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Abstract
Stochastic networks with complex structures are key modelling tools for many impor-
tant applications. In this paper, we consider a specific type of network: retrial queueing
systems with priority. This type of queueing system is important in various applica-
tions, including telecommunication and computer management networks with big
data. The system considered here receives two types of customers, of which Type-1
customers (in a queue) have non-pre-emptive priority to receive service over Type-2
customers (in an orbit). For this type of system, we propose an exhaustive version of
the stochastic decomposition approach, which is one of the main contributions made
in this paper, for the purpose of studying asymptotic behaviour of the tail probability
of the number of customers in the steady state for this retrial queue with two types of
customers. Under the assumption that the service times of Type-1 customers have a
regularly varying tail and the service times of Type-2 customers have a tail lighter than
Type-1 customers, we obtain tail asymptotic properties for the numbers of customers
in the queue and in the orbit, respectively, conditioning on the server’s status, in terms
of the exhaustive stochastic decomposition results. These tail asymptotic results are
new, which is another main contribution made in this paper. Tail asymptotic proper-
ties are very important, not only on their own merits but also often as key tools for
approximating performance metrics and constructing numerical algorithms.
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1 Introduction

Rapid advances in the fields of computer and communication technologies, with fast
increasing internet, big data and smartphone applications, have significantly changed
every aspect of our life. These accelerated developments have continuously raised
new challenges in modelling, performance analysis, system control and optimization,
such as those for queueing systems, including priority retrial queues (see, for exam-
ple, Sutton and Jordan [33], Dimitriou [9], Phung-Duc [32], Walraevens, Claeys and
Phung-Duc [34] among others). As a consequence of these challenges, the resulting
stochastic models become progressively more complex, due to, for example, depen-
dence structures, dimensions and the size of the data involved. For such networks,
non-transformation exact solutions are hardly seen, whereas asymptotic behaviours
and properties are among the key candidates that we search for.

In this paper, we consider a single-server retrial queue with two types of customers
(Type-1 and Type-2), denoted byM1, M2/G1,G2/1. Thismodel was studied by Falin,
Artalejo and Martin in [14]. In this model, customers arrive according to a Poisson
process at rate λ > 0 and with probabilities q ∈ (0, 1) and p = 1 − q to be Type-
1 and Type-2, respectively. In other words, Type-1 and Type-2 customers form two
independent Poisson arrival processes with rates λ1 ≡ λq and λ2 ≡ λp, respectively.
If the server is idle upon the arrival of a Type-1 or Type-2 customer, the customer
receives the service immediately and leaves the system after the completion of the
service. If an arriving Type-1 customer finds the server busy, it joins the priority queue
with an infinite waiting capacity. If a Type-2 customer finds the server busy upon
arrival, it enters the orbit and makes retrial attempts later for receiving a service. Each
of the Type-2 customers in the orbit repeatedly tries, independently, to receive service
according to a Poisson process with a common retrial rate μ until it finds the server
idle, and receives its service immediately. Type-1 customers have non-preemptive
priority to receive service over Type-2 customers. Thus, as long as the priority queue
is not empty, all retrials by Type-2 customers from the orbit are blocked (or failed),
and all blocked Type-2 customers return to the orbit with probability one. Each Type-i
customer, i = 1, 2, has service time Tβi , whose common probability distribution is
Fβi (x) with Fβi (0) = 0, and all service times are independent, and are assumed to
be independent of the arrivals. Tβi is assumed to have a finite mean βi,1, i = 1, 2,
where the second subscript is used to indicate the first moment of the service time. The
Laplace–Stieltjes transforms (LST) of the distribution function Fβi (x) is denoted by
βi (s), i = 1, 2. Let ρ1 = λ1β1,1, ρ2 = λ2β2,1 and ρ = ρ1 + ρ2 = λ(qβ1,1 + pβ2,1).
It follows from [14] that this system is stable if and only if ρ < 1. We assume that
ρ < 1 throughout this paper. For the service times Tβi of Type-i customers, i = 1, 2,
we make the following assumptions:

A1. Tβ1 has tail probability P{Tβ1 > t} ∼ t−a1L(t) as t → ∞, where a1 > 1;
A2. Tβ2 has tail probability P{Tβ2 > t} ∼ e−r t t−a2L(t) as t → ∞, where −∞ <

a2 < ∞ if r > 0, or a2 > a1 if r = 0.
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Here, L(t) represents a slowly varying function at ∞ (see Definition A.1).
There are many references in the literature for asymptotic analysis for queues

without retrials, for example, Asmussen, Klüppelberg and Sigman [3], Boxma and
Denisov [6], and more references can be found in two excellent surveys: Borst et
al. [5] and Boxma and Zwart [7]. Concerning retrial queues, we refer readers to the
following books or review articles for an updated status of studies and for more ref-
erences therein: Falin [13], Artalejo and Gómez-Corral [2], Kim and Kim [21] and
Phung-Duc [32].We alsomention here the following two references, which are closely
related to the study in this paper: Kim, Kim and Ko [23] and Kim, Kim and Kim [22].
Priority retrial queueing systems are a type of very important retrial queues, which find
many applications, for example, in computer network management and telecommu-
nication systems. In such systems, there are usually two or more types of customers.
A survey of studies on single-server retrial queues with priority calls (or customers),
published in 1999, can be found in Choi and Chang [8]. Since then, more publications
on priority retrial queues became available, such as Artalejo, Dudin and Klimenok [1],
Lee [24], Gómea-Corral [19], Wang [35], Dimitriou [9], Wu and Lian [36], Wu,Wang
and Liu [37], Gao [18], Dudin et al. [11], Walraevens, Claeys and Phung-Duc [34]
(who, assuming Fβ1(x) = Fβ2(x), considered special situations of the model studied
in this paper using a different method), among possible others. Readers may refer to
[9,37] for more detailed reviews of the above-mentioned studies.

Different from the above-mentioned studies, our focus in this paper is on the
heavy-tailed behaviour of stationary (conditional) probabilities. Specifically, under
the assumptions that the tail probability of the service time for Type-1 customers is
regularly varying and the tail probability of the service time for Type-2 customers is
lighter than that for Type-1 customers (see Assumptions A1 and A2), we characterize
the tail asymptotic behaviour for the following key system performance metrics:

PO-0 Conditional tail probability of the number of customers in the orbit given that
the server is idle;

PO-1 Conditional tail probability of the number of customers in the orbit given that
the server is serving a Type-1 customer;

PO-2 Conditional tail probability of the number of customers in the orbit given that
the server is serving a Type-2 customer;

PQ-1 Conditional tail probability of the number of customers in the queue given that
the server is serving a Type-1 customer;

PQ-2 Conditional tail probability of the number of customers in the queue given that
the server is serving a Type-2 customer.

We did not include the conditional probability of the number of customers in the queue
given that the server is idle, since the queue is obviously empty when the server is idle.
The tail asymptotic behaviour is one of the key subjects in applied probability. It is
also very useful in approximations and computations, such as providing performance
metrics and developing numerical algorithms (see Liu and Zhao [26] for some of its
applications).

The main contributions made in this paper are twofold:
(1) The proposal of an exhaustive stochastic decomposition approach for com-

plicated probability generating functions (PGFs), or transformations in general, of a
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probability distribution. This approach decomposes a complicated PGF into a product
of PGFs, or equivalently decomposes a r.v. into a sum of independent r.v.s, called inde-
pendent components, to which detailed probabilistic interpretations are provided. We
refer to this extended version of stochastic decompositions as the exhaustive stochastic
decomposition approach. This exhaustive version of the stochastic decomposition is
an extension of the idea presented in the literature; for example, see Liu, Wang and
Zhao [29]. This paper is one of the sister papers (see Liu, Min and Zhao [25] and
Liu and Zhao [27,28]) demonstrating the usefulness of the exhaustive decomposition
approach to different types of queueing models.

