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Abstract
We consider an M/M/1/N observable non-customer-intensive service queueing sys-
tem with unknown service rates consisting of strategic impatient customers who make
balking decisions and non-strategic patient customers who do not make any decision.
In the queueing game amongst the impatient customers, we show that there exists at
least one pure threshold strategy equilibrium in the presence of patient customers.
As multiple pure threshold strategy equilibria exist in certain cases, we consider the
minimal pure threshold strategy equilibrium in our sensitivity analysis. We find that
the likelihood ratio of a fast server to a slow server in an empty queue is monotonically
decreasing in the proportion of impatient customers and monotonically increasing in
thewaiting area capacity. Further,wefind that theminimal pure threshold strategy equi-
librium is non-increasing in the proportion of impatient customers and non-decreasing
in the waiting area capacity. We also show that at least one pure threshold strategy
equilibrium exists when the waiting area capacity is infinite.

Keywords Queueing game · Service operations · Strategic behavior · Threshold
strategy equilibrium

Mathematics Subject Classification 60K25 · 90B22 · 91A40

1 Introduction

We consider a finite capacity observable M/M/1 queueing system, which provides
non-customer-intensive service and follows a first-in-first-out (FIFO) queue discipline.

B Rahul R. Marathe
rrmarathe@iitm.ac.in

S. Srivatsa Srinivas
srivats.sss@gmail.com

1 Department of Management Studies, Indian Institute of Technology Madras, Chennai, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-020-09671-x&domain=pdf
http://orcid.org/0000-0003-1169-2666
http://orcid.org/0000-0001-9125-2526


330 Queueing Systems (2020) 96:329–356

In contrast to customer-intensive services where service value increases with service
time, service value decreases with service time in non-customer-intensive services.
The arriving customers are of two types—(1) impatient customers who are strategic
and make balking decisions, (2) patient customers who are non-strategic, always join
the queue, and do not make any decision at all. Nature first probabilistically selects
the service rate (fast or slow). The impatient customers then update their beliefs on
the service rate by observing the queue and then make balking decisions based on the
net utility from the service.

A classic example of our setting is the queue in front of a ticket purchase counter
in a railway station on the Mumbai suburban railway [22]. Consider the passengers
waiting in a queue to purchase a ticket from a human server at the Churchgate station
on the Western line. A passenger traveling from Churchgate to Dadar (approximately
11km) is impatient, updates the belief on the human server’s rate of service based on
the observed queue length, and balks in the case of a long queue at the ticket purchase
counter as the cost of switching to another mode of transport is not high. On the other
hand, a passenger traveling fromChurchgate to Virar (approximately 86km) is patient,
does not make any strategic decision, and always joins the queue as the alternative
modes of transport are expensive/tiresome.

McDonald’s is another example of a queueing system with a human server offering
counter service. Two types of customers arrive at the facility to order food. A patient
customer is fond of hamburgers and will consume a hamburger with certainty in
this visit. An impatient customer, on the contrary, is not particular on a McDonald’s
hamburger. Hence, an impatient customer updates the belief on the human server’s
service rate based on the observed queue length. Further, the impatient customer joins
the queue if it is valuable enough to consume the hamburger, given the waiting cost
involved; otherwise, the impatient customer balks. In a certain sense, patient and
impatient customers are similar to loyal and disloyal customers, respectively.

As evident from the motivating examples, the patient customers are non-strategic
because such customers possess infinite valuation for the service of interest. They
always join the queue as they derive higher utility from joining than balking. Thus,
non-strategic customers are equivalent to strategic customers with infinite service
valuation. In this article, we assume that the patient customers are non-strategic and
always join the queue. Further, it is pertinent to note that the finitewaiting area capacity
always does not ensure a finite queue length in practice at a Mumbai suburban railway
station and a McDonald’s outlet. Though the waiting area capacity is finite, queue
length can sometimes explode, resulting in customers waiting outside the waiting
area. While our primary focus is on analyzing the finite waiting area capacity model
in this article, we also address the infinite waiting area capacity case in Sect. 7.

In this queueing environment, we develop a symmetric game amongst the impa-
tient customers, where each impatient customer formulates the best response strategy
in response to other impatient customers’ strategies. Though patient customers are
non-strategic, we assert that their presence impacts the queue length distribution and,
therefore, the impatient customers’ equilibrium strategies. Our results suggest that
there always exists at least one pure threshold strategy equilibrium at which the impa-
tient customers balk in the impatient customers’ game in the presence of the patient
customers. We then analyze the effect of the proportion of impatient customers and
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the waiting area capacity on the likelihood ratio of a fast server to a slow server in
an empty queue and the minimal pure threshold strategy equilibrium. As multiple
pure threshold strategy equilibria can exist in some instances, we consider the mini-
mal pure threshold strategy equilibrium, which is the minimum of the pure threshold
strategy equilibria. We show that the likelihood ratio is monotonically decreasing in
the proportion of impatient customers and monotonically increasing in the waiting
area capacity. Further, we show that the minimal pure threshold strategy equilibrium
is non-increasing in the proportion of impatient customers and non-decreasing in the
waiting area capacity. We also observe that at least one pure threshold strategy equi-
librium exists in an infinite capacity queue. We perform numerical analysis to analyze
the effect of the proportion of impatient customers and the waiting area capacity on
the expected throughput and the expected blocking rate.

In Sect. 2, we provide a review of the literature on queueing games and position
our work in the context of the existing literature. We then describe the modeling envi-
ronment in Sect. 3 and analyze the equilibrium structure in the impatient customers’
game in Sect. 4. In the subsequent section (Sect. 5), we perform sensitivity analysis
and study the effect of the proportion of impatient customers and the waiting area
capacity on the likelihood ratio and the minimal pure threshold strategy equilibrium.
We then perform a numerical analysis of the system performance in Sect. 6.We discuss
the case of infinite waiting area capacity in Sect. 7. Finally, we provide concluding
remarks and suggest promising future research directions in Sect. 8.

2 Related work

The notion of strategic behavior in observable queues dates back to Naor [23]. Hassin
and Haviv [10] and Hassin [11] present a detailed review of the literature on strategic
behavior in queues. We draw our work from two different dimensions of literature on
queueing games—(1) service type, and (2) customer’s strategic decision.

2.1 Service type

The extant literature on queueing games has considered various service types such as
expert services where the service quality is not exactly known even after the service is
provided [3], customer-intensive services where service value increases with service
time [1], queueswith catastropheswhere a catastrophe forces the customers to abandon
the system and makes the system inoperative for an exponential amount of time until
the repair is done [2], and partial breakdowns where the rate of service comes down
during a breakdown [19] among others. In recent times, there has been a surge in the
literature on positive aspects of waiting. Debo et al. [4] developed a queueing game to
signal service quality via queue lengths to uninformed customers in an environment
consisting of both informed and uninformed customers. Meanwhile, Anand et al.
[1] considered customer-intensive services such as medical, legal, and consultancy
services where service time is positively correlated with service value, i.e., service
value increases with service time.

123



332 Queueing Systems (2020) 96:329–356

Subsequently, Debo and Veeraraghavan [5] analyzed a queueing game amongst the
customers in a customer-intensive environment when the service times are unknown,
and the arriving customers update their beliefs on the service time based on observed
queue length and then make queue-joining decisions. Recently, Liu and Shang [21]
considered a queueing game amongst the customers when the service rates are
unknown in a non-customer-intensive service environment where the service time
is negatively correlated with service value. Our contribution to this strand of literature
is similar to Liu andShang [21]wherein the services are non-customer-intensive.How-
ever, the ensuing queueing game amongst the impatient customers in our case is not
straightforward and perturbed by the presence of the patient customers. The propor-
tion of patient customers influences the queue length distribution and, subsequently,
the Bayesian updating in the utility functions of the strategic impatient customers.
Therefore, it is of particular interest to understand the resultant equilibrium structure
in this context.

2.2 Strategic customer decisions

Hassin [11] listed the various customer decisions in a queue such as balking, reneg-
ing, arrival time, jockeying, retrials, restart. Queueing games with strategic balking
customers where the arriving customers decide whether to join the queue or balk in
the current period have been studied thoroughly in different contexts [6,8]. The other
strategic customer decisions previously analyzed include arrival time, where the cus-
tomers decide on the time to arrive at a queue [13,15], and retrials, where the customer
comes back after some time if the server is busy [7,18] among others. There is also
enough literature on loss systems wherein the arrivals are blocked in the presence of
busy servers or finite waiting area capacity [11,24].

