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Abstract
We present a broad literature survey of parameter and state estimation for queue-
ing systems. Our approach is based on various inference activities, queueing models,
observations schemes, and statistical methods. We categorize these into branches of
research that we call estimation paradigms. These include: the classical sampling
approach, inverse problems, inference for non-interacting systems, inference with
discrete sampling, inference with queueing fundamentals, queue inference engine
problems, Bayesian approaches, online prediction, implicit models, and control,
design, and uncertainty quantification. For each of these estimation paradigms, we
outline the principles and ideas, while surveying key references. We also present vari-
ous simple numerical experiments. In addition to some key referencesmentioned here,
a periodically updated comprehensive list of references dealing with parameter and
state estimation of queues will be kept in an accompanying annotated bibliography.

Keywords Queueing inference · Queueing parameter estimation · Inverse problems ·
Queue inference engine · Queueing prediction

Mathematics Subject Classification 60K25 · 68M20 · 62M20

1 Introduction

Queues occur in retail, health-care, telecommunications, manufacturing, road traffic,
social justice systems, call centres, andmany other environments. To aid in understand-
ing such systems, mathematical queueing models have been studied and employed for
over a century. Such models allow researchers and practitioners to predict congestion
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and delay behaviour based on assumptions about the underlying stochastic processes.
The field has grown together with the field of applied probability and constitutes a
significant part of the world of stochastic operations research. Indeed, queueing phe-
nomena are both fascinating and important to understand from a practical perspective.

The basic building block of most queueing analysis research involves a queueing
model. As an example, consider a model called the M/D/1 queue. In such a model,
customers arrive to a server according to a Poisson process. The server processes
customers one at a time, taking a fixed deterministic time, m, for each customer and
idles when there are none left. When a customer arrives to see the server busy, the
customer queues. In this model, there are only two parameters of interest: λ the arrival
rate (customers per time unit), and m the service time. If λm > 1, then the average
number of customers that arrive during a service is greater than one and the queue will
build up over time without bound. However, if λm < 1, then the system will settle
down to a stochastic equilibrium.

Each customer experiences a waiting time (which may be 0 if arriving to an empty
queue) and a sojourn time which is the customer’s total time in the system (waiting
time+ service time). In theλm < 1 regime, itmakes sense to analyse equilibriummean
waiting times and other performance measures. There are multiple service disciplines
that the server may use such as first come first served (FCFS), random order of service,
or other disciplines. The service discipline generally affects the distribution of the
waiting time, but does not affect the mean waiting time as long as the server does not
idle when customers are present. Queueing theory thrives on results for models such
as M/D/1. For example, by setting ρ = λm < 1, the mean waiting time of an arbitrary
customer for this model is

m
ρ

2(1 − ρ)
. (1)

Formulas such as this immediately lead to elementary system insights. First observe
that as ρ → 1 themeanwaiting time growswithout bound. For example, with ρ = 2/3
the mean time a customer waits in the system is equal to the time it takes the customer
to be served. However, for higher values of ρ, the mean waiting time of a customer is
longer than the service time.

Results such as this are the cornerstone of queueing theory and analysis. However,
how can queueing theory be employed? An immediate answer is to use queueing
analysis for arriving at general insights about real world systems. For example, an
insight gained from the result presented above is that mean waiting times are of the
order ρ

1−ρ
, as ρ → 1.

Such insights have helped with the design of computing systems, telecommuni-
cation systems, manufacturing systems, health-care operations, and more. With an
abundance of queueingmodels, one maywish to go further than just providing insight.
Indeed, there is the opportunity to use these models to predict, manage, and design
explicitly. This requires using queueingmodels that are realistic in the context of actual
systems and the associated data collection processes. As an example, say that we know
that a telecommunications switch takes exactly 1 ms to handle a packet (m = 0.001
s). Now, under the Poisson assumption for packet arrivals, for λ ∈ (0, 1000) we know
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that the mean waiting time can be computed using (1). For example, if λ = 700 then
with an M/D/1 model, the mean waiting time is about 1.166 ms. Such conclusions
require data collection for estimation of m, λ, and verification of the suitability of the
model.

Such an application of queueing results generates a variety of questions associated
with statistical analysis. In an actual system, howwould we measure λ? Or what about
the Poisson arrival assumption, is it sensible and supported by data? Further, what
if different aspects of the queueing system were observed, not necessarily giving us
a full indication of all the underlying processes. How would we then fit a queueing
model to the system?

It turns out thatwhile there are thousands of papers dealingwith queueing theory and
analysis, there are far fewer papers dealing with these types of estimation problems.
In fact, this state of affairs was identified as early as 1965 by David R. Cox in [41],
where he stated,

There are a very large number of papers on particular probabilistic models for
queues and, by comparison, extremely few papers on the corresponding prob-
lems of statistical analysis. When a simple mathematical model is investigated
primarily to get qualitative insight into the behavior of queueing systems, the
statistical problems are not very relevant. When, however, there is the possibility
of quantitative application, or when a practical congestion problem is tackled by
rather empirical methods, non-trivial statistical problems arise.

Our purpose in this survey is to present results that are available and work that has
already been done. Such problems were considered quite early with the seminal work
of Clarke [37], the survey [22] by Bhat, Miller, and Rao, and an updated survey with
the same title [23] by Bhat and Rao. Since these were published, there has been a
significant body of additional work. We survey both the classical queueing estimation
work and more recent results in the current paper.

Structure of this survey

This survey is structured as follows:We start in Sect. 2 by describing the general frame-
work. This includes outlining in Sect. 2.1 a variety of problemswhichwe call inference
activities. We then present a brief illustration of queueing models in Sect. 2.2. This
section is geared towards those that have not been exposed to queueing theory. We
then go on to present what we define as observation schemes in Sect. 2.3. In Sect. 2.4,
we illustrate some of the complexities involved with parameter estimation in queues.
The survey continues in Sect. 3 where we lay out the various estimation paradigms
and outline some of the key contributions in the literature. See Table 2 for an overview.
We conclude in Sect. 4 where we outline a few broad areas that have received less
attention in the literature. The computational examples that we present in Sect. 2.4
are also accessible via the GitHub repository [11]. A (periodically updated) anno-
tated bibliography aiming to contain an exhaustive list of references in the area is in
[9].
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2 Framework and background

Research that deals with inference in a queueing model usually has a number of
characteristics that describe the type of inference and the type of modelling that is
involved. We can classify a paper in this area according to four general attributes:

(i) The inference activity that is performed, for instance, parameter estimation,
state estimation, hypothesis testing, or sample size planning.

(ii) The models employed such as an M/M/1 model, an open queueing network
model, or an M/G/∞ model.

(iii) The observation scheme used, such as whether a continuous record of data is
available or just data observed at certain time points.

(iv) The statistical methods and principles used, for instance, likelihood based
methods, moment matching, Bayesian inference, or nonparametric inference.

We discuss (i)–(iv) in the subsections below.

2.1 Inference activities

Performing inference on queues can have different objectives. Here are some common
activities and their objectives:

1. To find the parameters of a model In this case, we believe or assume that a real
queueing system for which we have data behaves according to a specific model.
The task is to estimate parameters of such a model. It could, for example, be to
estimate the arrival rate λ for the M/D/1 queue discussed in the introduction. The
majority of the work that we survey in this paper deals with this type of activity.

2. To select a suitablemodel basedondataThe act of choosing amodel for a scenario is
often performed without reference to data. However, in certain cases, we may want
to incorporate data into the model selection process. For example, we may want to
test if interarrival times to a queueing system are independent and exponentially
distributed to decidewhether a Poisson arrival process assumption is suitable. There
has not been much work on this type of activity (in the context of queues) to date.
We survey the few papers that we found.

3. To plan observation schemes and experiments In classical statistical contexts, ele-
mentary considerations in design of experiments involve determining the number
of samples to take, the various treatment classes, and stratifying and randomising
subjects. In a queueing context, there is an additional complication due to the fact
that a queueing system is a dynamic process evolving over time. Most studies are
necessarily observational studies. Many such schemes involve indirect methods for
observing the quantities of interest. Important considerations involve efficiency of
information retrieval and understanding such things as sampling bias. Only a few
of the papers that we survey deal with such an activity and we believe that there is
room for further research on this area.

4. To carry out state prediction or filtering In (1) above, we discussed estimating
parameters of models. However, in many practical situations, a parameterized
model is already present and the question is about the state. Given past partial

123



Queueing Systems (2021) 97:39–80 43

observations, it is of interest to either estimate the full state in the past or predict
future states. Such problems may often be tackled via black box methods such
as neural networks and/or hidden Markov models. However, in our context, the
methods are based on actual queueing models.

5. Adaptive control The process of estimating states and parameters and the process
of controlling the system are often decoupled. However, in certain cases, one may
make decisions online,while parameter and state estimation are ongoing. This is the
case of adaptive control. In general, methods from reinforcement learning where
the parameters are unknown and partially observable Markov decision processes
where the state is unknown present a variety of techniques for dealing with such
problems. However, a few selected papers deal with such problems utilising the
queueing structure. A related concept is robust control which is not exhaustively
covered in this survey.

2.2 Queueing processes andmodels

We now briefly illustrate key aspects of queueing theory. Our purpose is to present the
reader with a taste of key phenomena, models, and quantities involved. Hence, this
section is not about inference but is rather about the mathematical (stochastic) models
of queues. Specialists in queueing theory may wish to skip this section as it contains
elementary material.

As illustrated in the introduction, a model like M/D/1 may be used to predict
expected waiting times, mean queue lengths, and other measures in a system subject
to Poisson arrivals. We now generalize this model to a broader class called the GI/G/1
queue. Other special cases are the M/G/1 and the M/M/1 models. All of these mod-
els are single-server queueing models (hence the “1” in the name). The difference
between them lies in the probabilistic assumptions imposed on the arrival process. In
all these models, the interarrival times are assumed i.i.d. (independent and identically
distributed). In the “GI” case, they follow an arbitrary distribution, while in the “M”
case, they follow an exponential distribution and in the “D” case, take a deterministic
value. Similar comments apply to the service time process. More general queueing
models allow dependence between interarrival times of the arrival process, and rarely
between service times, which is less natural from a modelling point of view.
Exogenous processes As model inputs, consider the following two basic exogenous
processes: the arrival process and the service time process. The arrival process may
be described by A(t) where t is a continuous time variable. Here, A(t) counts the
number of arrivals during the time interval [0, t]. This process is exogenous because
in the basic suite of models, it is not considered to be affected by the internal dynamics
of the queueing system. An alternative representation is via a sequence T1, T2, . . . that
marks the arrival times of customers.

