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Abstract
Westudy a load balancing system in themany-server heavy-traffic regime.We consider
a systemwith N servers, where jobs arrive to the system according to a Poisson process
and have an exponentially distributed size with mean 1. We parametrize the arrival
rate so that the arrival rate per server is 1 − N−α , where α > 0 is a parameter that
represents how fast the load grows with respect to the number of servers. The many-
server heavy-traffic regime corresponds to the limit as N → ∞, and subsumes several
regimes, such as the Halfin–Whitt regime (α = 1/2), the NDS regime (α = 1), as
α ↓ 0 it approximates mean field and as α → ∞ it approximates the classical heavy-
traffic regime.Most of the prior work focuses on regimes with α ∈ [0, 1]. In this paper,
we focus on the case when α > 1 and the routing algorithm is power-of-d choices
with d = �cNβ� for some constants c > 0 and β ≥ 0. We prove that α + β > 3 is
sufficient to observe that the average queue length scaled by N 1−α converges to an
exponential random variable. In other words, if α + β > 3, the scaled average queue
length behaves similarly to the classical heavy-traffic regime. In particular, this result
implies that if d is constant, we require α > 3 and if routing occurs according to JSQ
we require α > 2. We provide two proofs to our result: one based on the Transform
method introduced in Hurtado-Lange andMaguluri (Stoch Syst 10(4):275–309, 2020)
and one based on Stein’s method. In the second proof, we also compute the rate of
convergence in Wasserstein’s distance. In both cases, we additionally compute the
rate of convergence in expected value. All of our proofs are powered by state space
collapse.
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1 Introduction

We study a load balancing system also known as supermarket checkout system, that
is, a single-hop stochastic processing network (SPN) where each server has its own
queue. There is a single stream of arrivals and, right after arriving, the jobs are routed
to one of the queues by a dispatcher. Popular routing algorithms are join the shortest
queue (JSQ) and power-of-d choices. Under JSQ, the new arrival is immediately sent
to the shortest queue. Under power-of-d choices, d queues are sampled uniformly at
random and the job is routed to the shortest queue among these d.

Exact analysis of many SPNs (including load balancing systems) usually becomes
intractable. Hence, a common practice is to study the SPNs in some asymptotic regime
to gain insights about their behavior. A popular regime is heavy traffic, where the
number of servers is constant and the load is increased to the maximum capacity.
One of the advantages of studying systems in heavy traffic is that, in the limit, many
systems behave as lower-dimensional systems, a phenomenon known as state space
collapse (SSC). In other words, if an SPN experiences SSC in the heavy-traffic limit,
it behaves as if the number of queues was smaller.

Another popular asymptotic regime is mean field, where the load is kept constant
and the number of servers is increased to infinity. In this regime, themain idea is that, as
the number of servers increases, one can isolate one queue and study its interactions
with the rest of the system. Then, since all the queues are equivalent, one uses the
analysis of this single queue to understand the behavior of the entire system.

In this paper we work with the many-server heavy-traffic regime, where both, the
load and the number of servers, increase together. Specifically, we let N be the number
of servers andwe parametrize the arrival process so that themean arrival rate per server
is 1− N−α , where α > 0. Then, the total arrival rate to the system is N (1− N−α). In
themany-server heavy-traffic regime, there are different phases depending on the value
of α. As α ↓ 0, we approximately approach the mean-field regime, α = 1

2 represents
the Halfin–Whitt regime [24], α = 1 represents the nondegenerate-slowdown regime
(NDS) [2], and α → ∞ can be thought of as the classical heavy-traffic regime. In
this paper, we look at all super-NDS regimes, i.e., the regimes with α > 1. Hence,
we study regimes where the systems are more heavily loaded than NDS. The main
contributions of this paper are summarized below:

(i) We show that the total queue length scaled by N−α (or, equivalently, the average
queue length scaled by N 1−α) converges in distribution to an exponential random
variable if the load grows ‘fast enough’ with respect to the number of servers. In
particular, under power-of-d choices with constant d, we show that this result is
valid if α > 3 (see Corollary 1); and under JSQ the same result holds for α > 2

123



Queueing Systems (2022) 101:353–391 355

(see Corollary 2). Further, we show the condition that α must satisfy under
power-of-d choices when d is a function of the number of servers. Specifically,

we show that if d
	= �cNβ� for some c > 0 and β ≥ 0 such that d ∈ [N ],

the convergence to the exponential random variable is valid if α + β > 3 (see
Theorem 1). We provide two proofs to our result, which we explain in the next
two contributions.

(ii) We first show the result using one-sided Laplace transform (see Sect. 3). Specif-
ically, we generalize the Transform method introduced in [30] for discrete-time
systems, to a continuous-time model. We briefly describe the Transform method
below, and we provide more details in Sect. 3.1.

(iii) We compute the rate of convergence of the scaled total queue length to the
exponential random variable in Wasserstein’s distance (see Theorem 3). This is
a stronger version of Theorem 1, where we actually obtain the convergence in
distribution as a consequence of the error bound. To show this result, we use
Stein’s method (see Sect. 4).

(iv) All these proofs are powered by a multiplicative SSC result that we show in
Proposition 1. We show SSC to the line generated by the vector 1, i.e., we show
that all the queue lengths are similar in the limit. Specifically, we compute bounds
for the moments of the norm of the difference between the queue length vector
and its projection on the line generated by the vector 1. Further, we compute a
bound for the moment generating function (MGF) of its norm. These bounds
grow to infinity as the number of servers increase. However, after scaling the
total queue length by N−α they become negligible (see Sect. 2.1), hence the
name multiplicative.

(v) We compute the rate of convergence in expected value of the total average queue
length scaled by N−α . Specifically, we show that the rate of convergence is of
order log(N )N 3−β . As a consequence, we prove the convergence of the expec-
tation under the same conditions established in Theorem 1 (see Theorem 2).
Similarly to Theorem 1, we explicitly show that the power-of-d choices algo-
rithm with constant d and the JSQ algorithm are immediate consequences of
Theorem 2. To prove this result, we use the Drift method (see 3.3), which we
briefly explain in Sect. 1.1, and Stein’s method (see Sect. 4).

Before discussing the related work, we briefly summarize the Transform method
and Stein’s method. The Transformmethod introduced in [30] is a two-step procedure
to compute the distribution of the queue lengths in classical heavy-traffic regime, and it
can be used for queueing systems that experience SSC to a one-dimensional subspace.
The method is introduced in the context of a load balancing system and a generalized
switch. Before using the method, positive recurrence and SSC to a one-dimensional
subspace must be proved. The main idea is to consider an exponential test function
such that, after setting its drift to zero, yields the MGF of the projection of the vector
of queue lengths on the subspace where SSC occurs. Then, an implicit expression
that is valid for all traffic is obtained. The last step is to take the heavy-traffic limit
and prove that the terms depending on the queue lengths vanish, so that we obtain an
explicit expression for the limiting MGF.
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Stein’s method is based on the approach introduced by [46]. The main idea is
to bound the Wasserstein’s distance between the pre-limit random variable and the
limiting random variable. In the definition of Wasserstein’s distance, all the Lipschitz
functions with constant 1 are considered (see Definition 3). Hence, one needs to
compute a bound that is valid for a family of functions.

In both methods, the use of test functions is essential. In the Transformmethod, this
function is exponential and part of the merit of [30] was to realize the right exponential
test function. In fact, the entire proof depends on this specific test function. In Stein’s
method, instead, one simultaneously considers a whole family of test functions. Then,
by studying their drift we can get the bounds on the Wasserstein’s distance.

The rest of the paper is organized as follows. In the rest of this section, we discuss
related work (Sect. 1.1) and we establish the notation (Sect. 1.2). In Sect. 2 we present
the model, the main result and some essential results to our proofs (including SSC).
In Sect. 3 we present our proof based on the Transform technique and we additionally
show the rate of convergence of the expected queue length using the Drift method. In
Sect. 4 we compute the rate of convergence in Wasserstein’s distance using Stein’s
method, and we obtain a proof of the main result as a consequence. We additionally
obtain the rate of convergence in mean as a consequence of the main theorem of Sect.
4. Finally, in Sect. 6 we present concluding remarks and future work.

1.1 Related work

JSQ was first proposed in [59], and since then, it has received plenty of attention [1,
3, 14, 15, 17, 30, 42, 54]. It is particularly interesting in the heavy-traffic regime,
because it experiences SSC to a one-dimensional subspace. Hence, its queue length
vector behaves as a single-server queue and the distribution of the queue lengths is
known to be exponential. Specifically, it has been proven that the scaled vector of queue
lengths converges in distribution to a vector of the formϒ1, whereϒ is an exponential
random variable and 1 is the vector of ones. This proof has been performed using the
diffusion limits approach [17], the Drift method [15] and the Transform method [30].

A drawback of this policy is that it requires a large communication overhead and,
hence, it is not practical in large-scale systems (assuming that the dispatcher does not
use any state-information stored in its memory to make the routing decision). On the
other extreme is random routing, where all the arriving jobs are routed to a queue
selected uniformly at random and, hence, no communication overhead is required.
Power-of-d choices can be considered in between these two, since it only requires
scanning d queues before routing. It has been proven that, even if d = 2, the queue
lengths decrease considerably when compared to random routing. This result has been
shown in the mean-field regime [39, 40, 51] and in the classical heavy-traffic regime
[29, 37]. An extensive list of the literature on these policies is presented in [50].

Themean-field regime has become popular after it was used to show that the power-
of-2 choices algorithm yields queue lengths that are considerably smaller than random
routing [39, 40, 51]. It was later proved that the JSQ system behaves as an M/M/∞
system in the mean-field regime [3]. In [42], it was shown that under power-of-d
choices with d growing with N , the fluid limit does not depend on the growth rate and,
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hence, power-of-d and JSQ have the same fluid limit. More recently, it has been shown
that, in this regime, there must always be a proportion of empty queues and, hence, any
routing policy that prioritizes empty queues yields queue lengths of at most one job
[21]. Under the same logic, the join the idle queue (JIQ) policy has become popular.
It was proposed in [34] and the idea is that, whenever a server idles, it communicates
its status to the dispatcher. Then, the arrivals are routed randomly to one of the empty
queues. If none of the queues is empty, then a server is selected uniformly at random.
This policy has been rigorously analyzed in [49] under exponential job sizes, and in
[18] for general job-size distributions. In both cases, the authors show that the steady-
state probability that an arriving job waits in line vanishes as the number of servers
grows to infinity.

Among themany-server heavy-traffic regimes, one of themost popular is theHalfin-
Whit regime, where the difference between the service and arrival rate per server is
N−1/2, i.e., α = 1

2 . This regime was introduced in [24], where the authors present the
classical analysis of the M/M/N queue. More recently, [16] shows that the number
of empty queues and the number of queues with one customer in line are of order
O(

√
N ). The authors use the diffusion limits approach, but interchange of limits is

not proved. This step is completed in [7]. In [4, 5] the work of [16] is continued.
Specifically, in [4] the authors study tail asymptotics of the stationary distribution,
and in [5] they study the moments of the stationary distribution. In [43], the authors
show that JIQ routing yields diffusion-level optimality in the Halfin–Whitt regime.

