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Abstract
Consider a population of customers, each ofwhich needs to decide independentlywhen
to arrive to a facility that provides a service during a fixed period of time, say a day.
This is a common scenario inmany service systems such as a bank, lunch at a cafeteria,
music concert, flight check-in and many others. High demand for service at a specific
time leads to congestion that comes at a cost, for examlple, for waiting, earliness or
tardiness. Queueing theory provides tools for the analysis of the waiting times and
associated costs. If customers have the option of deciding when to join the queue, they
will face a decision dilemmaofwhen to arrive. The level of congestion one suffers from
depends on others, behavior and not only that of the individual under consideration.
This fact leads customers to make strategic decisions regarding their time of arrival. In
addition, multiple decisionmakers that affect each other’s expected congestion call for
noncooperative game-theoretical analysis of this strategic interaction. This common
daily scenario has prompted a research stream pioneered by the ?/M/1model of Glazer
and Hassin (Eur J Oper Res 13(2):146–150, 1983) that first characterized an arrival
process to a queue as a Nash equilibrium solution of a game. This survey provides an
overview of the main results and developments in the literature on queueing systems
with strategic timing of arrivals. Another issue is that of social optimality, namely the
strategy profile used by customers that optimizes their aggregate utility. In particular,
we review results concerning the price of anarchy (PoA), which is the ratio between
the socially optimal and the equilibrium utilities.
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1 Introduction

The choice of when to join a congested service system is a common daily scenario
for most people. This is the case when a number of customers need to decide when
to arrive to a bank on a busy Monday. One can go early to ‘avoid the crowd,’ perhaps
even queueing before the opening, but this entails waking up early. Another option
is to arrive later in the day but then the queue may be long and potentially being late
for work. Another example is when passengers who are booked for an 11pm flight
need to decide when to arrive to the check-in counter that opens at 7pm. Imagine
what will happen if all will follow the airline advice to arrive at least three hours
prior to boarding. Ideally, travelers want to arrive as late as possible, say at 10pm,
but delaying the arrival for too long may lead to waiting a long time for the other
travelers that are already in the check-in queue. Also in this case, there is a very big
cost associated with being too late, namely missing the flight. This trade-off calls for
strategic decision making by all arriving customers. The game-theoretical concept of
a Nash equilibrium provides a natural model for this situation because it prescribes an
arrival process such that the cost for all arriving customers is constant over the relevant
period. This survey provides an overview of the research focusing on the modeling
and analysis of queueing systems with the above strategic interaction.

Many queueing models assume an ongoing stream of joining customers whose
number is potentially infinite as time passes, thereby resulting in an ongoing queue-
ing process with some steady-state distribution. However, temporal decision making
requires a queueing model with a finite number of customers and a finite time dura-
tion; we therefore consider a finite population of customers that require service from a
server that operates during a specified time period. The customers individually decide
when to arrive at the system, and if it is busy, they join a queue and wait for their
turn to be served. As discussed above, the scenario of a finite population of customers
arriving and being served during a finite period is common in queueing applications;
however, it is less common in the theoretical analysis of queueing systems. One key
difference from standard queueing models is that the process is inherently transient
and the traditional steady-state analysis is not applicable. Another is that the arrival
process is endogenous in the sense that it is a function of the economic parameters
associated with the customers and, more crucially, of the strategic interaction which
typically yields a non-homogeneous in time arrival process with dependent arrival
epochs, i.e., not a renewal process. This process stems from the order statistics of the
individual arrival time decisions.

We first provide a general model description that will enable using, as much as
possible, the same consistent notation throughout the paper, rather than the specific
notation used in the discussed papers. Suppose a population of N < ∞ customers
require service, where N could be a constant, random variable or even a fluid volume.
Each customer i has a service requirement Xi and for nowweassume that customers are
statistically homogeneous; the service requirements are independent and identically
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distributed random variables. Customers can arrive during an admission period T
that can be a continuous interval, for example, [0, T ] or (−∞,∞), or a discrete
grid {t0, t1, . . .}. Services are provided by a single server or a number of servers that
operate during some time interval S. For example, S = (−∞,∞) is a system that is
always ‘on’ like a road and S = [0, T ] is a system with opening and closing times
such as a bank. In some cases, queueing may also be allowed before service period
initiation and/or service may continue after the admission period ends. Customer i can
choose his/her arrival time τi and so a mixed strategy defines a probability distribution
on T with cdf Fi . Customers wish to minimize the expectation of a cost function
Ci (τ1, . . . , τN ;�) that depends on the random arrival times of all other customers
and a set of parameters � such as service rate and delay penalty. Note that N can be a
randomvariable, and therefore,C is a function from the set of arbitrary sized sequences
to the real line. Naturally, customer i has discretion only over τi and does not know
the realization of τ−i (the set of arrival times of customers excluding i), let alone
have control on it. The specific form of the function is determined by the specific
queueing system parameters, for example, number of servers or service discipline,
together with the distribution of the arrival process which is determined by the arrival
strategies applied by all customers.

A Nash equilibrium is a profile of strategies τi ∼ Fi , 1 ≤ i ≤ N , such that any
customer i obtains a minimal expected cost Fi ∈ argminF E[Ci (τ1, . . . τ, . . . , τN )],
where τ induces the distribution F . The majority of the research to date is focused on
homogeneous customers and symmetric equilibrium solutions such that all customers
use the same arrival strategy F . In many cases, a symmetric equilibrium is the only
possible outcome, and in a sense, it is a natural solution concept to adopt when the
population is large and anonymous as it does not require identification of individual
customers. However, we will mention some cases where asymmetric equilibria exist,
even when customers are homogeneous.

Any strategy profile used by customers results in some social cost which is defined
as the sum of the costs incurred by the individual participants. It is natural to look for a
profile which minimizes this cost. This criterion is different than the Nash equilibrium
criterion, which usually leads to higher costs. The ratio between the corresponding
costs, or the worst case when the Nash equilibrium is not unique, is called the price
of anarchy (PoA).

Wewill first present two simple examples that illustrate some of the basic properties
of the equilibrium and the socially optimal solutions.

Example 1 Our first example and the pioneering model of this field is the ?/M/1 model
introduced by Glazer and Hassin [17]. The population size N is assumed to follow a
Poisson distributionwithmean λ. The service times are independent and exponentially
distributed with rate μ, and service is obtained from a single server that admits cus-
tomers during a specified period of time [0, T ]. Customers are served on a first-come
first-served basis and can queue up before the opening time, i.e., T = (−∞, T ]. All
customers that arrive up to, and including, time T are served (S = [0,∞)), in other
words the server will continue working after T , if needed, until the system is empty.
The objective of the customers is to minimize their sojourn time in the system. If all
customers arrive according to a symmetric continuous arrival strategy F with density f
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on an interval [ta, T ], then the arrival process to the queue A(t) is a non-homogeneous
in time Poisson process with rate λ(t) = λ f (t). Therefore, in this case the queueing
process is Mt /M/1. Interestingly, under reasonable axiomatic assumptions, a singled
out arriving customer believes that the number of other customers arriving follows
the same distribution: Poisson with mean λ. This is a special property of the Poisson
distribution, but for general distributions the conditional distribution of the number of
other arriving customers can be derived in a straightforward manner. We elaborate in
Sect. 2.2 on how the (prior) distribution of the number of customers changes condi-
tional on the event that a tagged customer is actually a member of the randomly sized
population.

In [17], it is shown that the Nash equilibrium arrival strategy is given by a uniform
distribution f (t) = c, where c > 0 is a constant, on t ∈ [ta, 0] where ta < 0, and a
density f (t) that solves a system of functional differential equations for t ∈ [0, T ].We
first provide here an outline of the method for obtaining this solution and later in Sect.
3 go into more detail for a generalization of this model. The equilibrium condition
dictates that the waiting cost equals some constant w on [ta, T ], before the opening
instant this condition translates to

E

[
A(t) + 1

μ

]
− t = w, t ∈ [ta, 0),

and after the opening to

E

[
Q(t) + 1

μ

]
= w, t ∈ [0, T ],

where A(t) is the number of arrivals until time t and where Q(t) denotes the number
of customers in the system at time t . The first condition is easily solvable because
E[A(t)] = λF(t), while the second already entails considering the dynamics of the
queueing process Q(t). This can be done by considering the transient state probabilities
given by the Kolmogorov backward equations. In principle, the above can be solved
for any ta , where ta can be found by a search procedure with termination condition
F(T ) = 1.

From a social welfare point of view, the equilibrium outcome is clearly not optimal.
This is because a positive mass of customers arrive before the opening and wait while
the server is not doing any work. Any such arrival profile can be improved by moving
this mass to time zero, i.e., setting F̃(t) = 0 for any t < 0 and a point mass at t = 0:
F̃(0) = F(0). Indeed, Hassin and Kleiner [24] show that the socially optimal strategy
has a positive mass at zero, followed by a continuous distribution on (0, T ) and a
positive mass at T . We will discuss the details of social optimization in Sect. 4. ♦

Finding the symmetric equilibrium arrival distribution F for different settings is
the goal of most of the literature discussed in this survey. As is already evident in
the ?/M/1 example, this, at least numerically, is typically not a trivial task. The issues
of existence and uniqueness of Nash equilibria need to be dealt with carefully and
also devising reasonable methods for numerically approximating the equilibrium is
often challenging. The combination of transient analysis together with elaborate time
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and service regime dependence makes each model challenging in a unique way and
calls for specialized solutions, and there is still much work to be done for better
understanding of these models. The following example presents a special case where
F can be explicitly derived for a game with just two customers. This example further
illustrates that asymmetric equilibria may exist as well.

Example 2 Twocustomers seek independent and exponentially distributed servicewith
parameterμ from a server who opens his service at time 0. Customers have to select an
arrival timewhich needs to be in the interval T = [0, T ]. The customers complete their
service even if it goes beyond timeT , i.e.,S = [0,∞). Bothwish tominimize their own
waiting time, assuming the service regime of first-come first-served and ties are broken
randomly. Suppose customer 1 arrives at time 0, then it is easy to verify that arriving
at T is optimal for customer 2 if T ≥ log 2/μ. Therefore, in this case an asymmetric
equilibrium comes with one of them arriving at time 0 and the other at time T , and
hence, two pure equilibria exist. For T > log 2/μ an additional symmetric equilibrium
exists such that both customers use the following mixed strategy: arrive at time 0 with
probability 2/(2 + μT − log 2), no arrivals during the time interval (0, log 2/μ) and
a uniform density along the time interval [log 2/μ, T ]. If T < log 2/μ, then both
arriving at time 0 is the unique symmetric equilibrium.