Like the arrival process, the service time process is usually assumed not to be
influenced by the internal dynamics of the queue; hence, it is an exogenous process.
It is naturally described by the sequence, S1, S2, . . ., where Sn is the service time of
the nth customer arriving to the queue. However, we can also define
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S(t) = sup

{
n :

n∑
i=1

Si ≤ t

}
, (2)

as the “service time analog” of A(t). We need to keep in mind that as time progresses,
there are periods where the system is empty. Hence, S(t) is not necessarily the number
of customers served during [0, t]. We discuss this in more detail below.
Endogenous processes Given a realisation of {A(t), t ≥ 0} and {Sn}∞n=1 together
with some initial conditions, the essence of queueing modelling is the description and
analysis of endogenous processes that evolve. These include:

The system size process, Q(t). This process specifies the number of items in the
system at time t . Note that it is often called the queue length process even though
it includes the customers being served (if any), as well as any customers waiting
in the queue.
The waiting time sequence, {Wn}∞n=1. Here,Wn is the waiting time before entering
service for the nth customer.
The workload process, V (t). This process determines the volume of work in the
system at any time t . It is sometimes called the virtual waiting time process as it
indicates how long a customer arriving at time t will need to wait (under the FCFS
regime).
Thedeparture process, D(t). This process counts the number of departures (service
completions) from the system during [0, t].
The busy period sequence, {Bn}∞n=1. A busy period is a duration of time during
which the server is busy. It starts at time τ when Q(τ−) = 0 and Q(τ ) = 1, with
A(τ ) − A(τ−) = 1 due to a customer arrival. It then ends in the first time τ̃ > τ

such that Q(τ̃ ) = 0.

There are various ways to define the functional relationship mapping the exogenous
processes and initial conditions to the above endogenous processes. One such simple
example is based on the customer conservation equation,

Q(t) = Q(0) + A(t) − D(t).

This equation is useful if we describe the endogenous departure process, D(t), in a
differentmanner. To do so, we observe that S(t) in (2) determines howmany customers
could potentially be served during [0, t] if there was always a customer present. Now,
also define the idle-time process,

I (t) =
∫ t

0
1{Q(u) = 0}du,

where 1{·} is the indicator function. As a consequence, we can represent the departure
process via the composition

D(t) = S
(
t − I (t)

) = S
( ∫ t

0
1{Q(u) > 0}du

)
. (3)
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Given initial conditions, there is a unique endogenous process Q(t) satisfying

Q(t) = Q(0) + A(t) − S
( ∫ t

0
1{Q(u) > 0}du

)
, (4)

see [35] for details. A solution of Q(·) for (4) also describes D(·) via (3). In our context,
Eqs. (3) and (4) serve the purpose of illustrating that the exogenous processes, A(·)
and S(·), can be used to construct the endogenous processes D(·) and Q(·). Similarly,
the workload process V (·) can be expressed in terms of the exogenous processes via

V (t) = V (0) +
A(t)∑
i=1

Si −
∫ t

0
1{V (u) > 0}du. (5)

Note that the integrals in (4) and (5) are identical because Q(t) > 0 if and only if
V (t) > 0.

Assume Q(0) = 0 and define the sequences un for n = 1, 2, . . . and vn for
n = 0, 1, 2, . . ., with v0 = 0, such that

un = inf{t > vn−1 : Q(t) > 0}, vn = inf{t > un : Q(t) = 0}. (6)

Then, Bn = vn − un is the duration of the nth busy period. An analogous definition
can be constructed when Q(0) > 0. This shows how the endogenous process {Bn}
can be constructed based on the exogenous processes.

In a similar spirit, the classic Lindley recursion,

Wn+1 = max{Wn + Sn − (Tn+1 − Tn), 0},

determines Wn based on the primitive sequences {Tn} and {Sn}. Here, in agreement
with Q(0) = 0, we initialize the recursion with W1 = 0. See, for example, [29] for a
modern treatment.
Stability and traffic intensity The notion of stability and a parameter known as traffic
intensity appears in almost all queueing models. A canonical example is a GI/G/1
queueing system with arrival rate λ and mean service time m. Such a system may
behave differently depending on the value of ρ = λm. If ρ < 1, then queues are
stochastically stable, meaning that (under regularity conditions on the interarrival and
service time distributions) as t → ∞, the queue length process Q(t) and waiting time
processes {Wn} converge to limiting distributions. Similarly, if ρ > 1, then there is
not enough capacity in the system to serve the incoming traffic and as t grows, queues
grow without bound almost surely. Further, at the critical value ρ = 1, there is not a
limiting distribution; however, the queue “grows at a slower rate” as attested by the
fact that the system empties infinitely often (yet with heavy tailed gaps between such
instances). See, for example, [55]. In all these cases, it is clear that the offered load,
ρ, also known as the traffic intensity, is a key quantity.
Probabilistic performance measures Queueing theory assumes a stochastic descrip-
tion of the exogenous processes and endeavours to determine stochastic descriptions of
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the endogenous processes. The types of stochastic processes involved includeMarkov
processes, diffusion processes, Lévy processes, and the analysis often involves asso-
ciated limiting results for these types of processes. Frequently, it is not possible to
obtain a full description of the probability law of the endogenous processes, and we
settle for summary measures such as the stationary queue length distribution or the
stationary mean waiting time.

An example of a key result in classical queueing theory is the Pollaczek–Khinchin
(P-K) formula forM/G/1 queues. Here, the arrival rate is λ, and the service distribution
has Laplace–Stieltjes transformG(s)withmeanm such thatρ = λm < 1.One version
of the P-K formula gives an expression for the probability generating function K (z)
of the steady-state queue length, whose random variable we denote by Q. In this case,
P-K reads

K (z) =
∞∑
k=0

zk P(Q = k) = (1 − ρ)
(1 − z)G

(
λ(1 − z)

)
G

(
λ(1 − z)

) − z
, for |z| ≤ 1.

In the M/D/1 case, G(s) = e−sm , and hence

K (z) = (1 − ρ)
(1 − z)e−ρ(1−z)

e−ρ(1−z) − z
. (7)

Now, the stationarymeanqueue length can be computed by taking thefirst derivative
and evaluating the limit as z → 1. Further, the second factorial moment can be
computed by taking the second derivative and evaluating the limit as z → 1. From
these, we get the M/D/1 mean and variance:

E[Q] = 2 − ρ

2

ρ

1 − ρ
, Var(Q) = 12 − ρ(18 + ρ(ρ − 10))

12

ρ

(1 − ρ)2
. (8)

We use these formulas in Sect. 2.4, illustrating statistical methods.When the service
time distribution is exponential, the system is called an M/M/1 queue, in which case
G(s) = (1 + ms)−1, and thus

K (z) = 1 − ρ

1 − ρz
,

which is the generating function of a geometric distribution with support 0, 1, 2, . . .,
mean E[Q] = ρ/(1 − ρ), and variance Var(Q) = ρ/(1 − ρ)2. Comparing with (8),
we see that as ρ → 1, the mean queue length is reduced by a factor of almost 2 and
the variance by a factor of almost 4.
Little’s law Under general conditions, we can show that queueing systems in steady
state satisfy Little’s Law:

� = λτ, (9)
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where � is the steady-state number of customers in the system, λ is the arrival rate
of customers through the system, and τ is the mean steady-state sojourn time of
each customer. The interpretation of “system” can change depending on context. For
example, Little’s law holds for the waiting room of customers, or the total service
facility (the waiting room together with customers in service).

To illustrate the use of Little’s law, we can use the expectation in (8) to obtain (1).
For this, observe that the mean sojourn time τ is the sum of the mean service time m
and themeanwaiting time,w. Now, solving 2−ρ

2
ρ

1−ρ
= λ(w+m) forw, we obtain (1).

Stochastic process limits in queueing theory We often wish to consider models with
more complexity than the M/G/1 queue. This can include either a more detailed
description of how customers, servers, and allocation policies interact, or more gen-
eral assumptions on the endogenous processes. In such cases, exact results such as
the P-K formula are often not attainable. Nevertheless, much of the effort in queueing
theory research over the past few decades has focused onmore involvedmodels. A key
approach is to use stochastic process limits which give a theoretical basis for approx-
imating the endogenous processes via limiting processes which are easier to handle.

The basic building blocks of such mechanisms involve fluid limits and diffusion
limits. The idea of a fluid limit is to consider only the first-order deterministic approx-
imation of associated processes. For example, the arrival counting process A(t) can
be approximated by the function Ā(t) = λt , and similarly for S(t). Such a view of
queueing systems ignores the randomness but often captures the essence of the system,
especially when considering stability or the behaviour at large. For example, a fluid
limit approximation of a GI/G/1 queue starting with Q(0) = q0 customers is

Q̄(t) = max

{
q0 − (

1

m
− λ)t, 0

}
.

Such an approximation indicates that if ρ ≥ 1, then the queue will not “drain”,
whereas if ρ < 1, then at approximately t = m q0/(1 − ρ) the queue will hit zero.
This is a good approximation if the process starts with a large initial state q0. Fluid
limit-based approximations clearly ignore the subtle stochastic variations that play a
key role in results such as the P-K formula presented above.

A second-order refinement considers the fact that deviations between exogenous
processes such as A(t) and their fluid limit Ā(t) canoftenbe approximatedvia diffusion
processes. Here, the idea is to consider a sequence of systems indexed by n = 1, 2, . . .
and construct processes such as

Ăn(t) = A(nt) − Ā(nt)√
n

.

It then turns out that, under mild assumptions on A(·), the sequence of processes
{ Ăn(·)} converges weakly to a drift-less Brownian motion process. Carrying out such
approximations on all or some of the exogenous processes allows us to derive approx-
imations for the endogenous processes.