In [33], load balancing systems under several routing policies in the sub-Halfin–
Whitt regime are studied, and in [32] the analysis is extended to the case when α ∈[ 1
2 , 1

)
. In [55] a load balancing system operating under power-of-d, where jobs are

batches of tasks, is analyzed. Specifically, the authors find conditions on the value of
d (as a function of the number of servers, the load and the number of tasks per job)
such that power-of-d choices achieves zero delay in sub-Halfin–Whitt regime.

The NDS regime was introduced in [2] in the context of an M/M/N queue, and
the author shows that the regime yields new diffusion processes. More recently, it has
been used to compare routing policies in load balancing systems [21]. Specifically,
the authors in [21] characterize the diffusion approximation of JSQ and propose a
new policy with less communication overhead, and that achieves JSQ optimality. This
policy is called idle-one-first and prioritizes routing to servers that are idling or have
one job.

The heavy-traffic asymptotics of several systems have been studied in the litera-
ture. Most of the work is on systems that satisfy the complete resource pooling (CRP)
condition, i.e., that satisfy SSC into a one-dimensional subspace. For a formal defini-
tion of the CRP condition, the reader is referred to [12, 27, 58]. The vast majority of
the work has been performed using the diffusion limits approach [19, 25–27, 47, 57,
58]. In this approach, the scaled queue lengths are shown to converge to a reflected
Brownian motion (RBM) process, and then the steady-state behavior of this RBM is
studied using SSC. The last step is to show interchange of limits, which is usually
challenging.

Recently, three ‘direct methods’ have been proposed to perform heavy-traffic anal-
ysis [11]. In these approaches, there is no need to show interchange of limits, as one
directly works with the queue length process instead of working with an RBM. The
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methods are: (i) the BAR approach, (ii) the Drift method and (iii) Stein’s method. BAR
stands for basic adjoint relationship, and themain idea of themethod is to use carefully
chosen exponential functions to handle the jumps of a continuous-time process [10,
41].

In the Drift method, the main idea is to choose the right test function and set its
drift to zero in steady state. Then, using SSC, one gets error bounds on a function of
the queue lengths that are tight in heavy traffic. If we use polynomial test functions,
we obtain moments of the queue lengths [15, 28, 35, 36, 53]. The Transform method
introduced in [30] is based on the Drift method and uses exponential test functions
along with SSC to obtain the limiting MGF of the scaled queue lengths. Both, the
Transform method and the BAR approach use exponential test functions, but the
Transform method is focused on using SSC to obtain a closed-form distribution for
the scaled queue lengths in the limit.

Stein’s method for analyzing SPNs was first introduced in [22], and it has now
emerged as a simple yet powerful method that can be used not only to show asymptotic
convergence, but also to bound the rate of convergence in Wasserstein’s distance. It
has become a popular approach for both, the mean-field, the classical heavy-traffic
and the many-server heavy-traffic regimes [7–9, 33, 48, 60, 61]. A key component of
our proof that is novel relative to prior literature, is the use of Stein’s method in the
presence of a multiplicative SSC.

Multiplicative SSC has been used in a variety of contexts in the literature [6, 13,
31, 45, 52, 53, 57]. The most relevant work in our context are the results in [13, 53].
In [13] the authors study a parallel-server system in the Halfin–Whitt regime, and
they propose a framework for establishing SSC in queueing systems with multiple
server pools in parallel and different customer classes. They use the fluid dynamics to
establish their result. In [53] the multiplicative SSC result is used in the context of the
heavy-traffic analysis of a bandwidth sharing network, and they use the Drift method
to analyze it. Their proof is based on bounding the drift of the error of approximating
the actual vector of flows by its projection on the subspace where SSC occurs, which is
traditional in the Drift method [15, 35, 36]. In the traditional Drift method technique,
the SSC bounds are independent of the heavy-traffic parameter. However, in [53], the
bounds depend on the heavy-traffic parameter and the authors show that they become
negligible after scaling. In this paper, we adopt their technique to showSSC andwe use
it in the context of a load balancing system in the many-server heavy-traffic regime.

In Table 1 we show a summary of the related work presented above, classified
according to the value of α.

1.2 Notation

We use R and Z to denote the sets of real and integer numbers, respectively. We add
a subscript + when we refer to nonnegative numbers, and a superscript n ∈ Z+ when
we mean vector spaces. We use bold letters to denote vectors. Given a vector x ∈ R

N ,
we use x(i) to its i th smallest element.

For x ∈ R
n , and p ∈ Z+ with p ≥ 1 we use ‖x‖p to denote the p-norm of x,

and we omit the index when we refer to Euclidean norm (i.e., when p = 2). We use 1
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Table 1 Literature review for asymptotic regimes depending on the value of α

Value of α Regime References

α ↓ 0 (intuitively) Mean-field [3, 18, 39, 40, 42, 49, 51]

α ∈
(
0, 1

2

)
Sub-Halfin–Whitt [33, 55]

α = 1
2 Halfin–Whitt [4, 5, 7, 16, 24, 43]

α ∈
(
1
2 , 1

)
Super-Halfin–Whitt [32]

α = 1 Nondegenerate Slowdown
(NDS)

[2, 21]

α ∈ (1, ∞) Super-NDS This paper (α > 2)

α → ∞ (intuitively) Classical heavy-traffic [10, 12, 15, 17, 19, 25–27, 29,
30, 37, 41, 47, 57, 58]

and 0 to denote the vectors of all-one and all-zero elements, respectively. We use e(i)
n

to denote the n-dimensional i th canonical vector, i.e., an n-dimensional vector with a
1 in the i th position and 0’s everywhere else. When the dimension is clear from the
context, we may omit the subscript n.

Given a random variable X , we use E [X ] to denote its expected value and Var [X ]
for its variance. For an event A we use 1{A} to denote the indicator function of A. We
use ⇒ to denote convergence in distribution.

Given two integers k, n ∈ Z+, we use
(n
k

)
for the binomial coefficient and we use

the convention
(n
k

) = 0 if n < k. We use [n] to the denote the set of positive integers

that are smaller than or equal to n, i.e., [n] 	= {1, . . . , n}.
For a function f with domain Dom( f ), we denote ‖ f ‖ 	= supx∈Dom( f ) | f (x)|, and

we use f ′, f ′′ and f ′′′ for its first, second and third derivative, respectively (provided
their existence).

2 Model and asymptotic result

Consider a load balancing system operating in continuous time. Specifically, there are
N parallel servers, and each of them has an infinite buffer. Arrivals to the system occur
according to a Poisson process at rate λN , where λ ∈ (0, 1). Upon arrival, a dispatcher
immediately routes the new job to one of the servers, where they wait in line until the
server can process them. All the servers are identical, and all the arriving jobs have
exponential size with mean 1. Routing occurs according to power-of-d choices, where

d ∈ Z+ is of the form d
	= �cNβ� for constants c > 0 and β ∈ [0, 1]. Specifically,

upon arrival of a job, d servers are sampled uniformly at random and the new job is
routed to the server with the shortest queue among those d. Ties are broken with the
minimum index rule. Observe that if c = β = 1, then d = N and power-of-d choices
is equivalent to JSQ.

For each t ∈ R+ and each i ∈ [N ], let qi (t) be the number of jobs in queue i at time
t , including the job in service (if any). Then, the queue length process {q(t) : t ∈ R+}
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is a continuous-time Markov chain (CTMC) with the generator matrix G defined in
(1). Let q ∈ Z

N+ , and for each i ∈ [N ] letψq(i) be the index of the i th smallest element
of q, breaking ties by minimum index rule. Then, for any q ′ ∈ Z

N+ we have that the
transition rate from state q to state q ′ is

Gq,q′
	=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
(
λN +∑N

i=1 1{qi>0}
)

if q = q ′,
1{qi>0} if q ′ = q − e(i),with i ∈ [N ],
λN

(N−i
d−1

)

(N
d

) if q ′ = q + e(ψq (i)),

0 otherwise.

(1)

The first case is the additive inverse of the sum of the other cases; the second case
corresponds to a departure from queue i , which occurs at rate 1 and it can only happen
if the queue is nonempty; and the third case corresponds to an arrival to the i th shortest

queue. Arrivals occur at rate λN , and
(N−i
d−1)

(Nd )
represents the probability that the new

arrival is routed to the i th shortest queue under power-of-d choices, for the following
reason. Since the dispatcher samples d queues uniformly at random, there are

(N
d

)

possible groups of d servers. One of the sampled servers needs to be the one labeled as
ψq(i), and the other d − 1 servers need to have longer queues. Since ψq(i) represents
the index of the i th shortest queue, there are N − i queues that are longer and, hence,
we there are

(N−i
d−1

)
possible groups of servers that ensure that routing occurs to the

server labeled as ψq(i). Hence, the probability of sending the new arrival to the i th

shortest queue is
(N−i
d−1)

(Nd )
.

Remark 1 For ease of exposition, in this paper we assume that ties for the i th shortest
queue are broken deterministically, with the minimum index rule. However, all our
results are valid for Markovian tie-breaking rules. It is true that the transition rate
matrix G changes according to this rule. However, as the reader will notice later in
this paper, we work with the total queue length and this object does not change if we
change the deterministic tie-breaking rule described above by Markovian rules.

We are interested in the steady-state analysis of the load balancing system described
above. First observe that the Markov chain is irreducible and nonexplosive. Addition-
ally, the total arrival rate to the system (λN ) is strictly smaller than the total service
rate (N ) for any λ ∈ (0, 1). Then, the queue length process is also positive recurrent.
Hence, stationary distribution exists and it is unique [23,Proposition 6.9b]. Let q be a
steady-state random vector which is limit in distribution of {q(t) : t ∈ R+}, and define
q�

	= ∑N
i=1 qi .

We parametrize the system as follows. Consider α > 0 and let λ(N ) 	= 1 − N−α

be the arrival rate per server to the system. Then, the total arrival rate is λ(N )N . Let{
q(N )(t) : t ∈ R+

}
be the queue length process of the N th system and q(N ) a steady-

state random vector which is limit in distribution of
{
q(N )(t) : t ∈ R+

}
. In the next

theorem we present the main result of this paper.
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Theorem 1 Consider a sequence of load balancing systems operating under power-

of-d, parametrized by N as described above. If α + β > 3, then N 1−α

(
q(N )

�

N

)
⇒ ϒ

as N → ∞, where ϒ is an exponential random variable with mean 1.

Immediate corollaries of Theorem 1 are the cases of power-of-d with constant d,
and JSQ (which corresponds to d = N ). We formally present these results below.