Stochastic decomposition has been widely used in queueing system analysis. For
example, it is well known that for the M/G/1 retrial queue, one can stochastically
decompose the total number of customers in the system as the independent sum of
the total number of customers in the corresponding standard M/G/1 queueing sys-
tem (without retrials) and another random variable (r.v.). The exhaustive version of
the stochastic decomposition approach is also to decompose a r.v. into independent
components, but in a more systematic way, applied to more complicated PGFs (or
transformations), such that detailed probabilistic interpretations for each decomposed
component can be provided. We expect that this extended version of decompositions
can be applied to other queueing models and used in other applied probability areas.

(2) Tail asymptotic results for the conditional probabilities, specified in PO-i
(i = 0, 1, 2) and PQ-i (i = 1, 2) for the M1, M2/G1,G2/1 priority retrial queue-
ing model. These tail asymptotic results are new. Tail probability behaviour is an
important topic, which was not touched in [14]. The stochastic decompositions of
these generating functions allow us to analyse tail asymptotic behaviour for each
independent component in the decompositions, which lead to our final tail asymp-
totic results, stated in detail in the following theorem. For the purpose of stating this
theorem, let Rque be the number of Type-1 customers in the queue, excluding the
possible one in the service, let Rorb be the number of Type-2 customers in the orbit,
and let Iser = 0, 1, or 2 according to the status of the server: idle, busy with a Type-1
customer, or busy with a Type-2 customer, respectively. To stay consistent with the
literature notation, let R0 be a r.v.whose distribution coincides with the conditional
distribution of Rorb given that Iser = 0, or

R0
d= Rorb | Iser = 0,

where the symbol “
d=” stands for equality in probability distribution. Similarly, for

i = 1, 2, we define the two-dimensional r.v. (Ri1, Ri2) as

(Ri1, Ri2)
d= (Rque, Rorb) | Iser = i .

We can now state the main results on tail asymptotics.

Theorem 1 For the M1, M2/G1,G2/1 priority retrial queueing model, studied in
[14], under assumptions A1 and A2, we have, as j → ∞,
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(1)

P{Rorb > j |Iser = 0} = P{R0 > j} ∼ λ1λ
a1
2

a1μ(1 − ρ)2(1 − ρ1)a1−1 · j−a1L( j).

(1.1)

(2)

P{Rque > j |Iser = 1} = P{R11 > j} ∼ λ
a1
1

ρ1(1 − ρ1)(a1 − 1)
· j−a1+1L( j); (1.2)

P{Rorb > j |Iser = 1} = P{R12 > j} ∼
[

ρ2

1 − ρ
+ 1

ρ1

]
· λ1λ

a1−1
2

(a1 − 1)(1 − ρ1)a1
· j−a1+1L( j);

(1.3)

P{Rque > j |Iser = 2} = P{R21 > j} ∼
⎧⎨
⎩

λ2λ
a2−1
1

ρ2(a2−1) · j−a2+1L( j), if r = 0,

λ2λ1(λ1+r)a2−1

ρ2r
·
(

λ1
λ1+r

) j
j−a2 L( j), if r > 0;

(1.4)

P{Rorb > j |Iser = 2} = P{R22 > j} ∼ λ1λ
a1−1
2

(1 − ρ)(a1 − 1)(1 − ρ1)a1−1 · j−a1+1L( j). (1.5)

Recalling the assumptions made on the service times, we notice that all above condi-
tional probabilities are also regularly varying with a dominant influence by the service
time distribution for Type-1 customers, except for the case r > 0, for which the tail is
dominated by the service time for Type-2 customers.

To guide readers to detailed analysis for our main contributions, we provide a step
by step presentation in the following sections:

Step 1: Preliminaries. In this step, we present three PGFs, all obtained from [14], one
for the tail behaviour in Theorem1(1), and the other two for Theorem1(2).We
rewrite these generating functions in a preferable form for making decompo-
sitions. We also provide probabilistic interpretations for the functions g and
h contained in these three PGFs.

Step 2: Stochastic decompositions. In this step, in terms of the exhaustive stochastic
decomposition approach, we provide stochastic decompositions for the gen-
erating functions (or part of the generating function for the case of the r.v. R0)
provided in Step 1. Equivalently, we show that each of the these functions can
be viewed as the generating function for the sum of some well-constructed
independent r.v.s, each with a detailed probabilistic interpretation.

Step 3: Tail asymptotics. In this step, we first specify tail asymptotic properties for
each decomposed component obtained in Step 2 and then identify the domi-
nant contributions to derive the results stated in Theorem 1.

The rest of the paper is organized as follows: Sect. 2 is our Step 1, in which we
express the probability generating functions of interest, obtained in [14], in the forms
in favour of making stochastic decompositions, which are our starting point. Section 3
is devoted to Step 2, in which the proposed exhaustive stochastic decompositions are
performed on the three key generating functions. Our Step 3, presented in Sect. 4,
is to derive the tail asymptotic properties, based on the results obtained in previous
sections. Most of the detailed analysis is organized in Appendices B and C following
the concluding section, Sect. 5.
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2 Preliminaries—step 1

For theM1, M2/G1,G2/1 priority retrial queueingmodel, according to the definitions
of the r.v.s R0 and (Ri1, Ri2) for i = 1, 2 (given in the Introduction), we have that

R0 has the PGF R0(z2)
def= E(zR0

2 ) = E(zRorb
2 |Iser = 0), and (Ri1, Ri2) has the

PGF Ri (z1, z2)
def= E(zRi11 zRi22 ) = E(z

Rque
1 zRorb

2 |Iser = i) for i = 1, 2. These three
generating functions are key probability quantities of the queueing model. In [14], the
authors obtained expressions for R0(z2), R1(z1, z2) and R2(z1, z2), together with the
facts that P{Iser = 0} = 1 − ρ, P{Iser = 1} = ρ1 and P{Iser = 2} = ρ2.

In this section,wefirst rewrite these three generating functions into forms favourable
for making stochastic decompositions and also provide probabilistic interpretations
for two important functions h and g (in Sects. 2.1.1 and 2.1.2, respectively) contained
in the generating functions.

2.1 Generating function R0(z2)

First, we denote

β(s) =qβ1(s) + pβ2(s), (2.1)

g(z2) =qh(z2) + pz2, (2.2)

where the function h(z2) is uniquely determined by the equation

h(z2) = β1(λ − λ1h(z2) − λ2z2). (2.3)

Then, the PGF R0(z2), obtained in [14], can be rewritten as

R0(z2) = exp

{
−ψ

∫ 1

z2
K (u)du

}
, (2.4)

where

ψ =ρλ2/(μ(1 − ρ)), (2.5)

K (u) =Ka(u) · Kb(u) · Kc(u), (2.6)

with

Ka(u) =1 − ρ1

p
· 1 − g(u)

1 − u
, (2.7)

Kb(u) = 1

ρ
· 1 − β(λ − λg(u))

1 − g(u)
, (2.8)

Kc(u) = 1 − ρ

1 − ρ1
· 1 − u

β2(λ − λg(u)) − u
. (2.9)
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R0(z2) will be used for us to obtain the tail asymptotic properties in Theorem 1(1).
In Step 2, we will show that all Ka(u), Kb(u) and Kc(u) can be viewed as the PGFs
of three independent r.v.s., with detailed probabilistic interpretations, and therefore
K (u) is also a PGF.

It is worth mentioning that (i) β(s) in (2.1) is the LST of the mixed distribution

Fβ(x)
def= qFβ1(x) + pFβ2(x); and (ii) both h(z2) in (2.3) and g(z2) in (2.2) can be

regarded as the PGFs of r.v.s, which will be verified in the next subsections.

2.1.1 Probabilistic interpretations of h(z2)

h(z2) is a function in the expression of function g(z2) (see (2.2)), which appears in
all Ka(u), Kb(u) and Kc(u) (see (2.7), (2.8) and (2.9)). Therefore, as will be seen,
the probabilistic interpretations of both h(z2) and g(z2) are crucial for the stochastic
decomposition of K (z2).