A very fruitful framework occurs when we also scale the parameters of the exoge-
nous processes such that ρn → 1 from below. This suite of limiting regimes yields
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heavy traffic approximations for the endogenous processes and their performance
measures. Other forms of scaling such as the Halfin–Whitt regime, also known as the
quality and efficiency driven (QED) regime, are also very popular. See, for example,
[127] for an overview.

To get a feel for the strength of such methods consider approximating the waiting
time distribution of a GI/G/1 queue as ρn → 1; see Corollary 7.5, [12]. Referring to
our M/D/1 example, while we can use the P-K formula to compute clean expressions
such as (1), computing the actual distribution of the stationary waiting time is not as
simple. Nevertheless, a heavy traffic approximation such as that inCorollary 7.5 in [12]
implies that with ρ ≈ 1, the waiting time distribution is approximately exponential
with parameters that depend on the mean and variance of the interarrival time T and
the service time S. Specifically, for the M/D/1 model

lim
ρ→1

P(Wρ > x) = exp

{
−ρ2 2(1 − ρ)

mρ
x

}
= exp

{
−ρ2 1

E[Wρ] x
}

, for x ≥ 0.

This is an exponential distribution with mean ρ−2
E[Wρ] ≈ E[Wρ]. For more general

GI/G/1 queueing systems, we are not able to compute E[Wρ] explicitly; nevertheless,
a heavy traffic limit approximation such as Corollary 7.5 in [12] is very powerful
because all that is needed is the mean and variance of the interarrival and service
times.
Additional branches of queueing theory We should also mention several other sub-
fields of queueing theory that have allowed us to obtain results for the endogenous
processes. Onemajor branch ismatrix analytic methods, which involvesmodelling the
queueing processes with structuredMarkov chains which are amenable to algorithmic
computation of certain performance measures; see [89]. Another branch deals with
networks of queues, where even though the system is often quite high dimensional
and complex, under general assumptions, one may often show that the stationary
distribution possesses a product form structure. See, for example, the classic book [82],
or more modern treatments in [30]. A third branch involves tail asymptotics, where
results dealing with probabilities such as P(W > x) are approximated for large x .

2.3 Observation schemes

Having explored elements of queueing theory and related processes, we now present
a possible classification of observation schemes for inference. When characterising
methods and results associated with queueing inference, a first step is to consider
which processes are observed and which are not. For example, we may observe the
queue length process, the workload process, the arrival process, the service process,
or some combination thereof. A second step is to consider how well these processes
are observed, for example, fully or only at discrete time points. Table 1 contains a few
major descriptors that we shall use to organize the discussion below.

Note that it is possible that a particular inference activity could potentially be
classified under more than one descriptor. Our purpose is not to fully categorize a
situation via the classification but rather indicate the general nature of the information
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Table 1 Different kinds of observation schemes

Notation Observation scheme

(F) Full observation: This is the situation where the relevant random
processes are observed continuously, possibly during some bounded
time interval

(DI) Discrete intervals: This is the situation where one or more of the ran-
dom processes are sampled at some discrete time points. An example
can be the case where in a single server queue, we sample every �

time units. Hence, the data are {Q(i�)}, for i = 1, . . . , n

(IO) Input and output process observation: This is the situationwhere only
the arrival process and departure process are sampled. An example
is an infinite server queue where we see customer arrival times and
departure times but do not knowwith certainty how to match arrivals
and departures

(P) Probing: This is the situation where customer journeys of only
selected (oftenmanually injected) customers are observed. An exam-
ple can be a communication network where there is a major traffic
flow and we are injecting occasional probe customers to measure
behaviour

(T) Transactional observations: This is the situation where only service
commencements and completions are observed togetherwith an indi-
cation of server businesses. For example, such an observation scheme
may occur in an automatic teller machine where queues are unob-
servable but server activity is being logged

(IP) Independent primitives: In this scheme, we do not actually observe
the queueing process, but rather observe some of the random
variables that construct it, oftenwith a pre-specified number of obser-
vations

available. In certain cases and when using certain models, without considering initial
conditions on the queue length, observation schemes (F) and (IO) are equivalent. In
fact, based on the queue length process, we can determine the arrival and departure
times uniquely for single-server models where the customer order is deterministic.
However, finding the queue length from the arrival and departure epochs requires
information about the initial value of the queue length.

As an illustrative example, let us consider an M/M/5 queue. This is a system with
five servers, Poisson arrivals, and exponential service time for each customer. That is,
if Q(t) ≤ 5, then all customers in the system are served simultaneously during time t ,
and further, when Q(t) > 5, then Q(t)−5 customers are waiting for service. Figure 1
illustrates a simulated trajectory of such a system with the purpose of highlighting
several types of data sequences, relating to the different observation schemes above.

2.4 Statistical methods

The vast field of statistics provides methods for carrying out a variety of tasks. In this
survey, we focus mainly, but not solely, on estimation in which case either parameters
of models, state estimates, or nonparametric estimates are produced based on col-
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Fig. 1 A simulated sample path of Q(t) for an M/M/5 system over t ∈ [0, 30]. If observed using (F), then
the full trajectory of Q(t) is available. If observed using (DI), then discrete samples are collected every
� = 2.5 time units. If observed using (IO), then the sequence of arrivals to the queue (marked with +
symbols) and the sequence of service completions (marked with • symbols) are available as data. The figure
does not present samples using (P), (T ) or (IP)

lected data. Such estimation can be carried out either in the classic frequentist setting
or a Bayesian setting. The reader should keep in mind that many methods of elemen-
tary statistics are typically presented in the context of independent and identically
distributed (i.i.d.) random variables. Adapting such methods to queueing inference
often requires considering the dependencies and dynamics of the underlying queueing
models. We now present an example.

We return to the M/D/1 queue and explore statistical inference under the (DI)
observation scheme. Here, the queue length process is sampled n times every � time
units. Taking the first observation at time �, the sample can then be represented as,

X =
(
Q(�), Q(2�), Q(3�), . . . , Q(n�)

)
. (10)

We explore two alternative inference activities, both assuming the underlying sys-
tem is in steady state. First assume that we simply wish to estimate the steady-state
mean queue length (an endogenous performancemeasure) and obtain confidence inter-
vals for our estimate. Later, we consider parameter estimation for the arrival rate λ.
Confidence intervals for E[Q] Using classic statistical formulas a naive approach
would be to estimate the mean queue length via the sample mean,

X = 1

n

n∑
i=1

Q(i �),
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and then to continue to obtain a 95% confidence interval

(
X − 1.96

S√
n
, X + 1.96

S√
n

)
(11)

for E[Q], with

S =
√√√√ 1

n − 1

n∑
i=1

(Q(i�) − X)2. (12)

If X is an i.i.d. vector of observations that are normally distributed with mean θ ,
then

√
n(X − θ)/S follows a t-distribution with n − 1 degrees of freedom which,

for large or even reasonably sized n, is approximately a standard normal distribution.
Then, 1.96 is approximately the 0.975th quantile of a standard normal distribution
and this yields the confidence interval formula (11). Even if the observations are not
normally distributed, the central limit theorem ensures that X has an approximate
normal distribution if n is large.

While we may get away with assuming stationarity, queuing processes generally
exhibit strong dependence over time. There are versions of the central limit theorem
that apply to dependent sequences (see, for example, [12], p. 30). However, there
is still the problem of estimating the variance of the limiting normal distribution. In
particular, if � is not large, the covariances strongly influence the variance of X via

Var(X) = 1

n
Var(Q) + 1

n2
∑
i 	= j

Cov(Q(i�), Q( j�)),

where Q represents a generic random variable of the queue size in steady state and
Var(Q) is as in (8). Also, similar calculations yield

E[S2] = Var(Q) + 1

(n − 1)n

∑
i 	= j

Cov(Q(i�), Q( j�)).

Hence, due to the covariance terms, the estimation of the standard deviation via (12)
may be heavily biased. This jeopardizes the validity of the confidence interval (11).
We demonstrate this effect via a numerical experiment.

Assume a ground truth with mean service time m = 1 and λ = 0.9, and hence,
ρ = 0.9. This implies the steady-state unknown mean queue length is 4.95 as per (8).
To estimate it, we could take n = 100 samples and consider different scenarios when
� is in the range 10, 20, . . . , 300. For each value of �, we simulate M = 104 Monte
Carlo simulations of the queue, letting it “warm up” for 103 time units each time. (This
sets it close to “steady state”.) Each simulation run samples the queue as per (10). We
then estimate the coverage probability of the resulting confidence interval via
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Fig. 2 Coverage probability obtained by using the confidence interval (11) with increasing � and n = 100

C� = 1

M

M∑
i=1

1
{
4.95 ∈ (

X − 1.96
S√
n
, X + 1.96

S√
n

)}
.

The estimates are plotted in Fig. 2. As expected, as� grows, the coverage probabil-
ity agrees with the i.i.d. case. However, for small � we see a big discrepancy between
the actual coverage probability and the desired 95%. Hence, for small � we see that
the classic confidence interval formula (11) breaks down.

Clearly, in our construction we used a naive confidence interval that assumes no
covariance between Q(i�) and Q( j�) for i 	= j and this is the cause of the error. We
should mention that there has been extensive work on such estimation for time series
where the samples are not i.i.d., see, for example, [32]. Still, in the context of queueing,
one may often try to use the explicit model structure, as opposed to assuming arbitrary
covariance structures as is common in the time-series literature. We survey examples
of this in the sequel.
Estimating λ Say now that under the same observation scheme, we know that m = 1
and we wish to estimate λ. For this, we can develop an estimator based on E[Q]
from (8). If we set X on the left-hand side of E[Q] in (8) and solve for λ, we obtain

λ = 1 + X ±
√
1 + X

2
. We can take the negative sign ensuring that ρ ∈ (0, 1). This

is not hard to check for any positive X . Hence, our estimator is

λ̂ = 1 + X −
√
1 + X

2
. (13)
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Let us now evaluate the quality of this estimator using the mean squared error
criterion,

MSE = E[(λ̂ − λ)2],

and determine how � affects the MSE. We can also reason about the limiting MSE
as � becomes large and n → ∞. For large �, it is reasonable to assume that Q(i�)

and Q( j�) for i 	= j are independent observations of the stationary queue length
random variable Q. Then, from the central limit theorem, X is approximately normally
distributedwithmeanE[Q] and variance Var(Q)/n and the limitingmean square error
is

M̃SE =
∫ ∞

−∞
(1 + z −

√
1 + z2 − λ)2

1√
Var(Q)/n

φ
( z − E[Q]√

Var(Q)/n

)
dz, (14)

where φ(·) is the standard normal density. Note that we are not able to evaluate the
right-hand side of (14) analytically, but rather use numerical integration.

