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Abstract
We consider a discrete-time d-dimensional process {Xn} = {(X1,n, X2,n, . . . , Xd,n)}
on Z

d with a background process {Jn} on a countable set S0, where individual
processes {Xi,n}, i ∈ {1, 2, . . . , d}, are skip free. We assume that the joint pro-
cess {Yn} = {(Xn, Jn)} is Markovian and that the transition probabilities of the
d-dimensional process {Xn} vary according to the state of the background process
{Jn}. This modulation is assumed to be space homogeneous. We refer to this process
as a d-dimensional skip-free Markov-modulated random walk. For y, y′ ∈ Z

d+ × S0,
consider the process {Yn}n≥0 starting from the state y and let q̃ y, y′ be the expectednum-
ber of visits to the state y′ before the process leaves the nonnegative area Zd+ × S0 for
the first time. For y = (x, j) ∈ Z

d+ × S0, the measure (q̃ y, y′ ; y′ = (x′, j ′) ∈ Z
d+ × S0)

is called an occupation measure. Our primary aim is to obtain the asymptotic decay
rate of the occupationmeasure as x′ goes to infinity in a given direction.We also obtain
the convergence domain of the matrix moment generating function of the occupation
measure.

Keywords Markov-modulated random walk · Markov additive process · Occupation
measure · Asymptotic decay rate · Moment generating function · Convergence
domain

Mathematics Subject Classification 60J10 · 60K25

B Toshihisa Ozawa
toshi@komazawa-u.ac.jp

1 Faculty of Business Administration, Komazawa University, 1-23-1 Komazawa, Setagaya-ku, Tokyo
154-8525, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-020-09673-9&domain=pdf
http://orcid.org/0000-0002-7879-6219


126 Queueing Systems (2021) 97:125–161

1 Introduction

For d ≥ 1, we consider a discrete-time d-dimensional process {Xn} = {(X1,n,

X2,n, . . . , Xd,n)} on Z
d , where Z is the set of all integers, and a background pro-

cess {Jn} on a countable set S0 = {1, 2, . . .}. We assume that each individual process
{Xi,n} is skip free, which means that its increments take values in {−1, 0, 1}. Fur-
thermore, we assume that the joint process {Yn} = {(Xn, Jn)} is Markovian and that
the transition probabilities of the d-dimensional process {Xn} vary according to the
state of the background process {Jn}. This modulation is assumed to be space homo-
geneous. We refer to this process as a d-dimensional skip-free Markov-modulated
random walk (MMRW for short). The state space of the d-dimensional MMRW is
given by S = Z

d × S0. It is also a d-dimensional Markov additive process (MA-
process for short) [13], where Xn is the additive part and Jn the background state.
A discrete-time d-dimensional quasi-birth-and-death process [18] (QBD process for
short) is a d-dimensional MMRW with reflecting boundaries, where the process Xn

is the level and Jn the phase. Stochastic models arising from various Markovian
multiqueue models and queueing networks such as polling models and generalized
Jackson networks with Markovian arrival processes and phase-type service processes
can be represented as continuous-time multidimensional QBD processes (in the case
of two-dimension, see, for example, [14,18,19]) and, by using the uniformization
technique, they can be reduced to discrete-time multidimensional QBD processes. It
is well known that, in general, the stationary distribution of a Markov chain can be
represented in terms of its stationary probabilities on some boundary faces and its
occupation measure. In the case of multidimensional QBD processes, such an occupa-
tion measure is given as that in the corresponding multidimensional MMRW. For this
reason, we focus on multidimensional MMRWs and study their occupation measures,
especially the asymptotic properties of the occupation measures. Here, we briefly
explain that the skip-free assumption is not so restrictive. For a given k > 1, assume
that, for i ∈ {1, 2, . . . , d}, Xi,n takes values in {−k,−(k − 1), . . . , 0, 1, . . . , k}. For
i ∈ {1, 2, . . . , d}, let kXi,n and kMi,n be the quotient and remainder of Xi,n divided
by k, respectively, where kXi,n ∈ Z and 0 ≤ kMi,n ≤ k − 1. Then, the process
{(kX1,n, . . . ,

kXd,n, (
kM1,n, . . . ,

kMd,n, Jn))} becomes a d-dimensional MMRW with
skip-free jumps, where (kX1,n, . . . ,

kXd,n) is the level and (kM1,n, . . . ,
kMd,n, Jn) the

background state. This means that any multidimensional MMRWwith bounded jumps
can be reduced to a multidimensional MMRW with skip-free jumps.

Let P = (
p(x, j),(x′, j ′); (x, j), (x′, j ′) ∈ S

)
be the transition probability matrix of

a d-dimensional MMRW {Yn}, where p(x, j)(x′, j ′) = P(Y1 = (x′, j ′) |Y0 = (x, j)).
By the skip-free property, each element of P , say p(x, j)(x′, j ′), is nonzero only if
x′
1 − x1 ∈ {−1, 0, 1}d . By the property of space-homogeneity, for every x, x′ ∈ Z

d ,
i ∈ {−1, 0, 1}d and j, j ′ ∈ S0, we have p(x, j),(x+i, j ′) = p(x′, j),(x′+i, j ′). Hence, the
transition probability matrix P can be represented as a block matrix in terms of only
the following blocks:

Ai = (
p(0, j)(i, j ′); j, j ′ ∈ S0

)
, i ∈ {−1, 0, 1}d ,

i.e., for x, x′ ∈ Z
d , the block Px,x′ = (p(x, j)(x′, j ′); j, j ′ ∈ S0) is given as
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Px,x′ =
{
Ax′−x, if x′ − x ∈ {−1, 0, 1}d ,
O, otherwise,

(1.1)

where 0 and O are a vector and matrix of 0’s, respectively, whose dimensions are
determined in context. Define a set S+ as S+ = Z

d+ × S0, where Z+ is the set of all
nonnegative integers, and let τ be the stopping time at which the MMRW {Yn} enters
S\S+ for the first time, i.e.,

τ = inf{n ≥ 0;Yn ∈ S\S+}.

For y = (x, j), y′ = (x′, j ′) ∈ S+, let q̃ y, y′ be the expected number of visits to the
state y′ before the process {Yn} starting from the state y enters S\S+ for the first time,
i.e.,

q̃ y, y′ = E

( ∞∑

n=0

1
(
Yn = y′) 1(τ > n)

∣∣
∣Y0 = y

)
, (1.2)

where 1(·) is an indicator function. For y ∈ S+, the measure (q̃ y, y′ ; y′ ∈ S+) is called
an occupation measure. Note that q̃ y, y′ is the ( y, y′)-element of the fundamental
matrix of the truncated substochastic matrix P+ given as P+ = (

p y, y′ ; y, y′ ∈ S+
)
,

i.e., q̃ y, y′ = [P̃+] y, y′ and

P̃+ =
∞∑

k=0

Pk+,

where, for example, P2+ =
(
p(2)
y, y′

)
is defined by p(2)

y, y′ = ∑
y′′∈S+ p y, y′′ p y′′, y′ . P+

governs transitions of {Yn} on S+. Our primary aim is to obtain the asymptotic decay
rate of the occupation measure (q̃ y, y′ ; y′ = (x′, j ′) ∈ S+) as x′ goes to infinity in
a given direction. This asymptotic decay rate gives a lower bound for the asymptotic
decay rate of the stationary distribution in the corresponding multidimensional QBD
process in the same direction. Such lower bounds have been obtained for some kinds
of multidimensional reflected process without background states; for example, 0-
partially chains in [3], also see comments on Conjecture 5.1 in [13]. With respect to
multidimensional reflected processes with background states, such asymptotic decay
rates of the stationary tail distributions in two-dimensional reflected processes have
been discussed in [13,14] by using Markov additive processes and large deviations.
Note that the asymptotic decay rate of the stationary distribution in a two-dimensional
QBD process with finite phase states in each coordinate direction has been obtained
in [18,19].

As mentioned above, the d-dimensional MMRW {Yn} = {(Xn, Jn)} is a d-
dimensional MA-process, where the set of blocks, {Ai ; i ∈ {−1, 0, 1}d}, corresponds
to the kernel of the MA-process. For θ ∈ R

d , let A∗(θ) be the matrix moment gener-
ating function of one-step transition probabilities defined as
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A∗(θ) =
∑

i∈{−1,0,1}d
e〈i,θ〉Ai , (1.3)

where 〈a, b〉 is the inner product of vectors a and b. A∗(θ) is the Feynman–Kac
operator [17] for the MA-process. For x, x′ ∈ Z

d+, define a matrix Nx,x′ as Nx,x′ =
(q̃(x, j),(x′, j ′); j, j ′ ∈ S0) and Nx as Nx = (Nx,x′′ ; x′′ ∈ Z

d+). P̃+ is represented as
P̃+ = (Nx,x′ ; x, x′ ∈ Z

d+). For x ∈ Z
d+, let Φx(θ) be the matrix moment generating

function of the occupation measure defined as

Φx(θ) =
∑

k∈Zd+

e〈k,θ〉Nx,k,

which satisfies, for j, j ′ ∈ S0,

[Φx(θ)] j, j ′ = E

( ∞∑

n=0

e〈Xn ,θ〉 1(Jn = j ′) 1(τ > n)

∣
∣∣Y0 = (x, j)

)
. (1.4)

For x ∈ Z
d+, define the convergence domain of the vector generating function Φx(θ)

as

Dx = the interior of {θ ∈ R
d;Φx(θ) < ∞}.

Define the point sets Γ and D as

Γ =
{
θ ∈ R

d; cp(A∗(θ)) > 1
}

,

D =
{
θ ∈ R

d; there exists θ ′ ∈ Γ such that θ < θ ′} ,

where cp(A) is the convergence parameter of the matrix A. In the following sections,
we prove that, for any nonzero vector c ∈ Z

d+ and for every j, j ′ ∈ S0,

lim
k→∞

1

k
log q̃(0, j),(kc, j ′) = − sup

θ∈Γ

〈c, θ〉.

Furthermore, using this asymptotic formula, we also prove that, for any x ∈ Z
d+, Dx

is given by D.
In order to prove these results,wemainly use thematrix analyticmethod in queueing

theory introduced by Marcel Neuts and developed in the literature; see, for example,
[1,10,15,16]. In the following section, instead of considering stochastic matrices with
block tridiagonal structure, we deal with a nonnegative matrix with block tridiagonal
structure, whose phase space is countably infinite. We give a simple formula repre-
senting the convergence parameter of the nonnegative block tridiagonal matrix, where
the matrices corresponding to the rate matrix (R-matrix) and G-matrix in the matrix
analytic method play an important role. Block tridiagonal stochastic matrices with a
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countable phase space have been studied in the literature and a lot of basic results
obtained; see, for example, [2,10,23]. Those results also hold in the case of nonnega-
tive block tridiagonal matrix with a countable phase space. However, some properties
of the convergence parameters of the matrices corresponding to the rate matrix and
G-matrix, which we want to use in this paper, have been given only in the case of finite
phase space.Wewill prove such properties also hold in the case of infinite phase space.

The rest of the paper is organized as follows: In Sect. 2, we extend some results in
the matrix analytic method. In Sect. 3, we introduce some assumptions and give some
properties of MMRWs, including a sufficient condition for the occupation measure in
a d-dimensionalMMRW to be finite. In Sect. 4, we consider a kind of one-dimensional
QBD process with a countable phase space and obtain an upper bound for the con-
vergence parameter of the rate matrix in the QBD process. Using the upper bound,
we obtain the asymptotic decay rate of the occupation measure and the convergence
domain of the matrix moment generating function in Sect. 5. In the same section,
we also consider a single-server polling model with limited services and give some
numerical examples. The paper concludes with a remark on an asymptotic property
of multidimensional QBD process in Sect. 6.

Notation for matrices For amatrix A = (ai, j ), A is said to be a nonnegativematrix
if every entry of A is nonnegative. The inequality A ≥ 0 is meant elementwise, i.e.,
ai j ≥ 0 for every i and j . We denote by [A]i, j the (i, j)-entry of A, i.e., [A]i, j = ai, j .
The transpose of a matrix A is denoted by A�. The convergence parameter of a
nonnegative matrix A with a finite or countable dimension is denoted by cp(A), i.e.,
cp(A) = sup{r ∈ R+;∑∞

n=0 r
n An < ∞}.