The socially optimal solution is trivially obtained by one customer arriving at 0
and the other at T . The social cost in this case is e−μT /μ. Therefore, if T ≥ log 2/μ
the pure strategy equilibria described above are also socially optimal. The social cost
for the symmetric equilibrium for both customers arriving at 0 is 1/μ and for the
symmetric mixed equilibrium detailed above it is (μ(2 + μT − log 2))−1. In both of
the latter cases, the social cost in equilibrium is strictly higher than the optimal cost.
More details on this can be found in [31]. ♦

1.1 Paper organization

This survey is organized as follows: Firstly, Sect. 2 provides an in depth discussion
of the model. Specifically, Sect. 2.1 introduces the queueing model associated with
a finite population of customers randomizing their arrival times independently. Sec-
tion 2.2 provides the assumptions and definitions required for analyzing a game with
a random population of customers and, in particular, the significance of assuming that
the size of the population is a Poisson random variable. Section 2.3 defines the game
of timing arrivals and the concept of a Nash equilibrium arrival profile and how it
relates to the queue dynamics. Section 3 reviews the main results regarding the Nash
equilibrium solutions for various models. Moreover, the methods for computation of
the equilibrium are reviewed along with the difficulties that arise when moving away
from the FCFS single-server model. Section 4 surveys the issue of system optimiza-
tion, which complements the equilibrium analysis of the previous section, along with
results about the price of anarchy. Section 5 deals with fluid approximation models.
As opposed to the stochastic queue, explicit results regarding equilibrium and social
optimization are often attainable, even for complex systems. Section 6 reports on
empirical findings from laboratory experiments that studied decision making related
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to the timing of arrivals to a queue. A concluding discussion with reference to open
problems is given in Sect. 7.
NotationThroughout this paper, wemake use of the following notation: g′(t) = d

dt g(t)
for any differentiable function g, x+ := max{x, 0} and g(t−) := lims↑t g(s).

1.2 Related literature

An introduction to basic queueing theory that covers the tools required for most
of the work described in this survey can be found (among many other books) in
Haviv [25] or Harchol-Balter [20], and amoremathematical introduction can be found
in Asmussen [1].

The study of strategic decision making in queueing systems goes back to the cele-
brated Naor model [47] who was the first to analyze the decision of whether or not to
join a queue from an economic perspective. There are many economic considerations
in the analysis of queueing systems, such as joining or balking, purchasing priority,
optimal pricing and scheduling and many more. A detailed introduction to strategic
queueing can be found in Hassin and Haviv [23]. A comprehensive bibliography of
this line of research is detailed in Hassin [22], with a special focus on temporal deci-
sions in queueing systems in Chapter 4.1. A related model was studied by Haviv et al.
[27] where customers know their time of arrival and should decide whether to join or
not. The analysis requires computing the transient dynamics corresponding to every
strategy profile used by other customers, which is also the case in the ?/M/1 model,
but ultimately the action of the customer is to either join or not, and this leads to a
simpler analysis of the best response function.

The choice of individual arrival time of travelers to a congested bottleneck has been
extensively studied in the transportation literature. This goes back to the celebrated
Vickrey bottleneck model [63] that considers the ‘rush hour’ problem of commuters
that need to choose when to start their journey to work while taking into consideration
delay, earliness and tardiness costs. This model, as well as most of the subsequent
literature, assumes a deterministic fluid model that approximates a systemwith a large
volume of users each having a very small impact on overall congestion. Vickrey’s
model has been extended and generalized extensively, with Arnott et al. [4] being
a notable example, and a review of this literature can be found in Chapter 11 of
[15]. Due to the simpler dynamics, such fluid models have also been frequently used
for approximating equilibrium arrival patterns to discrete and stochastic queueing
systems. As mentioned above, we will discuss the accuracy and applications of such
approximations in Sect. 5 of this survey.

2 Modeling the queue and game

We now elaborate on the general model and highlight some of its important features.
We first deal with the queueing process arising from a finite population of customers
with independent arrival times. This is followed by discussing the implication of a

123



Queueing Systems (2021) 99:163–198 169

random population size on the formulation of a noncooperative game and then a
formal definition of a Nash equilibrium for the queueing game.

2.1 The queue

The population size is a random variable N such that P(0 < N < ∞) = 1, and given
N = n, the service demands of the n customers are iid randomvariables (X1, . . . , Xn).
Conditioning on N = n, the arrival times of customers are n independent random
variables (τ1 . . . , τn) that are possibly not identically distributed. The random arrival
time τi ∈ T , with T ⊆ R denoting the admission interval, will later correspond to
a strategy played by customer i which can also be represented by the cdf Fi . The
system processes work during some specified time interval S ⊆ R. We say that
the arrival times are symmetric if Fi = F for all i , 1 ≤ i ≤ N , for some cdf F .
The above assumptions on arrivals and service hold for all papers discussed in this
survey. However, for now we do not assume a specific number of servers or service
regime. Of course, the specific system attributes, along with the arrival and service
distributions, will determine the distribution of the waiting and departure times (i.e.,
service completion times) of every customer i , Wi and Di , respectively, 1 ≤ i ≤ N .

In standard queueing models (without strategic arrival time selection), the arrival
process is typically modeled as a renewal process: a sequence (A1, A2, . . .) of iid ran-
dom variables that represent the inter-arrival times. For example, the simplest model
for arrivals is a Poisson process that assumes Ai are exponential random variables with
some fixed rate λ > 0. An accessible introduction to renewal and queueing theory can
be found in [25].However,when considering amodelwith a finite population that inde-
pendently choose arrival times, one must stray from the renewal framework. Suppose
that the arrival times of n customers are independent randomvariables (τ1, τ2, . . . , τn),
then the inter-arrival times are then given by

Ai = τ(i) − τ(i−1), i = 1, . . . , n, (1)

where τ0 := 0 and τ(i) denotes the i th order statistic of (τ1, τ2, . . . , τn). Clearly the
sequence (A1, A2, . . .) is neither independent nor identically distributed. In this case,
the counting process of arrivals is

A(t) =
n∑

i=1

1{τ(i)≤t}, (2)

which is also known as the order statistic process. If τi are identically distributed then
the order statistic process is a Markov process (see [14]) but not a renewal process as
explained above.

A special case is when the population size N follows a Poisson distribution with
meanλ. If, in addition, the arrival times of the participating individuals are independent
and uniformly distributed along [0, T ], then the arrival process is a Poisson process
with rate λ/T , which is of course a renewal process. If the population size is Poisson
distributed but the arrival distribution is not uniform, but some other symmetric cdf
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Fi = F for all i ≥ 1, then the resulting arrival process is a non-homogeneous in time
Poisson process as in Example 1. Note that the non-homogeneous Poisson process has
independent (but not identically distributed) increments, and hence, it is not a renewal
process.

A general framework for analyzing non-renewal queueing models with a finite
population was introduced by Honnappa et al. [34]. In particular, they introduced the
�i /G/1 model that assumes a deterministic population N = n, general service times
with CDF G and a single server that operates on a FCFS basis. Using our notation,
�i = Ai are the inter-arrival times that are determined by the order statistic process
of the arrival times (τi )

n
i=1 as in (1). A discrete-time version of this queue is analyzed

in [45].
For simplicity, we now assume that T ⊆ S = [0,∞) and so work is processed as

soon as customers start arriving. Therefore, the workload process satisfies

W (t) =
A(t)∑
i=0

Xi −
t∫

0

1{W (u)>0} du, t ∈ S, (3)

and the queue length process satisfies

Q(t) = A(t) − S

⎛
⎝

t∫
0

1{Q(u)>0} du

⎞
⎠ , t ∈ S, (4)

where S(t) is the uninterrupted service process (counts the number of service com-
pletions during an period of continuous work). Note that the workload represents the
waiting time of a potential customer arriving at time t (regardless of if one arrives at
this instant or not). If the admission period starts before the service period, then there
can be a period when the workload builds up with no work being processed, and then
the queueing dynamics in (3) and (4) need to be modified accordingly. We will specify
these dynamics in the special cases presented in Sect. 3.

The transient analysis of the queue length process Q(t) is generally intractable and
so [34] provides fluid and diffusion limits for the queueing process as n → ∞, with
an appropriate scaling of the service time distribution. The limits are obtained by a
method of population acceleration, which involves increasing the number of arrivals
and services during every time interval. For the case of exponential service times, Bet
et. al [8] show that the queueing process converges in a critically loaded heavy traffic
regime to a reflected Brownian motion with nonlinear drift. This was later generalized
to non-exponential service times by Bet [6]. A similar heavy traffic limit was derived
in Bet et al. [9] for a queue where the arrival and service times are not independent.
Specifically, the arrival times of customers are exponential random variables with a
rate that is a linear function of the service time. When the service times are heavy
tailed, the limiting process was shown to be an α-stable process in Bet et al. [7]. A
large deviations principle for extremes of the workload process was established by
Honnappa [32]. These limits can provide an approximation for the transient queue
dynamics for systems with a large population of customers each having a minuscule
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service demand. For example, a sample path version of Little’s law for the limiting
processes was given in [6]. The fluid limit is especially useful because it enables
explicit derivation of the Nash equilibrium arrival strategies in several of the models
we will discuss in Sect. 3.

If we make an additional assumption that service times are memoryless, Xi ∼
exp(μ) for all i ≥ 1, then the system can be described by a constructing an appropriate
continuous-time Markov chain. This construction was first introduced in the ?/M/1
model of [17] and generalized by Juneja and Shimkin in [38] and subsequently used
in many papers. First assume that the population size is deterministic N = n and that
the arrival times τi are continuous and symmetric with cdf F , density f and hazard
rate h(t) := f (t)

1−F(t) . The process (Q(t), A(t)), indicating the queue length at time t
and the number of arrivals until t , is a continuous-time Markov chain. Specifically,
this process satisfies the Kolmogorov backward equations

d

dt
p0, j (t) = μp1, j (t) − (n − j)h(t)p0, j (t), 0 ≤ j ≤ n,

d

dt
pi, j (t) = μpi+1, j (t) + (n − ( j − 1))h(t)pi−1, j−1(t)

− (μ + (n − j)h(t))pi, j (t), 1 ≤ i ≤ j ≤ N ,

(5)

where pi, j (t) = P(Q(t) = i, A(t) = j) for 0 ≤ i ≤ j ≤ n, and pi, j (t) = 0
otherwise. The distributions of the initial conditions A(0) = Q(0) are determined by
F(0). This can be generalized to random N by defining the hazard rate after j arrivals
as the conditional expectation h j (t) = E[N − j |A(t) = j] f (t)

1−F(t) . Similarly, the
arrival rate can be modified to heterogeneous arrival distribution Fi by conditioning
on the subset of customers that have arrived before time t .