In this section, we show that h(z2) is closely related to the busy period Tα of the
standard M/G/1 queue with arrival rate λ1 and the service time Tβ1 . By Fα(x), we
denote the probability distribution function of Tα and by α(s) the LST of Fα(x). The
following are well-known results about this standard M/G/1 queue:

α(s) = β1(s + λ1 − λ1α(s)), (2.10)

α1
def= E(Tα) = β1,1/(1 − ρ1). (2.11)

Throughout this paper, we use the notation Nb(t) to represent the number of Poisson
arrivals with rate b within the time interval (0, t]. Now, let us consider Nλ2(Tα), the
number of arrivals of a Poisson process at rate λ2 within an independent random time
Tα . The PGF of Nλ2(Tα) is easily obtained as follows:

E
(
z
Nλ2 (Tα)

2

)
=

∫ ∞

0

∞∑
n=0

zn2
(λ2x)n

n! e−λ2xdFα(x) = α(λ2 − λ2z2). (2.12)

It then follows from (2.10) that

α(λ2 − λ2z2) = β1(λ − λ1α(λ2 − λ2z2) − λ2z2). (2.13)

By comparing (2.3) and (2.13) and noticing the uniqueness of h(z2), we immediately
have

h(z2) = α(λ2 − λ2z2), (2.14)

which, together with (2.12), implies that h(z2) = E(z
Nλ2 (Tα)

2 ) is the PGF of the non-
negative integer-valued r.v. Nλ2(Tα).

2.1.2 Probabilistic interpretations of g(z2)

For g(z2) defined in (2.2), we show that it is also the PGF of a non-negative integer-

valued r.v., denoted by Xg , i.e., g(z2) = E(z
Xg
2 ). In fact, it follows from (2.2) that
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Xg
d=

{
1, with probability p,
Nλ2(Tα), with probability q.

(2.15)

Also, it is easy to obtain that E(Nλ2(Tα)) = λ2β1,1/(1 − ρ1) and

E(Xg) = p + qλ2β1,1/(1 − ρ1) = p/(1 − ρ1). (2.16)

2.2 Generating functions Ri(z1, z2) for i = 1, 2

In this section, we rewrite the generating functions Ri (z1, z2), i = 1, 2, obtained in
[14], in a different form preferred for stochastic decompositions.

To this direction, for i = 1, 2, let F (e)
βi

(x) be the so-called equilibriumdistribution of

the service distributions Fβi (x), which is defined as F
(e)
βi

(x)
def= β−1

i,1

∫ x
0 (1−Fβi (t))dt .

The LST of F (e)
βi

(x) can be written as β
(e)
i (s) = (1− βi (s))/(βi,1s). Let T

(e)
β be a r.v.

having the distribution F (e)
β (x).

Similarly, let F (e)
β (x)

def= (qβ1,1 + pβ2,1)
−1

∫ x
0 (1 − Fβ(t))dt be the equilibrium

distribution of the mixed distribution Fβ(t) (see the last paragraph in Sect. 2.1) of the

service times. The LST of F (e)
β (x) can be written as β(e)(s) = (1 − β(s))/((qβ1,1 +

pβ2,1)s). For i = 1, 2, let T (e)
βi

be a r.v. having the distribution F (e)
βi

(x). Moreover, let

F (e)
α (x) = α−1

1

∫ x
0 (1 − Fα(t))dt be the equilibrium distribution of Fα(x), which is

the busy period function defined in Sect. 2.1.1. The LST of F (e)
α (x) can be written as

α(e)(s) = (1 − α(s))/(α1s). Let T
(e)
α be a r.v., having the distribution F (e)

α (x). This
notation is introduced here for convenience, but will not be used until Sect. 3.

Then, the PGFs R1(z1, z2) and R2(z1, z2), obtained in [14], can be rewritten as

R1(z1, z2) =M2(z1, z2) · M1(z1, z2) · Sβ1(z1, z2) · R0(z2), (2.17)

R2(z1, z2) =Sβ2(z1, z2) · Ka(z2) · Kc(z2) · R0(z2), (2.18)

where Ka(z2), Kc(z2) and R0(z2) are given in (2.7), (2.9) and (2.4), respectively, and

M1(z1, z2) =(1 − ρ1) · h(z2) − z1
β1(λ − λ1z1 − λ2z2) − z1

, (2.19)

M2(z1, z2) = 1 − ρ

λ1(1 − ρ1)

[
(λ − λg(z2)) (β2(λ − λg(z2)) − β2(λ − λ1z1 − λ2z2))

(β2(λ − λg(z2)) − z2)(h(z2) − z1)
+ λ1

]
,

(2.20)

Sβi (z1, z2) = 1

βi,1
· 1 − βi (λ − λ1z1 − λ2z2)

λ − λ1z1 − λ2z2
= β

(e)
i (λ − λqz1 − λpz2), i = 1, 2. (2.21)

R1(z1, z2) and R2(z1, z2)will be used for us to obtain the tail asymptotic properties
in Theorem1(2). In Step 2,wewill show that all factors in the expressions of R1(z1, z2)
and R2(z1, z2) can be viewed as the PGFs of some r.v.s., with detailed probabilistic
interpretations.
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3 Stochastic decompositions—step 2

In this section, we show that all three factors Ka(u), Kb(u) and Kc(u) in the expression
of K (u) [see (2.6)] are PGFs. Therefore, the integrand function K (u) in the PGF
R0(z2) is also a PGF. Furthermore, we show that all factors in the PGFs R1(z1, z2)
and R2(z1, z2) [see (2.17) and (2.18)] are PGFs. These decomposition results are
needed in Step 3 for deriving the tail asymptotic results stated in Theorem 1.

3.1 Stochastic decomposition of K(u)

Denote
ϑ = ρ2/(1 − ρ1) < 1, (3.1)

where the inequality follows from the stability condition ρ = ρ1 + ρ2 < 1.
The decomposition result for K (u) can be stated in the following proposition.

Proposition 3.1 All factors Ka(u), Kb(u) and Kc(u) in the expression of K (u), given
in (2.6), are PGFs. Therefore, K (u) itself is also a PGF. Furthermore, if K is a r.v.
having the PGF K (u), and Ka, Kb and Kc are independent r.v.s having the PGFs
Ka(u), Kb(u) and Kc(u), respectively, then K can be stochastically decomposed as

K
d= Ka + Kb + Kc, (3.2)

where Ka, Kb and Kc can be specifically constructed by

Ka
d=

{
0, with probability 1 − ρ1,

Nλ2(T
(e)
α ), with probability ρ1; (3.3)

Kb
d= Nλ,Xg (T

(e)
β ); (3.4)

and

Kc
d=

{
0, with probability 1 − ϑ,∑J

i=1 X
(i)
c , with probability ϑ.

(3.5)

In the above expressions, ϑ is defined by (3.1); Nλ2(T
(e)
α ) is the number of arrivals

for the Poisson process with rate λ2 within the time interval (0, T (e)
α ]; Nλ,Xg (T

(e)
β )

represents the number of the batched Poisson arrivals, with rate λ and batch size
Xg, within the time interval (0, T (e)

β ], where Xg has the PGF g(z) given in (2.2);

and {X (i)
c }∞i=1 is a sequence of i.i.d. non-negative integer-valued r.v.s., each with the

same PGF Ka(z) ·β(e)
2 (λ−λg(z)), namely, X (i)

c
d= Ka + Nλ,Xg (T

(e)
β2

), where the two

components are assumed to be independent, and P(J = i) = (1 − ϑ)ϑ i−1, i ≥ 1,
independent of {X (i)

c }∞i=1.