2 Nonnegative block tridiagonal matrices and their properties

Note that this section is described independently of the following sections. Our aim
in the section is to give an expression for the convergence parameter of a nonnegative
block tridiagonal matrix whose block size is countably infinite. The role of the Perron–
Frobenius eigenvalue of a nonnegative matrix with a finite dimension is replaced
with the reciprocal of the convergence parameter of a nonnegative matrix with a
countable dimension. For this purpose, we follow results in thematrix analytic method
in queueing theory [1,10,15,16], especially, those in the case of infinite phase space [2,
10,23], wherewe replace stochastic and substochastic blockmatriceswith nonnegative
block matrices.

Consider a block tridiagonal matrix Q defined as

Q =

⎛

⎜⎜
⎜
⎝

A0 A1
A−1 A0 A1

A−1 A0 A1
. . .

. . .
. . .

⎞

⎟⎟
⎟
⎠

,

where A−1, A0 and A1 are square matrices with a countable dimension, i.e., for
k ∈ {−1, 0, 1}, Ak = (ak,i, j ; i, j ∈ Z+). Hereafter, we adopt the policy of giving a
minimal assumption in each place. First, we give the following condition.
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Condition 2.1 (a0) Every entry of the matrix Q is nonnegative.

We always assume this condition, on which A−1, A0 and A1 are also elementwise
nonnegative, i.e., every ak,i, j is nonnegative. We define a matrix A∗ as

A∗ = A−1 + A0 + A1.

We give the following conditions.

Condition 2.2 (a1) Both A−1 and A1 are nonzero matrices.

Condition 2.3 (a2) All powers of A∗ are elementwise finite, i.e., for any n ∈ Z+,
An∗ < ∞, elementwise.

Here, we note that an elementwise-finite nonnegative matrix may have unbounded
entries since the dimension of the matrix is countably infinite. Condition (a1) makes
Q a true block tridiagonal matrix. Under condition (a2), all multiple products of
A−1, A0 and A1 becomes finite elementwise, i.e., for any n ∈ N and for any
i (n) = (i1, i2, . . . , in) ∈ {−1, 0, 1}n , Ai1 Ai2 · · · Ain < ∞, where associativity
among matrices is preserved. Hence, for the triplet {A−1, A0, A1}, we can define
a matrix R corresponding to the rate matrix of a QBD process and a matrix G cor-
responding to the G-matrix. If cp(A∗) < ∞, discussions for Q may be reduced to
probabilistic arguments. For example, if there exist an s > 0 and positive vector v

such that s A∗v ≤ v, then �−1
v s A∗�v becomes stochastic or substochastic, where

�v = diag v, and discussion for the triplet {A−1, A0, A1} can be replaced with that
for {�−1

v s A−1�v,�
−1
v s A0�v,�

−1
v s A1�v}. However, in order to make discussion

simple, we directly treat {A−1, A0, A1} and do not use probabilistic arguments.
Define the following sets of index sequences: for n ≥ 1 and for m ≥ 1,

In =
{
i (n) ∈ {−1, 0, 1}n;

k∑

l=1

il ≥ 0 for k ∈ Nn−1 and
n∑

l=1

il = 0

}
,

ID,m,n =
{
i (n) ∈ {−1, 0, 1}n;

k∑

l=1

il ≥ −m + 1 for k ∈ Nn−1 and
n∑

l=1

il = −m

}
,

IU ,m,n =
{
i (n) ∈ {−1, 0, 1}n;

k∑

l=1

il ≥ 1 for k ∈ Nn−1 and
n∑

l=1

il = m

}
,

where i (n) = (i1, i2, . . . , in) and Nn−1 = {1, 2, . . . , n − 1}. If A∗ is stochastic,
we can consider a QBD process {(Xn, Jn)} on the state space Z

2+ having the triplet
(A−1, A0, A1) as the blocks of its transition probability block matrix, where Xn is the
level and Jn the phase. In that QBD process, the set In corresponds to the set of all
paths of the QBD process on which X0 = l > 0, Xk ≥ l for k ∈ Nn−1 and Xn = l,
i.e., the level process visits state l at time n without entering states less than l before
time n. The setID,m,n also corresponds to the set of all paths on which X0 = l > m,
Xk ≥ l − m + 1 for k ∈ Nn−1 and Xn = l − m, and IU ,m,n to that of all paths on
which X0 = l > 0, Xk ≥ l + 1 for k ∈ Nn−1 and Xn = l + m.
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For n ≥ 1, define Q(n)
0,0, D

(n) and U (n) as

Q(n)
0,0 =

∑

i (n)∈In

Ai1 Ai2 . . . Ain , D(n) =
∑

i (n)∈ID,1,n

Ai1 Ai2 . . . Ain ,

U (n) =
∑

i (n)∈IU ,1,n

Ai1 Ai2 . . . Ain .

Under (a2), Q(n)
0,0, D

(n) and U (n) are elementwise finite for every n ≥ 1. Define N , R
and G as

N =
∞∑

n=0

Q(n)
0,0, G =

∞∑

n=1

D(n), R =
∞∑

n=1

U (n), (2.1)

where Q(0)
0,0 = I . By direct calculation, we obtain the following expressions, which

are well-known in the stochastic context [2,10].

Lemma 2.1 Assume (a1) and (a2). Then, if N , G and R are elementwise finite, which
means that the matrix series (2.1) defining them converge elementwise, they satisfy the
following equations:

R = A1N , (2.2)

G = N A−1, (2.3)

R = R2A−1 + RA0 + A1, (2.4)

G = A−1 + A0G + A1G
2, (2.5)

N = I + A0N + A1GN = I + N A0 + N A1G. (2.6)

From (2.6), N ≥ I and N ≥ A0N + A1GN ≥ A0 + A1G. Hence, if N is
elementwise finite, then A0 + A1G is also finite elementwise and we obtain

(I − A0 − A1G)N = N (I − A0 − A1G) = I . (2.7)

We will use Eq. (2.6) in this form. Here, we should note that much attention must be
paid to matrix manipulation since the dimension of matrices are countably infinite;
for example, see Appendix A of [22].

For θ ∈ R, define a matrix function A∗(θ) as

A∗(θ) = e−θ A−1 + A0 + eθ A1,

where A∗ = A∗(0). This A∗(θ) corresponds to a Feynman–Kac operator if the triplet
{A−1, A0, A1} is a Markov additive kernel (see, for example, [17]). By direct calcu-
lation, we also obtain the following identity corresponding to the RG decomposition
for a Markov additive process, which is also called a Wiener–Hopf factorization; see
[2,12] and references therein.
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Lemma 2.2 Assume (a1) and (a2). If R, G and N are elementwise finite, we have, for
θ ∈ R,

I − A∗(θ) = (I − eθ R)(I − H)(I − e−θG), (2.8)

where H = A0 + A1G = A0 + A1N A−1.

Consider the following matrix quadratic equations of X :

X = X2A−1 + X A0 + A1, (2.9)

X = A−1 + A0X + A1X
2. (2.10)

By Lemma 2.1, if R and G are elementwise finite, they are solutions to Eqs. (2.9) and
(2.10), respectively.

Consider the following sequences of matrices:

X (1)
0 = O, X (1)

n = (
X (1)
n−1

)2
A−1 + X (1)

n−1A0 + A1, n ≥ 1, (2.11)

X (2)
0 = O, X (2)

n = A−1 + A0X
(2)
n−1 + A1

(
X (2)
n−1

)2
, n ≥ 1. (2.12)

Like the case of usual QBD processes, we can demonstrate that both the sequences
{X (1)

n }n≥0 and {X (2)
n }n≥0 are nondecreasing and that if a nonnegative solution X∗,

which is elementwise finite, to Eq. (2.9) [resp. Eq. (2.10)] exists, then for any n ≥ 0,
X∗ ≥ X (1)

n (resp. X∗ ≥ X (2)
n ). Furthermore, letting Rn and Gn be defined as

Rn =
n∑

k=1

U (k), Gn =
n∑

k=1

D(k),

we can also demonstrate that, for any n ≥ 1, Rn ≤ X (1)
n and Gn ≤ X (2)

n hold. Hence,
we immediately obtain the following facts, which are alsowell-known in the stochastic
context [10].

Lemma 2.3 Assume (a1) and (a2). If R and G are elementwise finite, they are the
minimum nonnegative solutions to Eqs. (2.9) and (2.10), respectively. Furthermore, if
{X (1)

n } and {X (2)
n } converge elementwise as n tends to infinity, R and G are elementwise

finite and we have R = limn→∞ X (1)
n and G = limn→∞ X (2)

n .

If A∗ is irreducible, A∗(θ) is also irreducible for any θ ∈ R. We, therefore, give
the following condition.

Condition 2.4 (a3) A∗ is irreducible.

Let χ(θ) be the reciprocal of the convergence parameter of A∗(θ), i.e., χ(θ) =
cp(A∗(θ))−1. We say that a positive function f (x) is log-convex in x if log f (x) is
convex in x . A log-convex function is also a convex function. Since every element of
A∗(θ) is log-convex in θ , we see, by Lemma A.1 in Appendix A, that χ(θ) satisfies
the following property.
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Lemma 2.4 Under (a1) through (a3), χ(θ) is log-convex in θ ∈ R.

Let γ † be the infimum of χ(θ), i.e.,

γ † = inf
θ∈Rχ(θ) =

(
sup
θ∈R

cp(A∗(θ))
)−1

,

and define a set Γ̄ as

Γ̄ = {θ ∈ R;χ(θ) ≤ 1} = {θ ∈ R; cp(A∗(θ)) ≥ 1}.

ByLemma2.4, if γ † < 1 and Γ̄ is bounded, then Γ̄ is a line segment and there exist just
two real solutions to equation χ(θ) = cp(A∗(θ))−1 = 1.We denote the solutions by θ

and θ̄ , where θ < θ̄ . When γ † = 1, we define θ and θ̄ as θ = min{θ ∈ R;χ(θ) = 1}
and θ̄ = max{θ ∈ R;χ(θ) = 1}, respectively. It is expected that θ = θ̄ if γ † = 1,
but it is not obvious. If γ † ≤ 1 and Γ̄ is bounded, there exists a θ ∈ Γ̄ such that
γ † = χ(θ). We give the following condition.

Condition 2.5 (a4) Γ̄ is bounded.

If A−1 (resp. A1) is a zero matrix, every element of A∗(θ) is monotone increasing
(resp. decreasing) in θ and Γ̄ is unbounded. Hence, if γ † ≤ 1, condition (a4) implies
(a1). The following proposition extends existing results in the case of finite phase
space (see Lemma 2.3 of [6]) to in the case of infinite phase space.

Proposition 2.1 Assume (a2) through (a4).

(i) If γ † ≤ 1, then R and G are elementwise finite.
(ii) If R is elementwise finite and there exist a θ0 ∈ R and nonnegative nonzero

vector u such that eθ0u�R = u�, then γ † ≤ 1.
(ii’) If G is elementwise finite and there exist a θ0 ∈ R and nonnegative nonzero

vector v such that eθ0Gv = v, then γ † ≤ 1.

Proof Statement (i). Assume γ † ≤ 1 and let θ† be a real number satisfying
χ(θ†) = γ †. Since A∗(θ†) is irreducible, by Lemma 1 and Theorem 1 of [20],
there exists a positive vector u satisfying (γ †)−1u�A∗(θ†) ≤ u�. For this u, we
obtain, by induction using (2.11), the inequality eθ†u�X (1)

n ≤ u� for any n ≥ 0.
Hence, the sequence {X (1)

n } is elementwise nondecreasing and bounded, and the
limit of the sequence, which is the minimum nonnegative solution to Eq. (2.9),
exists. Existence of theminimum nonnegative solution to Eq. (2.10) is analogously
proved. As a result, by Lemma 2.3, both R and G are elementwise finite.
Statements (ii) and (ii’). Assume the conditions of Statement (ii). Then, we have

u� = eθ0u�R = eθ0u�(R2A−1 + RA0 + A1) = u�A∗(θ0), (2.13)

and this leads us to γ † ≤ χ(θ0) = cp(A∗(θ0))−1 ≤ 1. Statement (ii’) can be
proved analogously. �
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Remark 2.1 In statement (ii) of Proposition 2.1, if such θ0 and u exist, then, by (2.13)
and irreducibility of A∗(θ0), we have θ0 = θ† and u is positive. An analogous result
also holds for statement (ii’).

