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Abstract
We consider an n ×n input-queued switch with uniform Bernoulli traffic and study the
delay (or equivalently, the queue length) in the regime where the size of the switch n
and the load (denoted by ρ) simultaneously become large.We devise an algorithmwith
expected total queue length equal to O((n5/4(1− ρ)−1) logmax(1/ρ, n)) for large n
and ρ such that (1−ρ)−1 ≥ n3/4. This result improves the previous best queue length
bound in the regime n3/4 < (1− ρ)−1 < n7/4. Under same conditions, the algorithm
has an amortized time complexity O(n + (1 − ρ)2n7/2/ logmax(1/ρ, n)). The time
complexity becomes O(n) when (1 − ρ)−1 ≥ n5/4.

Keywords Input-queued switch · Queue-size scaling · Stochastic network · Large
systems

Mathematics Subject Classification 68M20 · 60K25 · 60C05 · 90B15

1 Introduction

Input-queued switch models have been quite popular in the context of computer com-
munication networks, originally asmodels for the switching fabric in Internet switches
and more recently as models for data center networks. They are also of independent
interest to the applied probability and performance analysis communities as proto-
typical models of queueing networks with interacting resources. Mathematically, an

B Wentao Weng
wweng@mit.edu

R. Srikant
rsrikant@illinois.edu

1 Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, USA

2 Coordinated Science Lab, University of Illinois at Urbana-Champaign, Urbanna, IL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-021-09726-7&domain=pdf
http://orcid.org/0000-0002-7772-4950


136 Queueing Systems (2022) 100:135–166

input-queued switch can be viewed as a matrix of queues operating in discrete-time,
with independent packet arrival processes to each queue, which are often taken to
be Bernoulli processes for tractability. The key distinguishing property of an input-
queued switch is the following service constraint: at each time instant, we are only
allowed to serve at most one queue in each row and one queue in each column of the
matrix of queues. Additionally, when a queue is served, at most one packet can be
removed from it.

The input-queued switch model was first studied to design low-complexity
throughput-optimal scheduling algorithms. The scheduling algorithm called the
MaxWeight algorithmwas presented in [22], where the authors showed that scheduling
using a maximum weighted matching, with queue lengths as weights, is through-
put optimal. The algorithm was designed for networks that were more general than
input-queued switches. The algorithmwas rediscovered in the context of input-queued
switches in [13], where it was also shown that lower-complexity scheduling algorithms
such as maximum size and maximal matchings fail to be throughput optimal. Addi-
tionally, in [24] and [6], it was shown that the simpler maximal matching algorithm
achieves at least half the maximum throughput region.

Following throughput-optimality results, there has been much interest in designing
algorithms which are also delay optimal for input-queued switches. Note that, since
we can only serve at most one queue in each row and in each column in each time
slot, the total arrival rate to each column and to each row must be less than one
packet per time slot to ensure the stability of the queueing network. Let ρ denote the
maximum arrival rate to any column or row in the network. It has been conjectured
that there exists an algorithm under which the total queue length in the network scales
as O(n/(1 − ρ)). Using Little’s law, this statement is equivalent to saying that the
delay scales as O(1/(1 − ρ)). Another variant of the conjecture states that such a
scaling holds for the MaxWeight algorithm. These conjectures have been difficult to
prove, so a number of variants of the problem have been considered in the literature
which we will review next.

It was shown in [14,16] that the total queue length in the switch scales as O(n)

under the maximal matching algorithm if ρ < 0.5. The result is interesting due to
two reasons: (i) it shows that the delay in the switch is independent of the size of the
switch at least when the traffic is light and (ii) the result holds for themaximalmatching
algorithm which has low computational complexity. The other extreme traffic regime
is the heavy-traffic regime where n is fixed and ρ → 1. It was shown in [12] that the
product of the total queue length and (1 − ρ) converges to O(n) in the heavy-traffic
regimeunder theMaxWeight algorithm.The result in [12] builds upon aLyapunov drift
method developed in [7] which was further motivated by fluid models of state-space
collapse exhibited by input-queued switches [2,19,21] operating under theMaxWeight
algorithm. A common feature of these results is that the underlying algorithm does not
require any knowledge of ρ and the results hold for non-uniform and non-Bernoulli
traffic.

Since the above results do not fully address the O(n/(1−ρ)) queue length-scaling
conjecture, other relaxations have been considered for the scaling regime, the traffic
model and the scheduling algorithms. In [15], it was shown that an algorithm which
assumes an upper bound on ρ and uses a batch-scheduling model can achieve a queue
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length of O((n/(1−ρ)2) log n).Thework [18] proposed an algorithmwith exponential
running time that has a queue length of O(n/(1− ρ) + n3). If 1− ρ = 1/n, then the
queue length scales as O(n3)under both algorithms in [15,18] if neglecting logarithmic
terms. Thismotivates the question ofwhether it is possible to get a smaller queue length
in this traffic regime. This question has been answered for the special case of uniform
Bernoulli traffic in [17], who showed a scaling of O((n3/2/(1 − ρ)) log(1 − ρ)−1),
which was further improved in [25] to O((n/(1 − ρ)4/3) logmax(n, (1 − ρ)−1)).
It should be noted that the algorithms in [17,25] are batch-scheduling algorithms
of the type introduced in [15] but modified further to improve delay performance.
Additionally, the result in [25] does not require ρ = 1−1/n but does assume uniform,
Bernoulli traffic. Our goal in this paper is to improve the best-known scaling result
under uniform, Bernoulli traffic in the scaling regime ρ = 1 − 1/n or higher.

With this goal in mind, our main contribution in the paper is the following: we
design a new algorithm for scheduling in input-queue switches which leads to an
expected total queue length equal of O((n5/4(1− ρ)−1) logmax(1/ρ, n)) for ρ such
that (1 − ρ)−1 ≥ n3/4. The new result improves the previously known queue length
bound in the regime n3/4 < (1− ρ)−1 < n7/4. Our algorithm is of batching type, and
builds upon an integration of the Round-Robin idea in [17] and the lower envelope idea
in [25]. Crucially, the new algorithm utilizes the fact that Round-Robin allows each
queue to be served for an equal fraction of time. Such a property enables successive
implementation of Round-Robin and lower envelope matching, leading to a better
scheduling algorithm. Benefiting from the batching schedule, the proposed algorithm
has a small amortized time complexity O(n + (1−ρ)2n7/2/ logmax(1/ρ, n)). When
(1− ρ)−1 ≥ n5/4, the complexity becomes O(n), matching the optimal running time
of other low-complexity algorithms [11].
Notation:For twomatrices A and B, we use A ≥ B to denote that every element of A is
greater than or equal to the corresponding element of B.We denote the set {1, 2, . . . , n}
as [n] for n ∈ Z

+. This paper uses asymptotic notation. Let x be a positive parameter,
and f (x), g(x) be two positive real-valued function. We write f (x) = O(g(x)) if
lim supx→∞

f (x)
g(x)

< ∞; f (x) = ω(g(x)) if lim inf x→∞ f (x)
g(x)

= ∞.

2 Model

Consider an n × n input-queued switch where there are n input ports and n output
ports, and ports are labeled from 1 to n on each side. For each pair of input port i
and output port j , there is a queue Qi j which stores packets that arrive at input port i
which need to be routed to output port j . We assume time is slotted and takes values
in {1, 2, . . .}. Every queue is empty at slot 1. At a time slot τ , the following events
happen sequentially.

First, the scheduler decides a schedule σ = (σi j )n×n ∈ {0, 1}n×n . If σi j = 1, a
packet in queue Qi j is scheduled. But if there is no packet in the queue, the service
is wasted. Due to the internal structure of a switch, the schedule can include only one
packet out of an input port, and only one packet into an output port. Mathematically,
the constraint can be written as
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∀i ,

n∑

j ′=1

σi j ′ ≤ 1; ∀ j ,

n∑

i ′=1

σi ′ j ≤ 1. (1)

In other words, the schedule σ must be a matching. We may interchangeably use the
terms matchings or schedules for convenience. Let S be the set of perfect matchings,
i.e.,

∀i ,

n∑

j ′=1

σi j ′ = 1; ∀ j ,

n∑

i ′=1

σi ′ j = 1. (2)

As we can see, if we denote σi to be the unique j such that σi j = 1, then σ is exactly
a permutation of length n. On the other hand, if a queue matrix q satisfying q ≥ σ

for a perfect matching σ , then this schedule can serve exactly n packets, which is the
maximum amount of service per slot.