Our focus is on a non-customer-intensive service environment with unknown ser-
vice rates consisting of impatient customers who make strategic balking decisions and
patient customers who always join the queue and do not make any decision. As men-
tioned earlier, impatient customers have been studied extensively in the literature.With
respect to patient customers, there have been attempts at modeling customers’ patience
in various environments different from ours. Iravani andBalciog̃lu [14] considered dif-
ferent classes of customers who exercise the reneging option when their waiting time
exceeds the patience limit. Liu and Cooper [20] then studied a single product pricing
problem consisting of impatient and patient customers.While a patient customer waits
up to some time periods for the product price to fall below his/her valuation to make a
purchasing decision, an impatient customer decides to purchase immediately or leaves
without buying. Our work is closely related to Hassin and Roet-Green [12] who study
the effect of inspection cost (the cost of acquiring queue length information) on rev-
enue and social welfare in a single server queue consisting of urgent and non-urgent
customers. While urgent customers always join the queue, non-urgent customers join
the queue according to their equilibrium strategy. We can infer that impatient and
patient customers in our model are similar to non-urgent and urgent customers in
Hassin and Roet-Green [12]. However, we analyze the strategic impatient customers’
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equilibrium balking decisions in the non-strategic patient customers’ presence in a
non-customer-intensive service environment with unknown service rates.

2.3 Contribution to the queueing games literature

Our contribution to the literature on strategic queueing with unknown service rates
is closely related, albeit different from Naor [23], Debo and Veeraraghavan [5] and
Liu and Shang [21]. While impatient customers who make balking decisions have
been studied in [5,21,23], we analyze the effect of patient customers who always
join the queue (similar to urgent customers in Hassin and Roet-Green [12]) on the
equilibrium strategies of impatient customers. In particular, we study the queueing
game amongst the impatient customers when the service rates are unknown, simi-
larly to Debo and Veeraraghavan [5] and Liu and Shang [21]. Further, we consider
non-customer-intensive services similar to Liu and Shang [21] and unlike Debo and
Veeraraghavan [5]. The comparison between our model, Naor [23], Debo and Veer-
araghavan [5] and Liu and Shang [21] is presented in Table 1.

3 Model and notation

3.1 Notation

� Arrival rate
μ Fast service rate
μ Slow service rate
p Probability (prior) that the expected service rate is fast
q Proportion of impatient customers
V Service value
c Waiting cost per unit time
νn Impatient customer’s posterior belief that the service rate is fast when the

queue length is n
ψn Impatient customer’s joining probability when the queue length is n
nb Highest balking threshold for an impatient customer
N Capacity of the waiting area
ν Impatient customer’s posterior belief vector
ψ Impatient customer’s joining strategy vector
U (n, ν) Impatient customer’s utility as a function of queue length and posterior

belief
U (n, ψ, q) Impatient customer’s utility as a function of queue length, impatient

customer’s joining probability and proportion of impatient customers
πn,μ,ψ,q Stationary probability of n customers in the system as a function of service

rate, impatient customer’s joining probability and proportion of impatient
customers

b(k) Best response of a focal impatient customer when the other customers join
according to a pure threshold strategy k
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Table 1 Our model versus Naor [23] versus Debo and Veeraraghavan [5] versus Liu and Shang [21]

[23] [5] [21] Our model

Service time - Service value correlation Negative Positive Negative Negative

Game amongst the customers × � � �
Strategic impatient customer � � � �
Non-strategic patient customer × × × �

3.2 Model description

Nature first chooses the mean service rate μ ∈ {μ,μ}, where μ < μ. The expected
service rate is the fast μ with probability p and the slow μ with probability 1 − p,
which is assumed to be common knowledge. Customers arrive at the service facility
according to a Poisson process with parameter �. The arriving customers are of two
types. A proportion q of customers is impatient and make balk or join decisions, and
the remaining 1 − q proportion of customers is patient and always joins the queue.
The service times follow an exponential distribution. An impatient customer observes
a queue of length n and updates the belief on the service rate. The posterior belief on
service rate is described as follows: the impatient customer believes with probability
νn that the service rate is fast and probability 1 − νn that the service rate is slow. The

impatient customer obtains a service value V and incurs a waiting cost of
n + 1

μ
c,

where n is the observed queue length on arrival (including the customer in service),
and c is the waiting cost per unit time.When the queue length is n∗, we assume that the

impatient customer obtains positive utility if the service rate isμ, V − (n∗ + 1)c

μ
> 0,

and obtains negative utility if the service rate is μ, V − (n∗ + 1)c

μ
< 0.

Assumption 1 There exists n∗ ≥ 0 such that V μ < (n∗ + 1)c < V μ.

Therefore, the impatient customer’s utility function is defined as

U (n, ν) = νn

(
V − n + 1

μ
c

)
+ (1 − νn)

(
V − n + 1

μ
c

)
. (1)

We normalize the utility frombalking to 0. Let nb =
⌊

V μ

c

⌋
, where nb is the highest

balking threshold for the impatient customer. To reflect the waiting area capacity in
reality, we define N = w, where w ∈ N. However, we will show that the existence of
equilibrium is guaranteed even when the waiting area capacity is infinite in Sect. 7.
At N , the customers are blocked from entering the system. To avoid cases where the
impatient customer is blocked from the system, we make the following assumption.

Assumption 2 We assume that nb < N .
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nb is a result of impatient customer’s strategic decision making and can be computed
by the service provider. The service provider can thus set the capacity greater than nb.
There is abundant literature on queueing games with impatient customers who make
balk or join decisions [11]. In such a setting, the notion of blocking does not arise
because nb is the highest balking threshold and nb < N . On the other hand, patient
customers always join the queue in a queueing system consisting of impatient and
patient customers. Thus, queue lengths beyond nb are attainedwith positive probability
in the presence of patient customers. Subsequently, patient customers are blocked from
entering the system at N .

While the state space of observed queue lengths is n ∈ {0, 1, 2, . . . , N }, the equilib-
rium analysis in the impatient customer’s game is restricted to n ∈ {0, 1, 2, . . . , nb}.
ψn ∈ [0, 1] denotes the impatient customer’s joining probability after observ-
ing a queue of length n for all n ∈ {0, 1, 2, . . . , nb}. We use the vectors ψ =
(ψ0, ψ1, . . . , ψnb ) and ν = (ν0, ν1, . . . , νnb ) to represent the impatient customer’s
joining strategy and updated belief, respectively. We define πn,μ,ψ,q as the stationary
probability of exactly n customers in the system when nature chooses service rate μ,
proportion q of the customers are impatient and impatient customers play a strategy
ψ for all n ∈ {0, 1, 2, . . . , nb}.
Lemma 1 The stationary probability of n customers in the system πn,μ,ψ,q is given by

πn,μ,ψ,q

=

⎧⎪⎪⎨
⎪⎪⎩

π0,μ,ψ,q
∏n−1

j=0

(
[ψ j q + (1 − q)]�

μ

)
, n ∈ {1, 2, . . . , nb},

π0,μ,ψ,q

(
(1 − q)�

μ

)n−nb ∏nb−1
j=0

(
[ψ j q + (1 − q)]�

μ

)
, n ∈ {nb + 1, nb + 2, . . . , N },

(2)

where π0,μ,ψ,q is the stationary probability of an empty system, which in turn is equal
to

π0,μ,ψ,q =
⎡
⎣1 +

nb∑
n=1

n−1∏
j=0

(
[ψ j q + (1 − q)]�

μ

)

+
nb−1∏
j=0

(
[ψ j q + (1 − q)]�

μ

) N∑
n=nb+1

(
(1 − q)�

μ

)n−nb

⎤
⎦

−1

. (3)

The proofs of all lemmas are available in the appendix. We observe that the station-
ary probability of n customers depends on the impatient customer’s balking strategy
and the proportion of impatient and patient customers. We use the PASTA property
(Poisson Arrivals See Time Averages), which states that a randomly arriving customer
in the limit observes a queue of length n with stationary probability πn,μ,ψ,q [25].
According to Bayes’ rule, the posterior probability that the service rate is fast is given
by
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νn = pπn,μ,ψ,q

pπn,μ,ψ,q + (1 − p)πn,μ,ψ,q
. (4)

4 Equilibrium analysis in the impatient customers’ game

We determine the equilibrium strategies ψ∗ and updated equilibrium beliefs ν∗ of the
impatient customer. In the following definition, we specify the equilibrium conditions
in the customer’s game.