Corollary 1 Consider a sequence of load balancing systems operating under power-
of-d choices, parametrized by N as described in Theorem 1. Suppose d = c, where
c ∈ Z+ is a fixed parameter. If α > 3, then N−αq(N )

� ⇒ ϒ as N → ∞, where ϒ is
an exponential random variable with mean 1.

The proof of Corollary 1 holds easily after setting β = 0 in Theorem 1. Now we
present a result for the load balancing system under JSQ.

Corollary 2 Consider a sequence of load balancing systems operating under JSQ,
parametrized by N as described in Theorem 1. If α > 2, then N−αq(N )

� ⇒ ϒ as
N → ∞, where ϒ is an exponential random variable with mean 1.

The proof of Corollary 2 holds after letting c = β = 1 in Theorem 1.
Before proceeding with the proof of Theorem 1, we introduce the definition of the

drift of a function, which is essential in our proofs. We use the definition provided in
[53,Equation (14)].

Definition 1 Let {X(t) : t ∈ R+} be a CTMC with countable state space X and tran-
sition rate matrix GX . For a function Z : X → R+ and any x ∈ X , we define the drift
of Z at x as

�Z(x)
	=

∑

x ′∈X , x �=x ′
GX

x,x ′
(
Z(x ′) − Z(x)

)
.

We write that we set the drift of Z to zero in steady state when we use the property
E [�Z(X(t))] = 0 under stationary distribution, provided that E [Z(X(t))] < ∞ in
steady state and supx∈X |GX

x,x | < ∞.

The drift of a function Z is also known as the generator applied to Z in the context
of CTMCs. Here, we refer to it as drift, for consistency with [30, 53].

2.1 Essential results

The main difficulties in the proof of Theorem 1 are the dependency among queues,
and handling the reflections due to the queue lengths being nonnegative. The latter is
represented by the indicator functions in the transition rate matrix G. Both of these
difficulties are handled with appropriate bounds, that are contributions by themselves.

We first present the SSC result, which establishes that all the queue lengths are
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approximately equal in the limit as N → ∞. Before stating the result formally, we
introduce some notation. Given a vector x ∈ R

N+ , define

x‖
	= 1

(∑N
i=1 xi
N

)

, and x⊥
	= x − x‖. (2)

Then, x‖ is the projection of x to the line generated by 1, and x⊥ represents the error
of approximating x by x‖.

Our goal is to show that the queue lengths are similar in the limit. Using the notation
above, we intuitively need to show that q(N ) ≈ q(N )

‖ asymptotically. We accomplish

this goal by showing that q(N )
⊥ is negligible as N → ∞, with the following result.

Proposition 1 Consider a load balancing system operating under power-of-d choices,
as described in Sect. 2, and let λ0 ∈ (0, 1). If c and β are such that d = �cNβ� ≥ 2,
then for any λ ∈ (λ0, 1):

1. There exists a finite constant C, which is independent of λ, β, c and N, such that
for any positive integer r we have

E
[∥∥q⊥

∥
∥r ] ≤ Cr

(
N 2

d − 1

)r

rr+
1
2 . (3)

2. Let e be Euler’s constant and C
	= C exp

(
1
2e

)
. Then, for any positive integer r we

have

E
[∥∥q⊥

∥∥r ]
1
r ≤ Cr

(
N 2

d − 1

)
. (4)

3. Let θ∗ ∈ R be such that |θ∗| < 1
2 log

(
1 + λ0(d−1)

2N2

)
. Then,

E
[
exp

(
θ∗‖q⊥‖)] ≤

λ0(d − 1) exp
(

2θ∗N2
λ0(d−1)

)

λ0(d − 1) + 2N 2 (1 − exp (2θ∗))
. (5)

We prove Proposition 1 in Sect. 5. Before ending this section, we discuss the result
and prove a preliminary result that is essential for the rest of this paper.

The bounds (3), (4) and (5) clearly increase to infinity as N → ∞, unless β > 2.
However, we are interested in a result that is valid for constant d as well as d = N
(i.e., where β ∈ [0, 1]), so we do not want to add conditions on β. Instead, we must
consider the scaling of the vector of queue lengths to argue that the bounds (3), (4)
and (5) imply SSC. Indeed, Proposition 1 provides a multiplicative SSC result, which
means collapse of the scaled vector of queue lengths. Observe that Theorem1 provides
convergence in distribution of the average queue length scaled by N 1−α . Therefore,
the SSC result should imply that N 1−αq(N )

⊥ is asymptotically negligible. In fact, using

the bounds from Proposition 1 we obtain that N 1−αq(N )
⊥ is negligible when α+β > 3,
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which is the same condition from Theorem 1 and can be satisfied for constant d or
d = N .

We end this section with the result we use to handle the indicator function from the
generator matrix G. When one computes the drift of any function, we get a term of the
form 1{qi>0} for each i ∈ [N ]. As mentioned above, this term represents that service
cannot occur at empty queues and, therefore, the queue lengths cannot be negative. In
this paper, we handle this indicator function using the property 1{qi>0} = 1− 1{qi=0}
for every i ∈ [N ] and the following lemma. In fact, Lemma 1 is repeatedly used in
the proof of SSC, in the two proofs that we provide for Theorem 1 and in the proof of
Theorem 2.

The result presented in Lemma 1 is more general than the load balancing system
described in Sect. 2, and holds for a variety of routing algorithms. All we need is
throughput optimality, which we define below for clarity.

Definition 2 [Throughput optimality]We say that a routing algorithmA is throughput
optimal for the load balancing system described in Sect. 2 if the Markov chain {q(t) :
t ∈ R+} operating under A is positive recurrent for all λ ∈ (0, 1).

Now we present the result.

Lemma 1 Consider a load balancing system as described in Sect. 2, where the routing
policy is throughput optimal. Let λ ∈ (0, 1) be the arrival rate per server, and let q be
a steady-state random vector which is limit in distribution of {q(t) : t ∈ R+}. Then,

E

[
N∑

i=1

1{qi=0}
]

= N (1 − λ).

Note that if we use λ(N ) in this lemma, we obtain

E

[
N∑

i=1

1{
q(N )
i =0

}

]

= N 1−α.

Now we prove the result.

Proof (of Lemma 1) Take M ∈ Z+, and consider the test function VM (q) =
min

{∑N
i=1 qi , M

}
. The proof follows after setting its drift to zero in steady state

and letting M → ∞.
We first compute the drift, considering the three cases: (i)

∑N
i=1 qi < M , (ii)

∑N
i=1 qi = M , and (iii)

∑N
i=1 qi > M . Observing that �VM (q)1{∑N

i=1 qi>M
} = 0,

we obtain

�VM (q) = 1{∑N
i=1 qi<M

}

⎛

⎝λN −
N∑

j=1

1{q j>0}
⎞

⎠− 1{∑N
i=1 qi=M

}

⎛

⎝
N∑

j=1

1{q j>0}
⎞

⎠

(a)= 1{∑N
i=1 qi<M

}λN − 1{∑N
i=1 qi≤M

}

⎛

⎝
N∑

j=1

1{q j>0}
⎞

⎠ (6)
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where (a) holds because 1{∑N
i=1 qi=M

}+1{∑N
i=1 qi<M

} = 1{∑N
i=1 qi≤M

} by properties

of indicator functions, and reorganizing terms.
Observe that E

[|VM (q(t))|] < ∞ by definition of the test function VM (q), and
supq∈ZN+ |Gq,q | = N (λ + 1) < ∞ by definition of G in (1). Hence, E

[
�VM (q)

] = 0
in steady state. Applying this property to (6) and reorganizing terms, we obtain

λNP

(
N∑

i=1

qi < M

)

= E

⎡

⎣1{∑N
i=1 qi≤M

}

⎛

⎝
N∑

j=1

1{q j>0
}

⎞

⎠

⎤

⎦ .

Now we take the limit as M → ∞. Observe that {q(t) : t ∈ R+} is positive recurrent
and, therefore, P

(∑N
i=1 qi < ∞

)
= 1. Hence, we obtain

λN = E

[
N∑

i=1

1{qi>0}
]

= N − E

[
N∑

i=1

1{qi=0}
]

.

The result holds after reorganizing terms. ��
Observe that in Lemma 1we do not need to assume that routing occurs according to

power-of-d choices. Even though the drift is defined in terms of the generator matrix
G, and this matrix changes with the routing algorithm, the proof of Lemma 1 does
not use the details of G. We only use that, if there is an arrival, the total queue length
increases by 1 and, if there is a departure (when the system is not empty), the total
queue length decreases by 1.

Remark 2 An alternative proof of Lemma 1 is using Little’s law as follows. The

expected number of busy servers E
[∑N

i=1 1{qi>0}
]
equals the expected arrival rate

λN multiplied by the expected time a job is processed, which is 1. We presented a
proof using the Drift method above to highlight the similarities between the method
in continuous and discrete-time systems.

Remark 3 In the proof of Lemma 1, we use the test function VM (q), which is bounded
by M with probability 1, even if the expected total queue length is infinite. If we
additionally assume that E

[
q�

]
< ∞, we can instead use the linear test function

V
(q) = ∑N
i=1 qi to prove the result. Whether E

[
q�

]
< ∞ or not depends on the

routing policy. For example, random routing, power-of-d choices and JSQ ensure that
the expected total queue length is finite in steady state for any finite N .

In the last remark we claim that three routing policies yield finite expected total
queue length for the load balancing system. The first observation for this proof is that
it suffices to show that the expected total queue length is finite under random routing.
Among the three routing policies, random routing results in the longest expected
number of jobs in the system because it does not optimize the choice of the server
where the new job goes.

To prove that random routing yields finite total expected queue length, there are
several options. For brevity, we only discuss two methods here. One option is the
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Foster-Lyapunov approach, as indicated in [23,Corollaries 6.15 and 6.18]. In this
approach we bound the drift of the test function V2(q) = ‖q‖2 to obtain the result.

Another option is using the simplicity of random routing to compute the its total
expected queue length. Since the arrivals to the system follow a Poisson process and
routing is random (and independent of the arrival process), the splitting property of
the Poisson process implies that arrivals to each queue also follow a Poisson process.
Hence, random routing results in N M/M/1 queues, and the mean queue length of
an M/M/1 queue is known (see [23,Section 6.6], for example).

Remark 4 In the classical heavy-traffic regime, one defines the heavy-traffic parameter

as ε
	= μ� −λ� , whereμ� is the total service rate (the sum of the mean service rate of

each server) and λ� is the total arrival rate. Then, one parametrizes the vector of queue
lengths by ε and can show that ε 1

N

∑N
i=1 q

(ε)
i ⇒ ϒ̃ , where ϒ̃ is an exponential random

variable whose mean depends on the variance of the arrival and service processes.
Further, one can show that εq(ε) ⇒ 1ϒ̃ [15, 17, 30].