In our case with the ground truth of λ = 0.9 and m = 1, using (8) we have
E[Q] = 4.95 and Var

(
Q

) = 23.7825. For n = 100, (14) yields M̃SE = 0.0100742.
Also, the central limit theorem typically “kicks in” for moderate values of n. Hence for
n = 100, assuming independence, normality effectively holds. However, for smaller
�, the situation is different as we present in this numerical experiment.

As before, we consider different scenarios for � in the range 10, 20, . . . , 300. For
each value of �, we simulate M = 105 Monte Carlo simulations of the queue, letting
it “warm up” for 103 time units. Over each simulation run, we estimate λ̂ and then for
each value of �, we estimate the root MSE via

RMSE� =
√√√√ 1

M

M∑
i=1

(λ̂ − 0.9)2. (15)

The resulting Monte Carlo RMSE estimates are plotted in Fig. 3, and we indeed

see that as � grows, our limiting approximation
√
M̃SE holds.

Thebroader viewof statisticsThe two examples above illustrate that classical statistical
methods can break down when carrying out inference for queues if dependencies are
ignored. Nevertheless, when designing queue inference procedures, it is important to
be aware of the vast set of tools developed in classic and contemporary statistics.

For example, the twomost commonways of finding the estimated parameters are the
method of moments and maximum likelihood estimation (MLE). The most important
benefit of the method of moments is that it is usually fast and often non-iterative.
However, like MLE, the method of moments often yields non-unique estimators and
both methods are difficult to apply when the number of parameters is large. Further,
in many cases, method of moment estimators are less efficient than MLE.

Likelihood-based approaches view the observed data under a certain model. MLE
provides estimates for model parameters which yield the largest likelihood of the
observed data. The widespread use of maximum likelihood is due to the asymptotic
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Fig. 3 The root MSE estimate (15) with increasing �, n = 100

properties of the MLE. For instance, model estimates coming from the MLE are
optimal in terms of asymptotic variance. Another advantage of using MLE is that
many model selection procedures such as AIC (Akaike’s information criterion) and
BIC (the Bayesian information criterion) are based onMLE. The computational effort
required for the MLE is its major drawback. Note that even with i.i.d. data, MLEs are
often biased estimators, however, under general conditions, MLEs are asymptotically
unbiased. Nevertheless, with dependent data, such as waiting times, one often ends up
with biased parameter estimates; see [18] for more details.

In queueing inference, we are often faced with incomplete data. One generic useful
tool for this scenario is the EM algorithm. It is a way of maximizing the likelihood
that is quite effective for estimating parameters of models with some hidden or incom-
plete data. The name “EM algorithm” stems from the alternating application of an
expectation step (E-step) and a maximization step (M-step) that yields a successively
higher likelihood of the estimated parameters. See, for example, [13], in the context
of phase-type (PH) distributions, often closely related to queueing models. The EM
algorithm is also broadly applicable for hidden Markov models (HMMs) which can
be used to represent certain queueing inference scenarios.

An alternative is the Bayesian approach where we consider parameters to be ran-
dom variables. We assign a prior probability distribution to each unknown parameter.
Applying Bayes’ rule, we update the parameter belief distribution from the prior to
the posterior.

Another important avenue is nonparametric analysis. For stochastic models, such
as queues, ideas were developed by Grübel [65]. This method is based on considering
the queueing model as a mapping from the exogenous processes to the endogenous
processes. Then, under certain conditions such as continuity of the mapping, applying
differentials can provide information about changes to the endogenous processes based
on changes of the exogenous processes. Further local properties of the functional can
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give valuable information about the robustness, consistency, and asymptotic properties
of the estimators; see [66].

3 Various estimation paradigms

We now move to the heart of the survey. We present and summarize a variety of
results and methods. In considering queueing inference problems, there are several
dimensions at play. These include:

– The physical/real-world problem being investigated and the goals associated with
the application.

– The queueing model (or class of models) being used. See Sect. 2.2.
– The observation scheme. See Sect. 2.3.
– The type of statistical methodology being used. See Sect. 2.4.

The interplay of these aspects are woven into a specific domain that we call an esti-
mation paradigm.

Having studied the broad literature, we decided to partition the scope of this field
into ten paradigms. Each paradigm shares a specific sub-field of research. One major
characteristic of each paradigm is the typical observation scheme. We summarize the
paradigms and their typical observation schemes in Table 2 and survey them in the
subsequent subsections. Note that for each estimation paradigm we refer only to a few
selected key references. The reader can find a more complete list of references dealing
with queueing inference in the annotated bibliography [9].

3.1 The classical sampling approach

When considering parameter estimation for queueing systems, a natural first step is
to consider observation scheme (F), see Table 1, where all the data are available. In
that case, one may think that there are not any challenges because we can simply
employ the state of the art parameter estimation methods for the queueing primitives
(interarrival and service times). This is not far from the truth when we have large
samples available, however, for small samples there are some technical complications.
These complications have driven most of the classic research on parameter estimation
of queues. Much of this work is summarized in the last queueing estimation survey
by Bhat et al., [22]. See also the earlier survey, [23] by Bhat and Rao.

As an example, consider a single server queue where we observe the sequence
of interarrival times {A1, . . . , Ana } and the sequence of service times {S1, . . . , Sns },
where these sequences are i.i.d., independent of each other, and the sample sizes na
and ns are fixed. We can then naturally estimate λ and μ via

λ̂ = na∑na
i=1 Ai

, and μ̂ = ns∑ns
i=1 Si

. (16)

However, when observing a queue, na and ns are often not fixed and can be
dependent on the sequences {Ai } and {Si }. Complications may arise, not only due
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to censoring, but also due to the dependency structure of the various quantities. Here
are some possibilities:

– We may sample the system for a fixed duration [0, T ] in which case both the
number of arrivals and the number of service completions are dependent random
variables.

– We may sample a fixed number of arrivals, na , in which case the observation time,
T , and the number of service completions are dependent random variables.

– We may sample a fixed number of service completions, ns , in which case the
observation time, T , and the number of arrivals are dependent random variables.

– We may sample using some other similar scheme (such as a fixed number of
transitions) which will again imply that other quantities are random variables.

In each of these cases, the estimation procedure exhibits what we refer to as endoge-
nously determined sample sizes. That is, the total number of either interarrival times,
service times, or both is a random quantity resulting from the model. This aspect drove
much of the early research on parameter estimation of queues and is well described
in [20]. In fact, the subtle problems that arise in such cases were considered in one of
the first parameter estimation papers for queues by Clarke in 1957, [37].

The work in [37] focused on parameter estimation for a stationary M/M/1 system
where the parameters are the arrival rate λ and the service rate μ. When sampling an
M/M/1 queue for a fixed duration [0, T ], it is difficult to obtain a simple likelihood
expression for the unknown parameters λ and μ. Hence, a more creative sampling
scheme was proposed where a set duration T̃ is determined and sampling takes place
for as long as the busy time of the server is less than T̃ . In such a case, standard
properties of the M/M/1 queue imply that the likelihood can be written as

L(λ, μ ; data) =
(
1 − λ

μ

)
e−μT̃−λTns μns−ν λna+νK (na, ns, ν, Tns ),

where K does not depend on the unknown parameters λ and μ. This expression is
useful because the (full observation) data is summarized via the statistics na , ns , ν,
and Tns . As defined previously, the statistics na and ns are the number of arrivals
and number of service completions (only this time endogenously determined via the
sample). The statistic ν is the initial queue size. Finally, the statistic Tns is the time of
the last service completion during [0, T̃ ]. This structure of the likelihood allows one
to maximize with respect to λ and μ given measurements of the sufficient statistics.
Further, there is also the (minor) extra added benefit that the initial queue length,
ν = Q(0) can yield more information for this observation scheme.

As exemplified by the results of [37], the (F) observation scheme, while simple, still
entails some interesting challenges. However, when considering larger sample sizes,
the subtle issues associated with the construction of MLEs and similar estimators are
not as crucial. Nevertheless, a significant body of literature has handled such queuing
inference problems. For instance, in [122] the problemof estimation for tandemqueues
was discussed as a special case of Jackson networks. Further, in [108], the case of a
general G/G/1 retrial queue was considered. Here, the flow of repeated attempts can be
non-Markovian and the system is observed until there is a fixed number of departures.
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Then, in [19] estimation of the parameters of GI/G/1 queues was studied where only
the incomplete information of the differences between service and interarrival times
was observed. Also, in [124], MLEs for service demands in closed queueing networks
with load-independent and load-dependent stations were proposed.

Going back to the simple estimator (16), even in the situation where na and ns are
fixed, there may be anomalies in the inference process. For example, combining λ̂ and
μ̂ from (16) we have an estimator for the offered load,

ρ̂ = λ̂

μ̂
, (17)

whichmay appear straightforward. However, in [110], Schruben and Kulkarni showed
that for an M/M/1 queue, if we wish to use ρ̂ to compute the steady state mean
queue length, some unexpected behaviour may occur. The ratio of the estimated traffic
intensity to the true traffic intensity has an F distribution with 2ns and 2na degrees of
freedom. Further, they showed that this estimator has undesirable sampling properties.
For example, even when we restrict the estimated workload to be strictly less than one
(for instance, by re-sampling for the case that ρ̂ ≥ 1), the expected value of the plug-in
estimator ρ̂

1−ρ̂
for the average number of customers is infinite. That is,

E

[
ρ̂

1 − ρ̂
1{ρ̂ < 1}

]
= ∞. (18)

These types of results indicating anomalies in inference are useful to keep in mind
when a practitioner estimates primitives as inputs into basic queueing models such
as M/M/1, but also for more complex discrete event simulation models. That is, in
simulation modelling practice one often considers system primitives as inputs into a
complex discrete event simulation. Then, a discrete event (say agent-based) simulation
model can be used for performance analysis. The take-home message from a simple
result such as (18) is that such problems can also occur in muchmore complexmodels.