We defer the proof of Proposition 3.1 to Appendix B.
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3.2 Stochastic decompositions of R1(z1, z2) and R2(z1, z2)

It was proved in [14] and in Sect. 3.1, respectively, that R0(z2), Ka(z2) and Kc(z2)
are PGFs. In this section, we show that all four remaining factors Mi (z1, z2) and
Sβi (z1, z2), for i = 1, 2, in the expressions of R1(z1, z2) and R2(z1, z2) (given in
(2.17) and (2.18), respectively) are alsoPGFs.Compared to the effort for the exhaustive
stochastic decomposition for K (z2), it is more demanding here to get decompositions
for R1(z1, z2) and R2(z1, z2).

For stating the decomposition result, we need some preparations. First, for the
probabilistic interpretations of the functions Sβi (z1, z2), i = 1, 2, we introduce the
concept of splitting.

Definition 3.1 Let N be a non-negative integer-valued r.v., and let {Xk}∞k=1 be a
sequence of i.i.d. Bernoulli r.v.s, which is independent of N , having the common
0-1 distribution P{Xk = 1} = c and P{Xk = 0} = 1 − c with 0 < c < 1. The two-
dimensional r.v. (

∑N
k=1 Xk, N −∑N

k=1 Xk), where
∑0

1 ≡ 0, is called an independent
(c, 1 − c)-splitting of N , denoted by split(N ; c, 1 − c).

For probabilistic interpretations of Mi (z1, z2), i = 1, 2, we introduce the following
r.v.s. Let {(Yn,1,Yn,2)}∞n=1 be a sequence of independent two-dimensional r.v.s, each
with the common PGF qz1+ pz2, and let {Zm}∞m=1 be a sequence of independent r.v.s,
each with the common PGF g(z2). Assume that these two sequences are independent.
In terms of the above two sequences, we construct, for k ≥ 1,

(Dk,1, Dk,2)
d=

i−1∑
n=1

(Yn,1, Yn,2) +
k−i∑
m=1

(0, Zm), with probability 1/k, i = 1, 2, . . . , k, (3.6)

and then, in terms of (Dk,1, Dk,2), we construct

(Hβ1,1, Hβ1,2)
d= (Dk,1, Dk,2) with probability (q/ρ1)kbβ1,k, k ≥ 1, (3.7)

(Hβ2,1, Hβ2,2)
d= (Dk,1, Dk,2) with probability (p/ρ2)kbβ2,k, k ≥ 1, (3.8)

where

bβ1,k =
∫ ∞

0

(λt)k

k! e−λtdFβ1(t), k ≥ 1, (3.9)

and

bβ2,k =
∫ ∞

0

(λt)k

k! e−λtdFβ2(t), k ≥ 1. (3.10)

Here, it is worthwhile tomention that (q/ρ1)
∑∞

k=1 kbβ1,k = 1 (see (B.13) for a proof),
and (p/ρ2)

∑∞
k=1 kbβ2,k = 1 (its proof is similar).

We can now state the decomposition results for R1(z1, z2) and R2(z1, z2).

Proposition 3.2 Besides R0(z2), Ka(z2) and Kc(z2), all the other four factors
Mi (z1, z2) and Sβi (z1, z2), i = 1, 2, in the expressions of R1(z1, z2) and R2(z1, z2),
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given in (2.17) and (2.18), respectively, are also PGFs. Furthermore, for i = 1, 2,
if (Mi1, Mi2) and (Sβi ,1, Sβi ,2) are two-dimensional r.v.s having the PGF Mi (z1, z2)
and Sβi (z1, z2), respectively, then the r.v.s (Ri1, Ri2) for i = 1, 2 can be stochastically
decomposed as

(R11, R12)
d= (M21, M22) + (M11, M12) + (Sβ1,1, Sβ1,2) + (0, R0), (3.11)

(R21, R22)
d= (Sβ1,1, Sβ1,2) + (0, Ka) + (0, Kc) + (0, R0), (3.12)

where, for i = 1, 2,

(Sβi ,1, Sβi ,2)
d= split(Nλ(T

(e)
βi

); q, p) (3.13)

with Nλ(T
(e)
βi

) being the number of Poisson arrivals with rate λwithin the time interval

(0, T (e)
βi

];

(M11, M12)
d=

{
0, with probability 1 − ρ1,∑J

i=1(H
(i)
β1,1

, H (i)
β1,2

), with probability ρ1,
(3.14)

where J is independent of (H (i)
β1,1

, H (i)
β1,2

) (i ≥ 1), having the distribution P(J = i) =
(1 − ρ1)ρ

i−1
1 , i ≥ 1;

(M21, M22)
d=

{
0, with probability 1 − ϑ,

(Hβ2,1, Hβ2,2) + (0, Ka) + (0, Kc), with probability ϑ;
(3.15)

and the probabilistic structures for Ka, Kc and R0 have been provided in previous
sections.

We defer the proof of Proposition 3.2 to Appendix B.

4 Tail asymptotics—step 3

In this section, based on the stochastic decomposition results obtained in the previous
section, we prove the tail asymptotic results presented in Theorem 1. Before that,
we provide some comments on the assumptions in A1 and A2. The service time Tβ1

has a so-called regularly varying tail at ∞. It is well known that for a distribution F
on (0,∞), if F is regularly varying with index −σ , σ ≥ 0 (see Definition A.1) or
F ∈ R−σ , then F is subexponential (see Definition A.2) or F ∈ S (see, for example
Embrechts et al. [12]).

Clearly, under the assumptions in A1 and A2, the service time Tβ1 of Type-1 cus-
tomers has a tail probability heavier than the service time Tβ2 of Type-2 customers. If
r > 0, Tβ2 has a light tail, i.e., E(eεTβ2 ) < ∞ for some ε > 0. If r = 0, then Tβ2 has
a regularly varying tail with index −a2. We also notice that since Tα , introduced in
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Sect. 2.1.1, is the busy period of the standard M/G/1 queue with arrival rate λ1 and
service time Tβ1 , its asymptotic tail probability is regularly varying according to de
Meyer and Teugels [10] (see Lemma A.1).

4.1 Tail asymptotics for R0—Proof of Theorem 1(1)

In order to obtain the tail asymptotic property for R0 [or Theorem1(1)], we first present
tail asymptotic properties for the components Ka , Kb and Kc, respectively, and then
the property for K . These results are summarized into the following lemma.

Lemma 4.1 As j → ∞, we have

(1)

P{Ka > j} ∼ λ1λ
a1−1
2

(a1 − 1)(1 − ρ1)a1
· j−a1+1L( j), (4.1)

P{Kb > j} ∼ λ1λ
a1−1
2

ρ(a1 − 1)(1 − ρ1)a1−1 · j−a1+1L( j), (4.2)

P{Kc > j} ∼ ϑ

1 − ϑ
P{Ka > j}; (4.3)

(2)

P{K > j} ∼ λ1λ
a1−1
2

ρ(1 − ρ)(a1 − 1)(1 − ρ1)a1−1 · j−a1+1L( j). (4.4)

Refer to Appendix C for a proof of Lemma 4.1.

Proof of Theorem 1(1) By (2.4), the PGF R0(z) is expressed in terms of the PGF K (z).
Therefore, the tail probability of R0 is determined by the tail probability of K . The
following asymptotic result is a straightforward application of Theorem 5.1 in [25]:

P{R0 > j} ∼ a1 − 1

a1
ψ · λ1λ

a1−1
2

ρ(1 − ρ)(a1 − 1)(1 − ρ1)a1−1 · j−a1L( j), (4.5)

where ψ is given in (2.5).