In this paper we study the many-server heavy-traffic regime, and our goal is to find
the value of α such that the scaled average queue length converges in distribution to
an exponential random variable. In Theorem 1 we show convergence in distribution of
the total queue length scaled by N−α , which is equivalent to the average queue length
scaled by N 1−α . Additionally, observe that the difference between the total service
and arrival rate in this paper is N 1−α . In other words, in the many-server heavy-traffic
regime, N 1−α plays the role of the heavy-traffic parameter ε. Further, in the classical
heavy-traffic regime there is an analogous result to Lemma 1, which is key to bound
the so-called unused service.

Remark 5 As mentioned above, Lemma 1 is essential in the analysis. In discrete-time
systems, there is an analogous of the indicator functions, known as unused service. In
simple words, one models the number of jobs that each server processes in one time
slot with the potential service, which is a random variable independent of the queue
lengths and arrival processes. Then, the number of processed jobs is the minimum
between the potential service and the number of jobs in the queue. The difference
between the potential and actual service is the unused service. Hence, similarly to the
indicator functions, the unused service prevents the queue lengths to go negative. The
key property of the unused service is that, whenever it’s positive, the queue is empty in
the next time slot. This property is analogous to the indicator function 1{qi=0}, which
is positive only when the queues are empty and, hence, the server cannot process a job.
This property of the unused service is key in the analysis of discrete-time systems, as
it greatly facilitates the computation of performance measures such as the moments
of the queue lengths and their distribution [15, 28, 30, 35, 36]. We will show that
handling the indicator function 1{qi=0} is key in the proofs we provide of Theorem 1.

3 Transformmethod: Proof of Theorem 1

The first proof of Theorem 1 that we present is motivated by the Transform method
introduced in [30]. Before providing the proof, we briefly summarize the main idea
and the steps of the method.
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3.1 Review of the Transformmethod introduced in [30]

In [30] the authors introduce a Transform method based on the Drift method [15, 28,
35, 36], to compute the heavy-traffic distribution of the vector of queue lengths of
SPNs that satisfy the CRP condition, i.e., that behave as a single-server queue in the
limit.

Overview

The Transform method introduced in [30] uses an exponential transformation of the
queue lengths to compute their heavy-traffic distribution. This exponential transforma-
tion can be the characteristic function, the MGF or the one-sided Laplace transform.
In [30] the focus is on using the MGF. The authors propose a two-step procedure that
yields the limiting MGF of the vector of queue lengths. In the first step, the goal is to
obtain an implicit equation for theMGF of the queue lengths that is valid for all traffic.
Then, in the second step, the heavy-traffic limit is taken and one needs to bound some
terms to obtain an explicit limiting MGF. In the case of the SPNs studied in [30], this
limit corresponds to the MGF of an exponential random variable.

Prerequisites for the MGFmethod

The two prerequisites of the MGF method are positive recurrence of the vector of
queue lengths and SSC to a one-dimensional subspace. In the first step of the MGF
method, the idea is to use the key unused service property described in Remark 5 to
obtain an equation that is valid for all traffic. In this step, using SSC is key to obtain an
expression that yields the exact MGF in the heavy-traffic limit. Then, one sets to zero
the drift of the MGF and obtains an implicit equation, which depends on the MGF
of the arrivals, the potential service and the unused service. In the second step of the
MGF method, the goal is to bound the MGF of the unused service and compute the
heavy-traffic limit of the MGF of the scaled queue lengths.

In Sect. 3.2 we use the key ideas of the MGF method described above, and we
extend them to be used for the load balancing system modeled in continuous time in
the many-server heavy-traffic regime (as described in Sect. 2). In this case, the role
of the unused service is played by the indicator functions 1{qi (t)=0} for i ∈ [N ], since
no job can be served from the i th queue if qi (t) = 0. In fact, this indicator function
satisfies the key property 1{qi=0}qi = 0 with probability 1 for all i ∈ [N ], which
written in ‘exponential form’ yields 1{qi=0} = 1{qi=0} exp (θ̃qi), where θ̃ is any real
number. We present the details of the proof in Sect. 3.2.

3.2 Proof of Theorem 1 using the Transformmethod

In this proof we use one-sided Laplace transform to illustrate a different transform
that falls in the scope of the work of [30]. The exponential equation required for Step
1 is accomplished by the following lemma.
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Lemma 2 Consider a load balancing systemoperating under power-of-d choices, with
d = �cNβ�, as described in Theorem 1. Given a vector q ∈ Z

N+ and N ∈ Z+, define

φ(q, N )
	= (exp (θN−αq�) − 1)

(
N∑

i=1

1{qi=0}

)

,

where q�
	= ∑N

i=1 qi . For every N ∈ Z+, if

|θ | <
1

4�α − 1��log(N )�N 1−α
log
(
1 + λ0(d−1)

2N2

)
,

then,

∣∣∣E
[
φ
(
q(N ), N

)]∣∣∣

≤ 2Cλ0|θ |
N

(1−α)
(
1− 1

r

)

�α − 1��log(N )�N 2 exp
(
4|θ |�α−1��log(N )�N3−α

λ0(d−1)

)

λ0(d − 1) + 2N 2 (1 − exp (4|θ |�α−1��log(N )�N1−α))
.

This implies that, if α + β > 3, then E

[
φ
(
q(N ), N

)]
is o(N 1−α).

The proof of Lemma 2 is presented in Appendix A.1, and heavily uses the SSC
result presented in Proposition 1. Now we prove the theorem.

Proof (of Theorem 1 using Transform method) We omit the dependence on N of the
variables, and we work with d instead of �cNβ� for ease of exposition. This proof is
based on the use of the test function Vexp(q)

	= exp (θN−αq�), where θ < 0. Using the
definition of drift, we obtain that for any q ∈ Z

N+

�Vexp(q)

= exp (θN−αq�)

(
N∑

i=1

λN

(N−i
d−1

)

(N
d

) (exp (θN−α) − 1) + N (exp (−θN−α) − 1)

)

−
(

N∑

i=1

1{qi=0}

)

exp (θN−αq�) (exp (−θN−α) − 1)

(a)= exp (θN−αq�)

(

λN (exp (θN−α) − 1) +
(

N −
N∑

i=1

1{qi=0}

)

(exp (−θN−α) − 1)

)

(b)= (exp (−θN−α) − 1) exp (θN−αq�)

(

N (1 − λ exp (θN−α)) −
N∑

i=1

1{qi=0}
)
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(c)= (exp (−θN−α) − 1) (exp (θN−αq�) N (1 − λ exp (θN−α))

−
N∑

i=1

1{qi=0} − φ(q, N )

)

,

where (a) holds because
∑N

i=1

(N−i
d−1

) = (N
d

)
; (b) holds by factorizing the term

(exp (−θN−α) − 1) and rearranging terms; and (c) holds for the function φ(q, N )

defined in Lemma 2.
Now we set the drift of Vexp(q) to zero in steady state. Observe that, since θ < 0,

we have E
[
exp (θN−αq�)

] ≤ 1. Additionally, Gq,q ≤ N (λ + 1) < ∞. Then, we
know E

[
�Vexp(q)

] = 0. Therefore, taking expected value with respect to stationary
distribution in the expression above, replacing λ = 1 − N−α , using Lemma 1 and
rearranging terms we obtain

E
[
θN−αq�

] = N 1−α + E
[
φ(q, N )

]

N
(
1 − (1 − N−α) exp (θN−α)

) . (7)

This completes Step 1. Observe that (7) gives an expression for the one-sided Laplace
transform of N−αq� that is valid for all N . However, the numerator depends on
E
[
φ(q, N )

]
, which depends on the queue lengths.

Now we move to the second step, where the goal is to take the many-server heavy-
traffic limit. The fraction (7) is of the form 0

0 in the limit as N → ∞, so we take
Taylor expansion of the exponential function in the denominator. Expanding up to
second order and canceling the factor N 1−α from the numerator and the denominator
we obtain

E
[
exp (θN−αq�)

] = 1 + Nα−1
E
[
φ(q, N )

]

1 − θ + O(N−α)
.

Finally, taking the limit as N → ∞ we obtain

lim
N→∞E

[
exp (θN−αq�)

] = 1

1 − θ
,

which is the one-sided Laplace transform of an exponential randomvariablewithmean
1. ��

Observe that (7) is valid for all N . Hence, it can be used to obtain an error bound
and rate of convergence between E

[
exp (θN−αq�)

]
and 1

1−θ
, which is the limiting

one-sided Laplace transform. In this paper we do not perform this step for brevity.

3.3 Rate of convergence of the first moment

In Theorem 1 we showed convergence in distribution of the average queue length
scaled by N 1−α (or, equivalently, the total queue length scaled by N−α). However,
convergence in distribution is not a sufficient condition to conclude convergence of
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the expected value. In other words, in Theorem 1 we showed N−αq(N )
� ⇒ ϒ , where

ϒ is an exponential random variable with mean 1. However, from this statement we

cannot directly conclude that limN→∞ E

[
N−αq(N )

�

]
= 1. In this section we show

that the last result holds using the Drift method [15, 35, 36, 53].We first state the result
formally.

Theorem 2 Consider a sequence of load balancing systems operating under power-
of-d with d = �cNβ�, parametrized by N as described in Sect. 2. If d ≥ 2, then

∣∣
∣∣∣
E

[
N∑

i=1

qi

]

− Nα

∣∣
∣∣∣
≤ 1 +

(
Ce

c

)

�α − 1� �log(N )�
( �cNβ�

�cNβ� − 1

)
N 3−β, (8)

where C is the constant from Proposition 1. Additionally, if α + β > 3, then

lim
N→∞ N−α

E

[
q(N )

�

]
= 1.

Note that the second part of the theorem is an immediate consequence of the error
bound because, after multiplying everything by N−α , the right-hand side of (8) con-
verges to zero as N → ∞.

Similarly to Theorem 1, the case of power-of-d choices and JSQ are immediate
consequences of Theorem 2. We formally state them below.

Corollary 3 Consider a sequence of load balancing systems operating under power-
of-d choices with constant d, parametrized by N as described in Sect. 2. If d ≥ 2 and
α > 3, then

lim
N→∞ N−α

E

[
q(N )

�

]
= 1.

The proof of Corollary 3 holds easily after letting β = 0 in Theorem 2. Now we
present the formal result for JSQ routing.

Corollary 4 Consider a sequence of load balancing systems operating under JSQ,
parametrized by N as described in Sect. 2. If α > 2, then

lim
N→∞ N−α

E

[
q(N )

�

]
= 1.

The proof of Corollary 4 holds after realizing that JSQ is equivalent to power-of-d
choices with d = N . Hence, it suffices to replace c = β = 1 in Theorem 2.

In the rest of this section, we prove Theorem 2 using the Drift method. In the Drift
method there are two main steps. First, one shows SSC (which we did in Proposition
1), and secondly, one sets to zero the drift of V‖(q) = ‖q‖‖2 in steady state (provided
that its expectation is finite). To perform the second step, we first compute the drift

of the test function V‖(q)
	= ∥∥q‖

∥∥2. We provide the result in the following auxiliary
lemma.
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Lemma 3 Consider a load balancing system as described in Sect. 2. Let V‖(q)
	=

∥∥q‖
∥∥2. Then,

�V‖(q) = λ

N∑

i=1

(N−i
d−1

)

(N
d

)

⎛

⎝1 + 2
N∑

j=1

q j

⎞

⎠+ 1

N

N∑

i=1

(
1 − 1{qi=0}

)
⎛

⎝1 − 2
N∑

j=1

q j

⎞

⎠ .

