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Abstract

We introduce a transient reflected Brownian motion in a multidimensional orthant,
which is either absorbed at the apex of the cone or escapes to infinity. We address the
question of computing the absorption probability, as a function of the starting point
of the process. We provide a necessary and sufficient condition for the absorption
probability to admit an exponential product form, namely that the determinant of
the reflection matrix is zero. We call this condition a dual skew symmetry. It recalls
the famous skew symmetry introduced by Harrison (Adv Appl Probab 10:886-905,
1978), which characterizes the exponential stationary distributions in the recurrent
case. The duality comes from that the partial differential equation satisfied by the
absorption probability is dual to the one associated with the stationary distribution in
the recurrent case.
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1 Introduction and main results
Reflected Brownian motion in orthants

Reflected Brownian motion (RBM) in orthants Ri is afundamental stochastic process.
Starting from the eighties, it has been studied in depth, with focuses on its definition
and semimartingale properties [41, 43, 45], its recurrence or transience [6, 7, 10, 29,
30, 42], the possible particular (e.g., product) form of its stationary distribution [14,
26], the asymptotics of its stationary distribution [12, 24], its Lyapunov functions
[16, 37], its links with other stochastic processes [15, 32, 33], its use to approximate
large queuing networks [4, 19, 23], numerical methods to compute the stationary
distribution [11], links with complex analysis [4, 8, 19, 22], PDEs [25], etc. The RBM
is characterized by a covariance matrix X, a drift vector u and a reflection matrix
R. We will provide in Sect. 2 a precise definition. While ¥ and p correspond to the
Brownian behaviour of the process in the interior of the cone, the matrix R describes
how the process is reflected on the boundary faces of the orthant. In the semimartingale
case, RBM admits a simple description using local times on orthant faces, see (9).

Dimensions 1 and 2

The techniques to study RBM in an orthant very heavily depend on the dimension. In
dimension 1, RBM with zero drift in the positive half-line R is equal, in distribution,
to the absolute value of a standard Brownian motion, via the classical Tanaka formula;
if the drift is nonzero, the RBM in R is connected to the so-called bang-bang pro-
cess [38]. Most of the computations can be performed explicitly, using closed-form
expressions for the transition kernel.

The case of dimension 2 is historically the one which attracted the most of attention,
and is now well understood. Thanks to a simple linear transform, RBM in a quadrant
with covariance matrix is equivalent to RBM in a wedge with covariance identity, see
[22, Appendix]. The very first question is to characterize the parameters of the RBM
(opening of the cone § and reflection angles 8, ¢, see Fig. 1) leading to a semimartingale
RBM, as then tools from stochastic calculus become available. The condition takes

Fig.1 Wedge and angles of
reflection

Y
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the form o < 1, see [42], with

b+e—m
- . 1
o 5 (D

As a second step, conditions for transience and recurrence were derived, see [29,
42]. Complex analysis techniques prove to be quite efficient in dimension 2, see [4,
8]. In particular, this method leads to explicit expressions for the Laplace transforms
of quantities of interest (stationary distribution in the recurrent case [8, 22], Green
functions in the transient case [21], escape and absorption probabilities [18, 20]).

Higher dimension
As opposed to the previous cases, the case of d > 2 is much most mysterious. However,
necessary and sufficient conditions for the process to be a semimartingale are known,

and read as follows: denote the reflection matrix by

1 rip... 1y

1 1 ... rd
R = 2)
ra1 rq2 ... 1
The column vector
r1j
Ri=]: 3)
rdj
represents the reflection vector on the orthant face x; = 0. Then, the RBM is a

semimartingale if and only if the matrix R is completely-S, in the following sense,
see [36, 40].

By definition, a principal sub-matrix of R is any matrix of the form (r;;); el
where / is a non-empty subset of {1, ..., d}, possibly equal to {1,...,d}. If x is a
vector in RY, we will write x > 0 (resp. x > 0) to mean that all its coordinates
are positive (resp. non-negative). We define x < 0 and x < 0 in the same way. The
definition extends to matrices.