Definition 1 The impatient customers’ strategies ψ∗ and updated beliefs ν∗ form an
equilibrium under the following conditions:

(i) The impatient customers are rational. For all n ∈ {0, 1, 2, . . . , nb},

ψ∗
n ∈ argmaxψ̃∈[0,1] ψ̃U (n, ψ∗, q). (5)

(ii) Thebeliefs of the impatient customers are consistent.Under the customer’s strategy
ψ∗, the belief ν∗

n satisfies Bayes’ rule for all queue lengths n ∈ {0, 1, 2, . . . , nb}.
We can express the utility functionU (n, ν) as a function of strategiesψ , and proportion
of impatient customers q, by substituting νn in U (n, ν):

U (n, ψ, q) =
pπn,μ,ψ,q

(
V − n + 1

μ
c

)
+ (1 − p)πn,μ,ψ,q

(
V − n + 1

μ
c

)

pπn,μ,ψ,q + (1 − p)πn,μ,ψ,q
. (6)

The equilibrium conditions for an impatient customer expressed in terms of ψ∗ are
given by

ψ∗
n = 1 ⇐⇒ U (n, ψ∗, q) > 0, (7)

ψ∗
n = 0 ⇐⇒ U (n, ψ∗, q) < 0, (8)

ψ∗
n ∈ (0, 1) ⇐⇒ U (n, ψ∗, q) = 0. (9)

As the action space [0, 1]nb is compact and the best response function graph is closed,
we conclude from the Kakutani fixed-point theorem that at least one equilibrium in
mixed strategies exists [16]. Our equilibrium analysis is only applicable on queue
lengths n ∈ {0, 1, . . . , nb}.

The resulting equilibrium structure can be of threshold or non-threshold type. A
threshold strategy is described by the threshold k = n+z, where n ∈ N and z ∈ [0, 1).
The customers join when the queue length is 0 ≤ i ≤ n − 1; join with probability
z and do not join with probability 1 − z when the queue length is n; do not join
when i > n. If z = 0 (k is an integer), it is a pure strategy; otherwise, it is mixed
[10]. On the other hand, a non-threshold strategy describes the non-monotone joining
behavior of customers and is not solely defined by the threshold. Some examples of
non-threshold strategies include a sputtering strategy [5] and strategy with a hole [4].
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In Debo and Veeraraghavan [5], a sputtering strategy is defined by two queue lengths
k and k where the customers join when the queue length is 0 ≤ i ≤ k − 1; join with
probability αk and do not join with probability 1− αk at queue length k; join again at
queue lengths k +1 ≤ i < k; balk at queue length k > k +1. Debo et al. [4] consider a
non-threshold strategy with a hole for an uninformed customer in a population mix of
informed and uninformed customers. At the hole n̂, the uninformed customer does not
join the queue; however, the uninformed customer follows the informed customer’s
strategy at all queue lengths except n̂. The informed customer joins at queue lengths
i ≥ n̂ for a high-quality firm. The uninformed customer’s strategy is of non-threshold
type as the uninformed customer balks at n̂ and joins at queue lengths greater than n̂.

We perform the equilibrium analysis by adopting the framework of Debo and
Veeraraghavan [5] to our context where the services are non-customer-intensive,
and customers are of two types. Our focus is on threshold equilibrium structures
for the queueing game where a pure or mixed strategy equilibrium exists. We first
consider pure threshold strategies where the arriving impatient customers join at the
first k − 1 queue lengths and balk at k. At queue lengths {k, k + 1, . . . , N − 1},
only the patient customers join the queue. A threshold strategy k is an equilibrium
if it satisfies the following conditions: U (n, k, q) ≥ 0 for all 0 ≤ n ≤ k − 1

and U (n, k, q) ≤ 0 for all k ≤ n ≤ nb. Let ω(n) =
(

μ

μ

)n
n + 1

μ
c − V

V − n + 1

μ
c
and

θq(k, N ) =
1 +∑k

j=1

(
�

μ

) j

+∑N
j=k+1(1 − q) j−k

(
�

μ

) j

1 +∑k
j=1

(
�

μ

) j

+∑N
j=k+1(1 − q) j−k

(
�

μ

) j
.

Lemma 2 The pure threshold strategy k is in equilibrium if and only if, ω(n) ≤
p

1 − p
θq(k, N ) for n ∈ {0, 1, . . . , k − 1} and ω(n) ≥ p

1 − p
θq(k, N ) for n ∈

{k, k + 1, . . . , nb}.
We now consider ω(n) and θq(k, N ) as a function over the real numbers, and

replace integer n by real ñ and integer k by real k̃. Further, let n = V μ

c
− 1 and

n = V μ

c
− 1. We also notice that ω(ñ) is non-negative for ñ ∈ [n, n) and ω(n) = 0

and limñ→n ω(ñ) = +∞. In addition, [n, n) is non-empty and the domain of ω(ñ) is
[n, n). As θq(k̃, N ) is non-negative for all k̃ ≥ 0, the domain of θq(k̃, N ) is R+. We

then define N (k̃) = min
{

ñ ∈ [n, n) : ω(ñ) ≥ ξθq(k̃, N )
}
where ξ = p

1 − p
. The

domain of N (k) is not restricted to [0, k]. Then, b(k) = max{0, 
N (k)�} is the best
response of a focal customer when the other customers join based on a pure threshold
strategy k. When the best response of a focal customer is equal to the strategy of other
customers, i.e., b(k) = k or ω(k − 1) < ξθq(k, N ) < ω(k), then the focal customer’s
strategy b(k) is an equilibrium strategy.
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Remark 1 At q = 0, θq(k̃, N ) is independent of k̃ and all customers are patient (non-
strategic) and join the queue until N at which they are blocked.

Remark 2 At q = 1, the focal impatient customer’s best response depends on other

customers’ threshold balking strategies and θq(k̃, N ) reduces to

1 +∑k̃
j=1

(
�

μ

) j

1 +∑k̃
j=1

(
�

μ

) j
,

which is the inverse of 
(k̃) in Debo and Veeraraghavan [5]. It follows that θq(k̃, N )

is monotonically increasing in k̃.

In our case, θq(k, N ) = π0,μ,k,q

π0,μ,k,q
represents the likelihood ratio of a fast server to a

slow server for an empty queue, which is the opposite of the likelihood ratio defined in
Debo and Veeraraghavan [5]; however, 1 − q proportion of the customers are patient
in our setting. On the other hand, we consider the likelihood ratio for a queue of

length n as
πn,μ,k,q

πn,μ,k,q
=
(
μ/μ

)n
θq(k, N ). This holds under the assumption that cus-

tomers join at queue lengths between 0 and n − 1. An arriving impatient customer

is ambivalent between joining and not when

(
n + 1

μ
c − V

)
/

(
V − n + 1

μ
c

)
=

p

1 − p

(
μ/μ

)n
ω(n). Similar to Debo and Veeraraghavan [5], we can interpret ω(n)

as the required likelihood ratio for an empty queue that makes the arriving customer
ambivalent at queue length n.

Lemma 3 (i) If q > 0, θq(k̃, N ) is monotonically increasing in k̃ for all k̃ ≥ 0.
(ii) ω(ñ) is monotonically increasing in ñ over [n, n).

We show that the queue joining strategies of impatient customers are monotone in
the queue length when there exists a negative correlation between service time and
service value for all q > 0.We observe the follow-the-crowd (FTC) behavior and then
show that at least one pure threshold strategy equilibrium is guaranteed. Recently,
Liu and Shang [21] proved the existence of at least one threshold equilibrium in a
setting consisting of only impatient customers. However, we show that at least one
pure threshold equilibrium strategy exists even in the presence of patient customers
(Proposition 1). This result is also different from Naor’s model with negative exter-
nalities which exhibits neither the follow-the-crowd (FTC) nor the avoid-the-crowd
(ATC) behavior where a customer’s decision is independent of the other customers’
decisions [11].

Proposition 1 If q > 0, there exists at least one pure threshold strategy equilibrium
in the impatient customer’s game.

Proof Let k1 > k2. From Lemma 3, we observe that θq(k1) > θq(k2) for all q > 0.
Also, ω(n) is monotonically increasing in n. By the definition of b(k), it is clear that
θq(k1) > θq(k2) �⇒ N (k1) ≥ N (k2). We then find that b(k1) ≥ b(k2) when
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k1 > k2 which demonstrates the FTC behavior. The higher the threshold adopted
by other impatient customers, the higher is the focal impatient customer’s threshold
to balk. We know that multiple fixed points exist and therefore, multiple symmetric
equilibria of the threshold type in pure or mixed strategy space are possible in the
presence of FTC behavior [10].