The results from [110] were generalized in [131] where alternative estimators for
the limiting expected number of customers in the queue (and several other perfor-
mance measures) were constructed. These estimators require the analyst to choose a
value ρ0 < 1. Under the assumption that ρ < ρ0, the estimator has finite mean and
finite mean square error. Further, in [81], similar estimators were considered including
the consideration of bootstrap-based confidence intervals as well as other statistical
aspects. A third notable paper dealing with this aspect of queueing estimation was
Kiessler and Lund [83], where the authors proposed and analysed two alternative
estimators for ρ in M/G/1 queues.

The first estimator discussed in [83] uses the sample average of the work arriving
into the system during [0, T ]:

ρ̂work =
∑N (T )

i=1 Si
T

= ρ̂

∑N (T )
i=1 Ai

T
, (19)

123



Queueing Systems (2021) 97:39–80 59

where N (T ) is the total number of customers arriving up to time T , {Ai } and {Si } are
as above, and ρ̂ is similar to the estimator in (17) with na and ns equalling N (T ).

The second estimator uses the proportion of time during which the server is busy:

ρ̂virtual =
∫ T
0 1{V (u) > 0} du

T
, (20)

where V (t) is the workload process. The paper showed that (20) is an asymptotically
unbiased estimator and further provided analysis of asymptotic means, biases, and
variances.

3.2 Inverse problem estimation

In general, an inverse problem arises in a situation where we observe endogenous
processes and need to estimate or predict parameters of exogenous processes. As a
simplest example, consider a stationaryM/D/1 queue and the mean waiting time given
in (1). Assume we know the value of the mean service timem and observe the waiting
times of n customers. If the observed sample average waiting time is W , then we can
estimate ρ via the equation

W = m
ρ

2(1 − ρ)
. (21)

Solving for ρ, we obtain an estimator

ρ̂ = W

W + m/2
. (22)

Much of the work dealing with inverse problems has focused on the (P) observation
scheme; seeTable 1. In certain situations, endogenous processes, such as {Wn} yielding
W , are not directly observable, and we need to obtain observations by actively probing
the system via artificial customers (packets). The prober usually chooses the sizes of
probes and time epochs in which to send them. In this case, we say that the probing is
active. However, sometimes the probe sizes are determined by the selected application
and associated network protocol such as transport control protocol (TCP). In this case,
we have passive probing.

Probing is depicted in Fig. 4. In such a case, the probes slightly affect the system,
and via their measurements we aim to solve an inverse problem.

Continuing with the M/D/1 example, assume we wish to estimate ρ. To do this,
the prober sends n probes into the queue at the time points of a truncated Poisson
stream with rate γ . Here, γ should typically be quite small so as not to disturb the
system. For each probing customer, the prober measures the sojourn times denoted via
τ1, . . . , τn with τ p denoting their average. Then, we can estimateW from the waiting
times experienced by the probes via W = τ p − m. Then, using Eq. (21) again with
ρ = (λ + γ )m, we can solve for λm to obtain the estimator
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arrivals
with rate λ

probe
with rate γ

m

departures

Fig. 4 Probing a single server queue. Regular arrivals arrive at Poisson rate λ. The probe stream is injected
with rate γ . The service duration for both probes and regular packets has a mean of m

ρ̂M/D/1 probes = τ p − m

τ p − m/2
− γ m. (23)

As a comparison, consider the case where the underlying system is a stationary
M/M/1 queue with a knownmean service timem, and arrival rate λwhich is unknown.
In this case, since the M/M/1 mean sojourn time is (m−1 −λ−γ )−1, a probing-based
estimator for the offered load is

ρ̂M/M/1 probes = τ p − m

τ p
− γ m. (24)

Note that, in practice, we do not always know whether the underlying system is
better modelled as an M/D/1 queue, an M/M/1 queue, or some other model. Still, for
a given observations yielding τ p, the estimators in (23) and (24) show that treating
the system as an M/D/1 queue will yield a higher offered load estimate than treating
it as an M/M/1 queue.

One of the first probing papers [36] by Chen et. al. considered a FCFS M/D/1
system. The prober knows the arrival times, waiting times, and departure times of
probes. The authors derived a tractable expression for the likelihood function of λ.
This allows us to carry out maximum likelihood estimation.

In the general case of G/G/1 queues, assume that λ and μ1 are the average arrival
rate and service rate of local traffic, and γ and μ2 are the average arrival rate and
service rate of the probes. Then, the traffic intensity is

ρ = λ

μ1
+ γ

μ2
, (25)

which, in the case that ρ < 1, is the stationary fraction of time during which the server
is busy. This can form the basis of an estimator. If γ , μ1 and μ2 from (25) are known,
then we can estimate λ by using (25) together with an estimator like (20).

However, in reality the Q(t) (or V (t)) is often not observed. So, in [117] Sharma
and Mazumdar introduced a method based on measuring the delay experienced with
active probing. They solved the problem for the cases where the true arrival process is
either Poisson or arbitrary and the probing process is Poisson, denoted by M+M/G/1
and M+G/G/1, respectively. Further, they extended the problem to cases where the
service times are unknown as well as queueing networks. This was the first paper that
proposed an analytic approach to probing of queueing networks.

123



Queueing Systems (2021) 97:39–80 61

In [1], Alouf et al. studied the case where the system has limited unknown capac-
ity c. They considered Poisson arrivals and service times that are either exponential
or deterministic and denoted the systems via M+M/M/1/c and M+M/D/1/c. Their
estimators for c can be used to estimate system capacity.

When ρ ≥ 1, a different approach can be used. In [72], Hei et al. observed that the
ratioR between the mean interarrival and mean interdeparture time is given by

R =
{
1 ρ < 1,
λ
μ1

+ γ
μ2

ρ ≥ 1.

In this case, an estimate of R based on averages of observed interarrival and interde-
parture times can be used to estimate λ.

When ρ < 1, the ratio R = 1. This yields no information about the arrival rate,
and we need to consider the second-order characteristics of the departure process.
The authors suggested using an approximation of the squared coefficient of variation
(SCV) of the interdeparture times to estimate the arrival rate of a D+M/Gi /1 queue
where the notation Gi indicates that the service distribution may differ between the
customers and the probes. In follow-up work [73], the authors extended the method
to the case of M+M/Gi /1 queues.

Analysis for special cases of probing and development of new estimation methods
was a very active area of research around the turn of the first decade of the current
century. In [96], Nam et al. considered probing for parameter estimation of an M/G/1
queue where both the service rate μ = 1/m and the input traffic load λ are unknown.
Their method estimates the available bandwidth (the residual processing capacity)
based on what they call a minimal-backlogging method. Comert and Cetin in [39]
considered the application of probing for real-time estimation of the number of vehicles
(customers in a queue) in a signalized traffic intersection. This is the case that only
the position of the last probing customer in the queue is known. In [98], the authors
studied the convergence rate of an M/D/1 queue to its steady state as a function of the
load. They attempted to use this performance measure for finding an adequate probe
separation threshold.

In a significant paper [16], Baccelli, Kauffmann, and Veitch described how to apply
probing methods for queueing networks. Following the initial work in [117], the work
in [16] presented a comprehensive survey of probing methods to estimate parameters
and design queueing networks. See also [103] where the authors dealt with network
tomography and further exploited the EM algorithms for multicast trees.

In [70], Heckmüller and Wolfinger studied estimation of the arrival rate of a G/D/1
queue with probing where only the departure times are observed. Their method was
constructed in a discrete time setting, approximating the numbers of customers arriving
in time intervals by Gaussian random variables. They also investigated sequences of
queues with possibly varying bottleneck capacity. In [80], Kauffmann suggested a
new approach with zero probing overhead based on the theory of inverse problems
for bandwidth sharing networks. In [2], Antunes et al. considered the problem of
estimating the arrival rate and the service rate of an M/G/1 queue with probing. They
also studied the time-varying Mt /Gt /1 queues in [3]. In [86], Kim et al. applied a data
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driven probing approach to provide a high-fidelity simulation model for an arrival
process to a clinic.
Nonparametric problemsWhile the (P) observation scheme, see Table 1, has attracted
most of the attention in the realm of inverse problems, other types of settings are also
relevant in practice. For example, nonparametric estimation for the M/G/1 queue was
considered in [25] based on busy periods and in [69] using the P-K formula. Based on
workload observations, the authors of [69] constructed estimators both for the offered
load ρ and the (nonparametric) service time distribution. In earlier work, [104], Pitts
studied inference for GI/G/1 queueing models and laid foundations for nonparametric
inference. Further nonparametric work appears in the context of infinite server queues,
a topic which we cover next.

3.3 Inference for non-interacting systems

We now discuss inference associated with the M/G/∞ queue and similar models.
We call such systems non-interacting because customers do not affect each other
in the queue. Almost any probabilistic analysis of an M/G/∞ model is based on a
transformation of the Poisson arrival process and this is why many M/G/∞ results
(and generalizations) are tractable. While there is not real “queueing” taking place in
such a model, infinite server systems naturally appear in applications as they describe
a situation where incoming customers experience random delay. One example is a
pedestrian crossing tunnel where pedestrians do not really interact, and the delay
between the entry time and the exit time of each pedestrian is i.i.d. random variables.

Just as an illustration, we can compare the formulas for the auto-covariance function
of the stationary queue length for an M/M/1 queue and an M/M/∞ queue, both with
a mean service time of 1. From [107], the auto-covariance is,

Cov
(
Q(0), Q(t)

) =

⎧⎪⎨
⎪⎩
2λ(1 − λ)

π

∫ π

0

(sin θ)2e−t(1+λ−2
√

λ cos θ)

(1 + λ − 2
√

λ cos θ)3
dθ for M/M/1,

λe−t for M/M/∞.

As is evident, having non-interacting customers (M/M/∞) yields a much simpler
formula.