Definition (S-matrix). A square matrix R is an S-matrix if there exists x > 0 such that
Rx > 0. Moreover, R is completely-S if all its principal sub-matrices are S-matrices.

Apart from the semimartingale property, very few is known about multidimensional
RBM. In particular, necessary and sufficient conditions for transience or recurrence are
not yet fully known in the general case, even though, under some additional hypothesis
on R, some conditions are known [10, 27], or in dimension 3 [6, 17]. For example, if R
is assumed to be a non-singular M-matrix (which means that R is an S-matrix whose
off-diagonal entries are all non-positive), then R~!14 < 0 is a necessary and sufficient
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condition for positive recurrence. Moreover, contrary to the two-dimensional case,
no explicit expressions are available for quantities of interest such as the stationary
distribution, in general.

The historical skew symmetry condition

The only notable and exceptional case, in which everything is known and behaves
smoothly, is the so-called skew symmetric case, as discovered by Harrison [23] in
dimension 2, and Harrison and Williams [26] in arbitrary dimension. They prove that
the RBM stationary distribution has a remarkable product form

(X1, ..., Xg) =C1 - Cqgexp(—CiX] — -+ — CqXq) 4

if and only if the following relation between the covariance and reflection matrices
holds:

2% = R-diag¥ +diag® - R. 5)

In the latter case, the stationary distribution admits the exponential product form given
by (4), with parameters equal to

(Cly....cq) =—=2-(diagZ)™ " R pu,

with © denoting the drift vector. In dimension 2, if we translate this model from the
quadrant to a wedge, condition (5) is equivalent to « = 0, see [22, Sec. 5.2] and our
Fig. 2. Models having this skew symmetry are very popular, as they offer the possibility
of computing the stationary distribution in closed-form. No generalization of the skew
symmetry is known, except in dimension 2, where according to [14], the stationary
distribution is a sum of n > 1 exponential terms as in (4) (with suitable normalization)
if and only if « = —n, where the parameter « is as in (1). The recent article [8] goes
much further, generalizing again this result and finding new conditions on « to have
simplified expressions of the density distribution.

The concept of skew symmetry has been explored in other cases than orthants, see
for example [35, 44].

Our approach and contributions

In this paper, we will not work under the completely-S hypothesis. More precisely,
we will assume that:

Assumption 1 The reflection matrix R is not S.
Assumption 2 All principal, strict sub-matrices of R are completely-S.

Before going further, observe that the appearance of S-matrices is very natural in
the present context. Indeed, for instance, R is an S-matrix if and only if there exists a
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a=0 a=1

Fig.2 On the left, the standard skew symmetry condition in a wedge, corresponding to the condition o = 0;
on the right, the dual skew symmetry condition o« = 1

convex combination of reflection vectors which belongs to the interior of the orthant.
Such a condition would allow us to define the process as a semimartingale after the
time of hitting the origin. Similarly, the fact that a given principal sub-matrix of R is S
translates into the property that it is possible to define the process as a semimartingale
after its visits on the corresponding face.

Therefore, as we shall prove, the probabilistic counterpart of Assumptions 1 and 2
is that we can define the process (Z;);>0 as a semimartingale before time

T :=inf{t >0:Z, =0} < o0, (6)

butnotfort > T'. For this reason, we will call 7" in (6) the absorption time: if the process
hits the apex of the cone, then T < oo and we will say that the process is absorbed
at the origin. Indeed, because of Assumption 1, there is no convex combination of
reflection vectors belonging to the orthant, and consequently, we cannot define the
process as a semimartingale after time 7. However, our process is a semimartingale
in the random time interval [0, T']; this will be proved in Proposition 2.

We will also assume that:

Assumption 3 The drift of the RBM is positive, that is, all coordinates of y are positive.

Under Assumptions 1, 2 and 3, our process exhibits the following dichotomy: either
it hits the origin of the cone in finite time, i.e., 7 < 00, or it goes to infinity (in the
direction of the drift) before hitting the apex, i.e., T = oo and |Z;| — oo ast — oo.
See Fig. 3. We will prove this dichotomy in Proposition 5.