Further, ifω(
n�) ≥ ξθq(
n�), 
n� is a pure threshold strategy equilibrium. Instead,
if ω(
n�) < ξθq(
n�), we will show that there always exists a pure threshold strategy
equilibrium at k > 
n�. We know that θq(k̃, N ) is monotonically increasing in k̃ and
ω(ñ) is monotonically increasing in ñ (Lemma 3). However, limñ→n ω(ñ) = +∞.
Therefore, there always exists a k̃′ at which the functions ξθq(k̃′, N ) and ω(k̃′)
intersect. Let 
k̃′� = k. We then know that ω(k − 1) < ξθq(k − 1, N ) and
ξθq(k, N ) < ω(k). Moreover, as both θq(k̃, N ) and ω(k̃) are monotonically increas-
ing in k̃ (Lemma 3), ω(k − 1) < ξθq(k, N ). Hence, ω(k − 1) < ξθq(k, N ) < ω(k)

or b(k) = k and at least one pure threshold strategy equilibrium exists. ��
In the equilibrium analysis of priority queues, [9] illustrates the existence of amixed

threshold equilibrium strategy between two consecutive pure threshold equilibrium
strategies. We also observe a similar phenomenon in our case when consecutive pure
threshold strategy equilibria exist. Due to the FTC behavior in our queueing environ-
ment, multiple threshold equilibria are possible. When there are two consecutive pure
threshold strategy equilibria (i.e., ξθq(k − 1, N ) < ω(k − 1) < ξθq(k, N ) < ω(k)),
we will show that there exist infinitely many mixed threshold strategy equilibria.
The impatient customers join at queue length k − 1 with probability ψk−1 and
balk at k. The queue-joining probability ψk−1 satisfies the condition ω(k − 2) <

p

1 − p
θ̂q(k − 1, ψk−1, k, N ) < ω(k), where

θ̂q(k − 1, ψk−1, k, N )

=

∑k−1
j=0

(
�

μ

) j

+ (ψk−1q + 1 − q)

⎡
⎣
(

�

μ

)k

+∑N
j=k+1(1 − q) j−k

(
�

μ

) j
⎤
⎦

∑k−1
j=0

(
�

μ

) j

+ (ψk−1q + 1 − q)

[(
�

μ

)k

+∑N
j=k+1(1 − q) j−k

(
�

μ

) j
] .

Proposition 2 If there exist pure threshold strategy equilibria at consecutive queue
lengths k − 1 and k, there are infinitely many mixed threshold strategy equilibria with
randomization at k − 1.

Proof The definition of pure threshold strategy equilibria at queue lengths k − 1 and
k implies that the conditions ω(k − 2) < ξθq(k − 1, N ) < ω(k − 1) and ω(k − 1) <

ξθq(k, N ) < ω(k) are satisfied, respectively. Further,we can infer that ξθq(k−1, N ) <

ω(k − 1) < ξθq(k, N ). Using the definition of θ̂q(k − 1, ψk−1, k, N ), it follows that
ξ θ̂q(k − 1, 0, k, N ) < ω(k − 1) < ξ θ̂q(k − 1, 1, k, N ). As θ̂q(k − 1, ψk−1, k, N )

is continuous in ψk−1, there always exists infinitely many ψk−1 ∈ [0, 1] at which
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Fig. 1 Two consecutive pure threshold strategy equilibria at b(k) = k = 6 and b(k) = k = 7, respectively

Table 2 Focal impatient
customer’s best response b(k) to
the threshold strategy k

k ξθq (k, N ) ω(k) b(k)

0 2.727 – 6

1 3.344 – 6

2 4.490 – 6

3 6.333 – 6

4 9.204 – 6

5 13.631 0 6

6 20.423 25.6 6

7 30.801 128 7

8 46.569 512 7

9 70.334 2048 7

10 105.740 10240 7

11 157.608 ∞ 8

ω(k −2) < θ̂q(k −1, ψk−1, k, N ) < ω(k). Also, with monotonically increasing ω(n)

(Lemma 3), we know that ω(n) < ω(k − 1) for all 0 ≤ n < k − 1. This justifies the
existence of infinitely many mixed threshold strategy equilibria with queue-joining
probability ψk−1 at k − 1 and balking at k. ��

We provide the intuition behind the existence of infinitely many equilibria with any
randomization ψk−1 at k − 1. A pure threshold strategy equilibrium at k implies that
the impatient customers join at k − 1 with probability 1. Similarly, a pure strategy
equilibrium at k −1 implies that the impatient customers join at k −1 with probability
0. As both joining and balking at k − 1 satisfy equilibrium conditions, any joining
probability at k −1 will satisfy the equilibrium conditions. Hence, there exist infinitely
many mixed threshold strategy equilibria.

To illustrate the existence of infinitely many mixed threshold strategy equilibria
between any two consecutive pure threshold strategy equilibria, we provide the fol-
lowing example. Let p = 0.05,� = 15, μ = 12, μ = 6, q = 0.5, N = 15, V =
2, c = 2. In Fig. 1, we illustrate the existence of consecutive pure threshold strat-
egy equilibria at b(k) = k = 6 and b(k) = k = 7, respectively. We observe from
Table 2 that ω(5) < ξθ0.5(6, 15) < ω(6) < ξθ0.5(7, 15) < ω(7) �⇒ ω(5) <
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ξ θ̂0.5(6, 0, 7, 15) < ω(6) < ξ θ̂0.5(6, 1, 7, 15) < ω(7). There exist infinitely many
mixed threshold strategy equilibria at which ω(5) < θ̂0.5(6, ψ1, 7, 15) < ω(7).

5 Sensitivity analysis

We perform sensitivity analysis by studying the impact of the proportion of impa-
tient customers and the waiting area capacity on threshold equilibrium strategies. As
multiple pure threshold strategy equilibria can possibly exist in certain cases, we par-
ticularly consider the effect of the proportion of impatient customers and the waiting
area capacity on the minimal pure threshold strategy equilibrium. We first analyze the
effect of the proportion of impatient customers on impatient customers’ equilibrium
strategies. In this regard, we aim to understand how θq (k, N ) varieswith the proportion
of impatient customers (Lemma 4).

Lemma 4 θq(k̃, N ) is monotonically decreasing in q for all k̃ ≥ 0.

Proposition 3 The minimal pure threshold strategy equilibrium is non-increasing in
the proportion of impatient customers.

Proof From Lemma 4, we know that θq1(k, N ) < θq2(k, N ) when q1 > q2. As ω(n)

is independent of q and monotonic, it follows that Nq1(k) ≤ Nq2(k) �⇒ bq1(k) ≤
bq2(k) for a given k. As a pure threshold strategy equilibrium is guaranteed to exist
(Proposition 1), let the equilibrium for q2 occur at k, i.e., bq2(k) = k. If multiple
equilibria exist for q2, consider the smallest pure threshold strategy equilibrium. Now,
as bq1(k) ≤ bq2(k), we can look at two cases:

Case 1. If bq1(k) = bq2(k), then the equilibrium for q1 also occurs at k.
Case 2. If bq1(k) < bq2(k), the equilibrium for q1 does not occur at k. From the

FTC behavior, we know that bq1(k) ≥ bq1(k − 1). Now, if bq1(k − 1) = k − 1, the
pure threshold strategy equilibrium for q1 occurs at k − 1. Otherwise, there is no
pure threshold strategy equilibrium at k − 1 for q1. Then, we can consider k − 2, k −
3, . . . , 
n�. In general, bq1(k−ϕ) is bounded below by 
n� for all ϕ ∈ {0, 1, 2, . . . , k}.
As bq1(k −ϕ+1) ≥ bq1(k −ϕ), we find that bq1(k −ϕ) = 
n� if bq1(k −ϕ+1) = 
n�.
Therefore, if there exists no pure threshold strategy equilibrium from k − 1 (i.e.,
bq1(k − 1) �= k − 1) to 
n� + 1 (i.e., bq1(
n� + 1) �= 
n� + 1), there will always exist
a pure threshold strategy equilibrium for q1 at 
n� (i.e., bq1(
n�) = 
n�). ��

At this stage, it is essential to recall the physical interpretation of θq(k, N ), which is
the likelihood ratio of a fast server to a slow server in an empty queue.Wealso know that
an impatient customer prefers a fast server over a slow server when the queue length
is 0. As the likelihood ratio is monotonically decreasing in the proportion of impatient
customers, it follows that the minimal symmetric pure threshold strategy equilibrium
is non-increasing in the proportion of impatient customers. From Proposition 3, we
can also infer that the probability of attaining higher queue lengths is low when the
proportion of impatient customers is high. Conversely, the probability of reaching
higher queue lengths is high when the proportion of patient customers is high. The
reason behind this behavior is that the minimal pure threshold strategy equilibrium
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Fig. 2 Minimal pure threshold strategy equilibrium versus proportion of impatient customers

and the joining rate are non-decreasing in the proportion of patient customers. We
provide an example to show that the minimal pure threshold strategy equilibrium
is non-increasing in the proportion of impatient customers where p = 0.25,� =
15, μ = 12, μ = 6, N = 15, V = 2, c = 2 (refer to Fig. 2).