Remark 2.2 Consider the following nonnegative matrix P:

P =

⎛

⎜⎜⎜
⎜
⎝

. . .
. . .

. . .

A−1 A0 A1
A−1 A0 A1

. . .
. . .

. . .

⎞

⎟⎟⎟
⎟
⎠

.

If the triplet {A−1, A0, A1} is a Markov additive kernel, this P corresponds to the
transition probability matrix of a Markov additive process governed by the triplet. By
Proposition B.1 in Appendix B, if such a P is irreducible, then χ(θ) is unbounded in
both the directions of θ and Γ̄ is bounded.

The expressions for the convergence parameters of R andG in the following lemma
are already known in the case of finite phase space (see Lemma 2.2 of [5] and Lemma
2.3 of [11]). The lemma asserts that the same expressions also hold in the case of
infinite phase space.

Lemma 2.5 Assume (a2) through (a4). If γ † ≤ 1 and N is elementwise finite, then we
have

cp(R) = eθ̄ , cp(G) = e−θ . (2.14)

Proof Since γ † ≤ 1 and Γ̄ is bounded, θ̄ and θ exist and they are finite. Furthermore, R
andG are elementwise finite. For a θ ∈ R such that χ(θ) ≤ 1, let u be a positive vector
satisfying u�A∗(θ) ≤ u�. Such a u exists since A∗(θ) is irreducible. As mentioned
in the proof of Proposition 2.1, for X (1)

n defined by (2.11), if χ(θ) ≤ 1, then we
have eθu�X (1)

n ≤ u� for any n ≥ 0 and this implies eθu�R ≤ u�. Analogously, if
χ(θ) ≤ 1, then there exists a positive vector v satisfying A∗(θ)v ≤ v and we have
e−θGv ≤ v. Therefore, setting θ at θ̄ , we obtain eθ̄u�R ≤ u�, and setting θ at θ ,
we obtain e−θGv ≤ v. Since u and v are positive, this leads us to cp(R) ≥ eθ̄ and
cp(G) ≥ e−θ .

Next, in order to prove cp(R) ≤ eθ̄ , we apply a technique similar to that used in the
proof of Theorem 1 of [20]. Suppose cp(R) > eθ̄ . Then, there exists an ε > 0 such
that

R̃(θ̄ + ε) =
∞∑

n=0

e(θ̄+ε)n Rn < ∞, elementwise .

This R̃(θ̄ + ε) satisfies eθ̄+εRR̃(θ̄ + ε) = R̃(θ̄ + ε) − I ≤ R̃(θ̄ + ε). Hence, for
j ∈ Z+, letting v j be the j-th column vector of R̃(θ̄ + ε), we have eθ̄+εRv j ≤ v j .
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Furthermore, we have eθ̄+εRR̃(θ̄+ε) ≥ eθ̄+εR ≥ eθ̄+εX (1)
1 = eθ̄+εA1, and condition

(a4) implies A1 is nonzero. Hence, for some j ∈ Z+, both Rv j and v j are nonzero.

Set v at such a vector v j . We have cp(G) ≥ e−θ > e−(θ̄+ε). Hence, using (2.7) and
(2.8), we obtain

(I − A∗(θ̄ + ε))(I − e−(θ̄+ε)G)−1Nv = (I − eθ̄+εR)v ≥ 0, (2.15)

where y = (I − e−(θ̄+ε)G)−1Nv = ∑∞
n=0 e

−n(θ̄+ε)Gn Nv ≥ Nv. Suppose Nv = 0,
then we have Rv = A1Nv = 0 and this contradicts that Rv is nonzero. Hence, Nv

is nonzero and y is also nonzero and nonnegative. Since A∗(θ̄ + ε) is irreducible,
the inequality A∗(θ̄ + ε) y ≤ y implies that y is positive and cp(A∗(θ̄ + ε)) ≥ 1.
This contradicts that cp(A∗(θ̄ + ε)) = χ(θ̄ + ε)−1 < χ(θ̄)−1 = 1, and we obtain
cp(R) ≤ eθ̄ . In a similar manner, we can also obtain cp(G) ≤ e−θ , and this completes
the proof. �

Lemma 2.5 requires that N is elementwise finite, but it cannot easily be verified
since finiteness of every entry of R and that of G does not always imply finiteness of
every entry of N . We, therefore, introduce the following condition.

Condition 2.6 (a5) The nonnegative matrix Q is irreducible.

Condition (a5) implies (a1), (a3) and (a4), i.e., under conditions (a2) and (a5), A−1
and A1 are nonzero, A∗ is irreducible and Γ̄ is bounded. Let Q̃ be the fundamental
matrix of Q, i.e., Q̃ = ∑∞

n=0 Q
n . For n ≥ 0, Q(n)

0,0 is the (0, 0)-block of Qn , and

N is that of Q̃. Hence, we see that all the elements of N simultaneously converge or
diverge, finiteness of every entry of R or that of G implies finiteness of every entry of
N and if N is elementwise finite, it is positive. Furthermore, under (a2) and (a5), since
R is given as R = A1N and N is positive, each row of R is zero or positive and we
obtain the following proposition, which asserts that R behaves just like an irreducible
matrix.

Proposition 2.2 Assume (a2) and (a5). If R is elementwise finite, then it always satisfies
one of the following two statements:

(i) There exists a positive vector u such that eθ̄u�R = u�.
(ii)

∑∞
n=0 e

θ̄n Rn < ∞, elementwise.

Since the proof of this proposition is elementary and lengthy, we put it in
Appendix C. By applying the same technique as that used in the proof of Theorem 4.1
of [8], we also obtain the following result.

Corollary 2.1 Assume (a2) and (a5). For i, j ∈ Z+, if every element in the i-th row of
A1 is zero, we have [Rn]i, j = 0 for all n ≥ 1; otherwise, we have [Rn]i, j > 0 for all
n ≥ 1 and

lim
n→∞([Rn]i, j ) 1

n = e−θ̄ . (2.16)
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To make this paper self-contained, we give a proof of the corollary in Appendix C.
By Theorem 2 of [20], if the number of nonzero elements of each row of A∗ is finite,
there always exists a positive vector u satisfying u�A∗(θ̄) = u�. Also, if the number
of nonzero elements of each column of A∗ is finite, there always exists a positive
vector v satisfying A∗(θ)v = v. To use this property, we give the following condition.

Condition 2.7 (a6) The number of positive elements of each row and column of A∗ is
finite.

It is obvious that (a6) implies (a2). Under (a6), we can refine Proposition 2.1, as
follows.

Proposition 2.3 Assume (a5) and (a6). Then, γ † ≤ 1 if and only if R and G are
elementwise finite.

Proof By Proposition 2.1, if γ † ≤ 1, then both R and G are elementwise finite. We,
therefore, prove the converse. Assume that R and G are elementwise finite. Then, N
is also elementwise finite and, by Lemma 2.5, we have cp(R) = eθ̄ . First, consider
case (i) of Proposition 2.2 and assume that there exists a positive vector u such that
eθ̄uR = u. Then, by statement (ii) of Proposition 2.1, we have γ † ≤ 1. Next, consider
case (ii) of Proposition 2.2 and assume

∑∞
n=0 e

nθ̄ Rn < ∞, elementwise. Then, we
have (I − eθ R)−1 = ∑∞

n=0 e
nθ Rn < ∞ since θ ≤ θ̄ . Hence, we obtain, from (2.7)

and (2.8),

N (I − eθ R)−1(I − A∗(θ)) = (I − e−θG). (2.17)

Under the assumptions of the proposition, there exists a positive vector v satisfying
A∗(θ)v = v since cp(A∗(θ)) = 1. Hence, from (2.17), we obtain, for this v, e−θGv =
v, and by statement (ii’) of Proposition 2.1, we have γ † ≤ 1. This completes the proof.

�
Recall that γ † is defined as γ † = infθ∈R cp(A∗(θ))−1. Since, if Q is irreducible,

all the elements of Q̃ = ∑∞
n=0 Q

n simultaneously converge or diverge, we obtain,
from Proposition 2.3, the following result.

Proposition 2.4 Assume (a5) and (a6). Then, γ † ≤ 1 if and only if Q̃ is elementwise
finite.

Proof Under the assumptions of the proposition, if γ † ≤ 1, then, by Proposition 2.3, R
andG are elementwise finite. Since Q is irreducible, this implies that N is elementwise
finite and Q̃ is also elementwise finite. On the other hand, if Q̃ is elementwise finite,
then N is elementwise finite and R andG are also elementwise finite since the number
of positive elements of each rowof A1 and that of each columnof A−1 are finite.Hence,
by Proposition 2.3, we have γ † ≤ 1 and this completes the proof. �

By this proposition, we obtain the main result of this section, as follows.
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Lemma 2.6 Under (a5) and (a6), we have

cp(Q) = (γ †)−1 = sup
θ∈R

cp(A∗(θ)) (2.18)

and Q is (γ †)−1-transient.

Proof For β > 0, βQ is a nonnegative block tridiagonal matrix, whose block matrices
are given by βA−1, βA0 and βA1. Hence, the assumptions of this lemma also hold
for βQ. Define γ (β) as

γ (β) = inf
θ∈R cp(βA∗(θ))−1 = β inf

θ∈R cp(A∗(θ))−1 = βγ †. (2.19)

By Proposition 2.4, if γ (β) = βγ † ≤ 1, then the fundamental matrix of βQ, β̃Q,
is finite elementwise and cp(βQ) = β−1cp(Q) ≥ 1. Hence, if β ≤ (γ †)−1, then
cp(Q) ≥ β. Setting β at (γ †)−1, we obtain cp(Q) ≥ (γ †)−1. Next we prove cp(Q) ≤
(γ †)−1. Suppose cp(Q) > (γ †)−1, then there exists an ε > 0 such that the fundamental
matrix of ((γ †)−1 + ε)Q is elementwise finite. By Proposition 2.4, this implies

γ ((γ †)−1 + ε)) = ((γ †)−1 + ε)γ † = 1 + εγ † ≤ 1, (2.20)

and we obtain γ † ≤ 0. This contradicts γ † > 0, which is obtained from the irre-
ducibility of A∗. Hence, we obtain cp(Q) ≤ (γ †)−1. Setting β at (γ †)−1, we
have γ (β) = γ ((γ †)−1) ≤ 1 and, by Proposition 2.4, the fundamental matrix of
βQ = (γ †)−1Q is elementwise finite. This means Q is (γ †)−1-transient. �

Remark 2.3 Expression (2.18) is already known in the case of finite phase space; see
Lemma 2.3 of [14]. This lemma asserts that it holds even in the case of infinite phase
space under (a5) and (a6). Expression (2.18) is crucial in the analysis in the following
sections.

Remark 2.4 For nonnegative block multidiagonal matrices, a property similar to
Lemma 2.6 holds. In order to use expression (2.22), we demonstrate it in the case
of block quintuple-diagonal matrix. The reblocking technique to reduce block banded
matrices to block tridiagonal matrices was first introduced by [4] in a general setting.
Let Q be a nonnegative block matrix defined as

Q =

⎛

⎜⎜⎜⎜
⎜
⎝

A0 A1 A2
A−1 A0 A1 A2
A−2 A−1 A0 A1 A2

A−2 A−1 A0 A1 A2
. . .

. . .
. . .

. . .
. . .