Further observe that the uninterrupted service process S(t) is now aPoisson process,
hence for symmetric arrivals and a deterministic population n, (4) yields the expected
queue length at time t :

E[Q(t)] = E[A(t)] − μ

t∫
0

P(Q(u) > 0) du = nF(t) − μ

t∫
0

⎛
⎝1 −

n∑
j=0

p0, j (u)

⎞
⎠ du.

(6)
This means that the expected queue length q(t) := E[Q(t)] and expected workload

w(t) := E[W (t)] = q(t)/μ,

can be evaluated by solving the backward equations (5) given the initial conditions
p0,0(t) = 1.

2.2 The prior and posterior number of players

In the examples of Sect. 1, the symmetric equilibrium was based on the fact that each
of the players has the same assumption with respect to number of other players who
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participate in the game. There is no issue when there is a deterministic number of N
players: Each one assumes that the number of other players is N − 1. But what about
the case where this number is random?

In a model that reflects reality, we would like to think of a single lottery which
decides on the number of players. Moreover, based on the distribution of this lottery,
each of those who in fact were selected by chance to participate assesses the number
of others who were also selected. We next argue that this number (inclusive of the
selected player) needs to be uniquely distributed as the length-biased distribution of
the one that governs the lottery. The argument given here is borrowed from Haviv
and Oz [30]. Indeed, suppose there are m potential players. The number of actual
participants is i with a probability denoted by πi (m), 0 ≤ i ≤ m. Assume all m
players are equally likely to be selected, so the probability that a tagged player was
actually selected, given a total of i , is i/m, 1 ≤ i ≤ m. Hence, by Bayes’ rule, the
probability that size i was selected given the tagged one was one of them, equals

i
mπi (m)∑∞
j=1

j
mπ j (m)

, 1 ≤ i ≤ m, (7)

which is easily seen to equal iπi (m)/E(N (m)), where E(N (m)) is the expected num-
ber of participants. All one needs to assume is that the limits πi ≡ limm→∞ πi (m),
i ≥ 0, exist and define a proper distribution. Likewise with respect to E(N ) ≡
limm→∞ E(N (m)). So in the limit, the ratios in (7) become

�i := iπi

E(N )
, i ≥ 1,

which are the length-biased probabilities. In this framework, we have the following
result for gameswith a Poisson distributed population (seeHaviv andMilchtaich [28]).

Proposition 1 The distribution of the population size N possesses the property that
�i+1 = πi for all i ∈ {0, 1, 2, . . .} if and only if N is a Poisson random variable.

Proposition 1 states that the Poisson distribution is the unique distribution over
the integers for which the length-biased distribution is the same distribution as the
original population size with a shift of one. This extra one is the player who assesses
the number of others who participate in the game with one. Therefore, the Poisson
assumption simplifies the analysis of games with a random population size, although
typically results can be generalized in a straightforward manner by considering the
length-biased distribution.Moreover, the Poisson assumption is also attractive because
it is a good approximation for the binomial distribution that represents a large pool
of customers that potentially join the game, each with a tiny probability. Finally,
the Poisson assumption implies the independent increments property of the arrival
process, which greatly simplifies the required analysis. Further properties of games
with a Poisson distributed number of players are analyzed in the economic literature
and we refer interested readers to [44,46].
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2.3 The game

With the queue dynamics and the posterior distribution of the population size at hand,
we are ready to define the noncooperative game and the Nash equilibrium solution for
such a game. From now on, we assume that N is the random number of customers
joining the queue with respect to the posterior distribution of a customer selected to
play as in (7), i.e., P(N = n) = �n , n ≥ 1. Any customer i that has been drawn to
play selects an arrival time ti ∈ T , 1 ≤ i ≤ N . A strategy of customer i is given by a
random variable τi with cdf Fi , and an arrival profileF := {Fi , i = 1, 2, . . .} dictates
the strategies of all customers. For any customer i we denote the strategy profiles
excluding i by F−i .

From the viewpoint of a tagged customer i the queue length Q−i (t) and his/her
waiting time W−i (t) associated with arriving at time t , are functions of the arrival
process A−i (t) that is determined by the arrival profile of all other customers F−i .
Thus, the expected delay and cost computations are with respect to this process that
excludes customer i from the system. If customer i arrives at time t , he/she incurs
a cost Ci (t;F−i ,�), where � is a set of additional parameters that determine the
cost. Denote the expected cost for customer i when arriving at time t by ci (t;F−i ) :=
E[Ci (t;F−i ,�)]. We next present an example of a cost function for a Markovian
queue with penalties on delay and tardiness (based on the results of Haviv [26] and
Juneja and Shimkin [38]).

Example 3 Agate to a single-server queue is openduring the time interval [0, T ],which
we call a day. The case T = ∞ is not ruled out. Customers are allowed to arrive before
time 0 and the seniority of those who wish to do so is kept. This is known as the ‘with
early birds’ assumption. They must arrive before time T in order for their service to
be granted (even if it goes beyond time T ). Therefore, T = (−∞, T ] and S = [0,∞)

in the general notation. Service requirements follow an exponential distribution with
parameter μ and the number of customers who seek service during the day follows a
Poisson distribution with parameter λ. Customers incur a waiting cost of α > 0 per
unit of time in the queue and a tardiness cost of β > 0 per unit of time from time
zero to the time of their service commencement. Hence, the cost function of customer
i arriving at t and waiting for w > 0 units of time equals αw + β max{t + w, 0}.
The waiting time consists of the time spent waiting for other customers to be served,
and in addition, if a customer arrives at t < 0, before service commences, then he/she
has to wait these −t units of time regardless of the queue length at time t . Hence, the
expected cost is given by

ci (t;F−i ) = (α + β)E[Wi (t)] + βt1{t≥0} − αt1{t<0}. (8)

If there are n − 1 other customers with symmetric arrival strategies and service times
are exponential with rate μ then E[Wi (t)] = E[Qi (t)]/μ, where the expected queue
length is given by (6) (for a system with n − 1 customers). �
We next define a Nash equilibrium, followed by a refinement to a symmetric Nash
equilibrium, with the latter being the main solution concept discussed in this survey.
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Definition 1 A Nash equilibrium is a strategy profile F = {Fi , i = 1, 2, . . .} such
that for any customer i there exists a constant ki satisfying

ci (t;F−i ) = ki , ∀t ∈ σ(Fi ),

ci (t;F−i ) ≥ ki , ∀t ∈ T \σ(Fi ),

where σ(Fi ) ⊆ T is the support of Fi .

Definition 1 is explained as follows: an individual arrival strategy is optimal in the
sense that it is a best response to the strategies selected by the others, and in particular,
one is indifferent between arriving at all time instants among which the equilibrium
strategy is randomizing.

We next refine the equilibrium definition to a symmetric strategy profile (when
possible). Most of the research in the when-to-arrive literature deals with symmet-
ric equilibria, although as we saw in Example 2, there are cases where asymmetric
equilibria exist (even when the game itself is symmetric). Symmetric equilibrium is
arguably a more natural outcome for large and anonymous games, and in many cases,
it is in fact the only possible solution.

Definition 2 A symmetric Nash equilibrium is a strategy F such that there exists a
constant k satisfying

c(t; F) = k, ∀t ∈ σ(F),

c(t; F) ≥ k, ∀t ∈ T \σ(F),

where c(t; F) denotes the expected cost of any customer who arrives at time t when
all others are using strategy F whose support is σ(F) ⊆ T .

For the sake of brevity, from now on we denote the expected cost by ci (t), or
c(t) in the symmetric case, while keeping in mind that the cost is always a function
of the strategy profile. By the above definition we conclude that d

dt c(t) = 0 for all
t ∈ σ(F) is a condition to be obeyed by a symmetric and continuous equilibrium
arrival distribution F .

3 Equilibrium arrival strategies

Since the publication of [17], the ?/M/1 model has been generalized and extended in
many directions. We first describe in detail the equilibrium analysis of the model with
waiting and tardiness costs of Example 3 with the additional assumptions of a Poisson
population and exponential service times. The results are due to [26] and [38]. We find
this example a good representative of the formulation and analysis done in many of
the subsequent articles extending it or relying on similar analysis. In [35] and some
of the following papers this example is referred to as the ‘Concert Queueing Game.’
Note that the original ?/M/1 model of [17] (and Example 1 here) is a special case with
only waiting costs, i.e., β = 0.
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3.1 Equilibriumwith waiting and tardiness costs (Example 3)

We recap the model assumptions briefly. A population of customers, whose size N
is a Poisson random variable with mean λ, seek service from a single FCFS server.
The admission and service periods are T = (−∞, T ] and S = [0,∞), respectively.
We first consider the case ‘with early birds’ where customers are allowed to arrive
before time 0 while their seniority is kept, and later also review the case ‘without early
birds’ where customers are randomly ordered at the opening instant and so there is
no incentive to arrive at any time t < 0. Service requirements follow an exponential
distribution with parameter μ. Customers incur a waiting cost of α > 0 per unit of
time in the queue and a tardiness cost of β > 0 per unit of time from time zero until
their service commencement.

Customers decide on their arrival time, t , which needs to be in the time interval
[−ta, tb] for some (to be determined) ta ≥ 0 and 0 ≤ tb ≤ T . Their goal is to minimize
their expected total (waiting plus tardiness) costs given in (8). Since mixing is allowed
(and in fact, needed), we seek a symmetric arrival strategy which states a CDF F(t)
that constitutes a Nash equilibrium. Given a symmetric arrival strategy F , denote the
expected queueing time for one who arrives at time t by w(t). Then the expected cost
associated with arriving at time t is given by (8),

c(t) = (α + β)w(t) + βt1{t≥0} − αt1{t<0},

where w(t) = E[Q(t)]/μ. We make the following observations on the equilibrium
distribution:

• No atoms The equilibrium strategy F does not come with atoms. This is because
arriving momentarily before an atom ensures a lower expected queue length, i.e.,
if F(t) has an upward discontinuity at t then so do E[Q(t)] and w(t). Hence,
we look for a CDF which comes with a density function f (t) such that F(t) =∫ t
−ta

f (τ ) dτ , where f (τ ) is continuous almost everywhere.
• No holes There are no gaps in the support of the arrival time distribution: If a gap
exists, one better arrive at its end rather than at it initiation. This is verified by
taking derivative of the cost function c(t) (see Lemma 2.1 of [26] for details).