We next study how the pure threshold strategy equilibrium varies with the waiting
area capacity.

Lemma 5 θq(k̃, N ) is monotonically increasing in N for all k̃ ≥ 0.

Proposition 4 The minimal pure threshold strategy equilibrium is non-decreasing in
the capacity of the waiting area.

Proof This proof is similar to the proof of Proposition 3 and is provided in the appendix.
��

As the likelihood ratio is monotonically increasing in the waiting area capacity,
it follows that the minimal symmetric pure threshold strategy equilibrium is non-
decreasing in the waiting area capacity. Proposition 4 is significant because the
equilibrium in the impatient customers’ game occurs at potentially higher queue
lengths when the waiting area capacity is high. We provide an example where
p = 0.25,� = 15, μ = 12, μ = 6, q = 0.5, V = 2, c = 2 (refer to Figure 3)
to illustrate that the minimal pure threshold strategy equilibrium is non-decreasing in
the waiting area capacity.

6 Numerical analysis of the system performance

We perform numerical analysis to analyze how the proportion of impatient customers
and the waiting area capacity influence the system performance. To understand the
system performance, we first define throughput for a server of type μ as T Pμ,ψ,q,N =
μ
(
1 − π0,μ,ψ,q

)
, where

(
1 − π0,μ,ψ,q

)
denotes the probability that the server is busy

123



Queueing Systems (2020) 96:329–356 343

Fig. 3 Minimal pure threshold strategy equilibrium versus capacity of the waiting area

[4,5]. As a pure threshold strategy equilibrium k always exists, throughput becomes

T Pμ,k,q,N = μ

⎛
⎜⎜⎜⎝1 − 1

∑k
j=0

(
�

μ

) j

+
(

�

μ

)k ∑N
j=k+1

(
(1 − q)�

μ

) j−k

⎞
⎟⎟⎟⎠ . (10)

As the server can be fast or slow, we consider the expected throughput E [T P] =
pT Pμ,k,q,N + (1 − p)T Pμ,k,q,N similar to Debo and Veeraraghavan [5].

As the waiting area capacity is finite, customers are blocked from entering the
system at N [24]. From Assumption 2, it is apparent that only the patient customers
are blocked from entering the system at N in our case. The blocking probability for a
server of type μ is then equal to

πN ,μ,k,q =

(
�

μ

)k (
(1 − q)�

μ

)N−k

∑k
j=0

(
�

μ

) j

+
(

�

μ

)k ∑N
j=k+1

(
(1 − q)�

μ

) j−k
. (11)

As only the patient customers are blocked from entering the system, we define the
blocking rate as B Rμ,k,q,N = �(1 − q)πN ,μ,k,q . We then consider the expected
blocking rate E [B R] = pB Rμ,k,q,N + (1 − p)B Rμ,k,q,N .

After setting μ = 12, μ = 6, V = 2, c = 2, we perform numerical analysis by
considering different values of p = {0.1, 0.9},� = {3, 9, 15}, q = {0.1, 0.5, 0.9}
and N = {15, 20}. In particular, we analyze how the expected throughput varies with
the proportion of impatient customers and the waiting area capacity. We also study
how the expected blocking rate varies with the proportion of impatient customers and
the waiting area capacity. When multiple pure threshold strategy equilibria exist, we
consider the minimal pure threshold strategy equilibrium. The results are presented in
Tables 3 and 4.
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Table 3 Variation of the system performance with �, N and q at p = 0.1

� N q Expected throughput Expected blocking rate

3 15 0.1 2.9961 1.43 × 10−5

3 15 0.5 2.9858 4.04 × 10−8

3 15 0.9 2.9798 4.15 × 10−15

3 20 0.1 2.9961 2.65 × 10−7

3 20 0.5 2.9858 3.95 × 10−11

3 20 0.9 2.9798 1.30 × 10−21

9 15 0.1 6.2778 1.9257

9 15 0.5 6.1795 0.0543

9 15 0.9 6.0972 1.04 × 10−8

9 20 0.1 6.2887 1.8999

9 20 0.5 6.1820 0.0125

9 20 0.9 6.0972 7.88 × 10−13

15 15 0.1 6.5882 6.9535

15 15 0.5 6.5561 1.5231

15 15 0.9 6.5121 2.58 × 10−6

15 20 0.1 6.5952 6.9305

15 20 0.5 6.5663 1.4153

15 20 0.9 6.5121 2.52 × 10−9

From the numerical analysis, we find that the expected throughput is monoton-
ically non-increasing in the proportion of impatient customers. This follows from
Proposition 3, which states that the minimal pure threshold strategy equilibrium is
non-increasing in the proportion of impatient customers. Further, an increase in the
proportion of impatient customers leads to a corresponding decrease in the proportion
of patient customerswho always join the queue. Since the joining rate ismonotonically
non-increasing in the proportion of impatient customers, the expected throughput is
monotonically non-increasing in the proportion of impatient customers. On the other
hand, the expected throughput is monotonically non-decreasing in the waiting area
capacity since it follows from Proposition 4 that the minimal pure threshold strategy
equilibrium is non-decreasing in the waiting area capacity.

We then find that the expected blocking rate is monotonically non-increasing in the
proportion of impatient customers. This behavior follows from Proposition 3. Further,
it is also due to the decrease in the proportion of patient customers who always join the
queue. While the expected blocking rate is monotonically decreasing in the waiting
area capacity in most cases, this is not always guaranteed. We provide an example to
show that the expected blocking rate is not always monotonically decreasing in the
waiting area capacity. Let p = 0.05,� = 22, μ = 20, μ = 2, q = 0.9, V = 10, c =
22. At N = 14, multiple pure threshold strategy equilibria occur at 1 and 2. Then, at
N = 15, multiple pure threshold strategy equilibria occur at 1, 2 and 3. Assume that
the equilibrium occurs at b(k) = k = 1 when N = 14 and at b(k) = k = 3 when
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Table 4 Variation of the system performance with �, N and q at p = 0.9

� N q Expected throughput Expected blocking rate

3 15 0.1 2.9995 1.60 × 10−6

3 15 0.5 2.9981 4.50 × 10−9

3 15 0.9 2.9973 4.61 × 10−16

3 20 0.1 2.9995 2.95 × 10−8

3 20 0.5 2.9981 4.39 × 10−12

3 20 0.9 2.9973 1.44 × 10−22

9 15 0.1 8.6413 0.2317

9 15 0.5 8.5232 0.0110

9 15 0.9 8.4796 4.99 × 10−8

9 20 0.1 8.6627 0.2145

9 20 0.5 8.5234 0.0024

9 20 0.9 8.4796 3.77 × 10−12

15 15 0.1 11.3079 2.6843

15 15 0.5 11.2471 0.3761

15 15 0.9 11.0852 1.94 × 10−5

15 20 0.1 11.3571 2.3711

15 20 0.5 11.2527 0.1803

15 20 0.9 11.0852 1.79 × 10−8

N = 15.We then observe that the expected blocking rate is equal to 0.2571 at N = 14
and 0.2664 at N = 15.

Comparing Tables 3 and 4 , we find that the expected throughput is monotonically
increasing in p. As the probability of the server being fast increases, it is intuitive that
the expected throughput will increase. The expected blocking rate is monotonically
decreasing in p because the customers are served fast with higher probability. It is
also intuitive to observe that the expected throughput and the expected blocking rate
are monotonically increasing in the arrival rate.

7 The case of infinite waiting area capacity

We now relax the assumption on finite waiting area capacity N , and consider the case
where the waiting area is of infinite capacity. We use the earlier notation with ∞ in
the superscript to reflect the infinite waiting area capacity. In this case, the stationary
probability of n customers in the system is given by
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π∞
n,μ,ψ,q

=

⎧⎪⎪⎨
⎪⎪⎩

π∞
0,μ,ψ,q

∏n−1
j=0

(
[ψ j q + (1 − q)]�

μ

)
, n ∈ {1, 2, . . . , nb},

π∞
0,μ,ψ,q

(
(1 − q)�

μ

)n−nb ∏nb−1
j=0

(
[ψ j q + (1 − q)]�

μ

)
, n ∈ {nb + 1, nb + 2, . . . ,∞},

(12)

where

π∞
0,μ,ψ,q =

⎡
⎣1 +

nb∑
n=1

n−1∏
j=0

(
[ψ j q + (1 − q)]�

μ

)

+
nb−1∏
j=0

(
[ψ j q + (1 − q)]�

μ

) ∞∑
n=nb+1

(
(1 − q)�

μ

)n−nb

⎤
⎦

−1

. (13)

With the additional stability condition �(1 − q) < μ, we can ensure that
∑∞

n=nb+1

(
(1 − q)�

μ

)n−nb

is finite. The necessary and sufficient condition for the

pure threshold strategy k to be in equilibrium is ω∞(n) ≤ p

1 − p
θ∞

q (k) for all

0 ≤ n ≤ k − 1 and ω∞(n) ≥ p

1 − p
θ∞

q (k) for all k ≤ n ≤ nb, where ω∞(n) =

(
μ

μ

)n
n + 1

μ
c − V

V − n + 1

μ
c
and θ∞

q (k) =
1 +∑k

j=1

(
�

μ

) j

+∑∞
j=k+1(1 − q) j−k

(
�

μ

) j

1 +∑k
j=1

(
�

μ

) j

+∑∞
j=k+1(1 − q) j−k

(
�

μ

) j
.