4.2 Tail asymptotics for Rik (i, k = 1, 2)—Proof of Theorem 1(2)

In order to obtain tail asymptotic properties for Rik , i, k = 1, 2, based on the stochastic
decompositions for Rik in (3.11) and (3.12), we first present tail asymptotic proper-
ties for the components Sβi ,k and Mik in (3.13), (3.14) and (3.15). These results are
summarized into the following lemma.
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Lemma 4.2 As j → ∞, we have

(1)

P{Sβ1,1 > j} ∼ λ
a1
1

ρ1(a1 − 1)
· j−a1+1L( j), (4.6)

P{Sβ1,2 > j} ∼ λ1λ
a1−1
2

ρ1(a1 − 1)
· j−a1+1L( j), (4.7)

P{Sβ2,1 > j} ∼
⎧⎨
⎩

λ2λ
a2−1
1

ρ2(a2−1) · j−a2+1L( j), if r = 0,

λ2λ1(λ1+r)a2−1

ρ2r
·
(

λ1
λ1+r

) j
j−a2L( j), if r > 0,

(4.8)

P{Sβ2,2 > j} ∼
⎧⎨
⎩

λ
a2
2

ρ2(a2−1) · j−a2+1L( j), if r = 0,
λ22(λ2+r)a2−1

ρ2r
·
(

λ2
λ2+r

) j
j−a2L( j), if r > 0;

(4.9)

(2)

P{M11 > j} ∼ ρ1

1 − ρ1
P{Sβ1,1 > j}, (4.10)

P{M12 > j} ∼
[

1

(1 − ρ1)a1
− 1

]
· λ1λ

a1−1
2

ρ1(a1 − 1)
· j−a1+1L( j), (4.11)

P{M21 > j} = ϑP{Sβ2,1 > j}, (4.12)

P{M22 > j} ∼ ϑ
λ1λ

a1−1
2

(1 − ρ)(a1 − 1)(1 − ρ1)a1−1 · j−a1+1L( j). (4.13)

Refer to Appendix C for a proof of Lemma 4.2.
Now, we are in the position to prove Theorem 1(2). Note that the tail asymptotic

properties for Ka , Kc and R0 have already been derived earlier. Based on Lemma 4.2
and by identifying dominant contributions made from the tail probabilities P{Mik >

j}, P{Sβi ,k > j}, P{Ka + Kc > j} and P{R0 > j} to P{Rik > j}, Theorem 1(2)
can be proved as follows.

Proof of Theorem 1(2) Recall (3.11). By (4.12), (4.8) and (1.1), M21 and R0 have tail
probabilities lighter than j−a1+1L( j), and by (4.10), (4.13), (4.6) and (4.7),M11,M22,
Sβ1,1 and Sβ1,2 have regularly varying tails with index−a1+1. By (3.11) and applying
Lemma A.5, we obtain

P{R11 > j} = P{M21 + M11 + Sβ1,1 > j}
∼ P{M11 + Sβ1,1 > j} ∼ 1

1 − ρ1
P{Sβ1,1 > j} (refer to (4.6)),

(4.14)

P{R12 > j} = P{M22 + M12 + Sβ1,2 + R0 > j}
∼ P{M22 + M12 + Sβ1,2 > j} (refer to (4.13), (4.11) and (4.7)).

(4.15)
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By a similar argument, it follows from (3.12) that

P{R21 > j} = P{Sβ2,1 > j} (refer to (4.8)), (4.16)

P{R22 > j} = P{Sβ2,2 + Ka + Kc + R0 > j}
∼ P{Ka + Kc > j} (refer to (4.1) and (4.3)), (4.17)

where we have used the fact, by (4.9), that Sβ2,2 has a tail probability lighter than
j−a1+1L( j).
Recall the definition of Rik , i, k = 1, 2, given in Sect. 1. We know that P{Rque >

j |Iser = i} = P{Ri1 > j} and P{Rorb > j |Iser = i} = P{Ri2 > j}, i = 1, 2. This
completes the proof of Theorem 1(2). �	

5 Concluding remarks

In this paper, we considered a priority retrial queueing model, which was first consid-
ered in [14]. This is a relatively complex queueing system with two types of arrivals,
priority and non-priority, joining a regular queue and a retrial orbit, respectively, and
served by a singer server. This model was considered in [14], and expressions of the
generating functions for some key probability measures were obtained by the authors.
However, tail probability behaviour, which is important on its own merits and also in
applications, of these key probability measures was not touched in [14], which is the
focus of this paper. We proposed an exhaustive stochastic decomposition approach
to decompose a complicated generating function (or a transformation) into indepen-
dent components with clear probabilistic interpretations. For each component in the
decomposition, we provide tail asymptotic results for the associated probabilities, with
which we successfully obtained tail asymptotic results (Theorem 1) for probabilities
of the number of customers in the queue or in the orbit, under various conditions.

The proposed exhaustive stochastic decomposition approach is a generalization of
the standard decomposition, frequently used in probability and also in queueing appli-
cations. We expect that this decomposition approach can be used for other queueing
systems and in other areas of applied probability. In fact, this paper is one of the
sister papers (see, for example, [25,27,28]) in exploring its potential usefulness and
importance.

It is of interest to continue the research in this direction. One of the natural exten-
sions is to apply this exhaustive stochastic decomposition approach to other queueing
systems. Another interesting problem is to explore its potentials in the analysis of
statistical queueing networks, defined through big data (see, for example, [33]).

To conclude the paper, we would like to provide intuition on the results in Theo-
rem 1(2). First, let us recall a well-known result for the standard M/G/1 queue: If the
service time is regularly varying with index −a1, then the stationary queue length is
also regularly varying, but with index−a1+1. Such a conclusion can bemade through
a distributional Little’s law (see, for example [3]). For the model studied in this paper,
the condition Iser = 1 means that the server is serving a Type-1 customer. Under this
condition, both types of customers have to wait, customers of Type-1 in the queue
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and customers of Type-2 in the orbit. Therefore, both Rque|Iser = 1 and Rorb|Iser = 1
have an asymptotic tail of the form Const · j−a1+1L( j) (given in (1.2) and (1.3),
respectively), due to the regularly varying assumption for the service time of Type-1
customers in Assumption A1. Here, and throughout the appendices, Const stands for
a (but not necessarily the same) constant. On the other hand, the condition Iser = 2
means that the server is serving a Type-2 (lower-priority) customer, which implies
that no Type-1 customers were waiting in the queue at the beginning of service of this
Type-2 customer. In other words, Iser = 2 implies that all Type-1 customers in the
queue must be those who arrived after the beginning of the service time of this Type-2
customer. Therefore, Rque|Iser = 2 has an asymptotic tail of the form given in (1.4),
determined by the service time assumption (in Assumption A2) of Type-2 customers.
However, Rorb|Iser = 2 still has an asymptotic tail of the form Const · j−a1+1L( j)
(see (1.5), determined by the assumption on Type-1 customer’s service time), since
the customers in the orbit could be those who arrived during the service times of Type-
2 customers, and/or during the service times of Type-1 customers who were served
before the current Type-2 customer in service, due to the priority discipline.
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Appendix A: Definitions and useful results from the literature

Definition A.1 (for example, see Bingham, Goldie and Teugels [4]) A measurable
function U : (0,∞) → (0,∞) is regularly varying at ∞ with index σ ∈ (−∞,∞)

(written U ∈ Rσ ) iff limt→∞ U (xt)/U (t) = xσ for all x > 0. If σ = 0 we call U
slowly varying, i.e., limt→∞ U (xt)/U (t) = 1 for all x > 0.

For a distribution function F , denote F̄
def= 1 − F for the remainder of the paper.

Definition A.2 (for example, see Foss, Korshunov and Zachary [17]) A distribution
F on (0,∞) belongs to the class of subexponential distribution (written F ∈ S) if
limt→∞ F∗2(t)/F(t) = 2, where F = 1− F and F∗2 denotes the second convolution
of F .

Lemma A.1 (de Meyer and Teugels [10]) Under Assumption A1,

P{Tα > t} ∼ 1

(1 − ρ1)a1+1 · t−a1L(t) as t → ∞. (A.1)

The result (A.1) is straightforward due to the main theorem in [10].