After scheduled packets leave, new packets arrive into the system. For each queue
Qi j , we assume that a new packet arrives with probability ρ

n , and no arrival arrives with
probability 1 − ρ

n . We assume that packet arrivals are independent among different
queues. That is to say, the arrival of packets to each queue follows an independent
Bernoulli process with rate ρ

n . It is assumed that ρ ∈ (0, 1), and ρ can scale with n.
The load of the system is also ρ because, for each port, the arrival rate is exactly ρ,
and the amount of service per slot is at most 1.

With a little abuse of notation, we use Qi j (τ ) to denote the queue length of queue
Qi j at the beginning of slot τ . Similarly, define Ai j (τ ) to be the total number of arrivals
to Qi j , and Si j (τ ) to be the total number of packets scheduled in Qi j during the first
τ slots. We assume Ai j (0) = Si j (0) = 0. Let σ(τ) be the chosen schedule for slot τ .
Then, the queue matrix Q(τ ) = (Qi j (τ ))n×n evolves as

Qi j (τ + 1) = (Qi j (τ ) − σi j (τ )
)+ + Ai j (τ ) − Ai j (τ − 1),

Qi j (τ + 1) = Ai j (τ ) − Si j (τ ).
(3)

Themain concern in this paper is to find a policy that canminimize the expected queue

length E

[∑
i j Qi j (τ )

]
at every time slot τ .

3 Main result

In this section, we present themain result of this paper. Define f = max(n, (1−ρ)−1).

Since we are considering a dynamical system, the amortized time complexity of an

algorithm is defined as the time-average computation, given by limt→∞
∑t

i=1 T (i)
t

where T (i) is the computation time at slot i .

Theorem 1 Consider an n × n switch with independent Bernoulli arrival processes
to each queue of rate ρ

n . Suppose (1 − ρ)−1 ≥ n0.75. Then, there exist a scheduling
policy such that
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– the amortized time complexity is O(n + (1 − ρ)2n3.5/ log( f )).

– for every time slot τ , it holds that, for large enough n,

E

⎡

⎣
∑

i, j

Qi j (τ )

⎤

⎦ ≤ 3n1.25(1 − ρ)−1 log( f ).

We would like to highlight that the policy claimed in Theorem 1 can be constructed,
and its construction is postponed until Sect. 5. When the load ρ scales as 1 − 1

n , we
have the following bound on the expected queue length. This new bound O(n9/4 log n)

improves the previous best-known result O(n7/3 log n) in [25].

Corollary 1 Under the setting in Theorem 1, suppose ρ = 1 − 1
n . Then, there exists a

scheduling policy with amortized time complexity O(n1.5/ log(n)) such that, for every
time slot τ , the following bound holds: for large enough n,

E

⎡

⎣
∑

i, j

Qi j (τ )

⎤

⎦ ≤ 3n2.25 log n.

4 Preliminaries

Before we describe our policy, we first introduce two known results which are essential
building blocks in the policy.

4.1 Minimum clearance time

The first result concerns the minimum clearance time of a queue matrix. Specifically,
the goal is to minimize the number of time slots to clear packets from a fixed queue
matrix q = (qi j )n×n . We call a policy that has minimum clearance time an optimal
clearing policy.

Let γ be the maximum number of packets among all input ports and output ports
in q. Then, the following theorem states that packets in q can be cleared in exactly γ

slots. The following theorem is adopted from [15, Fact 3].

Theorem 2 Let q = (qi j )n×n be a queue matrix. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n,
denote

hi =
n∑

j ′=1

qi j ′ ; c j =
n∑

i ′=1

qi ′ j ,

and let γ = max
{
maxi hi ,max j c j

}
. Then, there exists a sequence of γ matchings

σ (1), . . . , σ (γ ), such that
∑γ

p=1 σ (p) ≥ q.

As noted in previous work, such a policy can be found usingMaximum SizeMatching
by augmenting a bipartite graph with additional edges to make all node degrees equal
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[15] or using Node Weighted Matching [10]. However, both algorithms have O(n2.5)

complexity per time slot, and thus take O(γ n2.5) time to find the clearing policy, which
is not desirable when γ scales with n.

We remark that we can indeed find such policy by finding a minimum edge coloring
on a bipartite graph. To see this fact, fix a queue matrix q = (qi j )n×n . We can create a
bipartite graph G with n left nodes and n right nodes. If an input port i has qi j packets
to output port j , we create qi j edges from the i th left node to the j th right node in G.
Let γ denote the maximum number of packets in all ports as defined in Theorem 2.We
color each edge using one of γ colors such that any two edges that share a common
endpoint have different colors. Then, if we view one color as one time slot, the set of
edges with the same color forms a feasible matching for the corresponding time slot.
We can thus find an optimal clearing policy by edge coloring on a bipartite graph. A
similar technique is also used in [1,23].

The best-known algorithm for bipartite edge coloring runs in O(m log n) time [5],
where m is the number of edges. Therefore, it can greatly improve the time complexity
in contrast to O(γ n2.5).

4.2 Lower envelopes

We can see that Theorem 2 basically provides an upper bound type of result for a given
queue matrix, i.e., how many perfect matchings we need to cover q. Now, we describe
a lower bound result that characterizes the maximum number of perfect matchings
we can find from q. Results in this section are from [25]. We first define β−lower
envelopes of a queue matrix q. Although the definition here is slightly different from
that in [25] for better illustration, the equivalence of the two definitions is justified in
[25, Remark 1].

Definition 1 A β−lower envelope of a queue matrix q is a sequence of β perfect
matchings σ (1), . . . , σ (β) such that q ≥∑β

p=1 σ (p).

The existence of a β−lower envelope is given by the following result.

Theorem 3 [25, Proposition 1] Consider a queue matrix q = (qi j )n×n. There exists a
β−lower envelope of q if and only if, for any R, C ⊆ [n] with |R| = k and |C| = �,
we have

β(k + � − n) ≤
∑

i∈R, j∈C
qi j . (4)

Although the work [25] did not analyze the explicit complexity to find a β−lower
envelope of a queue matrix q, we include one here for completeness.

We first describe how to find a β−lower envelope. The first step is to verify the
existence of a β−lower envelope of q. As in [25], we construct a directed network
graph G with a source s, and a sink t . The graph G has n left nodes, n right nodes
and the two nodes s, t . For each left node, there is an edge from s to this node with
capacity β. Similarly, for each right node, there is an edge from this node to t with
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capacity β. Finally, for the i th left node and j th right node, there is an edge ei j from i
to j with capacity qi j .

We then find the maximum flow of G. If the maximum flow is not nβ, the queue
matrix q does not have a β−lower envelope [25]. Otherwise, the flow on each edge
ei j constitutes a new matrix f = ( fi j )n×n where the sum of each row and column is
exactly β, and f ≤ q. By Theorem 2, we can find β perfect matchings σ (1), . . . , σ (β)

such that their sum is exactly f .
The time complexity of the above algorithm consists of two parts: to find maximum

flow and to find an optimal clearing policy. From the discussion in Sect. 4.1, there is an
O(βn log n) algorithm for the second part because the sum of elements in f , which is
the number of edges in the corresponding bipartite graph, isβn. Note thatβ can depend
on n, so it may not be a constant. For the first part, although there are a vast amount
of network flow algorithms [9], we consider Goldberg’s push-relabel algorithm [8]
for its nice time complexity equal to O(n3), and even O(n2 log n) with a parallel
implementation. Summing up the above discussions, the time complexity to find a
β−lower envelope is O(n(n2 + β log n)).

5 Policy description

In this section, we describe our policy for the input-queued switch. Our policy is
a batching policy along the lines of previous work [15,17,25]. We first provide an
overview of the policy. Then, we provide details on how the core component of the
policy,RecursiveClearing, is implemented. Finally,we give explicit parameter settings
used in the policy.

5.1 Policy overview

We assume that time slots are separated into intervals of length b which we call arrival
periods, and the arrival period {kb + 1, . . . , (k + 1)b} is given index k, where k ∈ Z

+.
Fixing an arrival period k, we will serve packets from this period in its corresponding
service period as shown in Fig. 1.

Specifically, the policy follows a similar structure as in [17,25]. However, it uses
additional strategies to schedule packets that help reduce the expected queue length.

Define Qk
i j (t) to be the number of packets in queue Qi j at the beginning of time

slot kb + t that arrive in arrival period k. LetQk(t) = (Qk
i j (t))n×n be the whole queue

matrix. Initially, Qk
i j (1) = 0 for all i, j . We assume that all arrivals in the current

period will directly join Qk . The policy works as follows in each arrival period. Note
that the word “phase” is used for a sub-interval in an arrival period or a service period.