This leads us to ask the following questions: what is the absorption probability

Jf(x) =Px[T < 00]? @)
Equivalently, what is the escape probability
P T =00l =1—-P[T < oo] =P[|Z;| = 00]?

These questions are not only of theoretical nature: they also admit natural interpre-
tations in population biology problems, in terms of extinction times of multitype
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Fig.3 Two examples of paths of the process (Z;);>(, with starting point x marked in red. On the left, we
have T < 0o, meaning that the process is absorbed in finite time at the apex of the cone. On the right, the
process seems to escape to infinity, meaning that 7 = oo (Color figure online)

populations [31], or in risk theory, in terms of ruin of companies that collaborate to
cover their mutual deficits [1, 5, 30].

Because of its somehow dual nature, the problem of computing the absorption (or
escape) probability is a priori as difficult as the problem of computing the stationary
distribution in the semimartingale, recurrent case. Therefore, a natural question is to
find an analogue of the skew symmetry [23, 26] in this context, which we recalled
here in (4) and (5). The main result of the article is given in Theorem 1. It is stated
under four assumptions; while the first three have already been introduced, the final
one, Assumption 4, is of more technical nature and will be presented in Sect. 3. We
conjecture that Assumption 4 is always true. For x = (x1,...,x,) € RY, fx) =
P, [T < oo] denotes the absorption probability (7).

Theorem 1 (Dual skew symmetry in an orthant). Under Assumptions 1, 2, 3 and 4,
the following statements are equivalent:

(1) The absorption probability has a product form, i.e., there exist functions f1, ..., fa
such that

f) = fitx) fo(x2) - -+ fa(xa).

(ii) The absorption probability is exponential, i.e., there exists a € R? \ {0} such that

f(x) =exp(a - x).

(iii) The reflection vectors Ry, ..., Ry defined in (2) and (3) are coplanar, that is,
det R = 0.
When these properties are satisfied, the vector a = (ay, ..., ap) in (ii) has negative

coordinates and is the unique nonzero vector such that

aR=0 and a¥X-a+au =0. ()
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Fig.4 Condition det R = 0 in a 3-dimensional orthant: the reflection vectors Ry, Ry and R3 are coplanar

Fig. 5 Inred colour: the ellipsoid with equation xX - x 4+ ux = 0; in blue: ker R (of dimension one by
Lemma 8); in green: the exponential decay rate a (Color figure online)

We refer to Figs. 2 and 4 for a geometric illustration of the condition det R = 0
appearing in (iii). See Fig. 5 for a geometric illustration of the exponential decay rate
a in (8). When the parameters satisfy the assumptions (and conclusions) of Theorem 1,
we will say that the model satisfies the dual skew symmetry condition. This terminology
will be explained in more detail in Remark 2. In the case of dimension 2, Theorem 1
is proved in [18]. Assumption 4 will be discussed in Remark 1. Note that the proof of
(iii)=>(i1))=>(i) does not use Assumption 4.
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Structure of the paper

e Section 2: We define properly the process and show some of its pathwise properties.
In particular, Proposition 5 shows the dichotomy behaviour (absorption vs. escape
at infinity).

e Section 3: We state and prove a PDE for the density of the absorption probability
(Proposition 6). This PDE is dual to the one satisfied by the stationary distribution
in the recurrent case.

e Section 4: We provide a proof of our main Theorem 1.

e Section 5: We propose a generalization of Theorem 1 with absorption on facets,
not necessarily the origin.

2 Definition and first properties of the absorbed reflected Brownian
motion

Existence and definition

Let (W;);>0 be a d-dimensional Brownian motion of covariance matrix X. Let u € RY
be a drift, and let R be a d-dimensional square matrix (2) with coefficients 1 on the
diagonal.