Given the above properties, Definition 2 states that in equilibrium there exists some
constant k > 0, such that

(α + β)w(t) + βt = k, t ∈ [−ta, tb], (9)

and
(α + β)w(t) + βt ≥ k, t /∈ [−ta, tb]. (10)

The first thing to observe is that k = αta as this is the cost of one who arrives at time
−ta and faces an empty queue with probability one. Since

w(t) = E[Q(t)]
μ

= λF(t)

μ
− t, −ta ≤ t < 0,
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we have that

α
λF(t)

μ
− t + β

λF(t)

μ

is constant along the time interval [−ta, 0]. Hence,

f (t) = μ

λ

α

α + β
, −ta ≤ t ≤ 0.

In particular, the distribution along the early birds arrival period is uniform. Therefore,
F(0) = taμα/(λ(α + β)) and

tb∫
0

f (t) dt = 1 − ta
μ

λ

α

α + β
. (11)

Assume for now that T = ∞. This assumption will be removed shortly.
Clearly, the density function f (t) determines the arrival process, which due to

the Poisson assumption regarding the number of arrivals during the day, is a non-
homogeneous Poisson process with a rate function λ f (t). Moreover, the future
progression of the number who queue up at time t , which in turn determines the
expected waiting time given an arrival at this instant, does not depend on the past,
once the current number in the system is given. Specifically, denote by pi (t) the
probability that at time t , t ≥ 0, the number in the system is i , i ≥ 0. Then, these
probabilities obey the initial conditions, given by the splitting property of the Poisson
distribution,

pk(0) = e−λF(0) (λF(0))k

k! , k ≥ 0, (12)

and the dynamics described in (5) are

p′
0(t) = p1(t)μ − p0(t)λ f (t), 0 < t < tb, (13)

p′
k(t) = pk−1(t)λ f (t) + pk+1(t)μ − pk(t)(λ f (t) + μ), 0 < t < tb, k ≥ 1. (14)

The standard queue dynamics described in (6) yield

w′(t) = 1

μ
(λ f (t) − μ(1 − p0(t))).

This, coupled with the equilibrium condition (9), turn out to be equivalent to

f (t) =
{

μ
λ

α
α+β

, −ta ≤ t < 0,
(1−p0(t))μ

λ
− βμ

(α+β)λ
, 0 ≤ t ≤ tb.

(15)

Another equilibrium condition is that

f (tb) = 0, (16)
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Fig. 1 Example 3 (waiting and
tardiness costs). The cdf and
density of the Nash equilibrium
arrival distribution. The example
parameters:
(λ = 20, μ = 2, α = 1.2, β = 0.9)

t

f(t)

0ta = −10 tb = 11.2

t

F (t)

0

1

ta = −10 tb = 11.2

as without it one better arrive at time tb + ε for some small ε > 0, violating (10).
The above provides a full characterization of a symmetric equilibrium arrival dis-

tribution but the complicated queueing dynamics do not enable an explicit solution of
the functional differential equations. We next describe a simple method for numerical
computation of the equilibrium distribution.

Algorithm 1: Numerical computation of the equilibrium strategy F .

Set k = 0 and guess t(k)a > 0.

(a) Compute f (t) for t < 0 and F(0) from (11) and then pk (0) using (12).
(b) Compute f (t) for t > 0 using (15), (13) and (14), stopping when tb satisfies (11).

If f (tb) > 0 then set t(k+1)
a > t(k)a and repeat steps (a) and (b).

If f (tb) < 0 then set t(k+1)
a < t(k)a and repeat steps (a) and (b).

If f (tb) = 0 then (16) is satisfied and F is the equilibrium distribution.

Of course, implementation of Algorithm 1 requires some more details. In practice,
it is convenient to do the computation on a discretized time grid and to use a smart
bisection search for finding ta quickly. The convergence of the algorithm to a unique
solution is guaranteed by monotonicity properties discussed in [26,38]. It is further
established in [38] that the symmetric equilibrium solution here is the unique solution,
even if asymmetric strategies are allowed. The uniqueness result requires a technical
assumption that mixed strategies with an infinite number of atoms in a finite interval
are not allowed.

One more feature the of equilibrium density is that it comes with a downwards
discontinuity at t = 0; f (0−) > f (0). This phenomenon is repeated in other when-
to-arrive models. It is interesting that the equilibrium arrival rate drops as soon as the
server commences service.

Figure 1 illustrates the density and the cdf which determine the equilibrium arrival
process. In this example the parameters are (λ = 20, μ = 2, α = 1.2, β = 0.9).
Customers start arriving at ta = −10 and they arrive before the opening with a
probability of F(0) = 0.59. After the opening customers arrive with a decreasing to
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zero density until tb = 11.2. Recall that the system may continue working after tb if
there are still customers waiting for or at service at time tb.

A final remark for this example is that the analysis straightforwardly extends to
any distribution on the population size, N . As explained in Sect. 2.3, the dynamic
equations (13) need to be replaced by (5) for the two-dimensional process (A(t), Q(t))
representing the number of arrivals and the queue length, respectively. In particular,
the arrival rate at time t when A(t) = j customers have already arrived is given by
the hazard rate function

h j (t) = E[N − j |A(t) = j] f (t)

1 − F(t)
.

For any N = n the number of customers in the queue at t = 0 is a Binomial(n, F(0))
random variable; hence, the initial conditions of the system are now given by

pk(0) =
∞∑
n=1

�n

(
n

k

)
F(0)k(1 − F(0))n−k, k ≥ 0,

where �n is the length-biased distribution defined in Sect. 2.2. If N is a constant, then
�N−1 = 1 for any tagged customer.

3.2 Restrictions on arrival times

In Example 1, where only waiting costs (β = 0) were assumed, it was necessary
to assume a finite closing time T < ∞; otherwise, customers could ‘spread’ their
distribution over an unbounded period leading to virtually zero interaction and no
waiting costs. When tardiness costs exist as well, then even without a restriction on
the customers to arrive on a finite interval, the resulting arrival period will be bounded.
This is because the tardiness cost is unbounded for arriving very late. However, one
may still want to consider a system with a closing time and tardiness costs and the
analysis in Sect. 3.1 still holds with a slight modification. It is clear that if T < ∞ but
still T > tb, then the equilibrium distribution remains the same. Otherwise, tb needs to
be replaced by T throughout the analysis (removing one degree of freedom from the
solution) and the equilibrium condition (16) needs to be removed. For further details
on the construction of the equilibrium in this case, we refer to [26].

Suppose now that early birds are not allowed and all customers present at the
opening instant are randomly ordered. This may be the case in a facility without a
physical space to form a queue before the gates are open, or in digital systems that
are simply turned on at a certain moment in time. The game with no early birds was
first studied by Hassin and Kleiner [24] for a model with only waiting costs and later
extended to a model with waiting and tardiness costs in [26]. In this case, there is
no reason for a customer to arrive at any t < 0 and the equilibrium distribution is
therefore restricted to [0, T ]. The key difference in the solution is that now there is
an atom at time zero whose size is F(0) > 0. Furthermore, as there is an upward
discontinuity in the waiting time immediately after the atom, there will be no arrivals
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along a positive interval immediately after the opening. Formally, there exists some
te > 0 such that F(te) = F(0) and

∫ T
te

f (t) dt = 1−F(0). Note that it is possible that
te = T , i.e., all customers arrive together at the opening with probability one (as was
shown in Example 2 for a game with two customers). The density f (t) on [te, T ] is
obtained in the same manner as was exemplified in the case without early birds, with
initial conditions that are given by (12), with F(0) as the boundary parameter instead
of ta . Therefore, Algorithm 1 can still be applied with little modification.

3.3 Computing the equilibrium

Explicit analysis and computation of the equilibrium distribution are impossible for
most models, and so algorithmic and numerical approaches are often used. The most
commonly used method for computing the equilibrium is via a discrete approximation
of the solution to the functional differential equations arising from the equilibrium con-
ditions together with the queueing dynamics.We provide details on this approximation
for the model with waiting and tardiness costs of Example 3.

Suppose that early birds are not allowed and that the system has a finite closing
time, i.e., T = [0, T ]. One can choose a small� such that T /� is an integer and solve
the game on a discrete grid {0,�, 2�, . . . , T }. The population size, and therefore also
the queue, is unbounded due to the infinite support of the Poisson distribution and so a
truncation of the state space is in order. Namely, assume that the queue buffer is a large
integer, denoted by M . The queue dynamics of (13) and (14) are then approximated
for every t ∈ {0,�, 2�, . . . , T } by

p0(t + �) = p0(t) + �(p1(t)μ − p0(t)λ f (t))

and

pk(t + �) = pk(�) + �(pk−1(t)λ f (t)

+pk+1(t)μ − pk(t)(λ f (t) + μ)), 1 ≤ k ≤ M,

where pM+1(t) := 0 for any t . This approximation is justified by recalling that one
of the definitions of a continuous-time Markov chain is that transitions from state i
occur at time t with probability of the order �qi (t) + o(�), where qi (t) is the total
transition rate from state i at time t .

In Algorithm 1, for any initial value F(0), the probabilities pk(t) need to be eval-
uated for all k ∈ {0, . . . , M} and t ∈ {0, . . . , T }. We therefore conclude that a single
iteration of Algorithm 1 requires an order of M · T /� computations. For an arbitrary
initial guess of F(0), multiple iterations are typically required until convergence is
reached, but typically the number of iterations is small and the time-consuming part
of the algorithm are the iterations themselves. Increasing M or decreasing � clearly
improves the accuracy of the approximation but both come at the cost of increasing
the computation time of every iteration of the algorithm.
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3.4 Cost functions

The existence and uniqueness of the symmetric Nash equilibrium is rigorously verified
in [38] for the game with early birds. As illustrated in Example 2, if early birds are
not allowed and T < ∞ there may exist multiple asymmetric equilibria where some
customers arrive at time zero and some at T . Excluding such cases, the underlying
result is that the equilibrium dynamics given by demanding the cost c(t) to be constant
along the support and the backward equations of the queueing processes yield a unique
solution that is monotone with respect to initial conditions.

Breinbjerg [10] extends the existence and uniqueness result to a model with general
(non-exponential) service times and a nonlinear cost function. Specifically, a utility
function that is continuous and decreasing with respect to both waiting and departure
times is assumed. A constructive characterization of the symmetric equilibrium was
provided and uniqueness was argued by applying the aforementioned monotonicity
properties of the equilibriumdynamics. The construction of the equilibrium for general
service times and nonlinear utilities does not provide a general tractable computational
method, so specially tailored numerical methods for the specific dynamics and cost
structure need to be constructed for every model. An algorithm for computing the
Nash equilibrium in a discrete-time setting with general service times is constructed
by Sakuma et al. [57] for the model with no early birds and β = 0.