1. First, for a fixed parameter d, no arrival in the first d slots {kb + 1, . . . , kb + d} is
served. This phase is labeled as I0 in Fig. 1, which we call the Idling phase.

2. Then, for the next b−d slots, namely {kb+d+1, . . . , (k+1)b}, the policy sequen-
tially goes through two kinds of phases, Round-Robin and Packet-Collecting.
Two different algorithms are used in these phases to schedule packets arriving
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Fig. 1 Policy overview

in the current arrival period. These phases are labeled as Ru, u ≥ 0, for Round-
Robin phases, and Iu, u ≥ 1, for Packet-Collecting phases in Fig. 1. Note that
I0 is reserved for the Idling phase. We assume there are in total l + 1 pairs of
(Iu, Ru) where 0 ≤ u ≤ l. In phase Ru with u ≥ 0, the scheduler can schedule all
remaining packets inQk . But in phase Iu with u ≥ 1, the scheduler only schedules
packets inQk that arrive before Iu . We note that I0 is indeed a special case because
Qk is empty at the beginning.

The whole phase, from R0 to Rl , is called Recursive Clearing because we are
recursively scheduling arriving packets. Details of algorithms in Recursive Clear-
ing is given in the next section.

3. The third phase is Normal Clearing of length s − b + d, where s is a fixed value
related to n, ρ. This phase includes slots in {(k + 1)b + 1, . . . , kb + s + d}, and
all packets in arrival period k have arrived. As a result, we can use the optimal
clearing policy introduced in Theorem 2 to clear remaining packets in Qk . But to
ensure a low time complexity, we first check whether the maximum number of
packets among all ports is below the phase length s − b + d. If it is, then we evoke
the algorithm in Sect. 4.1 to find the optimal clearing policy. Otherwise, we skip
this step, and put all remaining packets into a backlog queue, as shown below.

Let Uk denote the number of left packets. We maintain a global backlog queue B,
and all remaining packets inQk will be moved to the backlog queue. Note that the
queue B can include backlogs from previous arrival periods. Therefore, the total
number of packets in all queues at the time slot τ is given by the sum of the queue
length Bk , the number of packets in Qk , and new arrivals in the next period.

4. The final phase is Backlog Clearing of length b − s with slots {kb + s + d +
1, . . . , (k +1)b + d}. We can see the total length of Normal Clearing and Backlog
Clearing is exactly d, which is equal to the length of the Idling phase of the next
arrival period.

As the name suggests, in Backlog Clearing, backlogs in queueBwill be scheduled.
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We assume that at each time slot in this phase, exactly one packet from B will be
scheduled (if any exists). Let Bk denote the number of backlog packets in B at the
beginning of arrival period k. Then, we can see that Bk has the following update
equation:

Bk+1 = (Bk + Uk − (b − s))+ . (5)

We remark that the Idling phase of an arrival period k + 1 is indeed the same time
interval as the Normal Clearing phase and the Backlog Clearing phase of arrival period
k. Therefore, the algorithm is trying to schedule for nearly all time slots except the
first I0 time slots of the first arrival period.

5.2 Recursive clearing

We detail what algorithms are used in Recursive Clearing in this section. Note that we
may also denote Iu (or Ru) as the length of the phase Iu (or Ru). The meaning should
be clear from the context. Denote Tu = Iu + Ru for all 0 ≤ u ≤ l.

5.2.1 Round-Robin phase

This phase is motivated by the Round-Robin algorithm in [17]. Fix a Round-Robin
phase Ru , where 0 ≤ u ≤ l. We will run a Round-Robin policy that has n permutation
matrices σ (0), . . . , σ (n−1) of size n such that σ (p) satisfies

σ (p)(i, j) =
{
1, if j ≡ (i + p) (mod n),

0, otherwise.
(6)

During Ru , we sequentially use σ (0), . . . , σ (n−1), σ (0), . . . as the scheduling policy
for Qk(τ − kb) for each time slot τ . Then, if a cycle of {σ p, p < n} is used, every
pair of ports (i, j) will be scheduled exactly once.

5.2.2 Packet-collecting phase

In Packet-Collecting, instead of scheduling in a Round-Robin manner, we simply
schedule some perfect matchings of a queue matrix as in [25]. To be specific, let us fix
a Packet-Collecting phase Iu where u ≥ 1. Denote L =∑u−1

p=0 Tp, that is, the ending

slot of the last phase. Then, in Iu , we only schedule packets in Qk(L + 1). For any
new arrivals during Iu , we will put them in a backup queue. At the end of this phase,
we relocate them into the initial queueQk . We try to find exactly Iu perfect matchings
σ (1), . . . , σ (Iu) such thatQk(L + 1) ≥∑Iu

p=1 σ (p). Such a set of perfect matchings is

an Iu-lower envelope of the queuematrixQk(L +1) introduced in Sect. 4.2. Therefore,
there exist efficient network flow algorithms that can verify the existence of such a set
of matchings, and provide a specific solution if one exists.
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The policy first tests whether such an Iu-lower envelope exists. If there isn’t a
feasible solution, the policy does nothing in this phase. On the other hand, if there
exists such a solution σ (1), . . . , σ (Iu), we schedule these perfect matchings one by one
for the Iu time slots in this phase.

5.3 Intuition of phase length and delay improvement

Before diving into details of the algorithm and the performance analysis, let us first
provide an intuitive explanation of the queue length bound given in Theorem 1 and
how to set the length of each phase.

Roughly speaking, the algorithm ensures that all packets arriving in an arrival period
will get service during Recursive Clearing and Normal Clearing. Then, each arrival
period is almost independent and the queue matrix q is approximately zero at the
start of an arrival period. Fix an arrival period. The intuition behind the algorithm
is to guarantee that for each time slot t + I0 in Recursive Clearing, the realized
schedule is a perfect matching. Then, the expected queue length at time slot t + I0
is upper bounded by n(t + I0) − nt = nI0, which only depends on the length of
the Idling phase. Then, since we use Round-Robin in the service period Ru to serve

packets arriving in Iu and Ru , we need about Ru
n ≤ Tuρ

n −
√

Tu
ρ
n log n to ensure

that Qi j (t + I0) > 0 and no packets are wasted. Similarly, since we use Packet-
Collecting in Iu to serve all unserved packets by Round-Robin in Iu−1 and Ru−1,
we need Iu ≤ ρTu−1 − Ru−1 − √

Tu−1ρ log n. The final constraint is to ensure all
remaining packets can be cleared in Normal Clearing, which requires that

∑
Tu ≥

ρ
∑

Tu +√ρ
∑

Tu log n and gives
∑

Tu ≥ (1−ρ)−2.Consider the important special
case where ρ = 1− 1

n . The above constraints motivate us to set Iu ≈ n1.25, Ru ≈ n1.5.

It then shows that the queue length is about O(n2.25), ignoring additional logarithmic
factors.

5.4 Parameter settings

In this section, we provide explicit settings of parameters for the policy, and check
that the above policy is well-defined. We assume n is large enough when selecting
parameters.

Define f = max(n, (1− ρ)−1). Let R̃ be the largest multiple of n that is no larger
than 2n−0.5(1 − ρ)−2 log f . For all parameters, we assume they are rounded up to
integers as it will not affect the result when n is large enough. Let cd be a positive

constant, and denote cp =
⌊

cd
16

√
19(cd+2)

⌋
. We set

I0 = d = cdn0.25(1 − ρ)−1 log f ,

R0 = R1 = · · · = Rl = R̃, l = cpn0.5,
(7)
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and, for each u with 1 ≤ u ≤ l,

Iu = d − u ·
(
8
√
19(cd + 2)

)
n−0.25(1 − ρ)−1 log f . (8)

Finally, we set

b =
l∑

i=0

(Ii + Ri ), s = ρb +√csρb log f , (9)

where cs is a positive constant. Recall that cp is a function of cd . To guarantee the
nonnegativity of each phase in the policy, the constants cd , cs are chosen such that

2cp −√6cscp ≥ 1, cd ≥ 6cp ≥ 2cp ≥ cs ≥ 1280,

cd + 2 ≤ ρn0.5, n ≥ 4, 6cp log f ≤ f ,

40 ≤ cd

6cp
≤ cd ≤ (1 − ρ)−1n−0.25.

(10)

Basically, as long as cd and n are large enough, above constraints are easily satisfied.

5.5 Length bound of phases

Before we move forward to the policy analysis, we need to make sure the policy itself
is well-defined. The following lemmas justify this in the sense that every phase has a
positive number of slots. Throughout this section, we assume that the assumptions in
Theorem 1 hold.