We present the proof of Lemma 3 in Appendix A.2.

Proof (of Theorem 2) Similarly to our previous proofs, we omit the dependence on N
of the variables and we work with d instead of �cNβ� for ease of exposition. We start
computing the drift of V‖(q) = ‖q‖‖2. By Lemma 3, and since

∑N
i=1

(N−i
d−1

) = (N
d

)
,

we obtain

�V‖(q) = λ

(

1 + 2
N∑

i=1

qi

)

+ 1

N

(

N −
N∑

i=1

1{qi=0}

)(

1 − 2
N∑

i=1

qi

)

.

Now we set the drift of V‖(q) to zero. We skip the proof of E
[
V‖(q)

]
< ∞ for ease

of exposition. Taking expectation with respect to the stationary distribution, replacing

λ = 1−N−α , using Lemma 1 to replaceE
[∑N

i=1 1{qi=0}
]

= N 1−α and reorganizing

terms, we obtain:

N−α
E

[
N∑

i=1

qi

]

= 1 − N−α + 1

N
E

⎡

⎣
(

N∑

i=1

1{qi=0}
)⎛

⎝
N∑

j=1

q j

⎞

⎠

⎤

⎦ . (9)

We bound the last term of (9) using SSC. Specifically, we use (4), which establishes
that for any positive integer r we have

E
[∥∥q⊥

∥∥r ]
1
r ≤ Cr

(
N 2

d − 1

)
,

where C is a constant.
First, note 1{qi=0}qi = 0 with probability 1 for all i ∈ [N ]. Then,

1

N

(
N∑

i=1

1{qi=0}
)⎛

⎝
N∑

j=1

q j

⎞

⎠ =
N∑

i=1

1{qi=0}
⎛

⎝ 1

N

N∑

j=1

q j − qi

⎞

⎠

(a)= −
N∑

i=1

1{qi=0}q⊥i ,
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where q⊥i is the i
th element of q⊥ and (a) holds by the definition of q⊥ in (2). Then,

1

N

∣∣∣∣∣
∣

(
N∑

i=1

1{qi=0}
)⎛

⎝
N∑

j=1

q j

⎞

⎠

∣∣∣∣∣
∣
=
∣∣∣∣∣
E

[
N∑

i=1

1{qi=0}q⊥i

]∣∣∣∣∣

(a)≤ E

[
N∑

i=1

1{qi=0}
]1− 1

r

E
[‖q⊥‖rr

] 1
r

(b)≤ N
(1−α)

(
1− 1

r

)

Cr

(
N 2

�cNβ� − 1

)

= N
(1−α)

(
1− 1

r

)
C

c
rN 2−β

(
cNβ

�cNβ� − 1

)

=
(
C

c

)

r N 3−α−βN
α−1
r

(
cNβ

�cNβ� − 1

)

(c)≤
(
Ce

c

)

�α − 1� �log(N )�

×
( �cNβ�

�cNβ� − 1

)
N 3−α−β,

where r is a positive integer. Here, (a) holds by Hölder’s inequality; (b) holds by
Lemma 1 and by Proposition 1 for r ≥ 2 because of the inequalities of norms; and

(c) holds by setting r = �α − 1� �log(N )�, because N
α−1

�α−1��log(N )� ≤ e, and because
cNβ ≤ �cNβ� by definition of the ceiling function. Using this result in (9), we obtain
∣∣∣∣∣
N−α

E

[
N∑

i=1

qi

]

− 1

∣∣∣∣∣
≤ N−α +

(
Ce

c

)

�α − 1� �log(N )�
( �cNβ�

�cNβ� − 1

)
N 3−α−β.

This proves the theorem. ��
As we show in Sect. 4, using Stein’s method one immediately obtains both: con-

vergence of the queue lengths in distribution and in expected value. However, the
Transform method we used in Sect. 3.2 only provides convergence in distribution. For
completeness, we provided the proof of convergence in mean in the last subsection,
and we used the Drift method for consistency. An alternate path to prove both types
of convergence using Transform methods would be to consider θ ∈ R, as opposed
to θ < 0, and obtain convergence of the MGF (also known as two-sided Laplace
transform). The proof is essentially the same as we developed in this section, with the
exception that, to set the drift to zero, one needs to show that E

[
exp

(
θN−αq(N )

�

)]
< ∞

for |θ | < , where  is a constant independent of N . This step might be challenging
in some systems.
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4 Rate of convergence inWasserstein’s distance

The proof we provide in this section is based on bounding the Wasserstein’s distance
between the scaled total queue length and an exponential random variable. We start
with the definition of this metric as presented in [44].

Definition 3 For two probability measures ν1 and ν2, the Wasserstein’s distance
between them is

dW (ν1, ν2)
	= sup

h∈Lip(1)

∣∣∣∣

∫
h(x) dν1(x) −

∫
h(x) dν2(x)

∣∣∣∣ ,

where Lip(1)
	= {h : R → R such that |h(x) − h(y)| ≤ |x − y|} is the set of Lipschitz

functions with constant 1.

For random variables X and Y with laws ν1 and ν2, respectively, wewrite dW (X ,Y )

instead of dW (ν1, ν2), and when the measures are clear from the context we write

dW (X ,Y ) = sup
h∈Lip(1)

|E [h(X)] − E [h(Y )]| .

In the rest of this section we prove the following theorem.

Theorem 3 Consider a load balancing system operating under power-of-d choices
with d = �cNβ�, as described in Theorem 1. Letϒ be an exponential random variable
with mean 1. Then,

dW
(
(1 − λ)q�,ϒ

) ≤ Ce

(
N 3(1 − λ)

d − 1

)⌈
log
(

1
N (1−λ)

)⌉
+ 5

3
(1 − λ), (10)

where C is the constant from Proposition 1.

Note that if we let λ = 1 − N−α and α + β > 3, the right-hand side of (10)
converges to zero as N → ∞. It is known that convergence to zero of theWasserstein’s
distance implies convergence in distribution [20,Theorem 2]. Therefore, since one of
the assumptions of Theorem 1 is that α + β > 3, we can prove Theorem 1 as a
consequence of Theorem 3.

The Wasserstein’s distance considers the family of all Lipschitz-1 functions. Then,
one can use specific functions to obtain the rate of convergence of a variety of functions
of (1−λ)q� andϒ . In the next corollary,we showhow toobtain the rate of convergence
of the mean as a consequence of Theorem 3.

Corollary 5 Consider a load balancing system as described in Theorem 3. Then,

∣
∣E
[
(1 − λ)q�

]− 1
∣
∣ ≤ Ce

(
N 3(1 − λ)

d − 1

)⌈
log
(

1
N (1−λ)

)⌉
+ 5

3
(1 − λ).

123



Queueing Systems (2022) 101:353–391 373

The proof of Corollary 5 holds by noticing that f (x) = x is a Lipschitz-1 function
and, hence,

∣∣E
[
(1 − λ)q�

]− 1
∣∣ ≤ dW

(
(1 − λ)q�,ϒ

)
.

This approach is an alternate proof to Theorem 2, and shows the power of Stein’s
method.

Now we prove Theorem 3. We start with a result presented in [44,Theorem 5.4 part
1].

Lemma 4 Let Y be a random variable with E [Y ] < ∞, and let ϒ be an exponential
random variable with mean 1. Define

FW
	= {

g : R → R such that g(0) = 0, ‖g′‖ ≤ 1, ‖g′′‖ ≤ 2
}
.

Then,

dW (Y , ϒ) ≤ sup
g∈FW

∣∣E
[
g′(Y ) − g(Y )

]∣∣ .

Now we prove the theorem.

Proof (of Theorem 3) Similarly to all our previous proofs, for ease of exposition we
omit the dependence on N of the variables and we use d instead of �cNβ�. We use
Lemma 4 with Y = (1 − λ)q� . Let f be a differentiable function such that g =
f ′ ∈ FW . By assuming differentiability we do not lose generality, for the following
reason. Observe that f ′ ∈ FW implies that f ∈ Lip(1) and, hence, it implies that f is
integrable. Therefore, if f ′ ∈ FW , then f is well defined [56,Theorem 7.2].

By definition of drift, for any vector q ∈ Z
N+ , we have

� f ((1 − λ)q�)

=
N∑

i=1

λN

(N−i
d−1

)

(N
d

)
(
f
(
(1 − λ)q� + 1 − λ

)− f
(
(1 − λ)q�

))

+
N∑

i=1

(
1 − 1{qi=0}

)
(
f
(
(1 − λ)q� − 1 + λ

)− f
(
(1 − λ)q�

)
)

(a)= λN

(
f
(
(1 − λ)q� + 1 − λ

)− f
(
(1 − λ)q�

))

+
(

N −
N∑

i=1

1{qi=0}

)(
f
(
(1 − λ)q� − (1 − λ)

)− f
(
(1 − λ)q�

))

(b)= λN

(
(1 − λ) f ′((1 − λ)q�

)+ (1 − λ)2

2
f ′′((1 − λ)q�

)+ (1 − λ)3

6
f ′′′ (ξ1)

)

+ N

(
−(1 − λ) f ′((1 − λ)q�

)+ (1 − λ)2

2
f ′′((1 − λ)q�

)− (1 − λ)3

6
f ′′′(ξ2)

)
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+
(

N∑

i=1

1{qi=0}

)(
(1 − λ) f ′((1 − λ)q�

)− (1 − λ)2

2
f ′′((1 − λ)q�

))

+
(

N∑

i=1

1{qi=0}

)
(1 − λ)3

6
f ′′′(ξ3)

where ξ1 is between (1 − λ)q� and (1 − λ) (q� + 1), and ξ2, ξ3 are between (1 − λ)

and (1 − λ) (q� − 1) Here, (a) holds because
∑N

i=1

(N−i
d−1

) = (N
d

)
; and (b) holds by

taking Taylor approximation.
Since f ′ ∈ FW , we know that f is integrable. Then, we can set its drift to zero in

steady state. Taking expectationwith respect to stationary distribution and reorganizing
terms, we obtain

E
[
f ′((1 − λ)q�

)]

= 1

N (1 − λ)
E

[(
N∑

i=1

1{qi=0}
)

f ′((1 − λ)q�

)
]

+
(
1 + λ

2

)
E
[
f ′′((1 − λ)q�

)]

− 1

2N
E

[(
N∑

i=1

1{qi=0}
)

f ′′((1 − λ)q�

)
]

+ λ(1 − λ)

6
E
[
f ′′′(ξ1)

]

−
(
1 − λ

6

)
E
[
f ′′′ (ξ2)

]+
(
1 − λ

6N

)
E

[(
N∑

i=1

1{qi=0}
)

f ′′′(ξ3)
]

.