Proposition 2 (Existence of an absorbed SRBM). Under Assumption 2, there exists
an absorbed SRBM in the orthant, i.e., a semimartingale defined up to the absorption
time T < oo as in (6) and such that forallt < T,

Zy =x+ W; + ut + RL;, 9

where L; is a vector whose ith coordinate Lf is a continuous, non-decreasing process
starting from O, which increases only when the ith coordinate of the process Z} = 0,
and which is called the local time on the corresponding orthant face.

Under the additional hypothesis that R is completely-S, Proposition 2 is most
classical: in this case, the RBM is well defined as the semimartingale (9), actually for
any ¢ € [0, 00). Our contribution here is to prove that if R is not an S-matrix (our
Assumption 1) and is therefore not completely-S, then it is still possible to define the
RBM as a semimartingale on the time interval [0, T'].

Proof Although Proposition 2 is not formally proved in Taylor’s PhD thesis [39], all
necessary tools may be found there. More precisely, Taylor proves that when R is
completely-S (i.e., our Assumption 2 plus the fact that R is S), then the RBM is an
orthant Rf{_ exists as a semimartingale globally on [0, co). The proof in [39] is then
split into two parts:

e First, [39, Chap. 4] shows that the SRBM exists on [0, T'], with T defined in (6). The
fact that R is an S-matrix is nowhere used in the proof: the only needed hypotheses
are that all principal, strict sub-matrices are completely-S (our Assumption 2).
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e Asasecond step, in [39, Chap. 5] (see in particular her Lemma 5.3), Taylor proves
that if R is an S-matrix, then it is possible for the process started at the origin to
escape the origin and to be well defined as a semimartingale.

Using only the first part of her arguments readily entails our Proposition 2. O

Absorption and escape in asymptotic regimes

We first prove two results which are intuitively clear, namely that the absorption
probability tends to one (resp. zero) when the starting point approaches the origin (resp.
infinity), see Proposition 3 (resp. Proposition 4). Then, we will prove in Proposition 5
the dichotomy already mentioned: either the process is absorbed in finite time, or it
escapes to infinity as time goes to infinity. By convention, we will write x — 0 (resp.
x — 00) to mean that [x| — 0 (resp. |x| — o0) in the cone.

Proposition 3 (Absorption starting near the origin). One has

lim P, [T < o0] = 1.
x—0

Proposition 4 (Absorption starting near infinity). One has

lim P,[T < oo] = 0.

X—> 00

Proposition 5 (Complementarity of escape and absorption). When T = oo, then
almost surely lim; o | Z;| = o0, i.e.,

]P’x[lim |Z,|=oo‘T:oo]=l.
—0o0

This implies that Py [T = o0] = Py[|Zia7| — 00].

Proof of Proposition 3 Let us define 7, = inf{r > 0 : x4+ W, +ut < 0} (by convention
inf ) = 00), and consider the set

{tx < o0} = {3t > O such that x + W; 4+ ut < 0}.

The proof consists in two steps. We first prove that {t, < oo} C {T' < oo} and then
show that lim,_,o P[1, < o0] = 1.

Step 1. Assume that 7, < oo and fix a t < 0o such that x + W; 4+ ut < 0. We are going
to show that T < . We proceed by contradiction and assume that # < 7. Then
from (9), we get that

RLt=Zt—x—W,—Mt>O.

The last inequality comes from the fact that Z; > 0 and that x + W; + ut < 0.
Remembering that L; > 0, the fact that RL; > 0 implies that R is an S-matrix,
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which contradicts Assumption 1. We conclude that 7 < ¢t < oo. We have thus
shown that {r, < oo} C {T < oo}.
Step 2. By Blumenthal’s zero—one law, we have

Plto =0] =1,

since

(ro=0}=) {;g(vvs +ps) < 0} e For =%

t>0 t>0

where F; = o{W,,s < t}. This implies that P[tgp < oo] = 1. We deduce that

almost surely, there exists o such that W, + ufop < 0, and then for all x <

—Wy, — uty we have 7, < oo. Then, Li¢ <o) —6 1 a.s., and by dominated
x—

convergence we have

Plty < oo] = E[1{z, <c0y] —6 1.
X—>

Thanks to Step 1 and Step 2, we conclude that P,[T < oo] > P[ry < oo] and
therefore lin%) P.[T < oo] = 1, using the above estimate. O
x—

Proof of Proposition 4 Introduce the event
B, ={Vt e R, x + W, 4+ ut > 0}.