The analytic tractability of M/M/∞ queues (and M/G/∞ queues for that matter)
goes beyond the auto-covariance function. Many performance measures have closed-
form expressions involving the arrival rate and the service time distribution G(x).
This has motivated several authors to consider inverse problems in various settings.
Specifically, observation schemes of types (DI), (IO), and (T) given in Table 1 have
been studied.
The (IO) observation scheme A neat initial M/G/∞ result from Brown in [33] deals
with the transformation of the service time distribution

H(x) = 1 − (1 − G(x))e−λx . (26)
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As is easy to see (Lemma 2 of [33]), H(·) happens to be the distribution function of
the time since the last arrival when observing the process at a departure point. The
key to seeing this is to note that the last arrival does not necessarily correspond to the
observed departure.

Now, with (26) in hand, there is an immediate scheme for conducting nonpara-
metric inference of G(·) (and λ) under the (IO) observation scheme. By observing
the sequence of arrivals and departures, we can construct the empirical distribution
function that estimates H(·) and also obtain an estimate for λ based on the arrival rate.
Then, (26) can be used to find an estimate of G(·).

This general idea was revived and extended by Blanghaps et al. in a more recent
paper, [27], where the distribution of the r th latest arrival, H (r)(·), was considered.
The relation between G(x) and H (r)(·) is given by

H (r)(x) = 1 − (
1 − G(x)

)
e−λx (λx)r−1

(r − 1)! −
r−2∑
j=0

e−λx (λx) j

j ! .

As shown in [27], the improvement in estimatingG(x) through H (r)(·) is considerable
when ρ is greater than 1.

The paper [67] by Grübel and Wegener treated the same problem, but there the
authors seemed to not be aware of the [33] result (and idea). Hence, in Sect. 2 of that
paper, they analysed the problem using the concept of matchmaking (guessing what
departure maps to what arrival). They developed a method for matchmaking for the
case in which the distribution of the sojourn times is either exponential, log-convex
or log-concave. For the last two cases, they showed that this match is unique. That
paper also goes a bit further to provide an hypothesis test for determining whether the
service times in M/G/∞ are exponential.
Infinite server queues under (DI) In contrast to many other queueing systems, the
M/G/∞ queue has explicit expressions for the joint distribution of Q(t1), . . . , Q(tn).
This allows one to carry out effective inference in the discrete intervals (DI) obser-
vation scheme. In [62], Goldenshluger constructed a nonparametric estimator based
on discrete observations which exploits a relationship between the derivative of the
covariance function and the distribution G. The study of nonparametric inference for
this queue was then extended in [63], where Goldenshluger considered the variant
where the arrival and departure epochs are registered without knowledge of the epoch
type. That paper contains further results and comparisons to previous estimators.

Extended models include the time inhomogeneous case studied in [64] by Golden-
shluger andKoops. Further, in a discrete time setting, in [53], Edelman andWichelhaus
considered parameter estimation for two-node networks of infinite server queues with
geometric arrivals and general service times. A related paper, [111], studied parameter
estimation for discrete time G/G/∞ queues. The work was extended in [112] in the
context of queueing networks.
Observing busy periodsConsider a situation where the sequence of busy periods {Bn},
as well as idle periods, is observed. This was considered in [68], where a sequence of
busy period observations is used to construct empirical approximations to the distri-
bution function of the service time. A related paper is [24].
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Inference procedures for M/G/∞ queues based on busy and idle periods may seem
attractive from a statistical perspective, but from a practical (and/or queueing) per-
spective they are less useful. As an example, consider an M/G/∞ queue with λ = 50
(customers per minute) andμ = 1 (mean service time of a customer is 1 minute). This
couldmodel, for example, the underground crossing of amajor street mentioned above
where the walking time is about 1 minute and there are about 50 people entering the
crossing every minute. In such a case, the stationary queue length is known to be Pois-
son distributed with parameter ρ = 50 and the stationary probability of being empty
is thus e−50. Now, the time between idle periods, i.e. τ = inf{t > 0 | Q(t) = 0},
satisfies

E[τ | Q(0−) = 0, Q(0) = 1] = λeρ = e50.

Hence, it is not reasonable to expect to actually collect any data in such a scenario.
Thus, papers that base their statistical analysis on this observation scheme essentially
deal with a situation that is unlikely to occur in practice.
More related work In [102], Pickands and Stine considered a discrete time infinite
server system with geometric service times where the queue size is the only observa-
tion. They proposed an estimator for the arrival rate and the holding time distribution.
Their key contribution was that they model the situation with a HMM where the hid-
den component was the order of arrivals and departures. They used HMM algorithms
and the correlation structure of the process for constructing MLEs. A related line is
by Brillinger [31] where he developed a spectral approach for estimator construction
of G/G/∞ models and generalizations.

3.4 Inference with discrete sampling

In the previous section, we overviewed work dealing with the (DI) observation scheme
for infinite server queues. We now discuss estimation under this observation scheme
for other models. In computerized applications, the data often include a full log of
queueing information. However, in physical systems, periodic logging is often more
sensible. We illustrated such an example in Sect. 2.4, where, for instance, the sample
of the queue length over discrete intervals is given in (10).

The difficulty with discrete sampling is that unless we are considering non-
interacting systems as in the previous section, the joint distribution of the samples
is typically intractable. Hence, research in this area often builds on approximations
or modifications of the sampling scheme. As illustrated in Sect. 2.4, if the interval
between samples is very large, then we can use a crude approximation where the
samples are assumed to be independent. However, one needs to keep in mind that the
assumed stationarity of the system is questionable when considering large sampling
intervals.

For continuous timeMarkov chain models with small finite state spaces, sampled at
discrete intervals, one can construct maximum likelihood estimation procedures. For
instance, see [26], where Bladt and Sørensen established the existence and uniqueness
of the MLE and compared the use of the EM-algorithm and alternative Markov chain
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Monte Carlo (MCMC)-based procedures. This method can be applied to small finite
state Markovian models of queueing systems. However, the method quickly becomes
intractable as the state space grows.

In terms of approximations, in [109], Ross et. al. considered M/M/c queueing
systems under the (DI) observation scheme. They approximated the process using
Ornstein–Uhlenbeck diffusion approximations which work well when the number of
servers c is not small. They carried out MLE estimates on the approximated model.
A related preprint is [95], where McVinish and Pollett considered the method of
“estimating equations”, which to the best of our knowledge has not been exploited
further in the context of queueing inference.

A modification of the (DI) observation scheme is to use Poisson probing, where
samples occur at times dictated by a Poisson process independent of the other system
processes. For models such as the M/G/1 queue, as well as more general Lévy-driven
storage systems, Poisson probing yields tractable estimators. In [106], Ravner et al.
exploited the fact that the dependence structure of the workload process, sampled
according to a Poisson process, has closed form. Specifically, given the value of the
workload process at a specified time, the Laplace transform of the workload process
at an exponential future time was explicitly derived. They exploited this structure
to carry out, and analyse, semi-parametric estimation of the Lévy exponent driving
such queues. Further, in [92], Mandjes and Ravner considered hypothesis testing for
such systems. Related to these papers is [51] by Duffie and Glynn, where the authors
introduced a generalization of the method of moments for continuous time Markov
chains sampled at random time intervals. Another related paper is [46], where den
Boer andMandjes considered a general estimation problem using Laplace transforms,
also with application to the M/G/1 queue.

3.5 Inference with queueing fundamentals

Queueing theory supports many models, each with its own properties and theoretical
results. However, there are also basic fundamental properties of queues that are uni-
versal to almost any queueing model. These include Little’s law, see (9), as well as
general properties such as the fact that queue lengths in critically stable queues are

often of the order O
(
(1 − ρ)−1

)
, and the fact that tail asymptotics of waiting time

and sojourn time distributions often have a known asymptotic form.
Several key papers have exploited such properties for the purpose of inference and

estimation. In terms of tail asymptotics, in [58], Glynn and Torres considered how long
the arrival process needs to be observed in order to accurately estimate the long-run
fraction of time that the workload exceeds a given level. Their conclusion appears to
hold regardless of whether the arrival process exhibits complex dependencies or not. In
[61], Glynn andZeevi established logarithmic consistency and studied the efficiency of
tail-based estimators. In [52], Duffy and Meyn considered Lindley recursions similar
to (6) and studied their estimation properties via a large deviations analysis.

In terms of Little’s law, there has also been significant work. In many situations, one
may observe either the queue length trajectory, or the sojourn times of customers, or
both. Little’s law ties the expected value of these two quantities, and hence, whenever
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we can use one quantity for estimation, we can also use the other. As an example,
refer back to the M/D/1 queue and the waiting time-based estimator, (21). In that case,
the sample mean of the waiting time W was observed. However, consider a situation
where instead we observe the time average of the number of waiting customers,

Qr = 1

T

∫ T

0
(Q(u) − 1)1{Q(u) ≥ 1} du.

Now, by Little’s formula we expect

Qr ≈ λW .

This motivates writing down an estimator for ρ via an adaptation of (21),

Qr

ρ/m
= m

ρ

2(1 − ρ)
.

Now, solving the quadratic equation for ρ and choosing the nonnegative solution, we
obtain the estimator

ρ̂ =
√
Qr (2 + Qr ) − Qr . (27)

A comparison of the estimator (27) with the estimator (22) or the similar estimator
(13) indicates that there are multiple methods to estimate the same quantity. With
infinitely many samples, these methods are equivalent; however, in general there is
room to investigate the statistical properties of such competing estimation schemes.

Results in this spirit were analysed in depth in [60] by Glynn and Whitt. In that
paper, the authors extended variance reduction results by Carson and Law, [34], and
investigated trade-offs relating to Little’s law-based estimation. They focused on esti-
mation of the means of the endogenous processes, Qr and W (or, respectively, Q
and the sojourn time process). They considered the arrival rate λ as either known or
unknown, and they further dichotomized between what they call the “direct estima-
tion” and the “indirect estimation” case. In the former, the mean of Q is estimated
directly by a time average of the observed queue length. In the latter, Little’s lawmakes
use of the sample mean for W together with λ or an estimator for it, to estimate the
mean of Qr (or Q). The results of this paper relied on the authors’ earlier work in [59],
as well as other joint papers, which established a joint functional central limit theorem
based on Little’s law, which describes the weak convergence of both the queue length
estimator and the waiting time estimator, to an appropriate limiting diffusion process.
The results in [60] indicate that an indirect estimator is more efficient than a direct
estimator in cases where the interarrival and waiting times are negatively correlated.