Using the last expression and the triangle inequality, we have

∣∣E
[
f ′((1 − λ)q�

)− f ′′((1 − λ)q�

)]∣∣

≤ 1

N (1 − λ)
E

[(
N∑

i=1

1{qi=0}
)
∣∣ f ′((1 − λ)q�

)∣∣
]

+
∣∣∣
∣
λ − 1

2

∣∣∣
∣E
[| f ′′((1 − λ)q�

)|]

+ 1

2N
E

[(
N∑

i=1

1{qi=0}
)
∣∣ f ′′((1 − λ)q�

)∣∣
]

+ λ(1 − λ)

6
E
[∣∣ f ′′′(ξ1)

∣∣]

+
(
1 − λ

6

)
E
[∣∣ f ′′′ (ξ2)

∣∣]+
(
1 − λ

6N

)
E

[(
N∑

i=1

1{qi=0}
)
∣∣ f ′′′(ξ3)

∣∣
]

. (11)

We bound term by term. For the first term we expand f ′((1 − λ)q�

)
in Taylor

series up to first order, around 0. Since f ′ ∈ FW , we know that f ′(0) = 0. Then,
f ′(1 − λ)q�

) = (1 − λ)q� f ′′(ξ4), where |ξ4| ∈ (0, q�

)
. Therefore, we obtain
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1

N (1 − λ)
E

[(
N∑

i=1

1{qi=0}
)
∣∣ f ′((1 − λ)q�

)∣∣
]

= 1

N
E

[(
N∑

i=1

1{qi=0}
)

q�

∣∣ f ′′(ξ4)
∣∣
]

(a)≤ 1

N
E

[(
N∑

i=1

1{qi=0}
)

q�

]

(b)= E

[
N∑

i=1

1{qi=0}
(
q�

N
− qi

)]

(c)= −E

[
N∑

i=1

1{qi=0}q⊥i

]

(d)≤ E

[
N∑

i=1

1{qi=0}
]1− 1

r

E
[∥∥q⊥

∥∥r
r

] 1
r

(e)≤ (1 − λ)1−
1
r N 1− 1

r E
[∥∥q⊥

∥∥r ]
1
r

( f )≤ C(1 − λ)1−
1
r r

(
N 3− 1

r

d − 1

)

,

where r > 1. Here, (a) holds because f ′ ∈ FW and, hence,
∣∣ f ′′(ξ4)

∣∣ ≤ 1; (b) holds
because 1{qi=0}qi = 0 for all i ∈ [N ]; (c) holds by definition of q⊥ in (2); (d) holds

by Hölder’s inequality; (e) holds because for any r ≥ 2 the r th norm lower bounds

Euclidean norm, and because E
[∑N

i=1 1{qi=0}
]

= N 1−α = N (1 − λ) by Lemma 1;

and ( f ) holds because, by SSC in Proposition 1, we have E
[∥∥q⊥

∥∥r ]
1
r ≤ Cr

(
N2

d−1

)
.

Taking r =
⌈
log
(

1
N (1−λ)

)⌉
, we obtain

1

N (1 − λ)
E

[(
N∑

i=1

1{qi=0}
)
∣∣ f ′((1 − λ)q�

)∣∣
]

≤ Ce

(
N 3(1 − λ)

d − 1

)⌈
log
(

1
N (1−λ)

)⌉
.

(12)

For the second term, since f ′ ∈ FW we obtain

(
1 − λ

2

)
E
[∣∣ f ′′((1 − λ)q�

)∣∣] ≤ 1 − λ

2
. (13)
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For the third term we obtain

1

2N
E

[(
N∑

i=1

1{qi=0}
)
∣∣ f ′′((1 − λ)q�

)∣∣
]

(a)≤ 1

2N
E

[
N∑

i=1

1{qi=0}
]

(b)= 1 − λ

2
, (14)

where (a) holds because f ′ ∈ FW ; and (b) holds by Lemma 1.
For the fourth term, since f ′ ∈ FW , we obtain

λ(1 − λ)

6
E
[∣∣ f ′′′(ξ1)

∣∣] ≤ λ(1 − λ)

3
. (15)

Similarly, for the fifth term we have

(
1 − λ

6

)
E
[∣∣ f ′′′(ξ2)

∣∣] ≤ 1 − λ

3
. (16)

For the last term, we obtain

(
1 − λ

6N

)
E

[(
N∑

i=1

1{qi=0}
)
∣∣ f ′′′(ξ3)

∣∣
]

(a)≤
(
1 − λ

3N

)
E

[(
N∑

i=1

1{qi=0}
)]

(b)= (1 − λ)2

3
(17)

where (a) holds because f ′ ∈ FW ; and (b) holds by Lemma 1.
Using (12)–(17) in (11) and rearranging terms, we obtain

E
[∣∣ f ′((1 − λ)q�

)− f ′′((1 − λ)q�

)∣∣]

≤ Ce

(
N 3(1 − λ)

d − 1

)⌈
log
(

1
N (1−λ)

)⌉
+ 5

3
(1 − λ).

This proves the result. ��

5 Proof of state space collapse

Before ending this paper, we prove the SSC result presented in Proposition 1. The proof
is based on [53,Lemma 10 in Appendix A], which we state below for completeness.

Lemma 5 Let {X(t) : t ∈ R+} be aCTMCover a countable state spaceX , with transi-
tion ratematrix GX . Suppose that it is irreducible, nonexplosive and positive recurrent,
and it converges in distribution to a random variable X as t → ∞. Consider a Lya-
punov function Z : X → R+ and suppose its drift satisfies the following conditions:

(C1) There exist constants γ > 0 and B > 0 such that �Z(x) ≤ −γ for any x ∈ X
with Z(x) > B
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(C2) νmax
	= sup

{
|Z(x ′) − Z(x)| : x, x ′ ∈ X and GX

x,x ′ > 0
}

< ∞.

(C3) G
	= sup

{−GX
x,x : x ∈ X } < ∞.

Then, for any nonnegative integer j , we have

P
(
Z(X) > B + 2νmax j

) ≤
(

Gmaxνmax

Gmaxνmax + γ

) j+1

, (18)

where

Gmax
	= sup

⎧
⎨

⎩

∑

x ′∈X :Z(x)<Z(x ′)
GX

x,x ′ : x ∈ X
⎫
⎬

⎭
.

As a result, for any positive integer r , the r th moment of Z(X) can be bounded as
follows:

E
[
Z(X)r

] ≤ (2B)r + (4νmax)
r
(
Gmaxνmax + γ

γ

)r

r ! (19)

In the proof of Proposition 1, we additionally use a bound on themoment generating
function of Z(X), which we present below.

Lemma 6 Let {X(t) : t ∈ R+} be a CTMC as described in Lemma 5, and sup-
pose it satisfies the three conditions therein. Let θ ∈ R be such that |θ | <

1
2νmax

log
(
1 + γ

Gmaxνmax

)
. Then,

E
[
exp (θ Z(X))

] ≤ exp (θB) γ

γ + Gmaxνmax(1 − e2νmaxθ )
.

The proof of Lemma 6 is presented in Appendix B.1.
In the next subsection we present a series of auxiliary lemmas that we use in the

proof of Proposition 1 and we prove in the appendix.

5.1 Auxiliary lemmas to prove Proposition 1

In the proof of Proposition 1, we use Lemmas 5 and 6 with Z(q) = ‖q⊥‖. To show
that condition (C1) is satisfied, we need to bound the drift of Z(q) outside a bounded

set. On this step of the proof, we use the definition of q⊥
	= q − q‖ and compute a

bound based on the properties of q and q‖. Before stating the result with these bounds,
we introduce the following notation.

Given a vector q ∈ Z
N+ , define the following functions:

V (q)
	= ‖q‖2 , V‖(q)

	= ∥
∥q‖

∥
∥2 , W⊥(q)

	= ∥
∥q⊥

∥
∥ . (20)
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Lemma 7 Given a vector q ∈ Z
(N )
+ , consider the functions V (q), V‖(q) and W⊥(q)

defined in (20). Then,

�W⊥(q) ≤ 1

2
∥∥q⊥

∥∥
(
�V (q) − �V‖(q)

)
.

We prove Lemma 7 in Appendix B.2. Using Lemma 7, the proof of (C1) reduces
to computing an upper bound on �V (q) and a lower bound on �V‖(q), which we
provide in the following lemmas.

Lemma 8 Consider a load balancing system operating under power-of-d choices, as
described in Proposition 1. Let V (q) be as defined in (20). Then, for any vector of
queue lengths q ∈ Z

(N )
+ we have

�V (q) ≤ N (λ + 1) − 2(1 − λ)

N∑

i=1

qi − 2λ

(
d − 1

N

)∥∥q⊥
∥∥ .

The proof of Lemma 8 is presented in Appendix B.3. In the next lemma we provide a
lower bound to �V‖(q).

Lemma 9 Consider a load balancing system as described in Sect. 2. Let V‖(q) be as

defined in (20). Then, for any vector of queue lengths q ∈ Z
(N )
+ we have

�V‖(q) ≥ −2(1 − λ)

N∑

i=1

qi .

Observe that we do not use the routing algorithm in the proof of Lemma 9. Indeed, the
proof is based on the definition of the drift, properties of the Euclidean norm and the
definition of indicator function. We present the proof of Lemma 9 in Appendix B.4.

5.2 Proof of Proposition 1

Using the lemmas proved in the previous subsection, we prove the SSC result stated
in Proposition 1.

Proof (of Proposition 1) We prove the proposition using d instead of �cNβ�, for ease
of exposition.

We show that each of the three conditions of Lemma 5 are satisfied. To show (C1),
we use Lemmas 7, 8 and 9. Specifically, using the bounds from Lemmas 8 and 9 in
Lemma 7 and canceling the term 2(1 − λ)

∑N
i=1 qi , we obtain

�W⊥(q) ≤ 1

2
∥∥q⊥

∥∥

(
N (λ + 1) − 2λ

(
d − 1

N

)∥∥q⊥
∥∥
)

= N (λ + 1)

2
∥∥q⊥

∥∥ − λ(d − 1)

N

(a)≤ N
∥∥q⊥

∥∥ − λ0(d − 1)

N
,
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where (a) holds because λ ∈ (λ0, 1). Therefore, (C1) is satisfied with

γ = λ0(d − 1)

2N
, and B = 2N 2

λ0(d − 1)
. (21)

Now we verify the (C2). Recall the definition of νmax:

νmax
	= sup

{∣∣∥∥q⊥
∥∥− ∥∥q ′⊥

∥∥∣∣ : q, q ′ ∈ Z
(N )
+ and Gq,q′ > 0

}
.