For any element belonging to By, then Z; = x + W, + ut for all t € R (the process
never touches the boundary of the orthant, meaning no reflection on the boundary).
We deduce that Z; > 0 for all # € R and then that B, C {T = oo}. Therefore,

P[B,] < Py[T = o0].

To conclude, we are going to show that limy_, oo P[ By] = 1. It comes from the fact that

a.s.inf;- o{W;+put} > —oo, since u > 0by Assumption 3. For all x > — inf;~o{W;+

ut}, we have x +W; +ut > Oforall z. We deduce that 1 y;er x+w,+ur>0 —> 1as.,
X—> 00

and by dominated convergence, we have
P[By] = E[1{vteR,x+W,+ur>0}] v L.

O

Before proving Proposition 5, we first recall some useful definitions and properties
related to recurrence and transience of Markov processes. All of them are most clas-
sical, but having them here stated clearly will facilitate our argument. These results
and their proofs may be found in [3].

Consider a continuous, strong Feller Markov process X; on a locally compact state
space E with countable basis. For V C E, let us define ty = inf{t > 0: X; € V}.
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e The point x € E is said to be recurrent if for all neighbourhoods V of x,
Pllimsup 1y (X;) = 1] = 1.

e If a point is not recurrent, it is said to be transient. In this case, by [3, Thm. III 1],
there exists a neighbourhood V of x such that P[limsup 1y (X;) = 1] =0.

e The point x is said to lead to y if for all neighbourhoods V of y, we have Py [ty <
oo] > 0. The points x and y are said to communicate if x leads to y and y leads
to x. This defines an equivalence relation.

e If two states communicate, they are both transient or both recurrent [3, Prop. IV 2].

e If all points are transient, then X, tends to oo as + — oo almost surely [3,
Prop. IIT 1].

Proof of Proposition 5 Define the process (Z)zzo as the process (Z;);>0 conditioned
never to hit 0 in a finite time. The transition semigroup of this new Markov process
Z; is defined, for x € R‘j_ \ {O}and V C Ri \ {0}, by

Py [Z, € V] =Py[Z € VIT = ool.

All points of Ri \ {0} communicate, they thus constitute a unique equivalence class.
We deduce that they all are transient or all recurrent. It is thus enough to show that
one of them is transient, to show that they all are.

Let us take a point in the interior of Ri \ {0}, for example x = (1, ..., 1). Since
© > 0, by standard properties of Brownian motion we have

PVt e R, x + W; 4+ ut > 0] > 0.

In dimension one, this property directly derives from [9, Eq. 1.2.4(1)] (on p. 252); it
easily generalizes to all dimensions. When this event of positive probability occurs,
the process never touches the boundary and thus Z, = x+ W, + ut — oo and
limsup 1y (Z;) = 0, forany V relatively compact neighbourhood of x. We have shown
that there exists a neighbourhood V of x such that P, [lim sup 1y (Z;) = 1] < 1, which
implies that x is not recurrent and is then transient.

Using [3, Prop. III 1] allows us to conclude, since as recalled above, if all points
are transient, then the process tends to infinity almost surely. O

3 Partial differential equation for the absorption probability

In a classical way, the generator of the Brownian motion in the interior of the orthant
is defined by

Exlf(ZD]—f(») _ 1
t )

Gf(x) = lim (V-ZVHE) + (- V),

where we assume that f is bounded in the first equality and that f is twice differentiable
in the second equality. In the rest of the paper, the following assumption is made.
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Assumption 4 For all continuous, bounded functions g, the transition semigroup

x> Prg(x) :=E [g(ZinT)]

is differentiable, and satisfies the Neumann boundary condition R; - P;g(x) = 0 on
the ith face of the orthant x; = 0.