This line of research has been further extended in [99] in the context of manufactur-
ing performance analysis. Further, in [57], Glynn et al. established amartingale central
limit theorem which they then used to construct confidence intervals for estimators
and perform statistical tests. In more recent work, in [84], Kim and Whitt surveyed
previous results and refined the Little’s law-based estimators to handle certain cases
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such as removing bias due to interval edge effects. See also [85] for a treatment of the
time-varying version of Little’s law.

A different line of research that we would like to highlight here is the detection
of stability or instability of queueing systems. To date not much work has been done
towards this direction, but one notable publication is [91] where the authors deal with
Monte Carlo simulation of systems for detecting stability or instability.

3.6 Queue inference engine problems

A paper published in 1990, The queue inference engine: deducing queue statistics
from transactional data, by Larson [88], opened up a research direction associated
with retrospective state estimation of a queue based on transactional data. This is
what we call the (T) observation scheme; see Table 1. The key idea is that only
observations of ordered service entry and service completion times are available.Under
this observation scheme, the cumulative number of departures for t ∈ [0, T ], D(t),
is observable; however, the cumulative number of arrivals A(t) is not. This occurs in
applications such as automatic teller machines where the queue of customers waiting
for the machine is not observable, but the transaction record is logged.

The only statistical assumption is a (homogeneous) Poisson arrival process and
no further assumptions on the service processes. That is, the inference works for
models such as M/G/c as well as more complicated models with Poisson arrivals. As
was shown in [88], smart recursions utilizing the uniform order statistics property of
Poisson processes can be utilized to infer retrospective mean queue length trajectories
and other quantities, during congestion periods (duration during which all servers are
busy), only based on transactional observations during that period.

As an elementary illustrative example, see Fig. 5which assumes a single server case.
Here, the congestion period begins at time 0 and then a completion of a transaction
is recorded (a customer departing) at time t1. Further, the server becomes idle at time
t2. Based on this information, it is clear that there were two arrivals for this specific
congestion period with the first arrival at time 0 and the second at some unknown time
X1 ∈ (0, t1).

Under the Poisson arrival assumption, we know that X1 ∼ uniform(0, t1). This
then allows us to deduce the expected number of customers in the waiting room as

Q̂r (t) = E[Qr (t)] =
{

t
t1

t ∈ [0, t1),
0 t ∈ [t1, t2].

(28)

The computation of the estimator Q̂r (·) is based on the transactional observations and
can only be made at time t2 once it is known that the congestion period has ended.

In a more complex situation, there will be multiple transactions recorded during a
congestion period. We illustrate such a situation in Fig. 6. At time t = 0, an arrival
occurs and the server’s state changes from idle to busy; hence, the congestion period
starts. From transactional data, the system exhibits both service completion and service
commencements at times t1, t2, t3, and t4. Further, there are customers waiting to be
served at least at times t−1 , t−2 , t−3 , and t−4 . During the congestion period, a total of

123



68 Queueing Systems (2021) 97:39–80

1

2
A(t) (unobserved)

D(t) (observed)

Time

C
um

ul
at
iv
e
N
um

be
r
of

C
us
to
m
er
s

Start of congestion period End of congestion period

t2t10 X1 ≤ t1

Fig. 5 The cumulative number of customers during a congestion time. Here, A(t) is the cumulative number
of arrivals and D(t) is the cumulative number of departures during the congestion period. The arrival time
of the i th customer to enter the queue and the departure time of the i th customer served are denoted by Xi
and ti , respectively

N = 4 customers are delayed in the queue, and at time t5 the transactional data indicate
a service completion but no service commencement, thus ending the congestion period
and allowing the server to idle. It is evident that the service completion times within a
congestion period impose a set of inequalities on the arrival times of other customers
who waited in queue:

X1 ≤ t1, . . . XN ≤ tN . (29)

The queue inference engine allows us to compute an estimator, Q̂r (·) based on this
data with the main idea being a recursive computation that uses the uniform arrival
property for Poisson arrival processes, similarly to the simple estimator in (28), as
well as the inequalities in (29). Details are in [88].

Larson’s [88] paper developed a system linear equations that can be solved at the
end of each congestion period for computing Q̂r (·). Note that given n arrivals during
a congestion period, the computation time needed to obtain mean queue lengths is of
order O(n5). See [88] for numerical examples, compared to simulation.

Following Larson’s paper, a variety of research papers generalized the basic idea
and presented improvements to the computation time. In [21], Bertsimas and Servi
improved the computational complexity and generalized the results to cases of non-
homogeneous and renewal arrival processes. Note that for the homogeneous Poisson
arrival process, the unordered arrival times are independent and uniformly distributed,
but for the non-homogeneous case with the arrival rate λ(t), the unordered arrival
times are i.i.d. with a probability density proportional to λ(t). In [42], Daley and Servi
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Fig. 6 Trajectories of D(t) (observed) and A(t) (unobserved) during a congestion period with N = 5
customers

extended the result to the case of Erlang-k interarrival times. They also considered the
cases of having finite buffers and the real-time estimation problem where the arrival
rate is known. Further, in [43], they considered systems where arriving customers can
balk when the queue length is beyond a given threshold and the balking probability is
constant. The results of that paper were extended by Jones in [77] where the balking
probability increases to 1 when the queue length approaches ∞.

Meanwhile, Jones, and Larson [79] suggested additional algorithms with O(n3)
computational complexity, improving the algorithms of [88]. In [44], Daley and Servi
presented an additional algorithm by omitting queue lengths with low probabilities.
Later on, in [45], the result was extended to customer balking and reneging. In [47],
Dimitrijevic developed further algorithms which under special cases have complexity
as low as O(n2). Moving onto queueing networks, in [90], Mandelbaum and Zeltyn
applied the queue inference engine idea. This is one of the few papers in this survey that
deal with complex queueing networks (as opposed to single pass queueing systems).

In all of these papers, calculating the likelihood of a congestion period is the most
difficult task. This difficulty is due to the fact that the likelihood should be integrated
over the all realisations of the unobserved arrival process and the number of terms in
this sum increases exponentially with the number of departures. In [54], Fearnhead
considered applying a likelihood recursion to test the likelihood efficiency of the
estimator when used in theM/G/1 and Ek /G/1 cases. Here, the only observed variables
were the interdeparture times.

In [56], Frey and Kaplan considered the case of periodic reporting data, where the
arrivals follow a Poisson process with period-specific arrival rates and the data are
the number of departures during each period. However, the results of this paper were
challenged by Jones in [78] where he showed that queue inference cannot be carried
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out without knowing service start or stop times. Further, in [78] Jones presented an
extension of the analysis.

In [101], Park et al. presented a new complementary variant of the QIE problem.
They considered the casewhere the number of servers is unknown and exact inferences
about queueing and service times come from the arrival and departure times. Then, in
[71], Heckmüller and Wolfinger considered the case of the G/D/1 queue for inference
about characteristics of the arrival process from transactional data.

3.7 Bayesian approaches

ABayesian approach to inference treats unknown parameters as random variables and
the inference procedure is a process of refining the distribution of these parameters.
We begin with a prior distribution on the parameter values, and once data are col-
lected, Bayes’ formula yields a posterior distribution. This posterior distribution and
functionals of it are the main outcome of the inference.

In setting up a Bayesian estimation problem, prior distributions are often param-
eterized themselves by hyper-parameters, and in certain cases the resulting posterior
distribution also has a parametric form. Such cases arise when the prior is a conjugate
for the likelihood model, that is, when the distribution of the posterior has the same
parametric formas the distributionof the prior.When there is not a nice parametric form
for the posterior, computational methods are required, especially when the posterior
distribution is high-dimensional with an intractable normalization constant. Common
methods include Monte Carlo Markov chains (MCMC), as well as many modifica-
tions and adaptations such as approximate Bayesian computation (ABC) which is
used in case of an intractable likelihood. See, for example, [28] for more details about
Bayesian inference at large.

The Bayesian approach usually applies to queueing systems where, in addition
to inference, prediction is of interest. Example applications include internet traffic
analysis and risk theory. Let us return to a very elementary example of the M/D/1
queue and as with previous examples assume that the service duration m is known
and the unknown arrival rate λ is the parameter of interest. Consider now the (F)
observation scheme, see Table 1, where a full queue trajectory is observed, however,
it is only the arrival process which is of interest. Now, the data collection is over n
periods, each of duration T , and the data is a sequence {x1, . . . , xn} where xi is the
number of arrivals in period i . In this case, the likelihood model is that the distribution
of the number of arrivals during a period is Poisson with parameter λT .

A common choice that works well with the Poisson likelihood is a Gamma prior
with hyper-parameters α and β as shape and rate parameters, respectively. In this case,
it is an elementary Bayesian calculation to show that gamma distribution is a conjugate
prior.

To see this note that the posterior is proportional to the product of the likelihood
and the prior, and hence,
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f (λ | data) ∝
( n∏
i=1

e−λT (λT )xi

xi !
)

βα

Γ (α)
λα−1e−βλ

∝ e−nλT (λT )
∑n

i=1 xi λα−1 e−βλ

∝ e−nλT λ
∑n

i=1 xi λα−1 e−βλ

= λα+(
∑n

i=1 xi )−1 e−λ(β+nT ),

(30)

which is proportional to the density function of a gamma distribution with shape
parameter α + ∑

xi and with rate parameter β + nT .
This example is of course just performing inference for the rate of the Poisson

arrival process although it is posed here in the context of an M/D/1 queue. A similar
line of reasoning has been employed in a significant body of the literature dealing with
Bayesian inference for queues. For example, see early work of Armero et al. [4–7]
for obtaining the posterior distribution of the traffic intensity, waiting time, number of
customers, and length of idle and busy period for an M/M/1 queueing system. Later
similar work, focusing on specific phase-type service times, can be found in [15] and
[76]. See also [105], where additional specific distributions amenable for efficient
Bayesian inference are employed and [93,94] where considerations of the subjective
Bayesian paradigm for queueing inference are discussed.