From the definition of the transition rate matrix G in (1), observe that if q, q ′ ∈ Z
N+

are such that Gq,q′ > 0, then there are only two options: either q ′ = q + e(i) or
q ′ = q − e(i) for some i ∈ [N ]. Then, by definition of q⊥ and linearity of projection,
we have, q ′⊥ = q⊥ ± (

e(i) − 1
N 1
)
. Then, by triangle inequality, we obtain

∥∥q ′⊥
∥∥ ≤ ∥∥q⊥

∥∥+
∥∥∥∥e

(i) − 1

N
1

∥∥∥∥ .

which implies

∥∥q⊥
∥∥− ∥∥q ′⊥

∥∥ ≤
∥∥∥∥e

(i) − 1

N
1

∥∥∥∥

(a)=
√

N − 1

N 2 +
(
1 − 1

N

)2

(b)=
√

1 − 1

N
(c)≤ 1,

where (a) holds by definition of the Euclidean norm; (b) holds after reorganizing
terms; and (c) holds because if 0 ≤ x ≤ 1 we have

√
x ≤ 1. Since the inequality

above holds for every pair of q, q ′ ∈ Z
N+ such that Gq,q′ > 0, we obtain

νmax ≤ 1. (22)

To verify condition (C3), observe from (1) that

G = N (λ + 1) , (23)

where themaximum is attainedwhen none of the queues is empty. Finally, observe that
Gmax ≤ G by definition, and the upper bound is indeed attained when q = q‖ �= 0.
Therefore,

Gmax = N (λ + 1) . (24)
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We verified that all the conditions are satisfied. Then, using (21), (22) and (24) in
(19) we obtain that for any positive integer r

E
[∥∥q⊥

∥∥r ] ≤
(

4N 2

λ0(d − 1)

)r

+
(
16N 2 + 4λ0(d − 1)

λ0(d − 1)

)r

r !
(a)≤ Cr

(
N 2

d − 1

)r

r !
(b)≤ Cr

(
N 2

d − 1

)r

rr+
1
2 ,

where (a) holds for some constant C ≥ 16 which is independent of λ, d, N , c, and r ;
and (b) holds by Stirling’s approximation and because e1−r ≤ 1. This proves (3).

From (3), observe that r
1
2r ismaximized at r = e, so r

1
2r ≤ exp

(
1
2e

)
. This completes

the proof of (4).
To prove (5) we use Lemma 6 and that λ ∈ (0, 1). Then, replacing d = �cNβ� we

obtain the results. ��

6 Conclusion and future work

In this paper we study a supermarket checkout system in the many-server heavy-traffic
regime. We parametrize the arrival rate so that the arrival rate per server is N−α , for
α > 0 where N is the number of servers. Specifically, we answer the question: how
fast should the number of servers grow with respect to the load to observe the classical
heavy-traffic behavior of the scaled average queue lengths?We show that under power-
of-d choices, where d = �cNβ�, we need α + β > 3. Then, the cases of constant
d and JSQ routing are immediate consequences of our result, and we obtain α > 3
and α > 2, respectively. We use two proof techniques: one based on the Transform
method proposed in [30] and the other one based on Stein’s method. We additionally
show the rate of convergence of the expected value.

The case of α ≤ 1 is well studied in the literature. Then, there is a gap between
our results and the literature. Future work is to explore how the system behaves if
α ∈ (1, 3] for power-of-d choices and if α ∈ (1, 2] JSQ. We believe that there are
only two phase transitions for α ∈ (0,∞): one at α = 1

2 which corresponds to the
Halfin–Whitt regime; and one at α = 1 which corresponds to the NDS regime. Hence,
we need to develop new proof techniques to close the gap.

Another line of future work is to create a unifying framework for all α ∈ (0,∞).
As mentioned in Sect. 1, the cases of α ∈ (0, 1] are well-studied in the literature.
However, the proof techniques are different for every phase of α. We believe there is
a framework which gives a generic result, where we can obtain the results from the
literature by simply plugging in the desired value of α.

Acknowledgements Wewould like to thank the anonymous reviewers for carefully checking the correctness
of our arguments and their meaningful feedback to improve the presentation of our paper.
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Appendix

A Details of proofs using Transformmethod

A.1 Proof of Lemma 2

Proof (of Lemma 2) We omit the dependence on N and t of the variables, for ease of
exposition. By definition of indicator function, for any i ∈ [N ] we have

1{qi=0} exp (θN−αq�) = 1{qi=0} exp (−θN1−αqi) exp (θN−αq�)

(a)= 1{qi=0} + 1{qi=0} (exp (−θN1−αq⊥i) − 1) ,

where q⊥i is the i th component of q⊥. Here, (a) holds by definition of q⊥ according to
(2), and after adding and subtracting 1{qi=0}. Then, recalling the definition of φ(q, N )

and reorganizing terms we obtain

φ(q, N )
	= (exp (θN1−αq�) − 1)

(
N∑

i=1

1{qi=0}

)

=
N∑

i=1

1{qi=0} (exp (−θN1−αq⊥i) − 1) .

We now compute the desired bound. We have

∣∣E
[
φ(q, N )

]∣∣ (a)≤ E

[
N∑

i=1

1{qi=0} |exp (−θN1−αq⊥i) − 1|
]

(b)≤ |θ |N 1−α
E

[
N∑

i=1

1{qi=0}|q⊥i | exp (|θ |N1−α |q⊥i |)
]

(c)≤ |θ |N 1−α
E

[
N∑

i=1

1{qi=0}
]1− 1

r

E

[
N∑

i=1

|q⊥i |r exp (|θ |N1−αr |q⊥i |)
] 1

r

(d)= |θ |N (1−α)
(
2− 1

r

)

E

[
N∑

i=1

|q⊥i |r exp (|θ |N1−αr |q⊥i |)
] 1

r

, (25)

where r > 1. Here, (a) holds by triangle inequality; (b) holds because | exp (x)−1| ≤
|x | exp (|x |) for all x ∈ R; (c) hods by Hölder’s inequality for the vectors X and Y with
elements Xi = 1{qi=0} and Yi = |q⊥i | exp (|θ |N1−α |q⊥i |) for i ∈ [N ], and noticing that
Xr
i = Xi because it is an indicator function; and (d) holds by Lemma 1.
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Now we bound the expectation in (25) using properties of norms, Cauchy-Schwarz
inequality and SSC. For r ≥ 2 we have

E

[
N∑

i=1

|q⊥i |r exp (|θ |N1−αr |q⊥i |)
] 1

r

(a)≤ E
[∥∥q⊥

∥∥r
r exp (|θ |N1−αr‖q⊥‖)

] 1
r

(b)≤ E
[∥∥q⊥

∥∥r exp (|θ |N1−αr‖q⊥‖)
] 1
r

(c)≤ E

[
‖q⊥‖2r

] 1
2r
E
[
exp (|θ |N1−α2r‖q⊥‖)

] 1
2r ,

(26)

where (a) holds using that |q⊥i | ≤ ‖q⊥‖ in the exponent and by definition of the r -
norm; (b) holds because the r -norm is smaller than the Euclidean norm for all r ≥ 2;
and (c) holds by Cauchy-Schwarz inequality.

Now we bound each of the terms in (26) using SSC. From Proposition 1, recall that
for every positive integer k we have

E

[∥∥q⊥
∥∥k
] 1
k ≤ Ck

(
N 2

d − 1

)
,

and for every θ∗ satisfying |θ∗| < 1
2 log

(
1 + λ0(d−1)

2N2

)
we have

E
[
exp

(
θ∗‖q⊥‖)] ≤

λ0(d − 1) exp
(

2θ∗N2

λ0(d−1)

)

λ0(d − 1) + 2N 2 (1 − exp (2θ∗))
.

Using these results in (26) with k = 2r and θ∗ = 2|θ |r N 1−α , we obtain

E

[
N∑

i=1

|q⊥i |r exp (|θ |N1−αr |q⊥i |)
] 1

r

≤ 2Cλ0

⎛

⎝
r N 2 exp

(
4|θ |r N3−α

λ0(d−1)

)

λ0(d − 1) + 2N 2 (1 − exp (4|θ |r N1−α))

⎞

⎠ .

Using this result in (25), we obtain

∣∣E
[
φ (q, N )

]∣∣ ≤ 2Cλ0|θ |
⎛

⎜
⎝

r N
(1−α)

(
1− 1

r

)

N 2 exp
(
4|θ |r N3−α

λ0(d−1)

)

λ0(d − 1) + 2N 2 (1 − exp (4|θ |r N1−α))

⎞

⎟
⎠ .
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Since this upper bound holds for every r ≥ 2, we minimize the bound with respect
to r and we obtain that r = �α − 1��log(N )� gives the tightest bound. Replacing this
value we obtain the result. ��

A.2 Proof of Lemma 3

In this proof we use the definition of drift and we reorganize terms appropriately.

Proof (of Lemma 3) We have:

�V‖(q)

= λN
N∑

i=1

(N−i
d−1

)

(N
d

)

(∥∥
∥∥
(
q + e(ψq (i))

)

‖

∥∥
∥∥

2

− ∥
∥q‖

∥
∥2
)

+
N∑

i=1

(
1 − 1{qi=0}

)

×
(∥∥∥
∥
(
q − e(i)

)

‖

∥∥∥
∥

2

− ∥∥q‖
∥∥2
)

(a)= λ

N∑

i=1

(N−i
d−1

)

(N
d

)

⎛

⎝1 + 2
N∑

j=1

q j

⎞

⎠+ 1

N

N∑

i=1

(
1 − 1{qi=0}

)
⎛

⎝1 − 2
N∑

j=1

q j

⎞

⎠ ,

where (a) holds by the definition of x‖ given a vector x in (2), and computing the
norms. This completes the proof. ��

B Details of the Proof of Proposition 1

B.1 Proof of Lemma 6

In the proof of Lemma 6, we use the bound (18) to compute an upper bound on the
moment generating function of Z(X).

Proof (of Lemma 6) First observe that Z(X) ≥ 0 by assumption of Lemma 5. Then,

exp (θ Z(X)) ≤ exp (|θ |Z(X)) .