Remark 1 (Plausibility of Assumption4). Many evidences suggest that this hypothesis
is true:

e By [2, Cor. 3.3], Assumption 4 is true provided we replace T by the first hitting
time of the intersection of two faces, or assuming that the process does not hit the
intersection of two faces.

e As a consequence of the above, Assumption 4 is true in dimension two.

e By [13], Assumption 4 holds true in the particular case of orthogonal reflections.

e Assumption 4 is stated as a conjecture in [25, (8.2b)]; however, the latter article
does not attempt to prove rigorously these regularity questions.

e The paper [34] shows in full generality the pathwise differentiability with respect
to the starting point x. We believe that a way to attack the proof of Assumption 4
could be to combine the results of [34] with the computations made in the proof
of [2, Cor. 3.3].

Proposition 6 (Partial differential equation). Under Assumptions 1, 2, 3 and 4, the
absorption probability (7) is the unique function f which is

e bounded and continuous in the interior of the orthant Ri and on its boundary,
e continuously differentiable in the interior of the orthant and on its boundary (except
perhaps at the corner),

and which further satisfies the PDE:

e G f = 0 on the orthant (harmonicity),
e R; -V f =0ontheithface of the orthant x; = 0 (Neumann boundary condition),
e f(0)=1andlim,_ « f(x) = 0 (limit values).

Proof The proof is similar to [18, Prop. 11]. We start with the sufficient condition.
Dynkin’s formula leads to

IAT d (AT _
Elf(Zin)] = £() +E, /0 Gf(Z)ds + Y E, fo (RV f)idL.
i=1

There is a technical subtlety in applying Dynkin’s formula, as the latter requires func-
tions having a C2-regularity, which is a priori not satisfied at the origin in our setting.
However, we may first apply this formula for 7,, = inf{r > 0: |Z;| < %} < T, then
f has the desired regularity on Ri \{x :|x] < %}. One may conclude as 7, converges
increasingly to 7" as n — oo.
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Since f is assumed to satisfy the PDE stated in Proposition 6, the latter sum of
three terms is simply equal to f(x). We further compute

f(x) = Ex[f(ZtAT)] = ]Ex [f(ZtAT)]ngt] + Ex[f(ZtAT)]]-T>t]
= f(ZT)HDx[T <t]l+ IEx[f(zt/\T)]lT>t]-

Ast — 00, the above quantity converges to
FOPT < 00l + B, [ lim f(Z) 17— | =PAT < o],

where the last equality comes from the limit values lim,_, » f(x) =0, f(0) = 1 and
from Proposition 5, which together imply that when 7 = co we have lim;_, .o Z; = o0.
We immediately deduce that f(x) = P,[T < o<].

We now move to the necessary condition. We denote the absorption probability (7)
by f and show that it satisfies the PDE of Proposition 6. Consider the event {T' <
o0} € Fso and define

Mz = E[IL{T<OO}|]:1/\T]7

which is a F;-martingale. Observe that My = f(x) and, by the Markov property,
M; = f(Ziar). We deduce that E. [ f(Z;a7)] = E[M;|Fo] = My = f(x). By
definition of G, we obtain that for x in the interior of the orthant,

Ec[f(Zol = f(x) _
t

0.

Gfx) = lim

The Neumann boundary condition and the differentiability follow from the fact that
f(x) = Ex[f(Z:iar)] and from Assumption 4. The limit values follow from our
Propositions 3 and 4. O

Remark 2 (Duality between absorption probability and stationary distribution). Let
us define the dual generator G* f (x) = %(V XV )(x) — (u-Vf)(x) as well as the
matrix R* = 2% — R diag(X), whose columns are denoted by R}. In the recurrent
case, the stationary distribution satisfies the following PDE, see [25, Eq. (8.5)]:

e G* f = 0in the orthant,
e R -V f —2u;f =0 on the ith face of the orthant defined by x; = 0.

As a consequence, the absorption probability satisfies a PDE (Proposition 6), which
is dual to the one which holds for the stationary distribution.