Lemma A.2 (pp.580–581 in [12]) Let N be a r.v. with P{N = k} = (1 − σ)σ k−1,
0 < σ < 1, k ≥ 1, and {Yk}∞k=1 be a sequence of non-negative, i.i.d. r.v.s having a
common subexponential distribution F. Define Sn = ∑n

k=1 Yk. Then, P{SN > t} ∼
(1 − F(t))/(1 − σ) as t → ∞.
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Lemma A.3 (Proposition 3.1 in [3], or Theorem 3.1 in [16]) Let Nλ(t) be a Poisson
process with rate λ and let T be a positive r.v. with distribution F, which is independent
of Nλ(t). If F̄(t) = P{T > t} is heavier than e−√

t as t → ∞, then P(Nλ(T ) >

j) ∼ P{T > j/λ} as j → ∞.

Lemma A.3 holds for any distribution F with a regularly varying tail because it is
heavier than e−√

t as t → ∞.

Lemma A.4 (p.181 in [20]) Let Nλ(t) be a Poisson process with rate λ and let T be
a positive r.v. with distribution F, which is independent of Nλ(t). If F̄(t) = P{T >

t} ∼ e−wt t−h L(t) as t → ∞ for w > 0 and −∞ < h < ∞, then

P(Nλ(T ) > j) ∼ λ(λ + w)h−1
(

λ

λ + w

) j

j−h L( j), j → ∞.

Lemma A.5 (p.48 in [17]) Let F, F1 and F2 bedistribution functions. Suppose that F ∈
S. If F̄i (t)/F̄(t) → ci as t → ∞ for some ci ≥ 0, i = 1, 2, then F1 ∗ F2(t)/F̄(t) →
c1 + c2 as t → ∞, where the notation F1 ∗ F2 stands for the convolution of F1 and
F2.

Lemma A.6 (pp.162–163 in [20]) Let N be a discrete non-negative integer-valued r.v.
with mean value μN , and let {Yk}∞k=1 be a sequence of non-negative i.i.d. r.v.s with
mean value μY . Define S0 ≡ 0 and Sn = ∑n

k=1 Yk. If P{Yk > x} ∼ cY x−h L(x) as
x → ∞ and P{N > m} ∼ cNm−h L(m) as m → ∞, where h > 1, cY ≥ 0 and
cN ≥ 0, then P{SN > x} ∼ (cNμh

Y + μNcY )x−h L(x) as x → ∞.

Remark A.1 It is a convention that in Lemma A.6, cY = 0 and cN = 0 means that
limx→∞ P{Yk > x}/(x−h L(x)) = 0 and limm→∞ P{N > m}/(m−h L(m)) = 0,
respectively.

The following two criteria are from Feller (see p.441 in [15]), which are often used
to verify that a function is completely monotone.
Criterion A.1 If ϑ1(·) and ϑ2(·) are completely monotone, so is their product
ϑ1(·)ϑ2(·).
Criterion A.2 If ϑ3(·) is completely monotone and ϑ4(·) is a positive function with a
completely monotone derivative ϑ ′

4(·), then ϑ3(ϑ4(·)) is completely monotone.
To prove Lemma C.2, let us list some notations and results which will be used. Let

F(x) be any distribution on [0,∞) with the LST φ(s). We denote the nth moment of
F(x) by φn , n ≥ 0. It is well known that φn < ∞ iff

φ(s) =
n∑

k=0

φk

k! (−s)k + o(sn), n ≥ 0. (A.2)
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Based on (A.2), we introduce the notation φn(s) and φ̂n(s), defined by

φn(s)
def= (−1)n+1

{
φ(s) −

n∑
k=0

φk

k! (−s)k
}

, n ≥ 0, (A.3)

φ̂n(s)
def= φn(s)/s

n+1, n ≥ 0. (A.4)

Lemma A.7 (pp.333–334 in [4]) Assume that n < d < n + 1, n ∈ {0, 1, 2, . . .}, then
the following two statements are equivalent:

1 − F(t) ∼ t−d L(t), t → ∞;

and

φn(s) ∼ �(d − n)�(n + 1 − d)

�(d)
sd L(1/s), s ↓ 0.

Lemma A.8 (Lemma 3.3 in [27]) Assume that n ∈ {1, 2, . . .}, then the following two
statements are equivalent:

1 − F(t) ∼ t−nL(t), t → ∞; (A.5)

and

lim
s↓0

φ̂n−1(xs) − φ̂n−1(s)

L(1/s)/(n − 1)! = − log x, for all x > 0. (A.6)

In [27], Lemma A.8 was proved by applying Karamata’s theorem, the monotone
density theorem and Theorem 3.9.1 presented in [4] (see, p.27, p.39 and pp.172–173,
respectively).

Appendix B: Proofs for results in step 2

Proof of Proposition 3.1

By (2.14) and the definition of α(e)(s), we can write (1 − h(u))/(1 − u) = λ2α1 ·
α(e)(λ2 − λ2u), from which, and by (2.7), (2.2) and (2.11), we have,

Ka(u) = 1 − ρ1

p

[
q · 1 − h(u)

1 − u
+ p

]
= ρ1α

(e)(λ2 − λ2u) + 1 − ρ1, (B.1)

which leads to the stochastic decomposition given in (3.3) for the r.v. Ka .
It follows from (2.8) that

Kb(z) = β(e)(λ−λg(z)) =
∫ ∞

0

∞∑
n=0

(g(z))n
(λx)n

n! e−λxdF (e)
β (x) = E

(
zNλ,Xg (T (e)

β )

)
,

(B.2)
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which leads to the stochastic decomposition given in (3.4) for the r.v. Kb.
It follows from (2.9) that

Kc(u) = (1 − ϑ)

[
1 − 1 − g(u)

1 − u
· 1 − β2(λ − λg(u))

1 − g(u)

]−1

= 1 − ϑ

1 − ϑ · Ka(u) · β
(e)
2 (λ − λg(u))

= 1 − ϑ + ϑ ·
∞∑
i=1

(1 − ϑ)ϑ i−1(Ka(u) · β
(e)
2 (λ − λg(u))

)i
, (B.3)

which leads to the stochastic decomposition given in (3.5) for the r.v. Kc.
Finally, (3.2) follows immediately from (2.6).

Proof of Proposition 3.2

We divide the proof of Proposition 3.2 into three parts.

Sˇi (z1, z2) are PGFs with detailed probabilistic interpretations

Following Definition 3.1, for the split(N ; c, 1−c) it is easy to see that (
∑N

k=1 Xk, N−∑N
k=1 Xk) has the PGF

E
(
z
∑N

k=1 Xk
1 z

N−∑N
k=1 Xk

2

) =
∞∑
n=0

[
n∏

k=1

E(zXk
1 z1−Xk

2 )

]
P{N = n}

=
∞∑
n=0

(cz1 + (1 − c)z2)
n P{N = n}, (B.4)

where
∏0

1 ≡ 1.
Recalling (2.21), we can write, for i = 1, 2,

Sβi (z1, z2) = β
(e)
i (λ−λ1z1−λ2z2) =

∫ ∞

0

∞∑
n=0

(qz1+pz2)
n((λx)n/n!)e−λxdF (e)

βi
(x),

(B.5)
which leads to (3.13) by setting N = Nλ(T

(e)
βi

) and c = q in (B.4).

M1(z1, z2) is a PGF with a detailed probabilistic interpretation

It follows from (2.19) that

M1(z1, z2) = 1 − ρ1

1 − ρ1Hβ1(z1, z2)
=

∞∑
n=0

(1 − ρ1)ρ
n
1

(
Hβ1(z1, z2)

)n
, (B.6)
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where

Hβ1(z1, z2) = 1

ρ1
· β1(λ − λ1z1 − λ2z2) − h(z2)

z1 − h(z2)
(B.7)

= 1

ρ1
· β1(λ − λ1z1 − λ2z2) − β1(λ − λ1h(z2) − λ2z2)

z1 − h(z2)
(by (2.3)).

