwe infer that Im(β(e)
(
λ − λX(z)) · X (de)(z)

) �= 0 for y �= 0 or Im(z) �= 0.
So, 1 − ρβ(e)(λ − λX(z)) · X (de)(z) is nonzero in C\(−∞,∞). In addition, for
any real z ∈ (−∞, 1), we have s = x > 0, then β(e)(λ − λX(z)) · X (de)(z) =
β(e)

(
λx

1+qx

)· 1
1+qx < 1. So, 1−ρβ(e)(λ−λX(z))·X (de)(z) is nonzero for z ∈ (−∞, 1).

C.2 Example 2

Note that τ(s) and τ (e)(s), β(s) and β(e)(s) can be analytically continued to D =
C\(−∞, 0], and both X(z) and X (de)(z) can be analytically continued to C\[1,∞).
For EzL∞ to be analytic in C\[1,∞), we only need to verify two things: (i) λ(1 −
X(z)) ∈ D for any z ∈ C\[1,∞); (ii) 1 − ρβ(e)(λ − λX(z)) · X (de)(z) is nonzero in
C\[1,∞).

(i) Similar to (C.1), we know that

τ (e)(s) = u − 1


(u)

∫ ∞

0

tu−1e−t

t + vs
dt, for s ∈ D = C\(−∞, 0]. (C.3)

By the definition of X(z), we can immediately write

1 − X(z) = 1 − zX0(z) = 1 − zτ(1 − z). (C.4)

Set s = 1 − z = x + iy in the above equality. Note that τ(s) = 1 − τ1sτ (e)(s). We
then have

1 − X(z) = 1 − (1 − s)τ (s) = s
[
1 + τ1 · (1 − s)τ (e)(s)

] = sϕ(s), (C.5)

where

ϕ(s) = 1 + τ1 · (1 − s)τ (e)(s)

= 1 + v


(u)

∫ ∞

0

1 − s

t + vs
tu−1e−tdt

= 1 + v


(u)

∫ ∞

0

(1 − x)(t + vx) − vy2 − (t + v)yi

(t + vx)2 + (vy)2
tu−1e−tdt

def= f (x, y) − iyg(x, y). (C.6)
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It is worthwhile to mention that g(x, y) = v

(u)

∫∞
0

t+v
(t+vx)2+(vy)2

· tu−1e−tdt > 0 for
all x > 0 and y �= 0. It follows from (C.5) and (C.6) that

Im
(
1 − X(z)) = y[ f (x, y) − xg(x, y)]

= y
[
1 + v


(u)

∫ ∞

0

t − 2xt − vx2 − vy2

(t + vx)2 + (vy)2
· tu−1e−tdt

]

= y · 1


(u)

∫ ∞

0

vt + t2

(t + vx)2 + (vy)2
· tu−1e−tdt . (C.7)

Therefore, if Im(z) �= 0 (or y �= 0), then Im
(
1 − X(z)

) �= 0. Additionally, for any
real z ∈ (−∞, 1) (or s > 0), 1 − X(z) ≥ 1 − (1 − s) > 0 (see (C.5)). Hence,
λ(1 − X(z)) ∈ D for any z ∈ C\[1,∞).

(ii) It follows from (C.5) and (C.6) that

X (de)(z) = 1 − X(z)

χ1(1 − z)
= ϕ(s)

1 + τ1
, (C.8)

1

ϕ(s)
= f (x, y) + iyg(x, y)

( f (x, y))2 + (yg(x, y))2
def= f0(x, y) + iyg0(x, y), (C.9)

where g0(x, y) = g(x,y)
( f (x,y))2+(yg(x,y))2

> 0 for all x > 0 and y �= 0. It follows from
(C.5), (C.8), and (C.1) that

β(e)(λ − λX(z)) · X (de)(z) = β(e)(λsϕ(s)
) · ϕ(s)

1 + τ1

= a − 1


(a)(1 + τ1)

∫ ∞
0

ta−1e−t

t
ϕ(s) + λbs

dt

= a − 1


(a)(1 + τ1)

∫ ∞
0

ta−1e−t

t f0(x, y) + λbx + iy(tg0(x, y) + λb)
dt (by (C.9))

= a − 1


(a)(1 + τ1)

∫ ∞
0

[t f0(x, y) + λbx − iy(tg0(x, y) + λb)]ta−1e−t

[t f0(x, y) + λbx]2 + y2(tg0(x, y) + λb)2
dt, (C.10)

from which we know that Im(β(e)
(
λ − λX(z)) · X (de)(z)

) �= 0 for all y �= 0. So,
1−ρβ(e)(λ−λX(z)) · X (de)(z) is nonzero inC\(−∞,∞). Furthermore, for any real
z ∈ (−∞, 1), we have s = x > 0 and by (C.6),

ϕ(x) = 1 + v


(u)

∫ ∞

0

1 − x

t + vx
tu−1e−tdt = 1


(u)

∫ ∞

0

t + v

t + vx
tu−1e−tdt > 0,

ϕ(x) < 1 + v


(u)

∫ ∞

0

1

t
tu−1e−tdt = 1 + v

u − 1
= 1 + τ1, (C.11)

hence β(e)(λ − λX(z)) · X (de)(z) = β(e)
(
λxϕ(x)

) · ϕ(x)
1+τ1

< 1. So, 1 − ρβ(e)(λ −
λX(z)) · X (de)(z) is nonzero for z ∈ (−∞, 1).
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