In Ravner [53], it is assumed that the customers incur a cost based on the order
of admission. This is the case for example in a concert hall or a bus with unassigned
seats. Let γ > 0 denote the linear order penalty, i.e., a customer arriving at time t
incurs a cost of γ A(t), where A(t) is the number to appear by time t . Suppose that
their additional tardiness and waiting costs are as before, then the equilibrium has the
same structure as in Example 3, with a modification of the density function (15) that
takes into account the additional cost parameter γ . The case of T = ∞ and β = 0 is
interesting because the equilibrium distribution has an infinite support with a density
that decreases exponentially fast to zero but never equals zero. Therefore, in this case
the arrival process can last for a very long time (with a positive probability): Even
if one arrives late (long after all other customers have arrived), the expected cost is
approximately γ N because the queue is most likely empty. This further implies that
in equilibrium the expected cost for all customers is exactly γ N . For the special case
of N = 2, the equilibrium distribution has an explicit solution which turns out to be
an exponential distribution after time zero.

Some service systems are always operational and do not have an opening time, but
may still be congested for only a specific timeperiod. For example, the highway leading
to a city is always open but traffic jams occur mostly at rush hour when the demand
for getting into the city is highest. This is also the case for various digital systems
such as streaming services with peak demand at certain hours. A natural model for
such a system is presented by Sherzer and Kerner in [59]: a finite population of N
customers that can arrive any time t ∈ (−∞,∞), but now there is also a penalty for
arriving early. The costs are linear with β1, β2 and α denoting the per unit of time
earliness, tardiness and waiting costs, respectively. The ideal time for arriving and
starting service is assumed to be t = 0, without loss of generality. The expected total
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costs for a tagged customer arriving at time t is then

c(t) =
{

−tβ1 + αw(t) + β2E
[
(t + ∑A(t)

i=1 Xi )
+
]
, t < 0,

(α + β2)w(t) + β2t, t ≥ 0,
(17)

recalling thatw(t) is the expectedwaiting time of onewho arrives at time t and Xi is the
service time of customers i . Note that earliness is the (negative) deviation of the arrival
time from zero and tardiness is the deviation of the time of starting service from zero,
and therefore, a customermay arrive early and still incur a tardiness cost if theirwaiting
time ends after zero. For a Poisson population, using similar arguments as in Example
3, [59] provides a similar characterization of a unique symmetric arrival distribution:
F is continuous with a density that satisfies a system of differential equations given by
the queue dynamics and the constant expected cost equilibrium condition. However,
the equilibrium solution is harder to compute because the density before zero is no
longer uniform and the derivative of (17) is a function of the probabilities pk(t) of
all states k ≥ 0 and not just the idle probability p0(t) as in (15). The solution can be
approximated with a procedure similar to Algorithm 1.

An additional paper that assumes earliness costs is Glazer et al. [19] for a machine
scheduling motivated model. A single machine processes N determinstically sized
jobs that have a desired due date with penalties for tardiness and earliness, but no
cost for waiting. It is shown that multiple equilibria exist such that all jobs arrive at
the same time. For most parameter settings, the socially optimal schedule is also an
equilibrium. The above result holds for several extensions such as heterogeneous jobs
that may differ in their due dates or earliness/tardiness penalties.

3.5 Service regimes and queue dynamics

Timing of arrivals is also relevant for periodic batch-service systems, such as a bus or
train that departs at some known time. Such a model is studied in Glazer and Hassin
[18]: Service is provided to a batch of up to N ≥ 1 customers every T > 0 units of
time, and if there are more than N customers waiting at the time of service, then only
the first N are served (with FCFS order) and the remaining customers must wait for
at least another T units of time until the next service. Every period a Poisson number
of customers joins the system and choose when to arrive during [0, T ]. Note that the
batch sizes are independent but the waiting times are not as at the beginning of a
period there may be customers left from previous periods. The steady-state arrival
distribution is shown to be a continuous distribution F on [te, T ] for some te > 0 with
a density f (t) that satisfies a system of backward equations, similar to those detailed
for Example 3.

Lariviere andVanMieghem [41] consider a discrete-time systemwithM customers
that choose between T possible arrival slots. Each time slot is assumed to be sufficient
to serve all arriving customers so there are no queue dynamics and the expected
congestion cost is based only on the number of other customers with the same chosen
time slot. The arrival process corresponding to the mixed Nash equilibrium is shown,
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when M and T grow large, to be approximately a homogeneous in time Poisson
process.

Suppose now that the system has a finite buffer and customers arriving when the
buffer is full are lost and do not obtain service. In Mazalov and Chuiko [43], a single
server with exponentially distributed service times and nowaiting buffer is considered,
i.e., an ?/M/1/1 model. The utility of a customer arriving and finding the sever idle
at time t is given by some continuous function C(t), and the utility is zero if the
customer finds the server busy and the customer is then lost. The mixed strategy Nash
equilibrium is again given in the form of a continuous distribution that solves a system
of differential equations with some special cases admitting a closed form solution.
Haviv and Ravner [31] assume that customers wish to maximize the probability of
admission in a multiserver finite buffer queue (an ?/M/m/c system) by choosing an
arrival time t ∈ [0, T ]. As in the no early birds case of Sect. 3.2, the symmetric
equilibrium strategy has an atom at zero F(0) and a continuous distribution on an
interval [te, T ]. If there is a single server and no waiting buffer, m = c = 1, then the
equilibrium distribution is uniform for the special cases of N = 2 and N following
a Poisson distribution. Note that for N = 2 this is exactly Example 2. This is the
case as there is only one other potential customer, we get that minimizing waiting is
equivalent to maximizing the probability of finding an idle server. The model of [31]
is extended by Chuiko [13] to a loss system with two servers and random routing.
A similar equilibrium distribution is derived by solving a more elaborate system of
equations that takes into account the transient joint distribution of the state of both
servers.

So far, we have discussed systems with FCFS policy. However, there are many
systems that employ other service regimes such as priority classes, processor sharing
or last come first served (LCFS). Such a policy may be in order for a system with het-
erogeneous customers or as a means for improving performance. The queue dynamics
become much more elaborate for non-FCFS regimes, for example overtaking implies
that the expected waiting time of a customer arriving at t depends on arrivals after time
t and so a recursive solution of the equilibrium dynamics as in Algorithm 1 no longer
works. Therefore, approximations of the equilibrium or of the system dynamics are
often used for studying such models. The most common approach is by applying fluid
approximations. This line of work will be discussed in detail in Sect. 5.

A classical result of Hassin [21] states that LCFS preemptive-resume policy is
socially optimal for an observable queue with customers that can balk from the queue.
Similar results are obtained for the game of timing arrivals by Platz and Østerdal [50]
and Breinbjerg and Østerdal [11]. In particular, [50] establishes the optimality of the
LCFS, and, interestingly, that FCFS is theworst in awide class of service regimes. This
is done by considering a fluid approximation of the game. [11] constructs a numerical
method to compute the equilibrium arrival distribution for LCFS. It is further shown
numerically that the social welfare in equilibrium is higher for LCFS than FCFS. An
additional model that is related to LCFS is the timeline game of Altman and Shimkin
[3]. This model considers a website with ad listings, such as real estate properties,
where the newest ad bumps down all existing ads. The game takes place over a finite
duration [0, T ] and advertisers choose when to upload their ad with the goal that their
ad be placed as high as possible for as long as possible. It is shown there that the
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symmetric equilibrium distribution is given by a continuous distribution on [0, te] for
some te < T and is derived by using similar equilibrium conditions as the ?/M/1
model.

An observable version of the when-to-arrive game is studied in Babaioff and
Oren [5]. A population of N customers choose when to arrive from a discrete set of
times, T = {1, 2, . . .}, and customers arriving at the same time are randomly ordered.
Before every unit of time all customers who have not joined can observe the queue and
decide whether to join or wait. The service time is deterministic and equals one unit of
time for each customer. Customers wish to minimize their waiting time in the queue.
This setup yields a stochastic game, and therefore, the solution concept analyzed is the
subgame perfect equilibrium (SPE). It is shown by induction that a symmetric SPE
always exists. This is done by the construction of the discrete queue dynamics and the
evolution of the expected costs. If the waiting cost is low, specifically a linear cost of
α ≤ 2 per unit of time, then the equilibrium prescribes that all customers join in the
first period with probability 1. For α > 2, there exist more elaborate mixed strategies
that randomize between joining or not for several time periods. Of course, every such
strategy dictates what action to make for every queue length observed, and therefore,
the equilibrium strategies can be described algorithmically but not explicitly.

A model allowing for heterogeneous customers and priorities was introduced by
Talak et al. [62]. The paper studies the problemofwhen to arrive at the gate for boarding
a plane. The gate closes at t = 0 and so all customersmust choose an arrival time t ≤ 0
and wait behind all travelers who have already joined the queue, i.e., T = (−∞, 0]
and S = {0}. It is assumed that the cost of a customer is a weighted combination
of the queueing time and penalty for arriving at the gate −t units before boarding
commences. The weight of the waiting time penalty, denoted by nv , is determined by
the type v, which is given by a continuous random variable from a known common
distribution. Customers decide when to arrive given their individual waiting cost. The
unique Nash equilibrium dictates a deterministic arrival time for each waiting penalty
realization. The paper considers several extensions and generalizations. A notable
extension allows customers to purchase priority, from a discrete set of L priority
levels, as well as choosing when to arrive. Under some assumptions, it is shown that,
in equilibrium, each priority level � = 1, . . . , L comes with an associated interval
of customer types: Every customer of type v ∈ [v�, v�] purchases priority �, and
furthermore, the customers at each level have disjoint arrival intervals. Moreover,
customers with a higher weight nv for the waiting penalty arrive later and purchase
higher priorities than those who have a lower weight.

In many queueing systems, such as those arising in traffic and communication
networks, the service regime is processor sharing rather than FCFS. As explained
before, solving the equilibrium dynamics for such a system is much harder even for
a Markovian system because the waiting time of a customer arriving at time t is
determined by the number of customers in the system at t and all those arriving after
time t (and before the customer departs). A fluid approximation for this model will
be discussed in Sect. 5. In Ravner et al. [54], a Stackelberg game of choosing arrival
times to a deterministic processor sharing system is analyzed. Every customer has a
unit job size and an individual due date, and the cost is a weighted combination of the
sojourn time in the system and the deviation from the due date. The customers choose
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the arrival times sequentially in the order of their due dates. It is shown that multiple
subgame perfect equilibria exist for this game. Furthermore, an iterative best response
algorithm for computing equilibrium points is constructed.