The first lemmagives a bound on each phase length Iu and Ru inRecursiveClearing.

Lemma 1 For each u such that 0 ≤ u ≤ l, it holds that Iu ≥ 1
2d ≥ n, and Ru ≥ n.

Proof For the bound on Iu , it suffices to prove it for Il because the length Iu is
decreasing. By the definitions of l, Iu in (7) and (8), we have

Il = d − l
(
8
√
19(cd + 2)

)
n−0.25(1 − ρ)−1 log f

= d −
⌊

cd

16
√
19(cd + 2)

⌋(
8
√
19(cd + 2)

)
n0.25(1 − ρ)−1 log f

≥ d −
⌊cd

2
n0.25(1 − ρ)−1 log f

⌋

≥ d − d

2
= d

2
.

To see d
2 ≥ n, recall d = cdn0.25(1 − ρ)−1 log f . As (1 − ρ)−1 ≥ n0.75, cd ≥

1280, log f ≥ 1, we then have d ≥ 2n.
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To show Ru ≥ n, we only need to show R̃ ≥ n as Ru = R̃. By the definition of R̃,
it holds that

R̃ ≥ 2n−0.5(1 − ρ)−2 log f − n ≥ 2n log f − n = n,

where the first inequality is because R̃ is the largest multiple of n that is less than
2n−0.5(1 − ρ)−2 log f , and the second inequality is because (1 − ρ)−1 ≥ n0.75. �
The next lemma gives a tight bound on the arrival period length b.

Lemma 2 The period length b satisfies

2cp(1 − ρ)−2 log f ≤ b ≤ 6cp(1 − ρ)−2 log f .

Proof By definition,

b =
l∑

u=0

Iu + (l + 1)R0

≥ (l + 1)

(
d

2
+ 2n−0.5(1 − ρ)−2 log f − n

)

≥ 2cp(1 − ρ)−2 log f ,

where we use Lemma 1 twice. Similarly, for the upper bound, we have

b =
l∑

u=0

Iu + (l + 1)R0

≤ (l + 1)
(

d + 2n−0.5(1 − ρ)−2 log f
)

≤ 6cp(1 − ρ)−2 log f ,

where the last inequality is because d ≤ n−0.5(1 − ρ)−2 log f by the constraint
cd ≤ (1 − ρ)−1n−0.25 in (10). �
Lemma 3 The length of Backlog Clearing, b − s, is equal to cr (1−ρ)−1 log f , where
cr = 2cp −√6cscp is larger or equal to 1.

Proof We have

b − s = b − ρb −√csρb log f

≥ 2cp(1 − ρ)−1 log f −√6cscp(1 − ρ−1) log f

= (2cp −√6cscp)(1 − ρ)−1 log f .

By constraints in (10), cr = 2cp −√6cscp ≥ 1. �
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The final lemma provides the length bound of Normal Clearing.

Lemma 4 The length of Normal Clearing, s − (b − d), is at least 1280n0.25(1 −
ρ)−1 log f .

Proof It holds that s − (b − d) = cdn0.25(1− ρ)−1 log f − cr (1− ρ)−1 log f , which
is at least (cd − cr )n0.25(1− ρ)−1 log f . We then complete the proof by noticing that
cd − cr = cd − 2cp +√6cscp ≥ √6cscp ≥ 1280 because of (10). �

6 Performance analysis

In this section, we study the performance of the proposed policy. We first summarize
a sketch of the whole proof which consists of multiple parts. Then, we detail the
proof of each part in separate sections. Proofs in this section have a similar structure
as [15,17,25]. The key difference is that our analysis deals with two interchanging
algorithms in Recursive Clearingwhile previous work only has one or no algorithm for
this phase. Throughout this section, we assume conditions in Theorem 1 are satisfied.
The switch size n is assumed to be large enough.

Proof sketch

Our goal is to analyze the expected queue length under the policy described in Sect. 5.

For each time slot τ , the key idea is to show the expected queue lengthE
[∑

i j Qi j (τ )
]

is of order O(nd), where d is the length of the Idling phase.
Suppose the time slot τ lies in the kth service period, i.e., it is in the range [kb+d +

1, (k + 1)b + d] for some k ∈ Z
+. For the first d slots {1, 2, . . . , d}, the mean queue

length is just bounded by ρnd since the mean arrival rate to each port is ρ. Since our
analysis is on each arrival period, to simplify notation, define Ak

i j (t) as the number of

arrivals to queue Qk
i j , and Sk

i j (t) as the number of served packets in Qk
i j during the first

t time slots in arrival period k. That is, Ak
i j (t):=Ai j (t +kb)− Ai j (kb), Sk

i j (t):=Si j (t +
kb) − Si j (kb). Let Ak(t) = (Ak

i j (t))n×n .

By the definition of Qk and the backlog queue B, it holds that

E [Q(τ )] = E

[
Qk(τ − kb)

]
+ E [Bk] + E

[
Ak+1((τ − (k + 1)b)+)

]
.

The last term is because new arrivals of the next period also contribute to the queue
length. But, as τ ≤ (k + 1)b + d, the sum of elements in the last term is no larger than
nd. Then, by bounding E

[
Qk(τ − kb)

]
and E [Bk] separately, we can bound the total

queue length.
We first bound the first term. Suppose t = τ − kb. It holds that

n∑

i=1

n∑

j=1

Qk
i j (t) =

n∑

i=1

n∑

j=1

Ak
i j (t) −

n∑

i=1

n∑

j=1

Sk
i j (t). (11)
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The expectation of the first term on the right-hand side is equal to ρnt because packets
arrive in a Bernoulli process. To bound the second term, we make use of the following
key property: with high probability, we can schedule exactly n packets for each time
slot during Recursive Clearing. The intuition behind this result is as follows. Fix an
index u such that 0 ≤ u ≤ l. Let L =∑u−1

p=0 Tp, where Tp = Ip + Rp.
– For a Round-Robin phase Ru , the requirement to guarantee no wasted service is
that Qk

i j (L + m) is positive for all Iu + 1 ≤ m ≤ Iu + Ru, i, j ∈ [n]. Since
no packet arriving in Iu will be served (by the definition of the Idling phase and
Packet-Collecting phases), it holds that with high probability, Qk

i j (L + m) ≥(
ρm
n −
√

ρm
n log n

)
− m−Iu

n . The first term is because of the concentration property

of Bernoulli random variables, and the second term is because we run Round-
Robin in Ru . By carefully choosing phase length Iu, Ru , we can then guarantee
Qk

i j (L + m) is positive throughout this Round-Robin phase.
– For a Packet-Collecting phase Iu with 1 ≤ u ≤ l, the requirement is to guarantee

Qk
i j (L) has an Iu-lower envelope as defined in section 4.2. We use Theorem 3 to

justify that such a lower envelope exists with high probability. A key insight in
the proof is to use the service regularity of the Round-Robin algorithm in Ru . If
we only look at packets that arrive in phase Iu−1 and Ru−1, the mean number of
arrivals is uniform among all queues. As Ru−1 is a multiple of n, every queue in
the switch will be scheduled for exactly Ru−1

n times. Therefore, the mean queue
lengths of all queues are almost uniform as well. This result indicates that the
queue matrix Qk(L) may have a similar structure as a random graph where the
analysis of lower envelopes has been done in [25].

By the above arguments, we can see that E

[∑
i, j Sk

i j (t)
]

in (11) is equal to

n(min(t, b) − d) with high probability. Therefore, the mean queue length in (11)
can be bounded by ρnt − n(min(t, b) − d) ≤ 2nd.

Finally, to show E [Bk] is small, we use an analysis similar to [17,25]. Recall the
update equation (5) of Bk . We can view the backlog queue B as a discrete time G/G/1
queue. Then, as long as we can showUk is small, the famous Kingman bound [20] can
be used to prove that E [Bk] is insignificant. To bound Uk , notice that if the policy can
clear all packets in Qk(b) within Normal Clearing, then Uk = 0. By Theorem 2, we
only require that the phase length s − (b − d) is larger than or equal to the maximum
number of packets of one port in Qk(b) to guaranteeUk = 0. Then, we can once again
use equation (11), but now use it for one specific port. For any input port i , as argued
before, with high probability, the total amount of service

∑
j Sk

j (b) is equal to b − d.

And the number of arrivals to port i is less than ρb + √
ρb log n with high probability

by the concentration property of Bernoulli random variables. Then, by the definition
of s in (9), we have s − (b − d) ≥ ρb + √

ρb log n − (b − d). As a result, Uk = 0
with high probability, which completes the whole proof.