⎞

⎟⎟⎟⎟
⎟
⎠

,
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where Ai , i ∈ {−2,−1, 0, 1, 2}, are nonnegative square matrices with a countable
dimension. For θ ∈ R, define a matrix function A∗(θ) as

A∗(θ) =
2∑

i=−2

eiθ Ai . (2.21)

Then, assuming that Q is irreducible and the number of positive elements of each row
and column of A∗(0) is finite, we can obtain

cp(Q) = sup
θ∈R

cp(A∗(θ)). (2.22)

Here, we prove this equation. Define blocks Âi , i ∈ {−1, 0, 1}, as

Â−1 =
(
A−2 A−1
O A−2

)
, Â0 =

(
A0 A1
A−1 A0

)
, Â1 =

(
A2 O
A1 A2

)
,

then Q is represented in block tridiagonal form by using these blocks. For θ ∈ R,
define a matrix function Â∗(θ) as

Â∗(θ) = e−θ Â−1 + Â0 + eθ Â1 =
(

e−θ A−2 + A0 + eθ A2 e−θ/2(e−θ/2A−1 + eθ/2A1)

eθ/2(e−θ/2A−1 + eθ/2A1) e−θ A−2 + A0 + eθ A2

)
,

then, by Lemma 2.6, we have cp(Q) = supθ∈R cp( Â∗(θ)). To prove Eq. (2.22), it,
therefore, suffices to show that, for any θ ∈ R,

cp(A∗(θ/2)) = sup{α ∈ R+;αx�A∗(θ/2) ≤ x� for some x > 0}
= sup{α ∈ R+;α x̂� Â∗(θ) ≤ x̂� for some x̂ > 0} = cp( Â∗(θ)).

(2.23)

For θ ∈ R and α ∈ R+, if αx�A∗(θ/2) ≤ x� for some x > 0, then, letting x̂� =
(x�, e−θ/2x�), we have α x̂� Â∗(θ) ≤ x̂�. On the other hand, if α x̂� Â∗(θ) ≤ x̂� for
some x̂� = (x̂�

1 , x̂�
2 ) > 0�, then letting x = x̂1 + eθ/2 x̂2, we have αx�A∗(θ/2) ≤

x�. As a result, we obtain Eq. (2.23).

3 Markov-modulated randomwalks: preliminaries

We give some assumptions and propositions for the d-dimensional MMRW {Yn} =
{(Xn, Jn)} defined in Sect. 1. First, we assume the following condition.

Assumption 3.1 The d-dimensional MMRW {Yn} is irreducible.
Under this assumption, for any θ ∈ R

d , A∗(θ) is also irreducible. Denote A∗(0)
by A∗, which is the transition probability matrix of the background process {Jn}. In
order to use the results in the previous section, we assume the following condition.
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Assumption 3.2 The number of positive elements in every row and column of A∗ is
finite.

Define the mean increment vector a = (a1, a2, . . . , ad) as

ai = lim
n→∞

1

n

n∑

k=1

(Xi,k − Xi,k−1), i = 1, 2, . . . , d.

We assume these limits exist with probability one. With respect to the occupation
measure defined in Sect. 1, the following property holds.

Proposition 3.1 If there exists some i ∈ {1, 2, . . . , d} such that ai < 0, then, for any
y ∈ S+, the occupation measure (q̃ y, y′ ; y′ ∈ S+) is finite, i.e.,

∑

y′∈S+
q̃ y, y′ = E(τ |Y0 = y) < ∞, (3.1)

where τ is the stopping time at which {Yn} enters S\S+ for the first time.

Proof Without loss of generality, we assume a1 < 0. Let τ̌ be the stopping time at
which X1,n becomes less than 0 for the first time, i.e., τ̌ = inf{n ≥ 0; X1,n < 0}.
Since {(x1, x2, . . . , xd , j) ∈ S; x1 < 0} ⊂ S\S+, we have τ ≤ τ̌ , and this implies
that, for any y ∈ S+,

E(τ |Y0 = y) ≤ E(τ̌ |Y0 = y). (3.2)

Next, we demonstrate that E(τ̌ |Y0 = y) is finite. For i ∈ {−1, 0, 1}, define a matrix
Ǎi as

Ǎi =
∑

(i2,i3,...,id )∈{−1,0,1}d−1

A(i,i2,i3,...,id ),

and consider a one-dimensional QBD process {Y̌n} = {(X̌n, J̌n)} on Z+ × S0, having
Ǎ−1, Ǎ0 and Ǎ1 as the transition probability blocks when X̌n > 0. We assume the
transition probability blocks that govern transitions of the QBD process when X̌n = 0
are given appropriately. Define a stopping time τ̌ Q as τ̌ Q = inf{n ≥ 0; X̌n = 0}.
Since a1 is the mean increment of the QBD process when X̌n > 0, the assumption
a1 < 0 implies that, for any (x, j) ∈ Z+ × S0, E(τ̌ Q | Y̌0 = (x, j)) < ∞. We,
therefore, have that, for any y = (x1, x2, . . . , xd , j) ∈ S+,

E(τ̌ |Y0 = y) = E(τ̌ Q | Y̌0 = (x1 + 1, j)) < ∞, (3.3)

and this completes the proof. �
Hereafter, we assume the following condition.

Assumption 3.3 For some i ∈ {1, 2, . . . , d}, ai < 0.
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Remark 3.1 If A∗ is positive recurrent, themean increment vector a = (a1, a2, . . . , ad)
is given as

ai = π∗
(

∂

∂θi
A∗(θ)

∣∣∣
θ=0

)
1, i = 1, 2, . . . , d, (3.4)

where π∗ is the stationary distribution of A∗ and 1 a column vector of 1’s whose
dimension is determined in context.

We say that a positive function f (x) is log-convex in x ∈ R
d if log f (x) is convex

in x. A log-convex function is also a convex function. By Lemma A.1 in Appendix A,
the following property holds.

Proposition 3.2 cp(A∗(θ))−1 is log-convex and hence convex in θ ∈ R
d .

Let Γ̄ be the closure of Γ , i.e., Γ̄ = {θ ∈ R
d; cp(A∗(θ))−1 ≤ 1}. By Proposi-

tion 3.2, Γ̄ is a convex set. By Remark 2.2 and Proposition B.1 in Appendix B, the
following property holds.

Proposition 3.3 Γ̄ is bounded.

For y = (x, j) ∈ S+, we give an asymptotic inequality for the occupation mea-
sure (q̃ y, y′ ; y′ ∈ S+). Under Assumption 3.3, the occupation measure is finite and
(q̃ y, y′/E(τ |Y0 = y); y′ ∈ S+) becomes a probability measure. Let Y = (X, J )

be a random variable subject to the probability measure, i.e., P(Y = y′) =
q̃ y, y′/E(τ |Y0 = y) for y′ ∈ S+. By Markov’s inequality, for θ ∈ R

d and for
c ∈ R

d+ such that c �= 0, we have, for k ≥ 1 and j ′ ∈ S0,

E(e〈X,θ〉1(J = j ′)) ≥ ek〈c,θ〉P(e〈X,θ〉1(J = j ′) ≥ ek〈c,θ〉)
= ek〈c,θ〉P(〈X, θ〉 ≥ 〈kc, θ〉, J = j ′)
≥ ek〈c,θ〉P(X ≥ kc, J = j ′).
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This implies that, for every l ∈ Z
d+,

[Φx(θ)] j, j ′ ≥ ek〈c,θ〉 ∑

x′≥kc

q̃ y,(x′, j ′) ≥ ek〈c,θ〉q̃ y,(k(�c�+l), j ′), (3.5)

where �c� = (�c1�, �c2�, . . . , �cd�) and �x� is the smallest integer greater than or
equal to x . Hence, considering the convergence domain of Φx(θ), we immediately
obtain the following basic inequality.

Lemma 3.1 For any c ∈ Z
d+ such that c �= 0 and for every (x, j) ∈ S+, j ′ ∈ S0 and

l ∈ Z
d+,

lim sup
k→∞

1

k
log q̃(x, j),(kc+l, j ′) ≤ − sup

θ∈Dx

〈c, θ〉. (3.6)

4 QBD representations for theMMRW

In this section, we make two kinds of one-dimensional QBD process with a countable
phase space from the d-dimensional MMRW defined in Sect. 1 and obtain upper
bounds for the convergence parameters of their rate matrices. These upper bounds
will give lower bounds for the asymptotic decay rates of the occupation measure in
the original MMRW.

4.1 QBD representation with level direction vector 1

Let {Yn} = {(Xn, Jn)} be a d-dimensional MMRW. In order to use the results in
Sect. 2, hereafter, we assume the following condition.

Assumption 4.1 P+ is irreducible.

Under this assumption, P is irreducible regardless of Assumption 3.1 and every
element of P̃+ is positive. Let τ be the stopping time defined in Sect. 1, i.e., τ =
inf{n ≥ 0;Yn ∈ S\S+}. According to Example 4.2 of [13], define a one-dimensional
absorbing QBD process {Ŷn} = {(X̂n, Ĵn)} as

X̂n = min
1≤i≤d

Xi,τ∧n, Ĵn = (Ẑ0,n, Ẑ1,n, . . . , Ẑd−1,n, Ĵn),

where x ∧ y = min{x, y}, Ẑ0,n = min{i ∈ {1, 2, . . . , d}; Xi,τ∧n = X̂n},

Ẑi,n =
{
Xi,τ∧n − X̂n, i < Ẑ0,n,

Xi+1,τ∧n − X̂n, i ≥ Ẑ0,n,
i = 1, 2, . . . , d − 1,

and Ĵn = Jτ∧n . We restrict the state space of {Ŷn} to Z+ × (Nd ×Z
d−1+ × S0), where

Nd = {1, 2, . . . , d}. For k ∈ Z+, the k-th level set of {Ŷn} is given by Lk = {(x, j) =
((x1, x2, . . . , xd), j) ∈ S+;min1≤i≤d xi = k} which satisfies, for k ≥ 0,
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Fig. 1 Transition probability blocks of {Ŷn} (d = 2)

Lk+1 = {(x + 1, j); (x, j) ∈ Lk}. (4.1)

This means that {Ŷn} is a QBD process with level direction vector 1. The transition
probability matrix of {Ŷn} is given in block tridiagonal form as

P̂ =

⎛

⎜⎜⎜
⎝

Â0 Â1

Â−1 Â0 Â1

Â−1 Â0 Â1
. . .

. . .
. . .

⎞

⎟⎟⎟
⎠

. (4.2)

Weomit the specificdescriptionof Â−1, Â0 and Â1. Instead, in the casewhere Ẑ0,n = d
and Ẑi,n ≥ 2, i ∈ {1, 2, . . . , d −1}, we give their description in terms of Ai (d)

, i (d) =
(i1, i2, . . . , id) ∈ {−1, 0, 1}d . For k ∈ {−1, 0, 1} and i (d−1) = (i1, i2, . . . , id−1) ∈
Z
d−1, define a block Âk,i (d−1) as

Âk,i (d−1) =
(
[ Âk](d,x(d−1), j),(d,x(d−1)+i (d−1), j ′); j, j ′ ∈ S0

)
,

where we assume that x(d−1) = (x1, x2, . . . , xd−1) ≥ 2 1 and use the fact that the
right-hand side does not depend on x(d−1) because of the space homogeneity of {Yn}.
Since the level process {Xn} of the original MMRW is skip free in all directions, the
block Âk,i (d−1) is given as

Âk,i (d−1) =

⎧
⎪⎪⎨

⎪⎪⎩

A(i (d−1)−1d−1,−1), k = −1, i (d−1) ∈ {0, 1, 2}d−1,

A(i (d−1),0), k = 0, i (d−1) ∈ {−1, 0, 1}d−1,

A(i (d−1)+1d−1,1), k = 1, i (d−1) ∈ {−2,−1, 0}d−1,

O, otherwise,

(4.3)

where, for positive integer l, we denote by 1l an l-dimensional vector of 1’s (see Fig. 1).
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Recall that P̃+ is the fundamental matrix of the substochastic matrix P+ and each
row of P̃+ is an occupation measure. For x, x′ ∈ Z

d+, the matrix Nx,x′ is given as
Nx,x′ = (q̃(x, j),(x′, j ′); j, j ′ ∈ S0). In terms of Nx,x′ , P̃+ is represented as P̃+ =
(Nx,x′ ; x, x′ ∈ Z

d+). We derive a matrix geometric representation for P̃+ according
to the QBD process {Ŷn}. Under Assumption 3.3, the summation of each row of P̃+
is finite and we obtain the following recursive formula for P̃+:

P̃+ = I + P̃+P+. (4.4)

Define N̂0 as N̂0 = (
N̂0,k; k ∈ Z+

)
, where

N̂0,k = (
Nx,x′ ; x = (x1, . . . , xd ), x′ = (x ′

1, . . . , x
′
d ) ∈ Z

d+ s.t. min
1≤i≤d

xi = 0, min
1≤i≤d

x ′
i = k

)
.