It follows that the existence of at least one pure threshold strategy equilibrium is guar-
anteed (Proposition 1). Propositions 2 and 3 also continue to hold.

8 Conclusion

In the analysis of an M/M/1/N non-customer-intensive service queue with strategic
impatient and non-strategic patient customers, we find that there exists at least one
pure threshold strategy equilibrium in the impatient customers’ game. With the notion
of FTC behavior, we also show the possibility of multiple threshold equilibria in pure
or mixed space. Moreover, we understand the effect of the proportion of impatient
customers and the waiting area capacity on the likelihood ratio of a fast server to a slow
server in an emptyqueue and theminimal pure threshold strategy equilibrium.Weshow
that the likelihood ratio is monotonically decreasing in the proportion of impatient
customers and monotonically increasing in the waiting area capacity. Further, we
show that the minimal pure threshold strategy equilibrium is non-increasing in the
proportion of impatient customers and non-decreasing in the waiting area capacity.
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The pure threshold strategy equilibrium is also guaranteed to exist when the waiting
area capacity is infinite. We then numerically analyze the effect of the proportion of
impatient customers and the waiting area capacity on the expected throughput and the
expected blocking rate.

Our equilibriumanalysis comeswith certain limitations.Wedidnot analyzewhether
a non-threshold strategy equilibrium exists in this setting. Investigating the existence
of non-threshold strategy equilibrium can generate further insights. Secondly, the
non-strategic nature of patient customers is not exactly applicable in certain service
environments. Instead, the patient customer could always join the queue and strate-
gically decide whether to revisit the service facility or not. This is especially true for
services that involve repeated visits by the customers. Studies have looked at revisit
decisions in service systems, albeit on a limited scale [17,26]. This notion of patient
customers making a strategic revisit decision is a promising extension to the analysis
of queueing games in services.

Appendix. Proofs

Proof of Lemma 1 In the birth–death process, solving the flow balance equations yields

πn,μ,ψ,q

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
[ψn−1q + (1 − q)]�

μ

)
πn−1,μ,ψ,q = · · ·

=
n−1∏
j=0

(
[ψ j q + (1 − q)]�

μ

)
π0,μ,ψ,q ,

n ∈ {1, 2, . . . , nb},

(
(1 − q)�

μ

)
πn−1,μ,ψ,q = · · ·

=
(

(1 − q)�

μ

)n−nb nb−1∏
j=0

(
[ψ j q + (1 − q)]�

μ

)
π0,μ,ψ,q ,

n ∈ {nb + 1, . . . , N }.

Also, using the property that
∑N

n=0 πn,μ,ψ,q = 1, we get

π0,μ,ψ,q =
⎡
⎣1 +

nb∑
n=1

n−1∏
j=0

(
[ψ j q + (1 − q)]�

μ

)

+
nb−1∏
j=0

(
[ψ j q + (1 − q)]�

μ

) N∑
n=nb+1

(
(1 − q)�

μ

)n−nb

⎤
⎦

−1
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and therefore,

πn,μ,ψ,q

=

⎧⎪⎪⎨
⎪⎪⎩

π0,μ,ψ,q
∏n−1

j=0

(
[ψ j q + (1 − q)]�

μ

)
, n ∈ {1, 2, . . . , nb},

π0,μ,ψ,q

(
(1 − q)�

μ

)n−nb ∏nb−1
j=0

(
[ψ j q + (1 − q)]�

μ

)
, n ∈ {nb + 1, nb + 2, . . . , N },

which completes the proof. ��
Proof of Lemma 2 For the pure threshold strategy to be in equilibrium, the customer’s
utility U (n, k, q) ≥ 0 for all 0 ≤ n ≤ k − 1 and U (n, k, q) ≤ 0 for all k ≤ n ≤ nb.
Hence, it follows that, for all 0 ≤ n ≤ k − 1,

pπn,μ,k,q

(
V − n + 1

μ
c

)
+ (1 − p)πn,μ,k,q

(
V − n + 1

μ
c

)
≥ 0.

Then,

πn,μ,k,q

(
n + 1

μ
c − V

)
≤ p

1 − p
πn,μ,k,q

(
V − n + 1

μ
c

)
.

Simplifying the expression further completes the proof. ��

Proof of Lemma 3 (i) Let ρ = �

μ
and ρ = �

μ
where ρ < ρ. We first write θq(k̃, N )

as

θq(k̃, N ) =
∑k̃

j=0 ρ j +∑N
j=k̃+1

(1 − q) j−k̃ρ j

∑k̃
j=0 ρ j +∑N

j=k̃+1
(1 − q) j−k̃ρ j

.

It is evident that θq(k̃, N ) is independent of k̃ at q = 0 and therefore,
dθq(k̃, N )

dk̃
= 0.

At q = 1, θq(k̃, N ) in our case is the inverse of 
(k̃) in Debo and Veeraraghavan [5].
Therefore, at q = 1, it is easy to see that θq(k̃, N ) is monotonically increasing in k̃

and
dθq(k̃, N )

dk̃
> 0.

We are now interested in the behavior of θq(k̃, N ) in k̃ when q ∈ (0, 1). Consider
two queue lengths z ∈ {1, 2, . . .} and z − 1 ∈ {0, 1, 2, . . .}. Our aim is to prove that
θq(z, N ) − θq(z − 1, N ) > 0. In order to prove that θq(z, N ) − θq(z − 1, N ) > 0, it
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suffices to show that Eq. (14) is satisfied:

⎛
⎝ z∑

j=0

ρ j +
N∑

j=z+1

(1 − q) j−zρ j

⎞
⎠
⎛
⎝z−1∑

j=0

ρ j +
N∑

j=z

(1 − q) j−z+1ρ j

⎞
⎠

−
⎛
⎝ z∑

j=0

ρ j +
N∑

j=z+1

(1 − q) j−zρ j

⎞
⎠
⎛
⎝z−1∑

j=0

ρ j +
N∑

j=z

(1 − q) j−z+1ρ j

⎞
⎠ > 0.

(14)

When we expand the terms in the aforementioned expression, we need to obtain
⎛
⎝ z∑

j=0

ρ j
z−1∑
j=0

ρ j −
z∑

j=0

ρ j
z−1∑
j=0

ρ j

⎞
⎠+

⎛
⎝ N∑

j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j −
z∑

j=0

ρ j
N∑

j=z

(1 − q) j−z+1ρ j

⎞
⎠

+
⎛
⎝ z∑

j=0

ρ j
N∑

j=z

(1 − q) j−z+1ρ j −
N∑

j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j

⎞
⎠

+
⎛
⎝ N∑

j=z+1

(1 − q) j−zρ j
N∑

j=z

(1 − q) j−z+1ρ j −
N∑

j=z+1

(1 − q) j−zρ j
N∑

j=z

(1 − q) j−z+1ρ j

⎞
⎠ > 0.

(15)

Consider
∑z

j=0 ρ j ∑z−1
j=0 ρ j −∑z

j=0 ρ j ∑z−1
j=0 ρ j from Eq. (15):

z∑
j=0

ρ j
z−1∑
j=0

ρ j −
z∑

j=0

ρ j
z−1∑
j=0

ρ j =
⎛
⎝ρz +

z−1∑
j=0

ρ j

⎞
⎠ z−1∑

j=0

ρ j −
⎛
⎝ρz +

z−1∑
j=0

ρ j

⎞
⎠ z−1∑

j=0

ρ j

= ρz
z−1∑
j=0

ρ j − ρz
z−1∑
j=0

ρ j

= ρzρz

⎛
⎝z−1∑

j=0

ρ j−z −
z−1∑
j=0

ρ j−z

⎞
⎠

= ρzρz

(
1

ρz − 1

ρz
+ 1

ρz−1 − 1

ρz−1 + · · · + 1

ρ
− 1

ρ

)
.