6.1 Useful facts

Before we proceed to the complete proof of our result, we first introduce several useful
facts on which our analysis relies.
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Kingman Bound for discrete-time G/G/1 queue

Consider a G/G/1 queue {Z(τ ), τ ≥ 0} with an arrival process {X(τ ), τ ≥ 1} and a
service process {Y (τ ), τ ≥ 1}, where both {X(τ ), τ ≥ 1} and {Y (τ ), τ ≥ 1} consist
of i.i.d. random variables, and the two processes are independent from each other.
Suppose the queue evolves as

Z(τ + 1) = (Z(τ ) + X(τ ) − Y (τ ))+.

Define λ = E [X(τ )], m2x = E
[
X2(τ )
]
, μ = E [Y (τ )], m2y = E

[
Y 2(τ )
]
. The

following result is from [17, Theorem 4.2].

Theorem 4 Suppose that Z(0) = 0 and that λ < μ. Then,

E [Z(τ )] ≤ m2x + m2y − 2λμ

2(μ − λ)
, for all τ. (12)

Concentration inequality

The following result is adapted from [4, Theorem 2.4].

Theorem 5 Let X1, . . . , Xn be independent random variables with

P(Xi = 1) = p, P(Xi = 0) = 1 − p

for i ∈ [n], p ∈ [0, 1]. Let X =∑n
i=1 Xi . Then, for any x > 0, we have

P(X ≥ E [X ] + x) ≤ exp

(
− x2

2(E [X ] + x/3)

)
, (13)

P(X ≤ E [X ] − x) ≤ exp

(
− x2

2E [X ]

)
. (14)

6.2 Service analysis

In this part, we show that, with high probability, there is no wasted service during
Recursive Clearing. We first present the analysis of Round-Robin phases, and then the
analysis of Packet-Collecting phases. Throughout the analysis, we restrict the scope
to the kth arrival period and service period.

6.2.1 Round-Robin phase

Suppose we are considering Round-Robin phase Ru , where 0 ≤ u ≤ l. Let L =∑u−1
j=0 Tj be the ending slot of Ru−1 as shown in Fig. 1. If u = 0, then L = 0. Recall

that in a Round-Robin phase, we sequentially use a set of permutations defined in (6).
The next lemma shows that under such a policy, every queue Qk

i j is always non-empty
as long as there are enough arrivals.
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Lemma 5 Suppose t ∈ {L + Iu, . . . , L + Tu − 1}. For any i, j ∈ [n], if

Ak
i j (t) − Ak

i j (L) >
t − (L + Iu)

n
+ 1,

then Qk
i j (t + 1) > 0.

Proof It holds that

Qk
i j (t + 1) = Ak

i j (t) − Sk
i j (t)

= Ak
i j (L) + Ak

i j (t) − Ak
i j (L)

−
(

Sk
i j (L + Iu) + Sk

i j (t) − Sk
i j (L + Iu)

)

≥ Ak
i j (t) − Ak

i j (L) −
(

Sk
i j (t) − Sk

i j (L + Iu)
)

,

where the last inequality is due to Ak
i j (L) − Sk

i j (L + Iu) ≥ 0 since in Iu we only
schedule packets that arrive in the first L slots of the current period.

Then, by the definition of the Round-Robin policy in (6), every queue Qk
i j will only

be scheduled once for every n slots. We thus have

Sk
i j (t) − Sk

i j (L + Iu) ≤
⌈

t − (L + Iu)

n

⌉
≤ t − (L + Iu)

n
+ 1.

Therefore, if Ak
i j (t) − Ak

i j (L) >
t−(L+Iu)

n + 1, we have Qk
i j (t + 1) > 0. �

As we can see, as long as the condition in Lemma 5 holds, the policy can schedule
exactly n packets for every time slot in Ru . We now show that the condition holds with
high probability. Define the event

Wk
i j (t) =

{
Ak

i j (t) − Ak
i j (L) ≤ t − (L + Iu)

n
+ 1

}

for t ∈ {L + Iu, . . . , L + Tu − 1}. Let Wk
u be the event such that the event Wk

i j (t)
happens for some i, j ∈ [n], t ∈ {L + Iu, . . . , L + Tu − 1}. Then,

Wk
u =

n⋃

i=1

n⋃

j=1

L+Tu−1⋃

t=L+Iu

Wk
i j (t).

Recall that f = max(n, (1−ρ)−1).Wecan show thatWk
u happenswith tinyprobability

as in the next lemma.

Lemma 6 For the event Wk
u , it holds that P

(Wk
u

) ≤ f −16.
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Proof We first bound the probability P

(
Wk

i j (t)
)
, and then use the union bound to

get the desired result. Fix i, j ∈ [n], t ∈ {L + Iu, . . . , L + Tu − 1}. Let X =
Ak

i j (t) − Ak
i j (L). Then, X is the sum of t − L i.i.d. Bernoulli random variables with

E [X ] = ρ(t−L)
n . The event Wk

i j (t) is equivalent to

X ≤ ρ(t − L)

n
− (1 − ρ)(t − L)

n
− Iu

n
+ 1,

which can be rewritten as {X ≤ E [X ]− x} with x = −(1− ρ) t−L
n + Iu

n − 1. Notice
that

x ≥ −(1 − ρ)
Iu + Ru

n
+ Iu

n
− 1

= 1

n
(ρ Iu − (1 − ρ)Ru − n)

≥ 1

n
(ρ Iu − (1 − ρ)Tu − n) ,

where Tu = Iu + Ru . By definition, Tu ≤ b, and thus Tu ≤ 6cp(1− ρ)−2 log f using
Lemma 2. On the other hand, by Lemma 1, Iu ≥ 1

2d = 1
2cdn0.25(1− ρ)−1 log f . We

have

x ≥ 1

n

(
1

2
ρcdn0.25(1 − ρ)−1 log f − 6cp(1 − ρ)−1 log f − n

)
.

By assumption, (1 − ρ)−1 ≥ n0.75, and thus

x ≥ 1

n0.75
(1 − ρ)−1 log f

(
1

2
ρcd − 6cpn−0.25 − 1

)
.

We claim that 1
2ρcd − 6cpn−0.25 − 1 ≥ 1

4cd .

Proof (Proof of the claim) To prove the claim, seeing that

1

2
ρcd − 6cpn−0.25 − 1 ≥ 1

4
cd

⇐� 1

2
ρ

cd

6cp
− n−0.25 − 1

6cp
≥ 1

4

cd

6cp

⇐�
(
1

2
ρ − 1

4

)
cd

6cp
≥ 2.

(15)

Then, by constraints in (10), we have n ≥ 4, and thus ρ ≥ 1− n−0.75 ≥ 0.6. Further,
with cd

6cp
≥ 40, we can justify the last inequality in (15) which completes the proof. �
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As a result, we have

x ≥ cd

4n0.75
(1 − ρ)−1 log f .

On the other hand, E [X ] = ρ(t−L)
n ≤ Tu

n . By the concentration bound in Theorem 5,

P (X ≤ E [X ] − x) ≤ exp

(
− x2

2E [X ]

)

≤ exp

(
− c2d
32

log2 f · n−0.5(1 − ρ)−2

Tu

)
.

Then, notice that

Tu = Iu + Ru ≤ d + R̃

≤ cdn0.25(1 − ρ)−1 log f + 2n−0.5(1 − ρ)−2 log f

≤ (cd + 2)n−0.5(1 − ρ)−2 log f ,

since (1 − ρ)−1 ≥ n0.75. Therefore,

P (X ≤ E [X ] − x) ≤ exp

(
− c2d
32(cd + 2)

log f

)

≤ f −21.

The last inequality is because cd ≥ 1280 and
c2d

32(cd+2) is an increasing function. Then,

for every i, j ∈ [n], t ∈ {L + Iu, . . . , L + Tu − 1}, it holds that P
(
Wk

i j (t)
)

≤ f −21.

Notice that b ≤ 6cp(1−ρ)−2 log f by Lemma 2, and 6cp log f ≤ f by the constraints
(10). Finally, by the union bound, we have

P

(
Wk

u

)
≤ n2b f −21 ≤ f −16.

�

6.2.2 Packet-collecting phase

We now proceed to the analysis of Packet-Collecting phases. Suppose we fix a Packet-
Collecting phase Iu , where 1 ≤ u ≤ l. As before, let L = ∑u−1

j=0 Tj , which is the
ending slot of the previous phase. To ensure that the policy can schedule exactly n
packets for every slot in Iu , we require the existence of an Iu-lower envelope of the
queue matrix Qk(L + 1). Define Pk

u as the event that Qk(L + 1) does not have an
Iu-lower envelope. The following lemma shows that it is unlikely thatPk

u will happen.
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Lemma 7 For the event Pk
u , it holds that

P

(
Pk

u

)
≤ f −16.