Since N̂0 is a submatrix of P̃+, we obtain from (4.4) that

N̂0 = (
I O · · ·) + N̂0 P̂, (4.5)

where P+ in (4.4) is replaced with P̂ and this P̂ has the same block structure as N̂0.
This equation leads us to

N̂0,0 = I + N̂0,0 Â0 + N̂0,1 Â−1,

N̂0,k = N̂0,k−1 Â1 + N̂0,k Â0 + N̂0,k+1 Â−1, k ≥ 1.
(4.6)

Let R̂ be the ratematrix generated from the triplet { Â−1, Â0, Â1}, which is theminimal
nonnegative solution to the matrix quadratic equation

R̂ = Â1 + R̂ Â0 + R̂2 Â−1. (4.7)

Then, the solution to Eq. (4.6) is given as

N̂0,k = N̂0,0 R̂
k, N̂0,0 = (I − Â0 − R̂ Â−1)

−1 =
∞∑

k=0

( Â0 + R̂ Â−1)
k, (4.8)

where we use the fact that cp( Â0 + R̂ Â−1) < 1 since P̃+ is elementwise finite.
Next, we give an upper bound for cp(R̂), the convergence parameter of R̂. For

θ ∈ R, define a matrix function Â∗(θ) as

Â∗(θ) = e−θ Â−1 + Â0 + eθ Â1.

Since P+ is irreducible and the number of positive elements of each row and column
of Â∗(0) is finite, we have, by Lemma 2.5,

log cp(R̂) = sup{θ ∈ R; cp( Â∗(θ)) > 1}. (4.9)
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We consider the relation between cp(A∗(θ)) and cp( Â∗(θ)). For i (d−1) ∈ Z
d−1, define

a matrix function Â∗,i (d−1) (θ) as

Â∗,i (d−1) (θ) = e−θ Â−1,i (d−1) + Â0,i (d−1) + eθ Â1,i (d−1) .

Further define a block matrix Â†∗(θ) as

Â†∗(θ) =
(
Â∗,x′

(d−1)−x(d−1)
(θ); x(d−1), x′

(d−1) ∈ Z
d−1+

)
,

where Â∗,x′
(d−1)−x(d−1)

(θ) = O if x′
(d−1) − x(d−1) /∈ {−2,−1, 0, 1, 2}d−1. The matrix

Â†∗(θ) is a submatrix of Â∗(θ), obtained by restricting the state spaceNd ×Z
d−1+ × S0

to {d} × Z
d−1+ × S0. Hence, we have

cp( Â∗(θ)) ≤ cp( Â†∗(θ)). (4.10)

Define a matrix function Â∗,∗(θ, θ (d−1)) as

Â∗,∗(θ, θ (d−1)) =
∑

i (d−1)∈{−2,−1,0,1,2}d−1

e〈i (d−1),θ (d−1)〉 Â∗,i (d−1) (θ),

where θ (d−1) = (θ1, θ2, . . . , θd−1). From (4.3), we see that Â†∗(θ) is a multiple-block-
quintuple-diagonal matrix and, applying Remark 2.4 to it repeatedly, we obtain

cp( Â†∗(θ)) = sup
θ (d−1)∈Rd−1

cp( Â∗,∗(θ, θ (d−1))). (4.11)

Furthermore, from (4.3), we have

Â∗,∗

(

θ +
d−1∑

k=1

θk , θ (d−1)

)

=
∑

i (d−1)∈{−2,−1,0,1,2}d−1

e〈i (d−1),θ (d−1)〉
(
e−θ−∑d−1

k=1 θk Â−1,i (d−1) + Â0,i (d−1) + eθ+∑d−1
k=1 θk Â1,i (d−1)

)

=
∑

i (d−1)∈{0,1,2}d−1

e−θ+〈i (d−1)−1d−1,θ (d−1)〉A(i (d−1)−1d−1,−1)

+
∑

i (d−1)∈{−1,0,1}d−1

e〈i (d−1),θ (d−1)〉A(i (d−1),0)

+
∑

i (d−1)∈{−2,−1,0}d−1

eθ+〈i (d−1)+1d−1,θ (d−1)〉A(i (d−1)+1d−1,1)

= A∗(θ (d−1), θ). (4.12)

Hence, we obtain the following proposition.

123



Queueing Systems (2021) 97:125–161 145

Proposition 4.1

log cp(R̂) ≤ sup{〈1, θ〉; cp(A∗(θ)) > 1, θ ∈ R
d}. (4.13)

Proof From (4.10), (4.11) and (4.12), we obtain

{θ ∈ R; cp( Â∗(θ)) > 1} ⊂ {θ ∈ R; cp( Â†∗(θ)) > 1}
= {θ ∈ R; cp( Â∗,∗(θ, θ (d−1))) > 1 for some θ (d−1) ∈ R

d−1}

=
{

d∑

k=1

θk ∈ R; cp
(
Â∗,∗

( d∑

k=1

θk , θ (d−1)

))
> 1

}

= {〈1, θ〉; cp(A∗(θ)) > 1, θ ∈ R
d }. (4.14)

This and (4.9) lead us to inequality (4.13). �

4.2 QBD representation with level direction vector c

Letting c = (c1, c2, . . . , cd) be a vector of positive integers, we consider another
QBD representation of {Yn} = {(Xn, Jn)}, whose level direction vector is given by c.
For k ∈ {1, 2, . . . , d}, denote by cXk,n and cMk,n the quotient and remainder of Xk,n

divided by ck , respectively, i.e.,

Xk,n = ck
cXk,n + cMk,n,

where cXk,n ∈ Z and cMk,n ∈ {0, 1, . . . , ck − 1}. Define a process {cYn} as
cYn = (cXn, (

cMn, Jn)),

where cXn = (cX1,n,
cX2,n, . . . ,

cXd,n) and cMn = (cM1,n,
cM2,n, . . . ,

cMd,n). The
process {cYn} is a d-dimensional MMRW with the background process {(cMn, Jn)}
and its state space is given by Z

d × (
∏d

k=1 Z0,ck−1 × S0), where Z0,ck−1 =
{0, 1, . . . , ck − 1}. The transition probability matrix of {cYn}, denoted by cP , has
a multiple-tridiagonal block structure like P . Denote by cAi , i ∈ {−1, 0, 1}d , the
nonzero blocks of cP and define a matrix function cA∗(θ) as

cA∗(θ) =
∑

i∈{−1,0,1}d
e〈i,θ〉 cAi .

The following relation holds between A∗(θ) and cA∗(θ).

Proposition 4.2 For any vector c = (c1, c2, . . . , cd) of positive integers, we have

cp(A∗(θ)) = cp(cA∗(c • θ)), (4.15)

where θ = (θ1, θ2, . . . , θd) and c • θ = (c1θ1, c2θ2, . . . , cdθd).
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We use the following proposition for proving Proposition 4.2.

Proposition 4.3 Let C−1, C0 and C1 be m ×m nonnegative matrices, where m can be
countably infinite, and define a matrix function C∗(θ) as

C∗(θ) = e−θC−1 + C0 + eθC1. (4.16)

Assume that, for any n ∈ Z+, C∗(0)n is finite elementwise and C∗(0) is irreducible.
Let k be a positive integer and define a k × k block matrix C [k](θ) as

C [k](θ) =

⎛

⎜⎜
⎜⎜⎜
⎝

C0 C1 e−θC−1
C−1 C0 C1

. . .
. . .

. . .

C−1 C0 C1

eθC1 C−1 C0

⎞

⎟⎟
⎟⎟⎟
⎠

. (4.17)

Then, we have cp(C [k](kθ)) = cp(C∗(θ)).

Proof First, assume that, for a positive number β and measure u, βuC∗(θ) ≤ u, and
define a measure u[k] as

u[k] = (
e(k−1)θu e(k−2)θu · · · eθu u

)
.

Then, we have βu[k]C [k](kθ) ≤ u[k] and, by Theorem 6.3 of [21], we obtain
cp(C∗(θ)) ≤ cp(C [k](kθ)).

Next, assume that, for a positive number β and measure u[k] = (
u1 u2 · · · uk

)
,

βu[k]C [k](kθ) ≤ u[k], and define a measure u as

u = e−(k−1)θu1 + e−(k−2)θu2 + · · · + e−θuk−1 + uk .

Further, define a nonnegative matrix V [k] as

V [k] = (
e−(k−1)θ I e−(k−2)θ I · · · e−θ I I

)
.

Then, we have βu[k]C [k](kθ)V [k] = βuC∗(θ) and u[k]V [k] = u. Hence, we have
βuC∗(θ) ≤ u and this implies cp(C [k](kθ)) ≤ cp(C∗(θ)). �
Proof of Proposition 4.2 Let θ = (θ1, θ2, . . . , θd) be a d-dimensional vector in R

d

and, for k ∈ {1, 2, . . . , d}, define θ (k) and θ [k] as θ (k) = (θ1, θ2, . . . , θk) and θ [k] =
(θk, θk+1, . . . , θd), respectively. We consider the multiple-block structure of cA∗(θ)

according toZ0,c1−1×Z0,c2−1×· · ·×Z0,cd−1× S0, the state space of the background
process of {cYn}. For k ∈ {−1, 0, 1}, define cA[1]

k (θ [2]) as

cA[1]
k (θ [2]) =

∑

i [2]∈{−1,0,1}d−1

e〈i [2],θ [2]〉 cA(k,i [2]),
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where i [2] = (i2, i3, . . . , id). Due to the skip-free property of the original process,
they are given in c1 × c1 block form as

cA[1]
0 (θ [2]) =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

B[1]
0 (θ [2]) B[1]

1 (θ [2])
B[1]

−1(θ [2]) B[1]
0 (θ [2]) B[1]

1 (θ [2])
. . .

. . .
. . .

B[1]
−1(θ [2]) B[1]

0 (θ [2]) B[1]
1 (θ [2])

B[1]
−1(θ [2]) B[1]

0 (θ [2])

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,

cA[1]
−1(θ [2]) =

⎛

⎝
B[1]

−1(θ [2])

O

⎞

⎠ , cA[1]
1 (θ [2]) =

⎛

⎝
O

B[1]
1 (θ [2])

⎞

⎠ ,

where each B[1]
i (θ [2]) is a matrix function of θ [2] and we use the fact that cM1,n is the

remainder of X1,n divided by c1. Hence, cA∗(θ) is given in c1 × c1 block form as

cA∗(θ) = e−θ1 cA[1]
−1(θ [2]) + cA[1]

0 (θ [2]) + eθ1 cA[1]
1 (θ [2])

=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

B[1]
0 (θ [2]) B[1]

1 (θ [2]) e−θ1B[1]
−1(θ [2])

B[1]
−1(θ [2]) B[1]

0 (θ [2]) B[1]
1 (θ [2])

. . .
. . .

. . .

B[1]
−1(θ [2]) B[1]

0 (θ [2]) B[1]
1 (θ [2])

eθ1B[1]
1 (θ [2]) B[1]

−1(θ [2]) B[1]
0 (θ [2])

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

. (4.18)

Define a matrix function B[1]∗ (θ1, θ [2]) as

B[1]∗ (θ1, θ [2]) = e−θ1B[1]
−1(θ [2]) + B[1]

0 (θ [2]) + eθ1B[1]
0 (θ [2]). (4.19)

Then, by Proposition 4.3, we have

cp(cA∗(c1θ1, θ [2])) = cp(B[1]∗ (θ1, θ [2])). (4.20)

Analogously, for i1 ∈ {−1, 0, 1}, B[1]
i1

(θ [2]) is represented in c2 × c2 block form as

B[1]
i1

(θ [2]) =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

B[2]
i1,0

(θ [3]) B[2]
i1,1

(θ [3]) e−θ2 B[2]
i1,−1(θ [3])

B[2]
i1,−1(θ [3]) B[2]

i1,0
(θ [3]) B[2]

i1,1
(θ [3])

. . .
. . .