4 Dual skew symmetry: proof of the main result
This section is devoted to the proof of Theorem 1, which establishes the dual skew
symmetry condition. We first prove two technical lemmas on the reflection matrix R

in (2).
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Lemma 7 If R satisfies Assumptions 1 and 2, then for all i, there exists j # i such
that rij # 0.

Proof 1t is enough to prove Lemma 7 for i = 1, as we would show the other cases
similarly. Consider R the principal submatrix of R obtained by removing the first line
and the first column. This matrix is completely S by Assumption 2, so that there exists
X = (x2,...,x4)" > 0 such that RX > 0. Consider now 51 = (r,....,ra1) ",
which is the first column of R without its first coordinate. Let us choose A > 0
large enough such that 51 + ARX > 0. If for all J # 1 we have r1; = 0, then for
X=(1,Axp,..., Axd)T we would have

1

1 0---0\ | * 1
RX—(a ) : _(51+A§)?)>0

Xd

N

and then R would be an S-matrix, contradicting our Assumption 1. O

Lemma 8 If R satisfies Assumptions 1 and 2, and if in addition det R = O, then R has
rank d — 1, and there exist a positive column vector U > 0 in ker R and a positive
row vector a > 0 such that aR = 0.

Proof The rank of the matrix R is obviously < d — 1, since det R = 0. We now show
that the rank is > d — 1.

Let R j be the submatrix of R obtained by removing the jth line and the jth column.
These matrices are S-matrices by Assumption 2, and we can choose

X1j Y1j

§j — | XG-Di > 0 such that ﬁjfj =?j — | JG-Di > 0.
X(+D)j YG+1)j

Xdj Vdj

,,,,,

We have

RX: =Y! = (y)i=1,...d;

~

where yfj =erjj +Yij > 0fori # j and ¢ > 0 small enough, and yjj =&+ Zij,
where we set

~

Lj=(rij,.corG=0j>TG+Djs---+1dj)
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the jth line of R, with the jth coordinate r;; = 1 excluded. Since R is not an S-
matrix by our Assumption 1, we must have yﬁ =6+ LjX; < 0. We deduce that
y?j =Zj)?j < —-e<0.

Then, introducing the vectors

1
Xj=—5X}>0 and Y; = (yij)i=1..a = RX},

.....

—Yjj
we have
Yij
YG-bj Vii
Yj=RX;=| —1 |. wherey;=-—"5 >0fori#j.
V(i+1)j Vi
Ydj
Denoting the matrix P = (X1, ..., X4) > 0, we have
L —yi2... =V L yio ...y
-y 1 ... =yu v 1 ..oy
—RP = . . . =2Id—T, where T = .. . > 0.
—Yd1 —Ya2 ... 1 Va1 Yaz ... 1

All coefficients of T are positive. Consequently, using Perron—Frobenius theorem,
T has a unique maximal eigenvalue r, its associated eigenspace is one-dimensional
and there exists a positive eigenvector V associated to r. Let us remark that since
det R = 0, then det(2Id — T) = det(—RP) = 0 and 2 is an eigenvalue of 7. Then,
r > 2, and there are two cases to treat.

e Assume first that the maximal eigenvalue is r > 2. Let V > 0 be a positive
associated eigenvector suchthat 7V = rV.Wededucethat —RPV =2V -TV =
(2—r)Vandthen R(PV) = (r—2)V > 0,where PV > Osince P > 0and V > 0.
Then, we have shown that R is an S-matrix, which contradicts Assumption 1. So
we must be in the situation where r = 2.

e If r = 2 is the maximal eigenvalue of 7', and V > 0 the positive eigenvector
such that TV = 2V, then we have RU = 0 for U = PV > 0. Furthermore
dimker(2Id — T) = 1 and then d — 1 = rank(2Id — T') = rankRP < rankR and
then R has rank d — 1.

Left eigenspaces of T are (right) eigenspaces of T | . If we take a such that aR = 0,
then a belongs to the left eigenspace associated to the eigenvalue 2 of 7. By Perron—
Frobenius theorem, we deduce that we can choose a > 0. O
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We now prove a result showing that the hitting probability of the origin is never 0,
for all starting points.