This lemma is similar to [25, Theorem 5]. Indeed, [25, Theorem 5] shows that Condi-
tion (4) in Theorem 3 holds with high probability when qi j ∼ Binomal(Tu−1,

ρ
n ). In

our algorithm, due to the effect of Round-Robin, we would subtract Ru−1
n on each qi j .

Condition (4) would naturally hold since qi j still roughly follows a binomial distribu-
tion, which completes the proof. Nevertheless, for completeness, we provide a formal
proof as follows.

Proof The idea is to use Theorem 3. For any subset R, C of [n] and t ∈ {L −
Tu−1, . . . , L + 1}, define

Qk
R,C(t) =

∑

i∈R, j∈C
Qk

i j (t), Ak
R,C(t) =

∑

i∈R, j∈C
Ak

i j (t),

Sk
R,C(t) =

∑

i∈R, j∈C
Sk

i j (t).

It suffices to show that, for any subset R, C ⊆ [n],

Qk
R,C(L + 1) ≥ Iu(|R| + |C| − n). (16)

We can see

Qk
R,C(L + 1) = Ak

R,C(L − Tu−1) + Ak
R,C(L) − Ak

R,C(L − Tu−1)

−
(

Sk
R,C(L − Ru−1) + Sk

R,C(L) − Sk
R,C(L − Ru−1)

)

≥ Ak
R,C(L) − Ak

R,C(L − Tu−1)

−
(

Sk
R,C(L) − Sk

R,C(L − Ru−1)
)

.

(17)

The last inequality holds because, in Iu−1, the policywill only serve packets inQk(L−
Tu−1 + 1), and thus Ak

i j (L − Tu−1) − Sk
i j (L − Ru−1) ≥ 0 for all i, j ∈ [n].

Notice that Ru−1 is a multiple of n by definition, and we run a Round-Robin policy
(6) in {L − Ru−1 + 1, . . . , L}. We have

Sk
R,C(L) − Sk

R,C(L − Ru−1) = |R||C|Ru−1

n
. (18)

Define XR,C = Ak
R,C(L) − Ak

R,C(L − Tu−1). Then, XR,C is a Binomial random
variable with parameters Tu−1|R||C| and ρ

n .

Fix |R| = k, |C| = m. Let

X(k, m) = min
R,C⊆[n] : |R|=k,|C|=m

XR,C .
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Using (17) and (18), condition (16) is satisfied if we have

X(k, m) − km Ru−1

n
≥ Iu (k + m − n) (19)

for any k, m ∈ [n].
Without loss of generality, assume k ≥ m and k +m ≥ n+1, since we can swap the

role of input ports and output ports, and (19) trivially holds when k + m ≤ n. To show
that X(k, m) is usually large, let us fix two subsetsR, C ⊆ [n]with |R| = k, |C| = m.
Denote p = ρ

n . Recall that XR,C is a binomial random variable with mean kmTu−1 p.
By the concentration bound in Theorem 5, it holds that

P

(
XR,C ≤ kmTu−1 p −√38(n − k + m)kmTu−1 p log f

)

≤ exp

(
−38(n − k + m)kmTu−1 p log f

2kmTu−1 p

)

= f −19(n−k+m).

The number of such pair of R, C is equal to
(n

k

)(n
m

)
, which is bounded by nn−k+m .

Then, by the union bound,

P

(
X(k, m) ≤ kmTu−1 p −√38(n − k + m)kmTu−1 p log f

)

≤
(

n

k

)(
n

m

)
P

(
XR,C ≤ kmTu−1 p −√38(n − k + m)kmTu−1 p log f

)

≤ nn−k+m f −19(n−k+m)

≤ f −18(n−k+m) ≤ f −18.

To prove that (19) happens with high probability, it remains to show

kmTu−1 p −√38(n − k + m)kmTu−1 p log f − km Ru−1

n
≥ Iu(k + m − n).

Dividing both side by m, it is equivalent to show

kTu−1 p −
√
38

n − k + m

m
kTu−1 p log f − k Ru−1

n
≥ Iu

k + m − n

m
.

Since n < k+m, we have n−k+m ≤ 2m, and 2− n
k = 1− n−k

k ≥ 1− n−k
m = k+m−n

m .
It is thus sufficient to verify

kTu−1 p − 2
√
19kTu−1 p log f − k Ru−1

n
≥ Iu

(
2 − n

k

)
. (20)
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Let x = k
n , and recall that p = ρ

n . Then, (20) can be rewritten as

ρxTu−1 − 2
√
19ρxTu−1 log f − Ru−1x ≥ Iu

(
2 − 1

x

)
,

which can be further written as

x (Iu−1 − (1 − ρ)Tu−1) −√76ρTu−1 log f
√

x ≥ Iu

(
2 − 1

x

)
. (21)

Notice that

Tu−1 ≤ d + R̃ ≤ (cd + 2)n−0.5(1 − ρ)−2 log f ,

and thus

(1 − ρ)Tu−1 ≤ 4
√
19ρTu−1 log f

since cd + 2 ≤ 304ρn0.5 by (10). By the definition of Iu in (8), it holds that

Iu = d − u
(
8
√
19(cd + 2)

)
n−0.25(1 − ρ)−1 log f

= Iu−1 − 8
√
19(cd + 2)n−0.25(1 − ρ)−1 log f

≤ Iu−1 − 2 · 4√19ρTu−1 log f

≤ Iu−1 − (1 − ρ)Tu−1 − 4
√
19ρTu−1 log f . (22)

Therefore, to show that (21) is true, we only need to show

x (Iu−1 − (1 − ρ)Tu−1) − 2
√
19ρTu−1 log f

√
x

≥
(

Iu−1 − (1 − ρ)Tu−1 − 4
√
19ρTu−1 log f

)(
2 − 1

x

)
.

By manipulating terms, the above inequality is equivalent to

(
x + 1

x
− 2

)
(Iu−1 − (1 − ρ)Tu−1)

≥ 2

(√
x + 2

x
− 4

)√
19ρTu−1 log f .

(23)

As k+m > n and k ≥ m, we have x = k
n ≥ 1

2 .As a result, x + 1
x −2 ≥ 1

2 (
√

x + 2
x −4).

Combining inequality (22) with the fact that Iu ≥ d
2 , shown in Lemma 1, it holds that

Iu−1 − (1 − ρ)Tu−1 ≥ 4
√
19ρTu−1 log f .
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Therefore, we establish (23), and thus (19). We now have shown

P
(
X(k, m) ≤ Iu(k + m − n)

) ≤ f −18.

Note that we have assumed k ≥ m, but swapping k and m does not affect the result.
Finally, to complete the whole proof, we use the union bound. Note that

Pk
u =

n⋃

k=1

n⋃

m=1

P
(
X(k, m) ≤ Iu(k + m − n)

)
.

As a result,

P

(
Pk

u

)
≤ n2 f −18 ≤ f −16.

�

6.3 Backlog analysis

In this section, we bound the expected number of backlogs, E [Bk]. The analysis is
similar to [17,25]. We include it here for completeness.

We first show that for any arrival period k, where k ∈ Z
+, there is a high probability

that all packets in arrival period k will be cleared in Normal Clearing. Fix k ∈ Z
+.

For any i, j ∈ [n], define

Hk
i =

n∑

j ′=1

Ak
i j ′(b), Ck

j =
n∑

i ′=1

Ak
i ′ j (b),

which are the total number of arrivals to input port i and the total number of arrivals
to output port j during the arrival period k, respectively.

Define the event

Ek =
{
∃i∈[n], Hk

i > s
}

∪
{
∃ j∈[n], Ck

j > s
}

as the event when some ports may receive excessive packets. The following lemma
shows that such event is rare.

Lemma 8 For all k ∈ Z
+, we have P (Ek) ≤ 1

2 f −13.
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Proof First consider the event {Hk
1 > s}. As Hk

1 is a binomial random variable with
parameters nb and ρ

n , the concentration bound in Theorem 5 implies that

P

(
Hk
1 > s
)

= P

(
Hk
1 > ρb +√csb log f

)

= P

(
Hk
1 > E

[
Hk
1

]
+√csb log f

)

≤ exp

(
− csb log f

2(ρb + √
csb log f /3)

)

≤ exp

(
−csb log f

2s

)

≤ exp

(
−csb log f

2b

)

≤ f −cs/2.