(16)

We know that ρ > ρ �⇒ 1

ρ
<

1

ρ
�⇒ 1

ρz
<

1

ρz for all z > 0. It follows that

z∑
j=0

ρ j
z−1∑
j=0

ρ j −
z∑

j=0

ρ j
z−1∑
j=0

ρ j > 0. (17)

Now consider
∑N

j=z+1(1−q) j−zρ j ∑z−1
j=0 ρ j −∑z

j=0 ρ j ∑N
j=z(1−q) j−z+1ρ j from

Eq. (15):

N∑
j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j −
z∑

j=0

ρ j
N∑

j=z

(1 − q) j−z+1ρ j =
N∑

j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j
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−
⎛
⎝z−1∑

j=0

ρ j + ρz

⎞
⎠
⎛
⎝(1 − q)ρz + (1 − q)

N∑
j=z+1

(1 − q) j−zρ j

⎞
⎠

=
N∑

j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j − (1 − q)ρz
z−1∑
j=0

ρ j − (1 − q)ρzρz

− (1 − q)

z−1∑
j=0

ρ j
N∑

j=z+1

(1 − q) j−zρ j − ρz(1 − q)

N∑
j=z+1

(1 − q) j−zρ j

= q
N∑

j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j − (1 − q)ρzρz

⎛
⎝z−1∑

j=0

ρ j−z + 1 +
N∑

j=z+1

(1 − q) j−zρ j−z

⎞
⎠ .

(18)

Consider
∑z

j=0 ρ j ∑N
j=z(1 − q) j−z+1ρ j − ∑N

j=z+1(1 − q) j−zρ j ∑z−1
j=0 ρ j from

Eq. (15):

z∑
j=0

ρ j
N∑

j=z

(1 − q) j−z+1ρ j −
N∑

j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j

=
⎛
⎝z−1∑

j=0

ρ j + ρz

⎞
⎠
⎛
⎝(1 − q)ρz + (1 − q)

N∑
j=z+1

(1 − q) j−zρ j

⎞
⎠

−
N∑

j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j = (1 − q)ρz
z−1∑
j=0

ρ j + (1 − q)ρzρz

+ (1 − q)

z−1∑
j=0

ρ j
N∑

j=z+1

(1 − q) j−zρ j + (1 − q)ρz
N∑

j=z+1

(1 − q) j−zρ j

−
N∑

j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j = (1 − q)ρzρz

⎛
⎝z−1∑

j=0

ρ j−z

+ 1 +
N∑

j=z+1

(1 − q) j−zρ j−z

⎞
⎠− q

N∑
j=z+1

(1 − q) j−zρ j
z−1∑
j=0

ρ j . (19)

Consider
∑N

j=z+1(1−q) j−zρ j ∑N
j=z(1−q) j−z+1ρ j−∑N

j=z+1(1−q) j−zρ j ∑N
j=z(1−

q) j−z+1ρ j from Eq. (15):

N∑
j=z+1

(1 − q) j−zρ j
N∑

j=z

(1 − q) j−z+1ρ j −
N∑

j=z+1

(1 − q) j−zρ j
N∑

j=z

(1 − q) j−z+1ρ j
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=
N∑

j=z+1

(1 − q) j−zρ j

⎛
⎝(1 − q)ρz +

N∑
j=z+1

(1 − q) j−z+1ρ j

⎞
⎠

−
N∑

j=z+1

(1 − q) j−zρ j

⎛
⎝(1 − q)ρz +

N∑
j=z+1

(1 − q) j−z+1ρ j

⎞
⎠

= (1 − q)ρz
N∑

j=z+1

(1 − q) j−zρ j − (1 − q)ρz
N∑

j=z+1

(1 − q) j−zρ j

+
N∑

j=z+1

(1 − q) j−zρ j
N∑

j=z+1

(1 − q) j−z+1ρ j

−
N∑

j=z+1

(1 − q) j−zρ j
N∑

j=z+1

(1 − q) j−z+1ρ j

= (1 − q)ρzρz

⎛
⎝ N∑

j=z+1

(1 − q) j−zρ j−z −
N∑

j=z+1

(1 − q) j−zρ j−z

⎞
⎠

+ (1 − q)

N∑
j=z+1

(1 − q) j−zρ j
N∑

j=z+1

(1 − q) j−zρ j

− (1 − q)

N∑
j=z+1

(1 − q) j−zρ j
N∑

j=z+1

(1 − q) j−zρ j

= (1 − q)ρzρz

⎛
⎝ N∑

j=z+1

(1 − q) j−zρ j−z −
N∑

j=z+1

(1 − q) j−zρ j−z

⎞
⎠ . (20)

It is apparent that the sum of (1 − q)ρzρz
(∑N

j=z+1(1 − q) j−zρ j−z

−∑N
j=z+1(1 − q) j−zρ j−z

)
from Eq. (20), −(1 − q)ρzρz ∑N

j=z+1(1 − q) j−zρ j−z

from Eq. (18) and (1 − q)ρzρz ∑N
j=z+1(1 − q) j−zρ j−z from Eq. (19) is equal to 0.

FromEqs. (16), (18) and (19),wefind the sumofρzρz
(∑z−1

j=0 ρ j−z −∑z−1
j=0 ρ j−z

)
,

−(1−q)ρzρz
(∑z−1

j=0 ρ j−z + 1
)
and (1−q)ρzρz

(∑z−1
j=0 ρ j−z + 1

)
, which is equal

to

ρzρz

⎛
⎝z−1∑

j=0

ρ j−z −
z−1∑
j=0

ρ j−z

⎞
⎠+ (1 − q)ρzρz

⎛
⎝z−1∑

j=0

ρ j−z −
z−1∑
j=0

ρ j−z

⎞
⎠

= ρzρz

⎛
⎝z−1∑

j=0

ρ j−z −
z−1∑
j=0

ρ j−z

⎞
⎠− (1 − q)ρzρz

⎛
⎝−

z−1∑
j=0

ρ j−z +
z−1∑
j=0

ρ j−z

⎞
⎠
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= qρzρz

⎛
⎝z−1∑

j=0

ρ j−z −
z−1∑
j=0

ρ j−z

⎞
⎠ > 0. (21)

From Eq. (17), it follows that qρzρz
(∑z−1

j=0 ρ j−z −∑z−1
j=0 ρ j−z

)
> 0 as q ∈ (0, 1).

Finally, consider the terms q
∑N

j=z+1(1 − q) j−zρ j ∑z−1
j=0 ρ j and −q

∑N
j=z+1(1 −

q) j−zρ j ∑z−1
j=0 ρ j from Eqs. (18) and (19), respectively. Here, we know that∑N

j=z+1(1 − q) j−zρ j >
∑N

j=z+1(1 − q) j−zρ j . Adding these equations to Eq. (21),
we obtain

⎛
⎝qρz + q

N∑
j=z+1

(1 − q) j−zρ j

⎞
⎠ z−1∑

j=0

ρ j −
⎛
⎝qρz + q

N∑
j=z+1

(1 − q) j−zρ j

⎞
⎠ z−1∑

j=0

ρ j > 0.

(22)

From Eq. (22), we conclude that θq(k̃, N ) is always monotonically increasing in k̃ if
q > 0.

(ii) We consider ω(ñ), which is written as

ω(ñ) =
(

μ

μ

)ñ
ñ + 1

μ
c − V

V − ñ + 1

μ
c

=
(

μ

μ

)ñ+1
ñ − n

n − ñ
.

As ñ ∈ [n, n) and μ > μ, it is straightforward to observe that

(
μ

μ

)ñ+1

is increasing

in ñ. Also, ñ−n is increasing in ñ and n− ñ is decreasing in ñ. We know thatω(ñ) ≥ 0
for ñ ∈ [n, n). As the function ω(ñ) is comprised of a product of two positive and
increasing functions of ñ divided by a decreasing function of ñ, we infer that ω(ñ) is
monotonically increasing in ñ. ��

Proof of Lemma 4 Let θq(k̃, N ) =
∑k̃

j=0 ρ j +∑N
j=k̃+1

(1 − q) j−k̃ρ j

∑k̃
j=0 ρ j +∑N

j=k̃+1
(1 − q) j−k̃ρ j

. We consider

q and q − ε and then aim to show that θq−ε(k̃, N ) − θq(k̃, N ) > 0.

We can denote
∑N

j=k̃+1
(1−q +ε) j−k̃ρ j = α

∑N
j=k̃+1

(1−q) j−k̃ρ j , where α > 1.

Then, in order to prove that θq−ε(k̃, N ) − θq(k̃, N ) > 0, it is enough to consider and
prove Eq. (23):
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⎛
⎝ k̃∑

j=0

ρ j + α

N∑
j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠
⎛
⎝ k̃∑

j=0

ρ j +
N∑

j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠

−
⎛
⎝ k̃∑

j=0

ρ j +
N∑

j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠
⎛
⎝ k̃∑

j=0

ρ j + α

N∑
j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠ > 0.