. . .

B[2]
i1,−1(θ [3]) B[2]

i1,0
(θ [3]) B[2]

i1,1
(θ [3])

eθ2 B[2]
i1,1

(θ [3]) B[2]
i1,−1(θ [3]) B[2]

i1,0
(θ [3])

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

,(4.21)
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where each B[2]
i1,i2

(θ [3]) is a matrix function of θ [3]. Define a matrix function

B[2]∗ (θ1, θ2, θ [3]) as

B[2]∗ (θ1, θ2, θ [3]) =
∑

i1,i2∈{−1,0,1}
ei1θ1+i2θ2B[2]

i1,i2
(θ [3]).

Then, by Proposition 4.3, we obtain from (4.19) and (4.21) that

cp(B[1]∗ (θ1, c2θ2, θ [3])) = cp(B[2]∗ (θ1, θ2, θ [3])). (4.22)

Repeating this procedure more (d − 3) times, we obtain

cp(B[d−1]∗ (θ (d−1), cdθd)) = cp(B[d]∗ (θ (d−1), θd)), (4.23)

where

B[d]∗ (θ (d−1), θd) =
∑

i (d−1)∈{−1,0,1}d−1

∑

id∈{−1,0,1}
e〈i (d−1),θ (d−1)〉+idθd B[d]

i (d−1),id
,

B[d]
i (d−1),id

= A(i (d−1),id ),

and i (d−1) = (i1, i2, . . . , id−1). As a result, we have

cp(cA∗(c • θ)) = cp(B[1]∗ (θ1, c[2] • θ [2]))
= cp(B[2]∗ (θ (2), c[3] • θ [3]))

· · ·
= cp(B[d−1]∗ (θ (d−1), cdθd)) = cp(A∗(θ)), (4.24)

where c[k] = (ck, ck+1, . . . , cd), and this completes the proof. �
Next, we apply the results of the previous subsection to the d-dimensional MMRW

{cYn}. Let {cŶn} be a one-dimensional absorbing QBD process with level direction
vector 1, generated from {cYn}. The process {cŶn} is given by

cŶn = (cX̂n, (
cẐn,

cM̂n, Ĵn)),

where

cX̂n = min
1≤i≤d

cXi,τ∧n,

cẐn = (cẐ0,n,
cẐ1,n, . . . ,

cẐd−1,n),

cẐ0,n = min
{
i ∈ {1, 2, . . . , d}; cXi,τ∧n = cX̂n

}
,

cẐi,n =
{ cXi,τ∧n − cX̂n, i < cẐ0,n,

cXi+1,τ∧n − cX̂n, i ≥ cẐ0,n,
i = 1, 2, . . . , d − 1,
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cM̂n = (cM̂1,n,
cM̂2,n, . . . ,

cM̂d,n) = (cM1,τ∧n, cM2,τ∧n, . . . , cMd,τ∧n),
Ĵn = Jτ∧n,

and τ is the stopping time at which the original MMRW {Yn} enters S\S+ for the first
time. We restrict the state space of {cŶn} to Z+ × (Nd ×Z

d−1+ ×∏d
k=1 Z0,ck−1 × S0).

For k ∈ Z+, the k-th level set of {cŶn} is given by

c
Lk =

{
(x, j) ∈ Z

d+ × S0; min
1≤i≤d

�xi/ci� = k

}
, (4.25)

where �x� is the maximum integer less than or equal to x . The level sets satisfy, for
k ≥ 0,

c
Lk+1 = {(x + c, j); (x, j) ∈ c

Lk}. (4.26)

This means that {cŶn} is a QBD process with level direction vector c. Let cR̂ be the
rate matrix of the QBD process {cŶn}. An upper bound for the convergence parameter
of cR̂ is given as follows.

Lemma 4.1

log cp(cR̂) ≤ sup{〈c, θ〉; cp(A∗(θ)) > 1, θ ∈ R
d}. (4.27)

Proof By Propositions 4.1 and 4.2, we have

log cp(cR̂) ≤ sup{〈1, θ〉; cp(cA∗(θ)) > 1, θ ∈ R
d}

= sup{〈1, c • θ〉; cp(cA∗(c • θ)) > 1, θ ∈ R
d}

= sup{〈c, θ〉; cp(A∗(θ)) > 1, θ ∈ R
d}.

�

5 Asymptotic properties of the occupationmeasure

In this section, we derive the asymptotic decay rate of the occupation measure in the
d-dimensional MMRW {Yn} = {(Xn, Jn)}. We also obtain the convergence domain
of the matrix moment generating function for the occupation measure.

5.1 Asymptotic decay rate in an arbitrary direction

Recall that, for x ∈ Z
d+, the convergence domain of the matrix moment generating

functionΦx(θ) is given asDx = the interior of {θ ∈ R
d : Φx(θ) < ∞}. This domain

does not depend on x, as follows.

Proposition 5.1 For every x, x′ ∈ Z
d+, Dx = Dx′ .
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Proof For every x, x′ ∈ Z
d+ and j ∈ S0, since P+ is irreducible, there exists n0 ≥ 0

such that P(Yn0 = (x′, j) |Y0 = (x, j)) > 0. Using this n0, we obtain, for every
j ′ ∈ S0,

[Φx(θ)] j, j ′ = E

( ∞∑

n=0

e〈Xn ,θ〉 1(Jn = j ′) 1(τ > n)

∣∣∣Y0 = (x, j)

)

≥ E

( ∞∑

n=n0

e〈Xn ,θ〉 1(Jn = j ′) 1(τ > n)

∣∣∣Yn0 = (x′, j)
)
P(Yn0 = (x′, j) |Y0 = (x, j))

= [Φx′ (θ)] j , j ′ P(Yn0 = (x′, j) |Y0 = (x, j)), (5.1)

where τ is the stopping time given by τ = inf{n ≥ 0;Yn ∈ S\S+}. This implies
Dx ⊂ Dx′ . Exchanging x with x′, we obtainDx′ ⊂ Dx , and this completes the proof.

�
A relation between the point sets Γ and Dx is given as follows.

Proposition 5.2 For every x ∈ Z
d+, Γ ⊂ Dx and hence D ⊂ Dx .

Proof If θ ∈ Γ , then cp(A∗(θ)) > 1 and we have
∑∞

k=0 A∗(θ)k < ∞, elementwise.
This gives that, for every j, j ′ ∈ S0,

∞ >

[ ∞∑

k=0

A∗(θ)k
]

j, j ′
= E

( ∞∑

n=0

e〈Xn ,θ〉 1(Jn = j ′)
∣
∣∣Y0 = (0, j)

)

≥ E

( ∞∑

n=0

e〈Xn ,θ〉 1(Jn = j ′) 1(τ > n)

∣∣∣Y0 = (0, j)
)

= [Φ0(θ)] j, j ′, (5.2)

and we have Γ ⊂ D0. Hence, by Proposition 5.1, we obtain the desired result. �
Using Lemmas 3.1 and 4.1, we obtain the asymptotic decay rate of the occupation

measure, as follows.

Theorem 5.1 For any positive vector c = (c1, c2, . . . , cd) ∈ Z
d+, for every x =

(x1, x2, . . . , xd) ∈ Z
d+ such thatmin1≤i≤d xi = 0, for every l = (l1, l2, . . . , ld) ∈ Z

d+
such that min1≤i≤d li = 0 and for every j, j ′ ∈ S0,

lim
k→∞

1

k
log q̃(x, j),(kc+l, j ′) = − sup

θ∈Γ

〈c, θ〉. (5.3)

Proof By Lemma 3.1 and Proposition 5.2, we have, for any positive vector c ∈ Z
d+

and for every (x, j) ∈ S+, j ′ ∈ S0 and l ∈ Z+,

lim sup
k→∞

1

k
log q̃(x, j),(kc+l, j ′) ≤ − sup

θ∈Dx

〈c, θ〉 ≤ − sup
θ∈Γ

〈c, θ〉. (5.4)

Hence, in order to prove the theorem, it suffices to give the lower bound.
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Consider the one-dimensional QBD process {cŶn} defined in the previous section.
Applying Corollary 2.1 to the rate matrix {cR̂} of {cŶn}, we obtain, for some z′′ =
(i ′′, x′′,m′′, j ′′) ∈ Nd ×Z

d−1+ ×∏d
k=1 Z0,ck−1 × S0 and every z′ = (i ′, x′,m′, j ′) ∈

Nd × Z
d−1+ × ∏d

k=1 Z0,ck−1 × S0,

lim
k→∞

(
[(cR̂)k]z′′,z′

) 1
k = cp(cR̂)−1, (5.5)

where x′ = (x ′
1, . . . , x

′
d−1), x

′′ = (x ′
1, . . . , x

′′
d−1) ∈ Z

d−1+ and m′ = (m′
1, . . . ,m

′
d),

m′′ = (m′′
1, . . . ,m

′′
d) ∈ ∏d

k=1 Z0,ck−1. For k ≥ 0, cŶn = (k, i ′, x′,m′, j ′) corre-
sponds to Yn = (kc+ c • x̂′ + m′, j ′), where x̂′ = (x ′

1, . . . , x
′
i ′−1, 0, x

′
i ′ , . . . , x

′
d−1).

Analogously, cŶn = (0, i ′′, x′′,m′′, j ′′) corresponds toYn = (c• x̂′′+m′′, j ′′), where
x̂′′ = (x ′′

1 , . . . , x ′′
i ′′−1, 0, x

′′
i ′′ , . . . , x

′′
d−1). Hence, from (4.8), setting l = c • x̂′ + m′,

we obtain, for every x = (x1, x2, . . . , xd) ∈ Z
d+ such that min1≤i≤d xi = 0 and for

every j ∈ S0,

q̃(x, j),(kc+l, j ′) ≥ q̃(x, j),(c•x̂′′+m′′, j ′′)[cR̂k]z′′,z′ . (5.6)

From (5.5), (5.6) and (4.27), setting m′ = 0, we obtain

lim inf
k→∞

1

k
log q̃(x, j),(kc+l, j ′) ≥ − log cp(cR̂) ≥ − sup

θ∈Γ

〈c, θ〉, (5.7)

and this completes the proof. �

Corollary 5.1 The same result as Theorem 5.1 holds for every direction vector c ∈ Z
d+

such that c �= 0.

Proof Let {Yn} = {(Xn, Jn)} be a d-dimensional MMRW on the state space Zd × S0
and define an absorbing Markov chain {Ŷn} = {(X̂n, Ĵn)} as Ŷn = Y τ∧n for n ≥ 0,
where τ is the stopping time given by τ = inf{n ≥ 0;Yn ∈ S\S+}. We assume that
the state space of {Ŷn} is given by S+. If d = 1, the assertion of the corollary is trivial.
Hence, we assume d ≥ 2 and setm in {1, 2, . . . , d−1}. Without loss of generality, we
assume the direction vector c = (c1, c2, . . . , cd) satisfies ci > 0 for i ∈ {1, 2, . . . ,m}
and ci = 0 for i ∈ {m + 1,m + 2, . . . , d}. Consider an m-dimensional MMRW

{Ŷ (m)

n } = {(X̂1, . . . , X̂m, (X̂m+1, . . . , X̂d , Ĵn))}, where (X̂1, . . . , X̂m) is the level and

(X̂m+1, . . . , X̂d , Ĵn) the background state, and denote by A(m)
i , i ∈ {−1, 0, 1}m , its

transition probability blocks. For θ (m) = (θ1, . . . , θm) ∈ R
m , define a matrix function

A(m)∗ (θ (m)) as

A(m)∗ (θ (m)) =
∑

i∈{−1,0,1}m
e〈i,θ (m)〉A(m)

i .
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Since {Yn} is a MMRW, this A(m)∗ (θ (m)) has a multiple tridiagonal structure and,
applying Lemma 2.6 repeatedly, we obtain

cp(A(m)∗ (θ (m))) = sup
θ [m+1]∈Rd−m

cp(A∗(θ (m), θ [m+1])), (5.8)

where θ [m+1] = (θm+1, . . . , θd) and A∗(θ) = A∗(θ (m), θ [m+1]) is given by (1.3).