The aforementioned [57] considers a discrete-time version of [24] (a FCFS sys-
tem with no early birds and penalty only for waiting) with general service times. The
equilibrium distribution is numerically compared to the outcome of a dynamic agent
based learning model: A large population of potential customers join the queue every
day independently, each with some small probability. If they indeed join, they need
to choose when to arrive. Customers start by choosing an arrival uniformly on the
first day and record the waiting time experienced at the chosen arrival time. As time
evolves customers mix between arriving uniformly and choosing the time that yielded
the minimal average waiting time in the past, with a growing probability for the latter.
The above exploration–exploitation dynamics converge to an empirical distribution
that is shown by means of simulation to be very close to the Nash equilibrium arrival
distribution. Intuitively, all the time slots that are chosen repeatedly in the long run
yield the samewaiting time, and therefore, this approximates the equilibrium condition
of a constant expected cost over the support of the distribution. This type of learning
dynamics can be a powerful tool to approximate the equilibrium arrival distribution
for more complicated systems which are otherwise intractable. Ravner and Sakuma
[56] extend this learning model to a system with a random service rate and noisy
signals. In particular, customers are heterogeneous due to receiving different informa-
tion about the service speed and computing the equilibrium becomes a difficult task
even for a simple model with two types of customers and exponential service times.
The long-term outcome of the learning dynamics are shown to be quite differ from
the equilibrium outcome when customers have limited information about the system
parameters.

4 Social optimality and Price of Anarchy

So far, we have formulated the ‘when-to-arrive’ problem as a noncooperative game
and the solution concept we looked for is that on symmetric Nash equilibrium. Now
we consider a different criterion, that of society. As elaborated in Sect. 2, the strategy
profile T = {τ1, . . . , τn} determines the random arrival process to the system. Given
the arrival process, every customer i = 1, . . . , n has some expected cost ci (T) and the
social cost is defined as the sum of the individual costs,

∑n
i=1 ci (T). Consider some

symmetric (or for that matter, asymmetric) strategy profile that associates a cost to
each of the players. A socially optimal arrival profile is then

T∗ ∈ arg minT

n∑
i=1

ci (T).

It is important to make a distinction between two levels of control the optimizer has
over the arrival times:
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• Full control The individual arrival times (t1, . . . , tn) ∈ R
N of all customers can be

selected by a central planner. This means that all customers can be identified and
instructed when to arrive. In particular, symmetric customers can be told to arrive
at different times. If the population size N is random, then its realization should
also be known.

• Optimal symmetric strategyA single message can be sent to all customers instruct-
ing them what, possibly mixed, strategy to use. This is an anonymous control. If
customers are heterogeneous in the sense that they belong to different classes, the
messagemay specify a different strategy for every type of customer.An assumption
invoked here is that customers know their own type.

The optimal full control schedule of arrivals can be seen as an upper bound on the
social welfare because no static policy can do better. The anonymous control, on the
other hand, is limited to solutions that can be implemented by the customers themselves
without centralized coordination. Customers are still anonymous but instead of a Nash
equilibrium profile, the symmetric individual strategy is chosen in such a way that
social welfare is maximized. Therefore, the latter is a more natural benchmark for the
equilibrium social welfare because it maintains the rules of the game.

The inefficiency of the system is typically measured by the price of anarchy (PoA),
which is the ratio between the worst equilibrium cost and the socially optimal cost,

PoA = supTe∈T e
∑n

i=1 ci (T
e)∑n

i=1 ci (T∗)
≥ 1,

where T e is the set of all Nash equilibria. In most cases, T∗ is the optimal symmetric
control, but in some cases the full control optimal solution is easier to compute and
then taking T ∗ as this solution can be viewed as an upper bound on the PoA.
Example 2 (cont.) Recall that two customers seek service from a single service and
choose when to arrive during the time interval [0, T ]. Service times are exponen-
tial with rate λ. We next detail the equilibrium, full control and anonymous control
solutions.

• Symmetric equilibrium If T < log 2/μ then both customers arrive at t = 0. If T >

log 2/μ then the symmetric equilibrium strategy is given by Fe(0) = 2/(2+μT −
log 2) and a uniform density ofμ/(2+μT −log 2) along the interval [log 2/μ, T ].
Note that the above ignores the possible asymmetric equilibria discussed in Sect.
1. If both customers arrive at 0 the social cost is 1/μ and for the symmetric mixed
equilibrium, it is 4/μ(2 + μT − log 2).

• Optimal Symmetric strategy If we limit the profiles to symmetric ones, it is shown
by Haviv and Oz [29] that the (practically) unique optimal solution is to arrive
with probability

F∗(0) = F∗(T ) − F∗(T−) = 1/(2 + μT )

at either time 0 or time T , and with a uniform density of μ/(μT + 2) along the
interval (0, T ). It is possible to show that the social cost equals 2/(2 + μT )μ.
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• Full control The optimal social welfare for asymmetric strategies is obtained by
one customer arriving at time 0 while the other arrives at time T . The social cost
is e−μT /μ.

We can use the above to compute the PoA with respect to the optimal symmetric
strategy:

PoA =
{
1 + μT

2 , T < log 2/μ,
2(2+μT )

2+μT−log 2 , T > log 2/μ.

Similarly, the PoA bound corresponding to the full control solution can be derived.
Interestingly, it is shown in [29] that the symmetric equilibrium strategy under the
processor sharing regime coincides with the socially optimal symmetric strategy. This
result does not extend to the case of more than two customers seeking service along
the time interval [0, T ]. ♦

Going beyond the simple case of two customers, there is little hope for finding
explicit solutions, as was the case for the equilibrium analysis. Therefore, the majority
of research on social welfare optimization relies on algorithmic methods and approxi-
mations. For the ?/M/1 queue with only waiting costs and T = [0, T ], [24] use a local
search method on a discretized time grid to approximate the optimal symmetric arrival
strategy. The approximated optimal symmetric strategy is quite intuitive: a mass of
customers should arrive at the opening, a mass at closing and almost uniformly along
(0, T ). It was further shown numerically that the gain in social welfare by not allowing
early birds is very small for a system that is not very heavily loaded. The methodology
of [24] relies on techniques used in outpatient scheduling, namely optimization ofmul-
timodular functions. See Altman et al. [2] for theoretical background and Kaandorp
and Koole [40] for the application to outpatient scheduling.

In the observable model of [5], some interesting asymptotic properties of the PoA
are established. For the full control benchmark, it is shown that the PoA approaches
2 as the population size or waiting cost increases to infinity. When the PoA is defined
with the optimal symmetric strategy, then the same result holds for the population
size only. The PoA approaches a much lower number (≈ 1.06) when the waiting cost
increases to infinity.

The task of optimal scheduling or sequencing of jobs has naturally received a lot of
attention in the operations research literature (see Pinedo [48] for an extensive intro-
duction to the topic) and some of these methods are also useful for the when-to-arrive
model. Choosing the socially optimal arrival times (full control) for a single serverwith
exponential service is shown to be a convex problem in Pegden and Rosenshine [49],
when the objective is minimizing a weighted combination of expected waiting times
and makespan. Hence, finding the optimal schedule can be achieved efficiently using
standard methods such as gradient descent. However, for more elaborate systems the
objective function is non-convex, and sometimes, it is hard to even evaluate the cost
for a given schedule. Thus, heuristic methods are often used. One such heuristic is
the equidistant schedule of arrivals spread out on [0, T ] (see, for example, Stein and
Côté [60]). This heuristic has a solid intuition behind it that a social planner would
like to spread arrivals as far as possible apart in order to avoid congestion. For the
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loss system of [31], it is shown that such a schedule is in fact optimal in the case of
a single server and no queue buffer, but suboptimal for other systems. For more elab-
orate loss systems the equidistant schedule is used as a lower bound for the optimal
social welfare and PoA. Together with an upper bound obtained by an oracle upper
bound (that knows all service time realizations), the heuristic is shown to performwell.
Furthermore, this is used to show that the PoA is not monotone with the population
size; it is low for small populations because customers spread out by themselves in
equilibrium, low for large populations because the system is very congested for any
schedule when the admission interval is relatively shot and so there is little room for
improvement, but for moderately sized populations there is a big difference between
the equilibrium and socially optimal outcome.

Generally speaking, the problem of social welfare optimization has less structure
than that of deriving the equilibriumarrival process forwhichwe saw there is a common
framework inmany of the papers. Thismeans that typically ad hoc analysis is required.
For the model with tardiness and earliness penalties, but no waiting costs, [19] show
that the socially optimal solution is an equilibrium (for most parameter sets), but it is
not a unique equilibrium and so the price of anarchy is still greater than one. Ravner and
Nazarathy [55] consider the socially optimal schedule for the deterministic processor
model of [54]. The complex dynamics yield a piecewise convex objective that can
be maximized using an exhaustive algorithm that is only feasible for a small number
of customers. Heuristic methods are developed for the general problem. Numerical
analysis in [54] suggests that in equilibrium the deviation from the due dates is small in
comparison with the socially optimal solution but congestion levels are much higher.

5 Fluid approximations

Fluid models with deterministic dynamics are widely used to approximate queueing
systems because they enable explicit derivation of performance measures and opti-
mal policies. This is especially true for time-dependent systems that cannot rely on
steady-state results (see, for example, Mandelbaum et al. [42]). The fluid approach
has also been heavily used in the transportation literature in the analysis of variations
of the Vickrey bottleneck model (see [4,63]). Using our notation, the Vickrey model
assumes the (α, β, γ ) linear cost structure for waiting, tardiness and earliness costs,
respectively. Furthermore, as the motivation typically comes from traffic networks
composed of roads, it is assumed that the server is always available. In the stochastic
queueing setting similar assumptions to the ones made in [59] (which was discussed
in Sect. 3.4) are made. The latter also compared the fluid approximation of the equi-
librium profile to the stochastic counterpart without the restrictive assumptions often
made in the transportation literature (for example, β > α > γ ).

Fluid approximations in the context of when-to-arrive decision model were first
introduced by Jain et al. [35]. They turn out to be much easier to analyze (as expected),
are shown numerically to give good approximations and also lead to quick approxima-
tions to the price of anarchy (PoA). Juneja and Shimkin [38] show that the equilibrium
of the stochastic systemconverges to thefluid solution as N → ∞. This result is unique
in the sense that most papers first assume a fluid model, sometimes also proving that
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the discrete system actually converges in distribution to the fluid system (for example,
Honnappa and Jain [33] and Honnappa et. al [34]), and then derive the equilibrium of
the game based on the fluid model.

Following a similar path to that of Sect. 3, we first provide a detailed description
of the equilibrium solution for Example 3, which considers homogeneous customers
with linear waiting and tardiness costs. Detailed analysis of this example appears in
[26,35,38]. This will be followed by a review of additional literature that applied fluid
models for approximating the equilibrium and socially optimal solutions.