As cs is assumed to be at least 30 in (10), we have P
(
Hk
1 > s
) ≤ f −15. Since arrival

rates are uniform among each pair of input ports and output ports, it holds that, for
every i, j ∈ [n],

P

(
Hk

i > s
)

≤ f −15, P

(
Ck

j > s
)

≤ f −15.

Then, by the union bound, we have

P

(
Ek
)

≤ 2n f −15 ≤ 1

2
f −13

because we assume n ≥ 4 in (10). �
Now we combine the above arguments with our previous analysis of Recursive Clear-
ing. Define

Wk =
l⋃

u=0

Wk
u , Pk =

l⋃

u=1

Pk
u .

We have the following lemma claiming that Uk = 0 with high probability.

Lemma 9 For a fixed k, the following results hold:

1. The number of remaining packets Uk is zero if none of Wk , Pk , Ek occurs.
2. The probability P

(Wk ∪ Pk ∪ Ek
)

is bounded by f −13, and thus P{Uk > 0} ≤
f −13.

3. On any sample path, Uk ≤ n2b.

Proof For a fixed k and i, j ∈ [n], define

H̃i =
n∑

j ′=1

Qk
i j ′(b + 1), C̃ j =

n∑

i ′=1

Qk
i ′ j (b + 1).
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By the optimal clearing policy in Theorem 2, if γ = max
(
maxi H̃i ,max j C̃ j

)
is no

larger than the length of Normal Clearing, s − b + d, then there exists a scheduling
that can clear all packets in Qk(b + 1) within Normal Clearing.

To prove the first result, assume that none of Wk, Ck, Ek occurs. Notice that if
neitherWk norPk occurs, then for every time slot τ in {kb+d +1, . . . , (k +1)b}, the
policy will schedule exactly n packets. To justify this claim, suppose τ is in a Round-
Robin phase Ru . When Wk does not happen, by Lemma 5, all queues Qk

i j (τ − kb)

have at least one packet. Any schedule that is perfect matching can serve exactly one
packet from each input port, and to each output port. On the other hand, suppose τ

is in a Packet-Collecting phase Iu . Since Pk does not occur, schedules in Iu form an
Iu-lower envelope of the queue matrix at the beginning of this phase. By the definition
of an Iu-lower envelope, the policy can schedule exactly n packets at time slot τ .
Therefore, for any i, j ∈ [n], it holds that

n∑

j ′=1

Sk
i j ′(b) = b − d,

n∑

i ′=1

Sk
i ′ j (b) = b − d.

Moreover, as Ek does not occur, we know Hk
i ≤ s, Ck

j ≤ s for any i, j ∈ [n].
Therefore, for any i ∈ [n],

H̃i =
n∑

j ′=1

Ak
i j ′(b) −

n∑

j ′=1

Sk
i j ′(b) = Hk

i − (b − d) ≤ s − b + d.

Similarly, we have C̃ j ≤ s −b+d for any j ∈ [n]. As a result, the maximum γ among
H̃i , C̃ j is upper bounded by s − b + d. Using Theorem 2, we know that there exists a
sequence of γ matchings that can clear the queue matrixQk(b+1). As s −b+d ≥ γ ,
we can schedule these matchings during Normal Clearing, and thus Uk = 0.

We can now prove the second result. By Lemma 6, we have P{Wk
u } ≤ f −16 for

any 0 ≤ u ≤ �. Then, by the union bound, it holds that

P{Wk} ≤ � f −16 = cpn0.5 f −16 ≤ f −15

because cp ≤ cd ≤ ρn0.5 in (10). Similarly, we can bound P{Pk} by

P{Pk} ≤ � f −16 ≤ f −15

using Lemma 7. Together with Lemma 8, it holds that

P (Uk > 0) ≤ P

(
Wk ∪ Pk ∪ Ek

)
≤ 2 f −15 + 1

2
f −13 ≤ f −13.

Finally, to prove the third result, we have

Uk ≤
n∑

i=1

n∑

j=1

Ak
i j (b) ≤ n2b
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because every queue has at most one arrival per time slot in a Bernoulli arrival process.
�

Based on the above result, we can bound the expected number of backlogs in the
backlog queue B.

Lemma 10 It holds that E [Bk] ≤ 1 for all k.

Proof Recall that the queue length Bk updates as

Bk+1 = (Bk + Uk − (b − s))+

with B0 = 0. As b − s ≥ 1 by Lemma 3, Bk is stochastically dominated by B̃k which
evolves as

B̃k+1 = (Bk + Uk − 1)+

where B̃0 = 0. The new process can be viewed as a discrete-time G/G/1 queue, and
thus the Kingman bound of Theorem 4 applies. Using the same notation as in Theorem
4, we have μ = 1, m2y = 1. By Lemma 9, it holds that

λ = E [Uk] ≤ n2bP (Uk > 0) ≤ n2b f −13 ≤ f −8

because b ≤ 6cp(1−ρ)−2 log f by Lemma 2, and 6cp log f ≤ f by (10). Similarly,

m2x = E

[
U 2

k

]
≤ n4b2 f −13 ≤ f −3.

As a result,

E [Bk] ≤ E
[
B̃k
] ≤ m2x + m2y − 2λμ

2(μ − λ)
≤ f −3 + 1

2(1 − f −8)
≤ 1.

�

6.4 Queue length analysis

This section presents the formal proof for the bound of the average total queue length
in Theorem 1.

Lemma 11 It holds that, for every time slot τ ,

E

⎡

⎣
n∑

i=1

n∑

j=1

Qi j (τ )

⎤

⎦ ≤ 3nd.
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Proof We fix a time slot τ , and we bound the expected queue lengths in Q(τ ). First,
if 1 ≤ τ ≤ d, then

E

⎡

⎣
n∑

i=1

n∑

j=1

Qi j (τ )

⎤

⎦ ≤
n∑

i=1

n∑

j=1

E
[
Ai j (τ − 1)

] ≤ ρnτ ≤ nd.

We can thus assume τ ∈ [kb + d + 1, (k + 1)b + d] for some k ∈ Z
+, i.e., τ is in the

kth service period. We consider different cases.
First, if kb + d + 1 ≤ τ ≤ (k + 1)b, then τ is in Recursive Clearing. As a result,

n∑

i=1

n∑

j=1

Qi j (τ ) = Bk +
n∑

i=1

n∑

j=1

Qk
i j (τ − kb).

Let t = τ − kb. We have

E

⎡

⎣
n∑

i=1

n∑

j=1

Qk
i j (t)

⎤

⎦ = E

⎡

⎣
n∑

i=1

n∑

j=1

Ak
i j (t − 1) −

n∑

i=1

n∑

j=1

Sk
i j (t − 1)

⎤

⎦

= ρn(t − 1) − E

⎡

⎣
n∑

i=1

n∑

j=1

Sk
i j (t − 1)

⎤

⎦ .

As in the proof of Lemma 9, if neither Wk nor Pk happens, we have

n∑

i=1

n∑

j=1

Sk
i j (t − 1) = (t − 1 − d)n.

Since P
(Wk ∪ Pk

) ≤ f −13 by Lemma 9, we have

E

⎡

⎣
n∑

i=1

n∑

j=1

Qk
i j (t)

⎤

⎦ ≤ ρ(t − 1)n − (t − d − 1)n
(
1 − f −13

)

≤ ρ(t − 1)n − ρ(t − d − 1)n

= ρnd.

Together with Lemma 3, we have

E

⎡

⎣
n∑

i=1

n∑

j=1

Qi j (τ )

⎤

⎦ ≤ E [Bk] + ρnd ≤ 1 + ρnd ≤ 2nd.

123



Queueing Systems (2022) 100:135–166 161

Consider the second case where (k + 1)b < τ ≤ (k + 1)b + d. The time slot τ is thus
in Normal Clearing or Backlog Clearing. We can see

E

⎡

⎣
n∑

i=1

n∑

j=1

Qi j (τ )

⎤

⎦ ≤ E

⎡

⎣
n∑

i=1

n∑

j=1

Qi j ((k + 1)b)

⎤

⎦

+ E

⎡

⎣
n∑

i=1

n∑

j=1

(
Ai j (τ − 1) − Ai j ((k + 1)b − 1)

)
⎤

⎦

≤ 2nd + nd = 3nd.