(B.8)

Clearly, by (B.6), (M11, M12) can be regarded as a random sum of two-dimensional
r.v.s. provided that Hβ1(z1, z2) is the PGF of a two-dimensional r.v. To verify this, we
rewrite (B.8) as a power series. Note that

β1(λ − λqz1 − λpz2) =
∫ ∞

0

∞∑
k=0

(λ(qz1 + pz2)t)k

k! · e−λtdFβ1(t)

= β1(λ) +
∞∑
k=1

bβ1,k(qz1 + pz2)
k, (B.9)

where bβ1,k is given in (3.9). By (2.3) and (B.9),

h(z2) = β1(λ − λqh(z2) − λpz2) = β1(λ) +
∞∑
k=1

bβ1,k(qh(z2) + pz2)
k . (B.10)

Substituting (B.9) and (B.10) into the numerator of the right-hand side of (B.8), we
obtain

Hβ1(z1, z2) = 1

ρ1
·

∞∑
k=1

bβ1,k

(
(qz1 + pz2)k − (qh(z2) + pz2)k

z1 − h(z2)

)

= q

ρ1
·

∞∑
k=1

bβ1,k

k∑
i=1

(qz1 + pz2)
i−1(qh(z2) + pz2)

k−i

= q

ρ1
·

∞∑
k=1

kbβ1,k · Dk(z1, z2), (B.11)

where

Dk(z1, z2) = 1

k

k∑
i=1

(qz1 + pz2)
i−1(qh(z2) + pz2)

k−i . (B.12)

Note that qh(z2) + pz2 = g(z2) and qz1 + pz2 are the PGFs of (one or two-
dimensional) r.v.s. It follows from (B.12) that for k ≥ 1, Dk(z1, z2) is the PGF of
a two-dimensional r.v. (Dk,1, Dk,2), which can be constructed according to (3.6).
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In addition,

∞∑
k=1

kbβ1,k =
∞∑
k=1

∫ ∞

0

(λt)k

(k − 1)!e
−λtdFβ1(t) = λ

∫ ∞

0
tdFβ1(t) = ρ1/q. (B.13)

Namely, (q/ρ1)
∑∞

k=1 kbβ1,k = 1, which, together with (B.11), implies that
Hβ1(z1, z2) is the PGF of a two-dimensional r.v. (Hβ1,1, Hβ1,2), which can be con-
structed according to (3.7).

By (B.6), the two-dimensional r.v. (M11, M12) can be constructed according to
(3.14), which is a random sum of i.i.d. two-dimensional r.v.s (H (i)

β1,1
, H (i)

β1,2
), i ≥ 1,

each with the same PGF Hβ1(z1, z2).

M2(z1, z2) is a PGF with a detailed probabilistic interpretation

Let

Hβ2 (z1, z2) = p

qρ2
· β2(λ − λ1z1 − λ2z2) − β2(λ − λ1h(z2) − λ2z2)

z1 − h(z2)
. (B.14)

Using (B.14), (2.7) and (2.9), we can rewrite (2.20) as follows:

M2(z1, z2) = ϑ · Hβ2(z1, z2) · Ka(z2) · Kc(z2) + 1 − ϑ. (B.15)

Similarly to (B.11), we can derive (details omitted) from (B.14) that

Hβ2(z1, z2) = p

ρ2
·

∞∑
k=1

kbβ2,k · Dk(z1, z2), (B.16)

with bβ2,k given in (3.10).
Similarly to (B.13), we can verify that (p/ρ2)

∑∞
k=1 kbβ2,k = 1, which,

together with (B.16), implies that Hβ2(z1, z2) is the PGF of a two-dimensional r.v.
(Hβ2,1, Hβ2,2), which can be constructed according to (3.8).

By (B.15), the two-dimensional r.v. (M21, M22) can be constructed according to
(3.15).

Appendix C: Proofs of Lemmas 4.1 and 4.2 in step 3

In this section, we prove Lemma 4.1 and Lemma 4.2. Before proceeding, we provide
the following facts, which will be used in our proof multiple times.

Applying Karamata’s theorem (for example, p.28 in [4]), and using Assumption
A1 and Lemma A.1, respectively, gives, as t → ∞,

P{T (e)
β1

> t} ∼ λ1

ρ1(a1 − 1)
· t−a1+1L(t), (C.1)
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and

P{T (e)
α > t} ∼ 1

α1(a1 − 1)(1 − ρ1)a1+1 · t−a1+1L(t). (C.2)

Applying Proposition 8.5 (p.181 in [20]) to the density F̄β2(t)/β2,1 and using
Assumption A2, give, as t → ∞,

P{T (e)
β2

> t} ∼
⎧⎨
⎩

λ2
ρ2(a2−1) · t−a2+1L(t), if r = 0,

λ2
ρ2r

· e−r t t−a2L(t), if r > 0.
(C.3)

Furthermore, since Fβ(x) = qFβ1(x) + pFβ2(x) and based on Assumptions A1 and
A2, we have P{Tβ > t} = qP{Tβ1 > t} + pP{Tβ2 > t} ∼ qt−a1L(t) as t → ∞,
from which Karamata’s theorem implies that

P{T (e)
β > t} ∼ λ1

ρ(a1 − 1)
· t−a1+1L(t). (C.4)

Proof of Lemma 4.1

Recall (2.4), which relates the PGF of K to the PGF of R0. With this relationship, we
first study the tail probability for K , which can be regarded as the sum of independent
r.v.s Ka , Kb and Kc (refer to (3.2)). By (3.3), (C.2) and applying LemmaA.3, we have

P{Ka > j} = ρ1P{Nλ2(T
(e)
α ) > j} ∼ λ1λ

a1−1
2

(a1 − 1)(1 − ρ1)a1
· j−a1+1L( j), j → ∞.

(C.5)

Recall (3.4), Kb = Nλ,Xg (T
(e)
β )

d= ∑Nλ(T (e)
β )

i=1 X (i)
g , where X (i)

g has the common
distribution Xg . By (2.15), and then applying Lemma A.3 and using Lemma A.1, we
know that

P{Xg > j} ∼ qP{Nλ2(Tα) > j} ∼ qλ
a1
2 (1 − ρ1)

−a1−1 · j−a1L( j).

Similarly, applying Lemma A.3 and using (C.4), we have

P{Nλ(T
(e)
β ) > j} ∼ qλa1−1

(qβ1,1 + pβ2,1)(a1 − 1)
· j−a1+1L( j),

based on which, by (2.16) and applying Lemma A.6, we have,

P{Kb > j} ∼ λ1λ
a1−1
2

ρ(a1 − 1)(1 − ρ1)a1−1 · j−a1+1L( j), j → ∞. (C.6)

Next, we study P{Kc > j}. By (3.5), we know that P{Kc > j} =
ϑP{∑J

i=1 X
(i)
c > j}, where P(J = i) = (1 − ϑ)ϑ i−1, i ≥ 1, and X (i)

c has the
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same distribution as that for Xc = Ka + Nλ,Xg (T
(e)
β2

). Note that Nλ,Xg (T
(e)
β2

)
d=

∑Nλ(T (e)
β2

)

i=1 X (i)
g , where X (i)

g has the common tail probability P{Xg > j} ∼ Const ·
j−a1L( j) and P{Nλ(T

(e)
β2

) > j} ∼ Const · j−a2+1L( j). Therefore, by applying
Lemma A.6 (and noticing that a2 > a1 if r = 0 in Assumption A2), we have

P{Nλ,Xg (T
(e)
β2

) > j} ∼ Const · max( j−a2+1L( j), j−a1L( j))=o(1) · j−a1+1L( j).