5.1 Fluidmodel of Example 3 (waiting and tardniess costs)

Fluidmodels make each customer tiny, which can be considered as a drop in the ocean.
Each drop is served in no time. The original volume of the drops is fixed to some non-
random value �, and the server can serve μ of them per unit time. In particular,
working continuously the server can serve all demand in �/μ units of time. Also, a
drop that finds a volume of δ upon its arrival waits δ/μ units of time prior to service
commencement (which is also its time of departure). An intuitive explanation for the
approximation of the stochastic system with a Poisson population and exponential
service times is as follows: Suppose that λ(m) and μ(m) are increasing and unbounded
sequences of arrival and service rates such that λ(m)/μ(m) = �/μ for all m ≥ 1, then
as m → ∞ we have an accelerated version of the stochastic system such that there is
a huge population of infinitesimally small customers that can all be processed in �/μ

units of time. Of course, there is no need to assume an exponential service times to
obtain the fluid limit.

Thewaiting and tardiness parameters areα and β, respectively, as before. Each drop
needs to decide when to arrive along the time interval T = (∞, T ] (randomization
allowed), and in this setting too, a strategydefines a distributionover the possible arrival
instants. Recall that the server starts serving customers only at t = 0. Moreover, a
symmetric Nash equilibrium is such that given that all drops follow it, this is also a best
response for an individual drop. When it comes to social optimality, we assume that
a central planner can dictate the arrival time distribution which, due to the features of
the fluid approximation model, is equivalent to enforcing a specific (different) arrival
instant on all. In otherwords, there is no distinction between the full and the anonymous
controls.

The first and biggest step in moving from the stochastic queueing model to the
fluid model is in observing that the amount of work in the system in the latter case is a
deterministic process. If the system is not empty during the arrival interval of customers
[0, T ], which is obviously true for any equilibrium solution, then the queuing dynamics
of (6) become now

Q(t) = �F(t) − μt, ∀t ∈ [0, T ],

for any symmetric arrival distribution. Furthermore, the waiting time for a drop arriv-
ing at t is given by the deterministic process Q(t)/μ. In particular, recall that the
equilibrium density given in (15) depends on the probability of an idle server p0(t).
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For the fluid system, p0(t) = 0 for all t ∈ [0, T ], and so the equilibrium condition
simplifies greatly as there is no need to solve elaborate dynamics such as the backward
equations of the stochastic system. The equilibrium arrival distribution turns out to be
uniform, possibly with multiple intervals with different densities.

Let us first consider the model where T < �/μ and early birds are allowed.
We provide a detailed outline of the analysis for this model and then summarize the
results along with the results of the other three variations of the two above assumptions
(T ≥ �/μ and no early birds, etc.). All cases can be handled in a similar manner and
details can be found in [26]. For simplicity, we assume below that both cost parameters,
α and β, are positive.

Let [−ta, 0] be the early bird period in equilibrium for some to be determined
ta > 0. For this time interval, we have that the cost of arriving at t equals

−αt + (α + β)�F(t)/μ,

which is constant in equilibrium. For t ≥ 0, the cost is

βt + (α + β)(�F(t) − μt)/μ,

which equals the same constant. Thus, the equilibrium arrival distribution is uniform
with density

f (t) = μ

�

α

α + β
, t ∈ [ta, T ].

The condition
∫ T
ta

f (t) dt = 1 further implies ta = �
μ

α+β
α

− T .
The disutility of the one who arrives at time −ta , which equals the disutility of all

others, is therefore α �
μ

α+β
α

− T . Hence, the social cost in equilibrium is

�(�(α + β) − αμT )/μ. (18)

As the server operates continuously from t = 0 until the system is empty, the social
planner has no discretion over overall tardiness costs, and therefore the socially optimal
strategy minimizes the waiting times by equating the arrival rate and the service rate
for as long as possible, i.e., on the interval [0, T ]. Hence, the unique socially optimal
arrival strategy is a uniform density of μ/� along the interval [0, T ] and an atom of
size 1 − μT /� at T . The corresponding social cost equals

μβ

2
T 2 + (� − μT )

(
βT + � − μT

2μ
(α + β)

)
. (19)

Those who arrive during [0, T ], a mass ofμT , do not wait at all and, on average, each
one of them incurs a tardiness cost of βT /2. This contributes a total of βμT 2/2 to the
social cost. The rest, a mass of � − μT , arrive at T . Each one of them already incurs
a tardiness cost of βT . On average, they clear the system after an additional time of
(� − μT )/2μ with a cost of α + β per unit time of delay.
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Note that the PoA equals the ratio between (18) and (19). It is possible to see that
when α = 0 the PoA equals 2. Moreover, it increases with α and approaches the limit
of �/(� − μT ) (which is not a function of β) when α → ∞. Furthermore, the PoA
goes to 2 when T goes to zero or when it goes to �/μ. Also note that both the length
of the arrival interval and the density along it are not functions of T : Shrinking the
arrival period after opening leads to drops arriving earlier by the corresponding value.
Finally and as expected, the length of actual arrival period depends on the values of α

and β only through their ratio.
We next summarize the results for all cases. It is clear from the above analysis that

if T ≥ �/μ then in fact there is no limitation and in equilibrium as well as under
social optimality customers anyway arrive prior to the closing time T .

1. The case with early birds and T ≤ �/μ.
If T ≤ �/μ then the unique equilibriumarrival strategy implies a density of μ

�
α

α+β

along the time interval [−�
μ

α+β
α

+ T , T ]. The corresponding social cost equals
�(�(α + β) − αμT )/μ. The unique socially optimal arrival strategy implies a
uniformdensity ofμ/� along the time interval [0, T ] and an atomof size 1−μT /�

at T . The corresponding social cost equals μβ
2 T 2+(�−μT )(βT+ �−μT

2μ (α+β)).
2. The case with early birds and T > �/μ.

The unique equilibrium arrival strategy implies a uniform density of μ
�

α
α+β

along

the time interval [−�β
μα

, �
μ

]. The corresponding social cost equals �2β/μ. The

unique socially optimal strategy implies a uniform density of μ
�

along the time
interval [0,�/μ] with a social cost of �2β/2μ. In particular, the PoA equals 2.
This result appears in [35].

3. The case without early birds.
Here we deal with the same fluid approximation model with one key difference:
The seniority of those who arrive prior to the opening time is not kept. In particular,
all those who arrive earlier enter service at random order. Thus, there is no point
of arriving before t = 0. We next give the details of the equilibrium strategy,
distinguishing between T ≥ �/μ and T ≤ �/μ. As in the discrete case, the
corresponding distribution comes with an atom at zero and then a gap with no
arrivals until some time t ′. From then on until the last instant of possible arrivals,
and as in the case with early birds, the density is uniform. Finally, as of course
arriving prior to opening was not part of the socially optimal arrival strategy when
it was allowed, the strategies detailed in the previous cases are also socially optimal
in this model. Finding the PoA is a simple exercise. Details are given next for the
two possible case.

(a) The case of T > �/μ.
If β ≥ α, the equilibrium strategy is pure and it prescribes arriving at the
opening. The corresponding social cost is �2(α + β)/(2μ) and the PoA =
(α + β)/β < 2. If β ≤ α the equilibrium strategy is to arrive at zero with
probability 2β/(α + β), then there is a zero density (a gap) along the time
interval (0, �β

αμ
) and a uniform density of μ

�
α

α+β
in the time interval [�β

αμ
, �

μ
].

The corresponding social cost equals �2β/μ and the PoA equals 2.
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(b) The case of T ≤ �/μ.
In the case where β ≥ α the behavior is as described in (a). Assume next
that β < α. If T ≤ α+β

2α
�
μ
, then the equilibrium strategy is pure: all arrive

at time zero. The resulting social cost equals �2 α+β
2μ . Dividing this value by

(19) yields the PoA. If α+β
2α

�
μ

< T < �
μ
, then the equilibrium is with an

atom of size p = 2(1− αμT
�(α+β)

) at zero, a zero density (a gap) along the time

interval (0, t ′), where t ′ = p�(α+β)
2αμ

= �(α+β)
αμ

− T , and a uniform density of
(1 − p)/(T − t ′) along the interval [t ′, T ]. As it turns out, the corresponding
social cost coincides with the one given in (18). Likewise, the resulting PoA
is as in the case with early birds.

5.2 Overview of fluidmodels

As we have seen, the fluid dynamics enable explicit derivation of the equilibrium and
socially optimal arrival distributions. This can be further used to study more elaborate
systems for which even numerical methods for the computation of the equilibrium,
such as Algorithm 1, are out of reach. The fluid solution was also used as a benchmark
solution in many of the papers dealing with the discrete stochastic model that we
have discussed so far (for example, [26,31,38,56,59]). Roughly speaking, the fluid
equilibrium solution is indeed a good approximation for large systems with small
customers, but for small population games the equilibrium densities can be far from
uniform.

In many applications, customers are not homogeneous in their utility functions
or their service demand. The models we have considered so far have all assumed
homogeneous customers, with the exception of [62], which assumes that customers
have a random waiting cost that is determined by a common distribution. Assuming
that there are multiple classes of customer types using the same server makes the
equilibrium analysis much harder. Consider Example 3 once more with P customer
types that have different linear waiting and tardiness costs (αi , βi ) for i = 1, . . . , P .
Every type of customer now has different equilibrium conditions of the form of (9) and
(10) that keep the cost constant throughout the arrival support. Hence, an equilibrium
arrival profile is a solution of a system of functional differential equations that all have
the same underlying backward equations of the common queueing process. Studying
the properties of such a solution, for example, existence and uniqueness, or even
constructing a numerical method that always yields a solution, is a challenging task
and we are not aware of significant results in these directions. Some of the difficulties
associated with multiclass when-to-arrive games are discussed in [56] for a model
with service rate uncertainty. The fluid model enables analysis of the equilibrium in
multiclass games, as well as other more complex models such as non-FCFS service
regime and queueing networks.

The fluid version of the concert queueing game (Example 3) is studied in [35]. The
equilibrium arrival profile dictates that different types of customers arrive on disjoint
time intervals with uniform densities that are determined by applying the same type of
computations used in Sect. 5.1. This is further used to obtain lower and upper bounds

123



192 Queueing Systems (2021) 99:163–198

on the PoA. An extension of the concert queueing game with multiple customer types,
time-dependent service rate and nonlinear tardiness costs is considered in Juneja and
Shimkin [39]. The form of the equilibrium is similar, with disjoint arrival intervals for
the different types of customers, but the equilibrium dynamics are more elaborate, and
thus, the arrivals are not necessarily uniformly distributed. It is further shown in [39]
that a unique equilibrium exists and an efficient method to compute it was presented.
Juneja et al. [37] assume the fluid population volume is random (with a single type
of customers and constant capacity). In this case explicit analysis is possible but
the resulting equilibrium arrival density is uniform only on part of the support and
decreases for values above some threshold.