Lemma9 Forall x € RL, f(x) > 0.

Proof By Proposition 3, there exists a point yg in the interior of the orthant such that
f(yo) > 0. By continuity of f (Proposition 6), we can find an open neighbourhood
U of yp such that f(y) > 0 forall y € U. Then we conclude that

fu>=EAf@Mn]=A;f@mwme=dwziﬁfomuxmf=®0>o
+

(The first equality in the previous equation has already been proved in the proof of
Proposition 6). O

Let us now prove the main result.

Proof of Theorem 1 (i) = (ii): We assume that f(x) = fi(x1)--- fu(xg) and we
denote d1In f; = f//f; (note that due to Proposition 6, the functions f and f; are
differentiable and by Lemma 9, f;(x;) # O for all i and all x;). On the boundary
x; = 0, the Neumann boundary condition of Proposition 6 implies that

' d1n f1(x1)
0= =Ri' fOI')C[ZO.
d1n fq(xq)

In particular, for all j # i, taking x;; = 0 for all i’ # j, we obtain

d1n f1(0)
R; - 8111];/'()6‘/) =0.

31n £4(0)

We deduce that for all i and j such thati # j, the function r;;0 In f;(x;) is a constant,
which we can compute as — Y it 70 1n f7(0). By Lemma 7, for all j there exists
i # j such that r;; # 0. This implies that 9 In f;(x;) is constant and then that f; is
exponential: there exists a; such that f;(x;) = e%/*/. The limit value lim, , o f(x) =
0 implies that a # 0.

(i1) = (i): This implication is trivial by taking f; (x;) = e%".

(i) = (iii): If f(x) = e** satisfies the PDE of Proposition 6, then R; - V f(x) =
aR;e™ = 0 on the boundary face x; = 0. We obtain that aR; = O for all i and then
that aR = 0. We deduce that det R = 0 since a # 0.

(iii) = (ii): If det R = 0, then by Lemma 8 one has dimker R = 1, and we can

choose @’ € R? such that a’ > 0 and a’R = 0. Then, a = — s a’ < 0is the
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unique vector which satisfiesa- R = 0 and aX -a +ap = 0. Then, it is easy to verify
that e®* satisfies the PDE of Proposition 6, while the boundary condition at infinity
comes from the fact that a < 0. O

5 A generalization of Theorem 1: absorption on a facet

Theorem 1 can be generalized to the case where the RBM is absorbed at a facet of the
orthant, with equation

Xiy ="'=xik=0v

for some fixed k € {1, ..., n}. The situation where k = n is the case of an absorption
at the apex of the cone, which is treated in detail in the present article. For the sake
of brevity and to avoid too much technicality, we will not prove this generalization in
this article, even though all intermediate steps in the proof may be extended.

In the general case of a facet, let us state three assumptions which generalize
Assumptions 1, 2 and 3. Let us define R (resp. ) the principal sub-matrix of R (resp.
Y), where we keep only the i1th up to irth lines and columns.

e The new Assumption 1 is that the reflection matrix RisnotS.

e The new second assumption is that all principal sub-matrices of R which do not
contain R are completely-S.

e The third assumption about the positivity of the drift © > 0 remains unchanged
(even though we could probably weaken this hypothesis).

Under these assumptions, we may define the reflected Brownian motion (Z;);>¢ until
time

T=inf{t >0:Z"=... = Zk =0},
where Z' stands for the ith coordinate of Z. Let us denote the absorption probability

fx) =P, [T < ool.

Then, Theorem 1 may be extended as follows. The following assertions are equivalent:

(i1’) f has a product form.

) f isgxponential, Le., f(x) =exp(a;xi; + -+ aix;,) witha;; # 0.

(iii’) det R = 0.
In this case, Lhe vector d = ~(ai1 , ..., a; ) is negative and is the unique nonzero vector
such that aR = 0 and @aX - @ + ai = 0, where we defined the vertical vector
= (ij)j=1,.. k-
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