We compute an upper bound for E
[
exp (|θ |Z(X))

]
. Let FZ (x) be the cumulative dis-

tribution function of Z(X). Then,

E
[
exp (|θ |Z(X))

]

=
∫ ∞

0
exp (|θ |x) dFZ (x)

(a)= [− exp (|θ |x)P
(
Z(X) > x

)]∞
0 + |θ |

∫ ∞

0
exp (|θ |x)P

(
Z(X) > x

)
dx

= P
(
Z(X) > 0

)+ |θ |
∫ B

0
exp (|θ |x)P

(
Z(X) > x

)
dx
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+ |θ |
∫ ∞

B
exp (|θ |x)P

(
Z(X) > x

)
dx

(b)≤ exp (|θ |B) +
∞∑

j=0

∫ B+2νmax( j+1)

B+2νmax j
|θ | exp (|θ |x)P

(
Z(X) > x

)
dx

(c)≤ exp (|θ |B) +
∞∑

j=0

∫ B+2νmax( j+1)

B+2νmax j
|θ | exp (|θ |x)P

(
Z(X) > B + 2νmax j

)
dx

(d)≤ exp (|θ |B) + exp (|θ |B) (exp (2|θ |νmax) − 1)

(
Gmaxνmax

Gmaxνmax + γ

)

×
∞∑

j=0

(
Gmaxνmax exp (2|θ |νmax)

Gmaxνmax + γ

) j

(e)= exp (|θ |B) γ

γ + Gmaxνmax(1 − exp (2νmax|θ |))

where (a) holds integrating by parts; (b) holds because probabilities are upper bounded
by 1, solving

∫ B
0 exp (|θ |x) dx , and breaking the last integral into intervals; (c) holds

because f (x) = 1 − FZ (x) = P
(
Z(X) > x

)
is a nonincreasing function; (d) holds

by (18) and solving the integral; and (e) holds after solving the geometric summation

and reorganizing terms, because |θ | < 1
2νmax

log
(
1 + γ

Gmaxνmax

)
by assumption and,

hence, the geometric sum converges. ��

B.2 Proof of Lemma 7

In this proof we use the definition of drift and properties of concave functions.

Proof (of Lemma 7) First observe that if g(x) is a differentiable concave function on
R+, we have that for any x, y ∈ R+

g(x) − g(y) ≤ g′(y)(x − y). (27)

Now, observe thatW⊥(q) = ∥∥q⊥
∥∥ =

√∥∥q⊥
∥∥2 and g(x) = √

x is a concave function.
Therefore, by definition of drift in Definition 1, and the generator matrix in (1), we
have

�W⊥(q)

= λN
N∑

i=1

(N−i
d−1

)

(N
d

)
(
W⊥

(
q + e(ψq (i))

)
− W⊥ (q)

)

+
N∑

i=1

(
1 − 1{qi=0}

) (
W⊥

(
q − e(i)

)
− W⊥(q)

)
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(a)≤ λN
N∑

i=1

(N−i
d−1

)

(N
d

)

(∥∥(q + e(ψq (i))
)
⊥
∥∥2 − ∥∥q⊥

∥∥2

2
∥∥q⊥

∥∥

)

+
N∑

i=1

(
1 − 1{qi=0}

)
(∥
∥(q − e(i)

)
⊥
∥
∥2 − ∥

∥q⊥
∥
∥2

2
∥∥q⊥

∥∥

)

(b)= λN

2
∥∥q⊥

∥∥

N∑

i=1

(N−i
d−1

)

(N
d

)
(
V
(
q + e(ψq (i))

)
− V (q) −

(
V‖
(
q + e(ψq (i))

)
− V‖(q)

))

+
N∑

i=1

(
1 − 1{qi=0}
2
∥∥q⊥

∥∥

)(
V
(
q − e(i)

)
− V (q) −

(
V‖
(
q − e(i)

)
− V‖(q)

))

(c)= 1

2
∥
∥q⊥

∥
∥
(
�V (q) − �V‖(q)

)

where (a) holds by (27) applied in the first and the second term in the following

way. In the first term we use x = ∥∥(q + e(ψq (i))
)
⊥
∥∥2 and y = ∥∥q⊥

∥∥2, and in the

second term we use x = ∥∥(q − e(i)
)
⊥
∥∥2 and y = ∥∥q⊥

∥∥2. Equality (b) holds by the
definition of V (·) and V‖(·) in (20) and because for any vector x ∈ R

N , we have

‖x⊥‖2 = ‖x‖2 − ∥∥x‖
∥∥2; and (c) holds by reorganizing terms and by definition of

drift. ��

B.3 Proof of Lemma 8

In this proof we use properties of the order statistics q(i) for i ∈ [N ]. Recall that q(i)

represents the i th shortest element of q, with ties broken by the minimum index.

Proof (of Lemma 8) We have

�V (q)

= λN
N∑

i=1

(N−i
d−1

)

(N
d

)
(∥∥∥q + e(ψq (i))

∥∥∥
2 − ‖q‖2

)

+
N∑

i=1

(
1 − 1{qi=0}

) (∥∥∥q − e(i)
∥
∥∥
2 − ‖q‖2

)

(a)= λN
N∑

i=1

(N−i
d−1

)

(N
d

)
(
1 + 2q(i)

)+
N∑

i=1

(1 − 1{qi=0}) (1 − 2qi )

(b)≤ N (λ + 1) − 2(1 − λ)

N∑

i=1

qi + 2λ
N∑

i=1

(
N
(N−i
d−1

)

(N
d

) − 1

)

q(i), (28)
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where (a) holds because, by definition of ψq(i), we have qψq (i) = q(i); and (b) holds

because 1{qi=0}qi = 0 for all i ∈ [N ], because∑N
i=1 1{qi=0} ≥ 0 and reorganizing

terms.
The last step of the proof is to show that

N∑

i=1

(
N
(N−i
d−1

)

(N
d

) − 1

)

q(i) ≤ −
(
d − 1

N

)∥∥q⊥
∥∥ , (29)

which we do at the end of this section. Using the bound (29), we obtain the result. ��
In the proof of (29), we use properties of the order statistics and majorization.

Specifically, we use the following lemma, which is proved in [38,Section 16.A.2.a].

Lemma 10 Consider three vectors a, b, x ∈ R
N . The inequality

N∑

i=1

ai x(i) ≤
N∑

i=1

bi x(i)

holds if and only if

(C1) The total sum satisfies

N∑

i=1

ai =
N∑

i=1

bi .

(C2) For every k ∈ [N ], the partial sums satisfy
N∑

i=k

ai ≤
N∑

i=k

bi .

Now we show (29).

Proof (of (29)) For each i ∈ [N ] define

ηi
	= N

(N−i
d−1

)

(N
d

) , (30)

and observe that ηi = 0 for i ≥ N − d + 1. Then,

N∑

i=1

(
N
(N−i
d−1

)

(N
d

) − 1

)

q(i) =
N∑

i=1

(ηi − 1) q(i).
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Observe that η1 = d. Then,

N∑

i=1

(ηi − 1) q(i)

= (d − 1)q(1) +
N∑

i=2

(ηi − 1) q(i)

(a)=
(
d − 1

N

) N∑

i=1

(
q(1) − qi

)+
N∑

i=1

(
ηi − N − d + 1

N

)
q(i) − (d − 1)q(1), (31)

where (a) holds after reorganizing terms. We bound each of the terms of (31). For the
first term we have

(
d − 1

N

) N∑

i=1

(
q(1) − qi

) (a)= −
(
d − 1

N

) N∑

i=1

∣∣qi − q(1)
∣∣

= −
(
d − 1

N

)∥∥q − q(1)1
∥∥
1

(b)≤ −
(
d − 1

N

)∥∥q − q(1)1
∥∥

(c)≤ −
(
d − 1

N

)∥∥q⊥
∥∥ ,

where (a) holds because q(1) = mini∈[N ] qi ; (b) holds because norm-1 upper bounds
the Euclidean norm; and (c) holds because, by definition of projection, the function

g(x) = ‖q − x1‖ is minimized at x = 1

N

∑N
i=1 qi , which equals the elements of q‖.

Then, the inequality holds by definition of q⊥
	= q − q‖.

Now we only need to show that

N∑

i=1

ηi q(i) − (d − 1)q(1) ≤
(
N − d + 1

N

) N∑

i=1

q(i).

We use Lemma 10 with a and b defined as follows:

a1
	= η1 − (d − 1) = 1, ai

	= ηi = N
(N−i
d−1

)

(N
d

) ∀i ∈ [N ], i ≥ 2

bi
	= N − d + 1

N
∀i ∈ [N ].
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We first show that condition (C1) is satisfied. To do so, we compute the sum of the
elements of a and b. For the vector a we obtain

N∑

i=1

ai = 1 + N
(N
d

)
N∑

i=2

(
N − i

d − 1

)
(a)= 1 + (N − 1)

(N−2
d−1

)

(N−1
d−1

)
(b)= N − d + 1,

where (a) holds after solving the summation; and (b) holds after simplifying the last
term.

For the vector b we obtain

N∑

i=1

bi =
N∑

i=1

N − d + 1

N
= N − d + 1,

where the last equality holds because the general term of the summation does not
depend on the index i . Hence, condition (C1) is satisfied.

To prove condition (C2), we consider three cases: (i) k ≥ N − d + 2, (ii) 2 ≤ k ≤
N − d + 1, and (iii) k = 1. First observe that in case (iii) the inequality trivially holds
after proving (C1). Now we prove the other two cases.

We start with case (i). Since k ≥ N − d + 2, we have
(N−k
d−1

) = 0 for all k.
Additionally, bi ≥ 0 for all i ∈ [N ] by definition. Therefore, condition (C2) is
satisfied for k ≥ N − d + 2.

For case (i) we compute the partial sums. We obtain

N∑

i=k

ai = N
(N
d

)
N∑

i=k

(
N − i

d − 1

)

(a)= N
(N
d

)
(
N + 1 − k

d

)(
N − k

d − 1

)

(b)= (N + 1 − k)

(N−k
d−1

)

(N−1
d−1

)

(c)= (N + 1 − k)

(N−2
d−1

)

(N−1
d−1

)

(d)= (N + 1 − k)

(
N − d

N − 1

)
(32)

where (a) holds after solving the summation; (b) holds after reorganizing terms; (c)
holds because k ≥ 2. Then, it suffices to show that

(32) ≤
N∑

i=k

bi = (N − k + 1)(N − d + 1)

N
,
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which is satisfied if and only if

N − d

N − 1
≤ N − d + 1

N
. (33)

Reorganizing terms in (33) we see that the condition is equivalent to d ≥ 1, which
holds by assumption. This completes the proof. ��

B.4 Proof of Lemma 9

The goal of this section is to compute a lower bound on �V‖(q). We use Lemma
3 (where we computed �V‖(q)), properties of the Euclidean norm and of indicator
functions.

Proof (of Lemma 9) From Lemma 3 we have

�V‖(q) = λ

N∑

i=1

(N−i
d−1

)

(N
d

)

⎛

⎝1 + 2
N∑

j=1

q j

⎞

⎠+ 1

N

N∑

i=1

(
1 − 1{qi=0}

)
⎛

⎝1 − 2
N∑

j=1

q j

⎞

⎠

(a)= λ − 2(1 − λ)

N∑

i=1

qi + 1

N

N∑

i=1

(
1 − 1{qi=0}

)

+ 2

N

(
N∑

i=1

1{qi=0}

)(
N∑

i=1

qi

)

(b)≥ −2(1 − λ)

N∑

i=1

qi , (34)

where (a) holds after reorganizing terms; and (b) holds because λ ≥ 0, 1−1{qi=0} ≥ 0

for all i ∈ [N ], and
(∑N

i=1 1{qi=0}
) (∑N

i=1 qi
)

≥ 0 since every term is nonnegative.

This completes the proof. ��
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