So far, we have dealt only with single-queue systems, i.e., even if there are multiple
servers, there is a common waiting buffer for all of them. The when-to-arrive game
for a network of fluid queues is considered by Honnappa and Jain [33]. Customers
have linear waiting and tardiness costs as before, but in a network setting there is
the additional question of routing. It is assumed that routing is decentralized and so
customers can choose both their arrival times and what queue to join. First, the equi-
librium arrival profile for a network of K parallel queues is derived. The equilibrium
arrival profile dictates that the flow of arrivals to each queue k ∈ {1, . . . , K } is uniform
on an interval [tk, T ], where tk < T for all k with tk < 0 for at least one k. The PoA
is further derived, similarly to Example 3, and is shown to be bounded by 2. More-
over, the model is extended to multiple customer types that differ in the parameters
of their linear cost functions. As before, for the multiclass model in equilibrium the
different types arrive in specific queues on disjoint intervals. Finally, it is shown that
certain more elaborate network topologies, such as queues in tandemwith a bottleneck
structure, can be studied by showing that they have an equivalent parallel network rep-
resentation. Therefore, the results on parallel networks can be applied directly to these
more elaborate networks.

In Sect. 3.5, we discussed the difficulty in analyzing stochastic discrete systems
with non-FCFS service regime. However, these systems are common in many appli-
cations and can potentially improve social welfare (as we have already discussed for
several examples). A comparison of work conserving service regimes in a fluid set-
ting appears in [50], with an emphasis on FCFS and LCFS. Their model assumes a
fixed (population) volume of customers that are restricted to arriving on [0, T ], linear
waiting time costs and general tardiness costs. It is shown that a unique equilibrium
arrival distribution exists for both FCFS and LCFS. The LCFS equilibrium yields
higher social welfare than the FCFS regime, and in fact FCFS yields the lowest social
welfare among all work conserving service regimes.

A when-to-arrive game for a fluid processor sharing system with capacity μ and a
volume of � arrivals is studied in Juneja and Raheja [36]. Note that processor sharing
is equivalent in this setting to random order of service. Customers have linear waiting
and tardiness costs as in Example 3. Clearly, in such a system customers never choose
to be early birds, and therefore, the arrivals start appearing at t = 0, and with an atom
at zero. If there are no arrival time restrictions, it is shown there that the equilibrium
distribution is given by an atom of size β�/μ at time zero and a uniform density
on (0,�/μ]. The case of a finite closing time is also detailed and follows similar
arguments as in the corresponding case analyzed in Sect. 5.1.
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An implicit assumption of all the models in this review was that customers have
the ability to arrive exactly at their chosen arrival time. This is of course not the case
in many applications, for example when going to the bank or a concert there may be a
strictly positive variance in the travel time fromhome (orwork, etc.). This phenomenon
was modeled by Ghazanfari et al. [16] for a single-server fluid queue with customers
that have linear waiting, tardiness and earliness costs. Specifically, customers choose
their intended arrival time t but their actual arrival time in the system is t + X , where
X is a random variable. It is shown that if X has a uniform distribution, then there
exists no equilibrium with a continuous mixed strategy. Furthermore, neither does
a symmetric pure strategy equilibrium exist. Hence, a symmetric equilibrium has
to take the form of a distribution with several atoms, which is very different from
all of the models considered in this survey. The nonexistence result for continuous
distributions extends to other non-uniform distributions of the arrival time distortion
X . An alternative dynamic agent-based logit decision model is suggested in [16] and
is shown to converge to a stationary distribution for some parameters of the problem,
where stationarity is defined in the regular sense: If customers arrive according to the
stationary distribution f on day d ∈ {1, 2, . . .}, then the logit-induced distribution of
arrival times on day d + 1 is also f .

6 Empirical results

The motivation for the theoretical models surveyed here comes from decision making
that is made in many daily activities that involve congested systems; therefore, it is
natural to ask how well the theoretical Nash equilibrium predicts the actual decision
making and arrival patterns of customers. While the typical equilibrium solution is a
mixed strategy, one does not expect that customers really flip coins before deciding
when to join a queue, but rather that the aggregate distribution of the arrival times
of all customers is well approximated by the equilibrium arrival distribution. In this
section, we discuss a stream of literature that set out to answer these questions by
performing laboratory experiments that simulate the interaction of customers in a
queueing system. The typical setup of these experiments is a sample of university
students who interact anonymously in a game that mimics a queueing scenario. The
participants are presented with a description of the system and the payoff structure and
choose when to arrive to the queue. The realizations of waiting times and associated
costs are translated to monetary gain (or loss) that participants receive at the end of
the experiment.

The first experiment of this type was conducted by Rapoport et. al [51]. They intro-
duced a discrete-time variant of the ?/D/1 model; n customers choose when to arrive,
from a discrete grid of time slots, to a single-sever queue operating during an interval
[0, T ] (early birds were not allowed). The objective of the customers is to minimize
their own waiting times. Multiple customers arriving in the time slot are randomly
ordered. The symmetric mixed strategy Nash equilibrium is computed numerically
and has the same form as the continuous-time solution of the ?/M/1 game as described
in [17].Of course, as the discrete grid becomesfiner, the games are essentially the same.
Note, however, that in the discrete-time game non-symmetric equilibria may exist. In
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particular, for certain parameters it is possible that all customers arrive in different time
slots and a queue is never formed (due to the deterministic service times). In practice,
such an outcome requires coordination between the customers which is not reason-
able in most scenarios, especially when n is large. The experiment was conducted for
different parameter settings and four groups of 20 participants repeated the interaction
multiple times. The main result of [51] is that although the individual decisions did
not resemble the equilibrium strategies, the aggregate behavior of participants in the
experiments was remarkably similar to the theoretical equilibrium prediction. Specif-
ically, many customers chose to arrive at the opening, the period immediately after the
opening was rarely chosen, and then an almost uniform arrival rate throughout the rest
of the opening period until closing. Similar results were obtained in Seale et. al [58] for
the game with early birds. The latter also conducted an experiment where the arrival
time choices of all participants wasmade available to everyone after every repetition of
the game, making it a repeated game, in which case the aggregate behavior converges
to equilibrium much faster. Similar experiments with similar conclusions were later
conducted for a system with batch service in [61] and [52], with the latter considering
the case of a random batch size. When there was uncertainty regarding the batch size,
i.e., only the distribution for the batch is known, the aggregate behavior did not display
a similar pattern as the equilibrium prediction.

Breinbjerg et al. [12] conducted an experiment that tested the arrival time decisions
of customers to a single-server system under three different service regimes: FCFS,
LCFS and random order (RO). As before, for practical purposes the game was played
on adiscrete grid of time slots. The equilibriumanalysis and experimentswere confined
to three-player games. The small-scale systems enabled computation of the theoretical
equilibrium arrival distributions for LCFS and RO service regimes, which otherwise
may be intractable as was discussed in previous sections. The experiments led to
several interesting observations. First of all, the theoretical equilibrium did not display
a good fit to the aggregate behavior of the participants in any of the settings. The main
difference is that in the experiments the arrivals were more spread out over the grid
with less congestion in the opening. This was especially visible in the FCFS and RO
regimes, where there is a strong incentive to arrive early. Interestingly, this disparity
results in higher social welfare than predicted by equilibrium. Although there was
no coordination between participants in the experiments, their arrival time choices
can be figuratively described as somewhere in the middle between selfish individual
optimization and coordination due to a centralizedmechanism thatminimizes expected
overall congestion costs.

7 Discussion and open challenges

We have surveyed the growing body of literature dealing with arrival processes to
stochastic queueing systems that arise from strategic timing decisions of customers.
The focus was on the theoretical foundations of such models. In particular, we have
discussed the construction of appropriate mathematical models and the resulting
properties of their solution concepts such as Nash equilibrium and social welfare
optimization. The motivation for the study of such models comes from many daily
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activities that involve congested systems. However, this research stream has so far
devoted limited attention to the empirical study of real systems. Experimental lab-
oratory studies have examined the decision making of uncoordinated customers in
congested service systems and have found that the ?/M/1 model predicts the aggregate
empirical distribution pretty well in certain cases, but there is still a disparity for some
system settings. It would also be interesting to explore whether arrival data from actual
service systems (i.e., not laboratory experiments) can be fitted with the ?/M/1 model.
Suppose for example that data is collected daily on the arrival process to a system that
has certain opening hours. The mean population size can be easily estimated by taking
the average daily total number of arrivals. The next step is to estimate the cost param-
eters of customers, for example, waiting cost α and tardiness cost β, as in Example 3.
This can be achieved by evaluating the empirical arrival rate at different times of the
day and selecting as estimators the α and β that minimize some loss function with
respect to the distance between the equilibrium prediction of the arrival rate and the
empirical observations. Of course, there is also a model selection problem here and
for specific applications different models will have a better fit than others. Developing
statistical methodology seems like a natural research direction that complements the
economic analysis that has been reviewed here.

There are certainly still many open questions in the theoretical analysis of when-to-
arrive games. This is especially true for more complex systems with various service
regimes, heterogeneous customers or networks of queues. As we have seen, the direct
analysis of the stochastic system is very challenging and newmethods are called for in
order to make progress in this direction. Furthermore, much insight has been gained
by using fluid approximations; however, in many cases the prediction of fluid models
seems unsatisfactory. For example, in the multiclass concert queueing game of [35]
customers arrive at uniform rates on disjoint intervals but this type of behavior is not
plausible for many systems. As is detailed in Sect. 5.2, extending this fluid model
to allow for nonlinear cost functions, random population size and network structure
yields equilibrium solutions with a more elaborate structure. Still a gap remains in
the equilibrium analysis of small-scale multiclass systems with atomic customers.
One approach that has potential to provide insight on the more elaborate stochastic
systems is the dynamic learning model of [57] discussed in Sect. 3.5. In terms of
computation, one only needs to be able to simulate the dynamics of the system in
order to compute the equilibrium approximation. However, there are no theoretical
guarantees yet that the learning dynamics converge to an empirical distribution that
is indeed a good approximation of the equilibrium solution. Developing a rigorous
framework for the learning dynamics, including asymptotic analysis and error bounds
on the approximation, would be very useful. This may be lead to a powerful tool for
approximating the equilibria in complex systems that are otherwise intractable.
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