Hence, applying Theorem 5.1 to {Ŷ (m)

n }, we obtain, for every x(m) = (x1, . . . , xm) ∈
Z
m+ such that min1≤i≤m xi = 0, for every x[m+1] = (xm+1, . . . , xd) ∈ Z

d−m+ , for
every l(m) = (l1, . . . , lm) ∈ Z

m+ such that min1≤i≤m li = 0 and for every l [m+1] =
(l[m+1], . . . , ld) ∈ Z

d−m+ ,

lim
k→∞

1

k
log q̃(x(m),x[m+1], j),(kc(m)+l(m),l [m+1], j ′)

= − sup{〈c(m), θ (m)〉; cp(A(m)∗ (θ (m))) > 1, θ (m) ∈ R
m}

= − sup
{
〈c(m), θ (m)〉; sup

θ [m+1]∈Rd−m
cp(A∗(θ (m), θ [m+1])) > 1, θ (m) ∈ R

m
}

= − sup
θ∈Γ

〈c, θ〉, (5.9)

where c(m) = (c1, . . . , cm) and we use the assumption that (cm+1, . . . , cd) = 0. �

5.2 Convergence domain of thematrix moment generating function

From Proposition 5.2 and Theorem 5.1, we obtain the following result for the conver-
gence domain.

Theorem 5.2 For every x ∈ Z
d+, Dx = D.

Proof We proveD0 = D. By Proposition 5.1, this impliesDx = D for every x ∈ Z
d+.

Suppose D0\D �= ∅. Since D0 is an open set and, by Proposition 5.2, we have
D ⊂ D0, there exists a point q ∈ D0\D̄, where D̄ is the closure of D. This q
satisfies Φ0(q) < ∞. Since D̄ is a convex set, there exists a hyperplaneH satisfying
q ∈ H and D̄ ∩ H = ∅ (see Fig. 2). Denote by c ≥ 0 the normal vector of H ,
where we assume ‖c‖ = 1. By the definition, c satisfies

〈c, q〉 > sup
θ∈D

〈c, θ〉. (5.10)

Let c′ be a vector of positive integers satisfying

〈‖c′‖c, q〉 > 〈c′, q〉 > sup
θ∈D

〈c′, θ〉. (5.11)

This is possible because of (5.10) and the fact that D̄ is bounded in any positive
direction. For this c′ and for j, j ′ ∈ S0, define a moment generating function ϕc′(θ)

as
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Fig. 2 Convergence domain of Φ0(θ) (d = 2)

ϕc′(θ) =
∞∑

k=0

e〈c′,θ〉k q̃(0, j),(kc′, j ′) (5.12)

and a point c
′
θ as c

′
θ = argmaxθ∈D̄ 〈c′, θ〉. ByTheorem5.1 and theCauchy–Hadamard

theorem, we see that the radius of convergence of the power series on the right-hand

side of (5.12) is e〈c′,c′θ〉 and this implies that ϕc(θ) diverges if 〈c′, θ〉 > 〈c′, c′θ〉. Hence,
by (5.11), we have ϕc′(q) = ∞. On the other hand, we obtain from the definition of
ϕc(θ) that

ϕc′(q) ≤
∑

k∈Zd+

e〈k,q〉 q̃(0, j),(k, j ′) = [Φ0(q)] j, j ′ < ∞. (5.13)

This is a contradiction and, as a result, we obtain D0\D = ∅. �

5.3 Asymptotic decay rate of themarginal measure

Let X be a vector of random variables subject to the stationary distribution of a multi-
dimensional reflected random walk. The asymptotic decay rate of the marginal tail
distribution in the form P(〈c, X〉 > x) has been discussed in [12] (also see [9]), where
c is a direction vector. In this subsection, we consider this type of asymptotic decay
rate for the occupation measure.

Let c = (c1, c2, . . . , cd) be a vector of mutually prime positive integers.We assume
c1 = min1≤i≤d ci ; in other cases such as c2 = min1≤i≤d ci , analogous results can be
obtained. For k ≥ 0, define an index set Ik as

Ik = {l [2] = (l2, l3, . . . , ld) ∈ Z
d−1+ ; 〈c, (l1, l [2])〉 = c1k for some l1 ∈ Z+}.
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Fig. 3 Polling model with three queues

For x ∈ Z
d+, the matrix moment generating function Φx(θ c) is represented as

Φx(θ c) =
∞∑

k=0

ekc1θ
∑

l [2]∈In

Nx,(k−〈c[2],l [2]〉/c1,l [2]), (5.14)

where c[2] = (c2, c3, . . . , cd). By the Cauchy–Hadamard theorem, we obtain the
following result.

Theorem 5.3 For any vector of mutually prime positive integers, c = (c1, c2, . . . , cd),
such that c1 = min1≤i≤d ci and for every (x, j) ∈ S+ and j ′ ∈ S0,

lim sup
k→∞

1

k
log

∑

l [2]∈Ik

q̃(x, j),(k−〈c[2],l [2]〉/c1,l [2], j ′) = − sup
θ c∈Γ

c1θ. (5.15)

In other cases, for example, c2 = min1≤i≤d ci , an analogous result holds.

5.4 Single-server pollingmodel with limited services: an example

As a simple example, we consider a single-server polling model with three queues,
in which first two queues (Q1 and Q2) are served according to 1-limited service and
the other queue (Q3) according to K -limited service (see Fig. 3). We say that, for
k ≥ 1, a queue is served according to k-limited service if the server serves at most
k customers on a visit to that queue. The single server goes around the queues in
order Q1, Q2, Q3, without switchover times. For i ∈ {1, 2, 3}, customers arrive at Qi

according to a Poisson process with intensity λi and they receive exponential service
with mean 1/μi . We denote by λ the sum of the arrival rates, i.e., λ = λ1 + λ2 + λ3.
For i ∈ {1, 2, 3}, let X̃i (t) be the number of customers in Qi at time t and denote
by X̃(t) = (X̃1(t), X̃2(t), X̃3(t)) the vector of them. Let J̃ (t) be the server state
indicating which customer is served at time t . Then, {Ỹ(t)} = {(X̃(t), J̃ (t))} becomes
a continuous-time three-dimensional QBD process. Let S0 be the set of server states,
which is given as S0 = {1, 2, . . . , K , K +1, K +2}. When X̃(t) > 0, J̃ (t) = 1means
that the server is serving a customer in Q1 and J̃ (t) = 2 that it is serving a customer
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in Q2; for j ≥ 3, J̃ (t) = j means that it is serving the ( j − 2)-th customer in Q3 on
a visit to that queue. The nonzero transition rate blocks of {Ỹ(t)} when X̃(t) > 0 are
given as follows:

Ã1,0,0 = λ1 I , Ã0,1,0 = λ2 I , Ã0,0,1 = λ3 I ,

Ã−1,0,0 =

⎛

⎜⎜⎜⎜⎜
⎝

0 μ1 0 0
0 0 0 · · · 0
0 0 0 0

...
. . .

0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟
⎠

, Ã0,−1,0 =

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

0 0 0 0 0
0 0 μ2 0 · · · 0
0 0 0 0 0
0 0 0 0 0

...
. . .

0 0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

,

Ã0,0,−1 =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 · · · 0
0 0 0 μ3 0

...
. . .

0 0 0 0 · · · μ3
μ3 0 0 0 · · · 0

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

, Ã0,0,0 = −diag

⎛

⎝
∑

i∈{−1,0,1}3, i �=0

Ãi1

⎞

⎠ .

Let {Y(t)} = {(X(t), J (t))} be a continuous-time three-dimensional MMRW on
the state space Z

3 × S0, having Ãi , i ∈ {−1, 0, 1}3, as the transition rate blocks.
Let {Yn} = {(Xn, Jn)} be a discrete-time three-dimensional MMRW on the state
space Z3 × S0, generated from {Y(t)} by the uniformization technique. The transition
probability blocks of {Yn} are given by, for i ∈ {−1, 0, 1}3,

Ai =
{
I + 1

ν
Ãi , i = 0,

1
ν
Ãi , otherwise,

where we set ν = λ + μ1 + μ2 + μ3. Applying Theorem 5.1 and Corollary 5.1 to
this MMRW {Yn}, we obtain the asymptotic decay rate of the occupation measure,
as described in Tables 1 and 2. In both the tables, the value of K varies from 1 to 20.
Table 1 deals with a symmetric case, where all the arrival intensities are set at 0.25 and
all the service rates are set at 1. Since Q3 is served according to K -limited service, the
absolute value of the asymptotic decay rate in the case where c3 = 1 monotonically
increases as the value of K increases. On the other hand, that in the case where c3 = 0
does not always vary monotonically, for example, in the case where c = (1, 1, 0), the
absolute value of the asymptotic decay rate decreases at first and then it increases.
Table 2 deals with an asymmetric case, where the arrival intensity of Q3 is five times
as large as those in Q1 and Q2, i.e., μ1 = μ2 = 0.1 and μ3 = 0.5; all the service rates
are set at 1. It can be seen from the table that the absolute values of the asymptotic
decay rates for all the direction vectors are nearly balanced when K is greater than 5,
which means that the absolute value of the asymptotic decay rate in the case where
c = (1, 1, 0) is close to that in the case where c = (1, 0, 1) when K is set at 5; the
absolute value of the asymptotic decay rate in the case where c = (1, 0, 0) is close to
that in the case where c = (0, 0, 1) when K is set at 10.
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Table 1 Values of supθ∈Γ 〈c, θ〉
(λ1 = λ2 = λ3 = 0.25,
μ1 = μ2 = μ3 = 1)

c K

1 2 3 5 10 20

(1, 1, 1) 0.86 1.10 1.26 1.41 1.54 1.61

(1, 1, 0) 0.69 0.59 0.63 0.69 0.74 0.78

(1, 0, 1) 0.69 1.11 1.37 1.62 1.84 1.97

(1, 0, 0) 0.45 0.51 0.62 0.75 0.88 0.97

(0, 0, 1) 0.45 0.99 1.25 1.49 1.68 1.77

Table 2 Values of supθ∈Γ 〈c, θ〉
(λ1 = λ2 = 0.1, λ3 = 0.5,
μ1 = μ2 = μ3 = 1)

c K

1 2 3 5 10 20

(1, 1, 1) 2.81 2.34 1.90 1.33 1.08 1.07

(1, 1, 0) 3.33 2.57 1.94 1.18 0.80 0.74

(1, 0, 1) 1.72 1.44 1.21 0.95 1.01 1.18

(1, 0, 0) 2.01 1.54 1.17 0.76 0.68 0.79

(0, 0, 1) 0.41 0.37 0.36 0.41 0.62 0.78

6 Concluding remark

Using the results in the paper, we can obtain lower bounds for the asymptotic decay
rates of the stationary distribution in a multi-dimensional QBD process. Let {Ỹn} =
{(X̃n, J̃n)} be a d-dimensional QBD process on the state space S+ = Z

d+ × S0, and
assume that the blocks of transition probabilities when X̃n > 0 are given by Ai , i ∈
{−1, 0, 1}d . Assume that {Ỹn} is irreducible and positive recurrent and denote by ν =
(ν y, y ∈ S+) the stationary distribution of the QBD process. Furthermore, assume that
the blocks Ai , i ∈ {−1, 0, 1}d , satisfy the property corresponding to Assumption 3.1.
Then, by Theorem 5.1 and Corollary 5.1, for any vector c of nonnegative integers such
that c �= 0 and for every j ∈ S0, a lower bound for the asymptotic decay rate of the
stationary distribution in the QBD process in the direction specified by c is given as
follows:

lim inf
k→∞

1

k
log ν(kc, j) ≥ − sup{〈c, θ〉; cp(A∗(θ)) > 1, θ ∈ R

d}, (6.1)

where A∗(θ) = ∑
i∈{−1,0,1}d e〈i,θ〉Ai . Since the QBD process is a reflected Markov

additive process, this inequality is an answer to Conjecture 5.1 of [13] in a case with
background states.