(23)

From Eq. (23), we can easily show that
∑k̃

j=0 ρ j ∑k̃
j=0 ρ j −∑k̃

j=0 ρ j ∑k̃
j=0 ρ j = 0

andα
∑N

j=k̃+1
(1−q) j−k̃ρ j ∑N

j=k̃+1
(1−q) j−k̃ρ j−α

∑N
j=k̃+1

(1−q) j−k̃ρ j ∑N
j=k̃+1

(1−
q) j−k̃ρ j = 0.The remaining terms satisfy the following conditions:

∑k̃
j=0 ρ j ∑N

j=k̃+1

(1 − q) j−k̃ρ j (α − 1) > 0 and
∑k̃

j=0 ρ j ∑N
j=k̃+1

(1 − q) j−k̃ρ j (1 − α) < 0.

To show that θq−ε(k̃, N ) − θq(k̃, N ) > 0, it is sufficient to show for all k̃ ∈
{0, 1, 2, . . .} that

k̃∑
j=0

ρ j
N∑

j=k̃+1

(1 − q) j−k̃ρ j −
k̃∑

j=0

ρ j
N∑

j=k̃+1

(1 − q) j−k̃ρ j > 0. (24)

We will use the principle of mathematical induction to prove this. At k̃ = 0, Eq. (24)

is simplified to
∑N

j=1(1 − q) j−k̃ρ j −∑N
j=1(1 − q) j−k̃ρ j > 0 (∵ ρ > ρ). We now

assume that Eq. (24) is satisfied for k̃ = z and show that it is true for k̃ = z + 1. At
k̃ = z + 1, Eq. (24) becomes

z+1∑
j=0

ρ j
N∑

j=z+2

(1 − q) j−z+1ρ j −
z+1∑
j=0

ρ j
N∑

j=z+2

(1 − q) j−z+1ρ j

= ρz(1 − q)

N∑
j=z+2

(1 − q) j−zρ j + (1 − q)

z∑
j=0

ρ j
N∑

j=z+2

(1 − q) j−zρ j

− ρz(1 − q)

N∑
j=z+2

(1 − q) j−zρ j − (1 − q)

z∑
j=0

ρ j
N∑

j=z+2

(1 − q) j−zρ j

= ρz(1 − q)

N∑
j=z+1

(1 − q) j−zρ j − (1 − q)2ρzρz+1

+ (1 − q)

z∑
j=0

ρ j
N∑

j=z+1

(1 − q) j−zρ j − (1 − q)2
z∑

j=0

ρ jρz+1
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− ρz(1 − q)

N∑
j=z+1

(1 − q) j−zρ j + ρz(1 − q)2ρz+1

− (1 − q)

z∑
j=0

ρ j
N∑

j=z+1

(1 − q) j−zρ j + (1 − q)2
z∑

j=0

ρ jρz+1. (25)

FromEq. (25), we infer that−(1−q)2ρzρz+1+ρz(1−q)2ρz+1 < 0. However, ρz(1−
q)
∑N

j=z+1(1− q) j−zρ j −ρz(1− q)
∑N

j=z+1(1− q) j−zρ j > |− (1− q)2ρzρz+1 +
ρz(1−q)2ρz+1| > 0. Similarly,−(1−q)2

∑z
j=0 ρ jρz+1+(1−q)2

∑z
j=0 ρ jρz+1 <

0. However, (1−q)
∑z

j=0 ρ j ∑N
j=z+1(1−q) j−zρ j − (1−q)

∑z
j=0 ρ j ∑N

j=z+1(1−
q) j−zρ j > |−(1−q)2

∑z
j=0 ρ jρz+1+(1−q)2

∑z
j=0 ρ jρz+1| > 0.We now observe

that Eq. (24) is satisfied for k̃ = z + 1. Hence, θq(k̃, N ) is monotonically decreasing
in q. ��

Proof of Lemma 5 Let θq(k̃, N ) =
∑k̃

j=0 ρ j +∑N
j=k̃+1

(1 − q) j−k̃ρ j

∑k̃
j=0 ρ j +∑N

j=k̃+1
(1 − q) j−k̃ρ j

. We aim to

show that θq(k̃, N + 1) − θq(k̃, N ) > 0 as presented in Equation (26):

⎛
⎝ k̃∑

j=0

ρ j +
N+1∑

j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠
⎛
⎝ k̃∑

j=0

ρ j +
N∑

j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠

−
⎛
⎝ k̃∑

j=0

ρ j +
N∑

j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠
⎛
⎝ k̃∑

j=0

ρ j +
N+1∑

j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠ > 0.

(26)

Simplifying and rearranging the terms,

⎛
⎝ k̃∑

j=0

ρ j +
N∑

j=k̃+1

(1 − q) j−k̃ρ j + (1 − q)N+1−k̃ρN+1

⎞
⎠
⎛
⎝ k̃∑

j=0

ρ j +
N∑

j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠

−
⎛
⎝ k̃∑

j=0

ρ j +
N∑

j=k̃+1

(1 − q) j−k̃ρ j

⎞
⎠
⎛
⎝ k̃∑

j=0

ρ j +
N∑

j=k̃+1

(1 − q) j−k̃ρ j + (1 − q)N+1−k̃ρN+1

⎞
⎠

= (1 − q)N+1−k̃ρN+1
k̃∑

j=0

ρ j + (1 − q)N+1−k̃ρN+1
N∑

j=k̃+1

(1 − q) j−k̃ρ j

− (1 − q)N+1−k̃ρN+1
k̃∑

j=0

ρ j − (1 − q)N+1−k̃ρN+1
N∑

j=k̃+1

(1 − q) j−k̃ρ j
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= (1 − q)N+1−k̃ρN+1ρN+1

⎛
⎝ k̃∑

j=0

ρ j−N−1 −
k̃∑

j=0

ρ j−N−1

⎞
⎠

+ (1 − q)N+1−2k̃ρN+1ρN+1

⎛
⎝ k̃∑

j=0

((1 − q)ρ) j−N−1 −
k̃∑

j=0

(
(1 − q)ρ

) j−N−1

⎞
⎠ .

(27)

We know that ρ > ρ �⇒ 1

ρ
<

1

ρ
�⇒ 1

ρz
<

1

ρz for all z > 0 and k̃ <

N +1. It follows that (1−q)N+1−k̃ρN+1ρN+1
(∑k̃

j=0 ρ j−N−1 −∑k̃
j=0 ρ j−N−1

)
+

(1−q)N+1−2k̃ρN+1ρN+1
(∑k̃

j=0 ((1 − q)ρ) j−N−1 −∑k̃
j=0

(
(1 − q)ρ

) j−N−1
)

>

0. Hence, θq(k̃, N ) is monotonically increasing in N . ��
Proof of Proposition 4 From Lemma 5, we know that θq(k, N 1) > θq(k, N 2) when
N 1 > N 2. It follows that bq(k, N 1) ≥ bq(k, N 2) for a given k. As a pure threshold
strategy equilibrium is guaranteed to exist (Proposition 1), let the equilibrium for N 2
occur at k, i.e., bq(k, N 2) = k. If multiple equilibria exist for N 2, consider the highest
pure threshold strategy equilibrium. Now, as bq(k, N 1) ≥ bq(k, N 2), we can look at
two cases:

Case 1. If bq(k, N 1) = bq(k, N 2), then the equilibrium for N 1 also occurs at k.
Case 2. If bq(k, N 1) > bq(k, N 2), the equilibrium for N 1 does not occur at k.

From FTC behavior, we know that bq(k + 1, N 1) ≥ bq(k, N 1). Now, if bq(k +
1, N 1) = k + 1, the pure threshold strategy equilibrium for N 1 occurs at k + 1.
Otherwise, there is no pure threshold strategy equilibrium at k + 1 for N 1. Then, we
can consider k + 2, k + 3, . . . , 
n�. In general, bq(k + ϕ, N 1) is bounded above by

n� as limn→n ω(n) = +∞. As bq(k + ϕ + 1, N 1) ≥ bq(k + ϕ, N 1), we find that
bq(k + ϕ + 1, N 1) = 
n� if bq(k + ϕ, N 1) = 
n�. Therefore, if there exists no pure
threshold strategy equilibrium from k + 1 (i.e., bq(k + 1, N 1) �= k + 1) to 
n� − 1
(i.e., bq(
n� − 1, N 1) �= 
n� − 1), there will always exist a pure threshold strategy
equilibrium for N 1 at 
n� (i.e., bq(
n�, N 1) = 
n�). ��
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