Summarizing above discussions completes the proof. �

6.5 Generalization to Poisson arrivals

We remark that our queue length bound can be naturally generalized to other arrival
processes, such as Poisson arrivals. In particular, since our proof does not make use
of the boundedness of Bernoulli random variables, it is sufficient to generalize our
result if we could have a similar concentration bound as Theorem 5. Indeed, recall
that the sum of n i.i.d. Poisson random variables of rate λ is again a Poisson random
variable but with rate nλ. Therefore, the concentration of the sum is a concentration
of a Poisson random variable. Indeed, we have the following concentration bound for
a Poisson random variable from [3], whose form is very much similar to Theorem 5.

Theorem 6 Let X ∼ Poisson(λ) for λ > 0. Then, for any x > 0, it holds that

P (|X − λ| > x) ≤ 2e
−x2

2(λ+x) . (24)

Our proof above would then hold by replacing the use of Theorem 5 by Theorem 6.

7 Complexity analysis

This section analyzes the time complexity of the proposed policy with a discussion
on the delay-complexity trade-offs. Results in this section also conclude the proof of
Theorem 1.

7.1 Time complexity

To calculate the average time complexity per time slot, our approach is to sum up all
computation requirement during one service period, and then divide the sum by the
period length b. The following lemma presents the amortized time complexity of our
policy described in Sect. 5.
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Lemma 12 With the same setting in Theorem 1, the amortized time complexity of the
policy in Sect.5 is O(n + (1 − ρ)2n3.5/ log( f )).

Proof As the policy is fixed in each service period, and each service period is the
same, the average computation in one service period is exactly the amortized time
complexity of the whole policy. Fix a service period k. We study the complexity in
each phase separately.

1. For a Round-Robin phase Ru , the scheduling policy at one time slot τ can be
calculated in O(n) by the definition of a Round-Robin policy (6).

2. For a Packet-Collecting phase Iu , we need to calculate an Iu-lower envelope at
the beginning of this phase. Recall the algorithm introduced in Sect. 4.2. The total
complexity to verify the existence of an Iu-lower envelope and to find out one
solution is O(n3+nIu log n). Since Iu ∈ [ d

2 , d] by Lemma 1, the time complexity
for one Packet-Collecting phase is O(n3 + nd log n). Note that if there is no such
lower envelope, the policy does nothing by definition. It will not change the time
complexity because such events are rare by Lemma 7.

3. For Normal Clearing, we consider the expected time complexity to find an optimal
clearing policy. Through the discussion in Section 4.1, the time complexity is
O(m log n), where m is the sum of all elements in Qk(b + 1). In the policy, we
first check whether the maximum number of packets at each port is below the
phase length. It takes O(n2) time to check the maximum number of packets. If the
maximum exceeds the phase length, we directly skip finding the optimal clearing
policy. Otherwise, when that number is below the phase length, the number of
packets in Qk(b + 1) is bounded by n(s − b + d). The time complexity in this
case is thus O(n2 + n(s − b + d) log n), which is indeed O(n(s − b + d) log n)

by Lemma 4.

The final algorithm in Normal Clearing is to move packets in Uk into the backlog
queue B. However, as we could see, every incoming packet to the switch will
be put into the backlog queue at most once. The amortized complexity to move
packets to the backlog queueB is O(n) because, by the law of large numbers, only
ρn packets will join the switch in time average. The total computation to move
packets into the backlog queue is thus O(n(s−b+d)) in Normal Clearing. To sum
up, the total time complexity in this phase is bounded by O(n(s − b + d) log n).

4. Finally, for Backlog Clearing, we only schedule at most one packet from the
backlog queue. Therefore, the total computation is bounded by O(b − s).

As a result, the total computation in a service period k is given by

�∑

u=1

O(n Ru) +
�∑

u=1

O(n3 + nd log n) + O(n(s − b + d) log n) + O(b − s),

which is equal to

O(nb + n7/2 + n7/4(1 − ρ)−1 log n log f ) (25)
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because � = O(n1/2), d = O(n1/4(1 − ρ)−1 log f ), s − b + d = O(d) by their
definition in (7) and Lemma 4.

The amortized time complexity per slot in one service period is thus equal to (25)
divided by b, which is

O

(
n(1 − ρ)−2 log f + n7/2 + n7/4(1 − ρ)−1 log n log f

(1 − ρ)−2 log f

)

= O(n) + O

(
n7/2

(1 − ρ)−2 log f

)
+ O

(
n7/4 log n

(1 − ρ)−1

)
.

We now bound the last two terms. If n7/2

(1−ρ)−2 log f
<

n7/4 log n
(1−ρ)−1 , it immediately implies

that n7/4/ log f < (1 − ρ)−1 log n. But in this case,

n7/4 log n

(1 − ρ)−1 <
(1 − ρ)−1 log n log f

(1 − ρ)−1 = log n log f .

Then, if log n log f = ω(n), we have log f = ω(n/ log n). Note that f = max(n, (1−
ρ)−1). It thus holds that (1 − ρ)−1 = exp(ω(n/ log n)). As a result, n7/4 log n

(1−ρ)−1 = o(1).
We then have

O(n) + O

(
n7/2

(1 − ρ)−2 log f

)
+ O

(
n7/4 log n

(1 − ρ)−1

)

= O(n) + O

(
n7/2

(1 − ρ)−2 log f

)
,

which completes the proof. �
Lemma 12 shows that, if n is fixed, the complexity of the policy is decreasing as
the traffic becomes heavier. The main reason is that the policy will spend more time
following Round-Robin policies, and less time finding lower envelopes when we have
a larger ρ. Since Round-Robin policies take O(n) computation time instead of O(n3)

time needed to find lower envelopes, the amortized complexity is reduced.
Using Lemmas 11 and 12, we can finish the proof of our main theorem, Theorem

1.

Proof of Theorem 1 The proposed policy in Sect. 5 has an average total queue length
O(n5/4(1 − ρ)−1 log f ) by Lemma 11, and its amortized time complexity is O(n +
n7/2(1 − ρ)2/ log f ) by Lemma 12. Therefore, the policy satisfies the requirements
in Theorem 1, which concludes the proof. �

7.2 Delay-complexity trade-offs

FromLemma12andLittle’sLaw, the averagedelay is of order O(n1/4(1−ρ)−1 log f ),

while the amortized time complexity is O(n+n7/2(1−ρ)2/ log f ).Suppose n is fixed,
and it is large enough. Assume ρ = 1− n−α , and α > 0.75. Then, by changing α, we

123



164 Queueing Systems (2022) 100:135–166

Fig. 2 Trade-offs between delay
and complexity

can plot the curve of delay and time complexity (taking logarithm with base n) as in
Fig. 2.

The dot in Fig. 2 refers to α∗ = 1+ 1
12 . When α < α∗, we can see that the average

delay is strictly below the amortized time complexity. Therefore, to improve the over-
all performance, we can reduce the complexity of the algorithm by trading off certain
extent of delay performance. One solution is to adjust the traffic intensity ρ by intro-
ducing a stream of pseudo arrivals. Scheduling packets in this new environment can
then automatically decrease the time complexity. Certainly, when α > α∗, the average
delay dominates the time complexity. In this case, increasing the traffic intensity in
our system may not help a lot.

We remark that other batching policies may have similar delay-complexity trade-
offs. For example, the recent work [25] has an average delay O((1−ρ)−4/3 log f ) for
all ρ < 1. Although this work did not provide the time complexity of the algorithm,
it can be bounded by O(n log n + n3(1 − ρ)4/3/ log f ) through the same technique
in Sect. 7.1. We can see that increasing the traffic intensity can help reduce its time
complexity when the traffic is light.

8 Conclusion

In this paper, we present a new batch-scheduling algorithm for an input-queued switch
with uniform Bernoulli arrivals. The key requirement of such a policy is to ensure full
service at every time slot in Recursive Clearing shown in Fig. 1; thus we need to
wait for a sufficiently long period of time in the Idling phase to help the number of
packet arrivals concentrate around their means. To help reduce the length of the Idling
phase, this work successfully combines two kinds of phases, Round-Robin phases
{Ru, u ≥ 0} and Packet-Collecting phases {Iu, u ≥ 1}, where a phase Iu can be
viewed as an Idling phase of Ru , and concentration of the number of arrivals around
their means in Iu and Ru and the regularity of service in Ru helps with full service
in Iu+1. With a more effective scheduling algorithm, our policy thus enjoys a better
average queue length O(n5/4(1−ρ)−1 log f ) than previous best-known results in the
regime n3/4 ≤ (1 − ρ)−1 < n7/4. In particular, when ρ = 1 − 1/n, our result is
O(n2+1/4 log n), while a previous result is O(n2+1/3 log n) [25].
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