Acknowledgements The author is grateful to anonymous referees for their valuable comments and sug-
gestions to improve the paper.
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A Convexity of the reciprocal of a convergence parameter

Let n be a positive integer and x = (x1, x2, . . . , xn) ∈ R
n . We say that a positive

function f (x) is log-convex in x if log f (x) is convex in x, and denote by Sn the
class of all log-convex functions of n variables, together with the function identically
zero. Note that, Sn is closed under addition, multiplication, raising to any positive
power, and the “lim sup” operation. Furthermore, a log-convex function is a convex
function.

Let F(x) = ( fi j (x), i, j ∈ Z+) be a matrix function each of whose elements
belongs to the classSn , i.e., for every i, j ∈ Z+, fi, j ∈ Sn . In [7], it has been proved
that when n = 1 and F(x) is a square matrix of a finite dimension, the maximum
eigenvalue of F(x) is a log-convex function in x . Analogously, we obtain the following
lemma.

Lemma A.1 For every x ∈ R
n, assume that all powers of F(x) are finite elementwise

and F(x) is irreducible. Then, the reciprocal of the convergence parameter of F(x),
cp(F(x))−1, is log-convex in x or identically zero.

Proof For k ≥ 0, we denote by f (k)
i, j (x) the (i, j)-element of F(x)k . First, we show

that, for every k ≥ 1 and for every i, j ∈ Z+, f (k)
i, j (x) ∈ Sn . This is obvious when

k = 1. Suppose that it holds for k. Then, we have, for every i, j ∈ Z+,

f (k+1)
i, j (x) = lim

m→∞

m∑

l=0

f (k)
i,l (x) fl, j (x), (A.1)

and this leads us to f (k+1)
i, j (x) ∈ Sn sinceSn is closed under addition, multiplication

and the “lim sup” (“lim”) operation. Therefore, for every k ≥ 1, every element of
F(x)n belongs toSn .

Next, we note that, by Theorem 6.1 of [21], since F(x) is irreducible, all elements
of the power series

∑∞
k=0 z

k F(x)k have common convergence radius (convergence
parameter), which is denoted by cp(F(x)). By the Cauchy–Hadamard theorem, we
have, for any i, j ∈ Z+,

cp(F(x))−1 = lim sup
k→∞

(
f (k)
i, j (x)

)1/k
, (A.2)

and this implies cp(F(x))−1 ∈ Sn since
(
f (k)
i, j (x)

)1/k ∈ Sn for any k ≥ 1. �

B A sufficient condition ensuring �(�) is unbounded

Proposition B.1 Assume P is irreducible. Then χ(θ) is unbounded in both directions,
i.e., limθ→−∞ χ(θ) = limθ→∞ χ(θ) = ∞.
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Proof Note that, since P is irreducible, A∗ is also irreducible. For n ≥ 1, j ∈ Z+ and
θ ∈ R, A∗(θ)n satisfies

[A∗(θ)n] j j =
∑

i (n)∈{−1,0,1}n
[Ai1 Ai2 × · · · × Ain ] j j eθ

∑n
k=1 ik , (B.1)

where i (n) = (i1, i2, . . . , in). Since P is irreducible, there exist n0 > 1 and i (n0) ∈
{−1, 0, 1}n0 such that [Ai1 Ai2 × · · · × Ain0

] j j > 0 and
∑n0

k=1 ik = 1. For such an

n0, we have [A∗(θ)n0 ] j j ≥ ceθ for some c > 0. This implies that, for any m ≥ 1,
[A∗(θ)n0m] j j ≥ cmemθ and we have

χ(θ) = lim sup
m→∞

([A∗(θ)m] j j ) 1
m ≥ lim sup

m→∞
([A∗(θ)n0m] j j )

1
n0m ≥ c

1
n0 e

θ
n0 .

Therefore, limθ→∞ χ(θ) = ∞. Analogously, we can obtain χ(θ) ≥ c
1
n0 e

− θ
n0 for

some n0 ≥ 1 and c > 0, and this implies that limθ→−∞ χ(θ) = ∞. �

C Proof of Proposition 2.2 and Corollary 2.1

Proof of Proposition 2.2 Let S1 be the set of indices of nonzero rows of A1, i.e., S1 =
{k ∈ Z+; the k-th row of A1 is nonzero}, and S2 = Z+\S1. For i ∈ {−1, 0, 1}, reorder
the rows and columns of Ai so that it is represented as

Ai =
(
Ai,11 Ai,12
Ai,21 Ai,22

)
,

where Ai,11 = ([Ai ]k,l; k, l ∈ S1), Ai,12 = ([Ai ]k,l; k ∈ S1, l ∈ S2), Ai,21 =
([Ai ]k,l; k ∈ S2, l ∈ S1) and Ai,22 = ([Ai ]k,l; k, l ∈ S2). By the definition of S1,
every row of

(
A1,11 A1,12

)
is nonzero and we have A1,21 = O and A1,22 = O . Since

Q is irreducible and R is elementwise finite, N is also elementwise finite and positive.
Hence, R is given as

R = A1N =
(
R11 R12
O O

)
, (C.1)

where R11 = ([R]k,l; k, l ∈ S1) is positive and hence irreducible; R12 = ([R]k,l; k ∈
S1, l ∈ S2) is also positive. Since R11 is a submatrix of R, we have cp(R11) ≥ cp(R).

We derive an inequality with respect to R11 and R12. From (2.4), we obtain R ≥
R2A−1 + RA0 and, from this inequality,

R11 ≥ R11R12A−1,21 + R12A0,21, (C.2)

R12 ≥ R11R12A−1,22 + R12A0,22. (C.3)
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For n ≥ 1 and i (n) = (i1, i2, . . . , in) ∈ {−1, 0}n , define Ai (n),22 and ‖i (n)‖ as

Ai (n),22 = Ain ,22 × Ain−1,22 × · · · × Ai1,22, ‖i (n)‖ =
n∑

k=1

|ik |.

Then, by induction using (C.3), we obtain, for n ≥ 1,

R12 ≥
∑

i (n)∈{−1,0}n
R

‖i (n)‖
11 R12Ai (n),22, (C.4)

and this and (C.2) lead us to, for n ≥ 1,

R11 ≥
∑

i (n)∈{−1,0}n
R

‖i (n)‖
11 R12Ai (n−1),22Ain ,21, (C.5)

where Ai (0),22 = I . We note that since A∗ = A−1+ A0+ A1 is irreducible, A1,21 = O
and A1,22 = O , for every k ∈ S2 and l ∈ S1, there exist n0 ≥ 1 and i (n0) ∈ {−1, 0}n0
such that [Ai (n0−1),22Ain0 ,21]k,l > 0.

Let α be the convergence parameter of R11. Since R11 is irreducible, R11 is either
α-recurrent or α-transient. First, we assume R11 is α-recurrent. Then, there exists
a positive vector u1 such that αu�

1 R11 = u�
1 . If u

�
1 R12 < ∞, elementwise, then

u� = (u�
1 , αu�

1 R12) satisfies αu�R = u� and we obtain cp(R) ≥ α = cp(R11).

Since cp(R) ≤ cp(R11), this implies α = cp(R) = eθ̄ and we obtain statement (i) of
the proposition. We, therefore, prove u�

1 R12 < ∞, elementwise. Suppose, for some
k ∈ S2, the k-th element of u�

1 R12 diverges. For this k and any l ∈ S1, there exist
n0 ≥ 1 and i (n0) ∈ {−1, 0}n0 such that [Ai (n0−1),22Ain0 ,21]k,l > 0. Hence, from (C.5),
we obtain

[α−1u�
1 ]l = [u�

1 R11]l ≥ [u�
1 R

‖i (n0)‖
11 R12]k[Ai (n0−1),22Ain0 ,21]k,l

= α−‖i (n0)‖[u�
1 R12]k[Ai (n0−1),22Ai(n0),21]k,l .

This contradicts that u1 is elementwise finite and we see u�
1 R12 is finite elementwise.

Next, we assume R11 isα-transient, i.e.,
∑∞

n=0 αn Rn
11 < ∞, elementwise.We have

∞∑

n=0

αn Rn =
(∑∞

n=0 αn Rn
11

∑∞
n=1 αn Rn−1

11 R12
O O

)
.

Hence, in order to prove
∑∞

n=0 αn Rn < ∞, elementwise, it suffices to demonstrate∑∞
n=1 αn Rn−1

11 R12 < ∞, elementwise. Suppose, for some k ∈ S1 and some l ∈ S2,
the (k, l)-element of

∑∞
n=1 αn Rn−1

11 R12 diverges. For this l and any m ∈ S1, there
exist n0 ≥ 1 and i (n0) ∈ {−1, 0}n0 such that [Ai (n0−1),22Ain0 ,21]l,m > 0. For such an
n0 and i (n0), we obtain from (C.5) that, for n ≥ 1,
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Rn
11 = Rn−1

11 R11 ≥ R
‖i (n0)‖
11 Rn−1

11 R12Ai (n0−1),22Ain0 ,21,

where every diagonal element of R
‖i (n0)‖
11 is positive. From this inequality, we obtain

[ ∞∑

n=1

αn Rn
11

]

k,m

≥
[
R

‖i (n0)‖
11

]

k,k

[ ∞∑

n=1

αn Rn−1
11 R12

]

k,l

[
Ai (n0−1),22Ain0 ,21

]

l,m
.

This contradicts that R11 is α-transient andwe obtain
∑∞

n=0 αn Rn < ∞, elementwise.
Furthermore, this leads us to cp(R) ≥ α = cp(R11) and, from this and cp(R) ≤
cp(R11), we have α = cp(R) = eθ̄ . As a result, we obtain statement (ii) of the
proposition and this completes the proof. �
Proof of Corollary 2.1 In a manner similar to that used in the proof of Proposition 2.2,
let S1 be the set of indexes of nonzero rows of A1 and S2 = Z+\S1. Then, reordering
the rows and columns of R according to S1 and S2, we obtain R given by expression
(C.1), where R11 = ([R]k,l; k, l ∈ S1) is positive and hence irreducible and R12 =
([R]k,l; k ∈ S1, l ∈ S2) is also positive. From the proof of Proposition 2.2, we know
that cp(R) = cp(R11) = eθ̄ . By these facts and the Cauchy–Hadamard theorem, we
obtain, for i, j ∈ S1, k ∈ S2 and n ≥ 1,

lim sup
n→∞

([Rn]i, j
) 1
n = lim sup

n→∞
([Rn

11]i, j
) 1
n = e−θ̄ , (C.6)

lim sup
n→∞

([Rn]i,k
) 1
n ≤ e−θ̄ . (C.7)

Since [Rn
11]i,i is subadditive with respect to n, for example, [Rn1+n2

11 ]i,i ≥
[Rn1

11]i,i [Rn2
11]i,i for n1, n2 ∈ Z+, the limit sup in Eq. (C.6) can be replaced with

the limit when i = j (see, for example, Lemma A.4 of [21]). Furthermore, we have,
for i, j ∈ S1, k ∈ S2 and n ≥ 1,

lim inf
n→∞

([Rn]i, j
) 1
n = lim inf

n→∞
(
[Rn−1

11 R11]i, j
) 1

n ≥ lim inf
n→∞

(
[Rn−1

11 ]i,i [R11]i, j
) 1

n = e−θ̄ ,

(C.8)

lim inf
n→∞

([Rn]i,k
) 1
n = lim inf

n→∞
(
[Rn−1

11 R12]i,k
) 1

n ≥ lim inf
n→∞

(
[Rn−1

11 ]i,i [R12]i,k
) 1

n = e−θ̄ .

(C.9)

Hence, we obtain Eq. (2.16). It is obvious by expression (C.1) that, for i ∈ S2 and
j ∈ Z+, [Rn]i, j = 0. �
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