An alternative computational line of research includes [119] by Sutton and Jordan
where Bayesian inference for general queueing networks and service mechanisms was
studied. Here, the queue is generally viewed as a transformation mechanism between
exogenous processes and endogenous processes (although the authors did not use this
terminology). They considered a variety of mechanisms and policies and presented
an overview of the application of Bayesian inference for queueing networks where
simulation of the queueing processes is part of the posterior procedures to sample
latent variables. The computational procedures make use of the slice sampler, [97].
The computational paradigms introduced in [119] have influenced several other works
in the computer science and Bayesian statistics communities, such as [125] where
closed queueing networks were considered.

TheBayesian paradigm also extends to empirical Bayesian approaches as discussed
for queues in [121] and to more recent work dealing with nonparametric Bayesian
approaches. A notable paper in this direction is [40] focusing on discrete time queues
where the inference is for the service time distribution.

3.8 Online prediction

In this paradigm, we observe some of the endogenous processes up to a given time and
make prediction about future values. A common application is delay predictionwhere
the queue length process or workload process is observed and used for predicting the
waiting time of arriving customers. Using delay predictions to make delay announce-
ments is common in call centres and other service operations. In certain cases, some
of the model parameters are known.
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Most of the literature considers the mean square error (MSE) criterion, under which
the best predictor is the expected value. As an example, consider a GI/G/1 system
with known arrival rate λ and known mean service time m. Assume that, at time t0,
we observe Q(t0) = q0 > 0. We may then require predictors for the waiting time of
a customer arriving at time t0 (not included in the count q0) or for functions of the
future queue length, f

(
Q(t0 + u)

)
. Such predictors also include the waiting time of

future customers that arrive at t0 + u.
Under a FCFS policy, predicting the waiting time of a customer arriving to find q0

customers already in the system is straightforward. The expected service time of each
of those yet to commence service is m, and hence, the expected delay is,

(q0 − 1)m + R,

where R is the residual service time of the customer currently in service. The value
of R may either be observed, or estimated. In a case such as the GI/M/1 queue, the
expected delay is simply q0m due to the memory-less property of the exponential
distribution. Further, it is straightforward to provide quantiles or other measures of the
delay time, as the waiting time of the customer is Erlang (Gamma) distributed.

If we are looking for predictors for f
(
Q(t0 + u)

)
, then explicit expressions require

more stringent assumptions. For example, in an M/M/1 queue, Q(t0) describes the
full state information and the predictor that minimizes the MSE is

f̂ (Q(t0 + u)) = E[ f (Q(u)
) | Q(0) = q0] =

∞∑
j=0

f ( j) pq0 j (u),

where pi j (u) is the transition probability of a birth–death continuous time Markov
chain, from state i to state j in u time steps. In the case of M/M/1, expressions
involving Bessel functions for pi j (·) are known, [38], and hence, in principle, closed-
form predictors can be computed. However, in more general models, predictors for
f
(
Q(t0 + u)

)
quickly become intractable and hence approximations are involved.

The classic literature dealing with such cases includes [118] where transition prob-
abilities for the GI/M/1 embedded Markov chain are used, [129] where extensions to
multi-serverGI/M/c queues are considered, and [100]where predictors associatedwith
theM/G/1 queue are considered. In these papers, explicit transition probabilities of cer-
tain endogenous processeswere used alongwith the embeddedMarkov chain structure
ofGI/M/c- andM/G/1-type queues. In general, there does not appear to be amechanism
for generalizing this type of analysis beyond GI/M/c andM/G/1. That is, systems such
as M/G/c or GI/G/1 queues or more complex systems require a different set of tools.

For more general settings, one can consider approximations. A general entry point
focused on operations management of call centres is [126] deriving predictors for the
waiting time of customers currently in the system. The analysis focuses onmulti-server
systems with multiple customer classes. Further work was carried out in [75] where
the realistic scenario of time-varying demand and time-varying service capacity was
considered. In such cases, fluid approximations were employed to derive several types
of predictors. See also [120].
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3.9 Implicit models

In many of the paradigms described above, queueing models are explicitly used to
model real-life situations and data are used for parameter estimation or state prediction.
However, queueing models may also be used implicitly, without requiring an “exact
fit” between model and reality. Towards that end, several different research directions
have been pursued. One direction is the application of information mining based on
event logs for creating queueing models directly from the data. Another direction
is grey-box modelling where queueing-like processes are used to describe the data,
without requiring an exact fit.
Information mining The general idea here is to use an extensive event log dataset
to dynamically create queueing models that describe the underlying processes. This
is quite different from classical modelling where the modeller observes the process
and suggests a mathematical model. This idea has been explored in a series of recent
papers. In [115] Sendrovich, Weidlich, Gal, and Mandelbaum use the developed field
of business process mining based on event logs, see [123], for queues. They adapted
ideas from this field to queues and developed themethod of queuemining. In [113], the
workwas extended to handle the queuemining paradigm in viewof partial information.
In [114], customers with different priorities were incorporated as part of the queue
mining process. Further, in [116] a resource-driven perspective was employed with an
application to an outpatient clinic.
Grey-box models There are several classes of stochastic processes that are often used
in explicit queueing models. These include birth and death processes and other struc-
tured Markov chains. One may develop statistical queueing models which are based
on similar underlying processes but do not attempt to utilize amechanistic relationship
between models for the exogenous and endogenous processes. As an analogy, con-
sider time-series models where common stochastic processes, such as autoregressive
integrated moving average (ARIMA) models, are used without an explicit description
of how the underlying random variables are related to the physical world. This idea
can be used with birth and death processes or with any other queueing-based stochas-
tic process in the hope that the queueing-like stochastic process can model queueing
phenomena well.

In [49], Dong and Whitt considered a stationary birth and death process fitted to a
sample path of an arbitrary queueing system. General birth and death parameters were
allowed. This differs from an explicit queueing model such as M/M/c where the birth
rate is assumed to be constant λ and the death rate at level k isμk for k ≤ c and μc for
k > c. In the latter scenario, an exact queueing model could be fitted to estimate the
parameters (parameters are λ, μ, and c), whereas in the grey-box approach of Dong
and Whitt, an arbitrary birth and death process allows us to compensate for potential
model misspecification. A similar approach was applied to health-care data in [14].
Another grey-box-type paper is [130] where queueing networks are approximately
fitted to network data.

The fitting of birth and death processes is also interesting in its own right and,
as shown in [128], different fitting methods are possible. See also [50] dealing with
time-varying periodic queues.
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3.10 Control, design, and uncertainty quantification

Most of the paradigms surveyed above deal with parameter or state estimation. How-
ever, related problems deal with how to control queueing systems in the presence of
uncertainty, how to design such systems, and how to deal with uncertainty quantifi-
cation when carrying out such control or design. There is an extensive literature for
control, design, and architecture selection for queueing systems. However, the liter-
ature mainly focuses on cases which assume that the probability laws of arrival and
service processes are precisely known and the state of the system is fully observable.

In the realm of stochastic control, there are two general paradigms for dealing with
such uncertainty. In one paradigm, a controller wishes to optimally control a system
in which parameters are not known. This is sometimes called adaptive control. The
field of reinforcement learning suggests a variety of methods for dealing with such a
setting. An alternative case is that in which the state observation is not fully available.
The field of partially observable Markov decision processes (POMDPs) deals with
this setting. To the best of our knowledge, in the specific context of queueing control,
both of these areas have not received extensive attention.

An early paper dealing with adaptive control of queues was [74] where, for an
M/G/1 queueing systemwith an unknown arrival rate and an average cost criterion, the
controller chooses the service rate to minimize long term costs. In [87], the celebrated
cμi scheduling rule was analysed in the case where the service rates μi are estimated
online. In this case, a regret-based analysis was performed. As for POMDPs, some
recent work was presented in [10] where the interaction between partially observable
queues and stability was explored. Also related is [8] where supply systems were
considered and the effect of not being aware of duplicate orders is analysed. Beyond
these adaptive control andPOMDPpapers,we are not aware of further significantwork.

In addition to control, there is the problem of how to design queueing systems. This
often refers to offline specification of quantities such as the number of servers, server
rate allocation, and the queueing discipline. In contrast, control of a system typically
considers the problem of online decision making based on state measurements or esti-
mates. An interesting aspect dealing with design arises when parameter uncertainty
is present. As an illustration of the trade-offs inherently involved, in [48] the authors
considered a single-pass loss-less queueing system in steady state with an unknown
arrival rate. They analysed several trade-offs dealing with architecture selection for
such systems.

In general, design of queueing systems is often based on performance analysis
which includes computing functionals of the endogenous processes. In recent years,
there has been much work on the robust evaluation of such performance measures. In
this setting, parameters are assumed to not be known exactly, but rather to lie within
specified uncertainty sets. See, for example, [17] and references within.

4 Conclusion

The queuing theory literature spans multiple journals, dozens of books, and thousands
of publications. However, within that, the literature dealing with parameter and state
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estimation is much more limited. We have done our best to list this comprehensively
in the annotated bibliography [9]. Our purpose in this survey is to present an up to
date account of this more narrow aspect of queueing research. While our discussion is
not exhaustive, we have attempted to present a comprehensive view of the estimation
paradigms that have been investigated to date.

When attempting to classify a body of work, one approach is to consider the several
dimensions that specify the problems at hand. As outlined in Sect. 2 for parameter and
state estimation in queues, these dimensions include the inference activity, the models,
the observation scheme, and the statistical methods and principles. We have attempted
to describe the field using this viewpoint and the ten major estimation paradigms that
appear in Table 2 and are surveyed in the subsections of Sect. 3.

In considering the estimation paradigms outlined in Sect. 2.1, we believe that there
is room for extensive further research that will connect some of the paradigms. Specifi-
cally, the joint application of inverse problem methods, Bayesian approaches, implicit
models, and control of systems may be of interest. The past decade has witnessed an
explosive growth in data-driven statistical learning applications. Some of the applica-
tion areas that have benefited from this growth include systems of congestion, resource
scarcity, and queues. It remains a challenge to connect queueing estimation paradigms
with modern machine learning applications and methods.
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