(C.7)

By (C.5), (C.7), applying Lemma A.2 and Lemma A.5, we have, as j → ∞,

P{Kc > j} ∼ ϑ

1 − ϑ
P{Xc > j} = ϑ

1 − ϑ
P{Ka + Nλ,Xg (T (e)

β2
) > j} ∼ ϑ

1 − ϑ
P{Ka > j},

(C.8)

which, together with (C.5), (C.6) and (3.2), leads to

P{Ka + Kc > j} ∼ λ1λ
a1−1
2

(1 − ρ)(a1 − 1)(1 − ρ1)a1−1 · j−a1+1L( j), j → ∞,

(C.9)

P{K > j} ∼ λ1λ
a1−1
2

ρ(1 − ρ)(a1 − 1)(1 − ρ1)a1−1 · j−a1+1L( j), j → ∞.

(C.10)

Proof of Lemma 4.2

By Proposition 3.2, Sβ1,1
d= Nλ1(T

(e)
β1

), Sβ1,2
d= Nλ2(T

(e)
β1

), Sβ2,1
d= Nλ1(T

(e)
β2

) and

Sβ2,2
d= Nλ2(T

(e)
β2

). By (C.1) and applying Lemma A.3, we obtain

P{Sβ1,1 > j} ∼ λ
a1
1

ρ1(a1 − 1)
· j−a1+1L( j), (C.11)

P{Sβ1,2 > j} ∼ λ1λ
a1−1
2

ρ1(a1 − 1)
· j−a1+1L( j). (C.12)

By (C.3) and applying Lemma A.3 and Lemma A.4, we obtain

P{Sβ2,1 > j} ∼
⎧⎨
⎩

λ2λ
a2−1
1

ρ2(a2−1) · j−a2+1L( j), if r = 0,

λ2λ1(λ1+r)a2−1

ρ2r
·
(

λ1
λ1+r

) j
j−a2L( j), if r > 0,

(C.13)

P{Sβ2,2 > j} ∼
⎧⎨
⎩

λ
a2
2

ρ2(a2−1) · j−a2+1L( j), if r = 0,
λ22(λ2+r)a2−1

ρ2r
·
(

λ2
λ2+r

) j
j−a2L( j), if r > 0.

(C.14)
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Next, we will study the asymptotic tail probabilities of the r.v.s Mik, i, k = 1, 2. By
Proposition 3.2, we know that

P{M1k > j} = ρ1P
{ J∑

i=1

H (i)
β1,k

> j
}
, k = 1, 2, (C.15)

P{M21 > j} = ϑP{Hβ2,1 > j}, (C.16)

P{M22 > j} = ϑP{Hβ2,2 + Ka + Kc > j}. (C.17)

To proceed further, we need to study the tail probabilities of the r.v.s Hβi ,k for i, k =
1, 2.

Tail asymptotics for Hˇ1,1 and Hˇ2,1

Taking z2 → 1 in (B.8) and (B.14), we can write

E(z
Hβ1,1

1 ) = Hβ1(z1, 1) = 1

ρ1
· β1(λ1 − λ1z1) − 1

z1 − 1
= β

(e)
1 (λ1 − λ1z1),

(C.18)

E(z
Hβ2,1

1 ) = Hβ2(z1, 1) = p

qρ2
· β2(λ1 − λ1z1) − 1

z1 − 1
= β

(e)
2 (λ1 − λ1z1).

(C.19)

Therefore, Hβi ,1
d= Nλ1(T

(e)
βi

)
d= Sβi ,1, i = 1, 2, and

P{Hβi ,1 > j} = P{Sβi ,1 > j}, i = 1, 2, (C.20)

whose asymptotic tails are presented in (C.11) and (C.13), respectively.

Tail asymptotics for Hˇ1,2

Unlike for the other r.v.s discussed earlier, more effort is required for the asymptotic
tail behaviour for Hβ1,2, which will be presented in Proposition C.1. Before doing that,
we first present a nice bound on the tail probability of Hβ1,2, which is very suggestive
for an intuitive understanding of the tail property for Hβ1,2.

Taking z1 → 1 in (B.12) and (B.11), we have,

E(z
Dk,2
2 ) = Dk(1, z2) = 1

k

k∑
i=1

(q + pz2)
i−1(qh(z2) + pz2)

k−i , (C.21)

E(z
Hβ1,2

2 ) = Hβ1(1, z2) = q

ρ1
·

∞∑
k=1

kbβ1,k · Dk(1, z2). (C.22)
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It follows from (C.21) that, for k ≥ 1,

Dk,2
d=

i−1∑
n=1

Yn +
k−i∑
n=1

Zn with probability 1/k for i = 1, 2, . . . , k,

where {Yn}∞n=1 and {Zn}∞n=1 are sequences of independent r.v.s, which are independent
of each other, with Yn and Zn having PGFs q + pz2 and qh(z2) + pz2, respectively.

We say that Y is stochastically smaller than Z , written as Y ≤st Z , if P{Y > t} ≤
P{Z > t} for all t . It is easy to see that Yn1 ≤st Zn2 for all n1, n2 ≥ 1. Define

DL
k,2

d=
k−1∑
n=1

Yn and DU
k,2

d=
k−1∑
n=1

Zn .

Then, by Theorem 1.2.17 (p.7 in [31]),

DL
k,2 ≤st Dk,2 ≤st D

U
k,2. (C.23)

Furthermore, it follows from (C.22) that Hβ1,2
d= Dk,2, with probability (q/ρ1)kbβ1,k ,

for k ≥ 1.
Now, define the r.v.s HL

β1,2
and HU

β1,2
as follows:

HL
β1,2

d= DL
k,2 with probability (q/ρ1)kbβ1,k for k ≥ 1,

HU
β1,2

d= DU
k,2 with probability (q/ρ1)kbβ1,k for k ≥ 1.

Then, by (C.23),
HL

β1,2 ≤st Hβ1,2 ≤st H
U
β1,2. (C.24)

Note that HL
β1,2

and HU
β1,2

have the following PGFs:

E(z
HL

β1,2

2 ) = q

ρ1
·

∞∑
k=1

kbβ1,k · E(z
DL
k,2

2 ) = q

ρ1
·

∞∑
k=1

kbβ1,k · (q + pz2)
k−1,

(C.25)

E(z
HU

β1,2

2 ) = q

ρ1
·

∞∑
k=1

kbβ1,k · E(z
DU
k,2

2 ) = q

ρ1
·

∞∑
k=1

kbβ1,k · (qh(z2) + pz2)
k−1.

(C.26)

Next, we will study the asymptotic behaviour of P{HL
β1,2

> j} and P{HU
β1,2

> j},
respectively. Let N be a r.v. with probability distribution P{N = k} = (q/ρ1)kbβ1,k ,
k ≥ 1. Therefore, (C.25) and (C.26) can be written as

HL
β1,2

d=
N−1∑
k=1

Yk and HU
β1,2

d=
N−1∑
k=1

Zk,
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where N is independent of both Zk and Yk , k ≥ 1.
Then, it is immediately clear that

P{N > m} = (q/ρ1)

∞∑
k=m+1

kbβ1,k = (q/ρ1)

[
mbβ1,m+1 +

∞∑
k=m+1

bβ1,k

]
, (C.27)

where bβ1,k = ∑∞
n=k bβ1,n .

Using the definition of bβ1,n in (3.9), and applying Lemma A.3, we know that
bβ1,k = P{Nλ(Tβ1) > k − 1} ∼ λa1k−a1L(k) as k → ∞, which, together with
Proposition 1.5.10 in [4], implies that

P{N > m} ∼ a1qλa1

ρ1(a1 − 1)
m−a1+1L(m) as m → ∞. (C.28)

Recall the following three facts: (i)Yk is a 0−1 r.v., which implies that P{Yk > j} → 0
as j → ∞; (ii) Zk has the same probability distribution as Xg defined in (2.15), which
implies that P{Zk > j} = P{Xg > j} ∼ Const · j−a1L( j) as j → ∞; and (iii)
E(Yk) = p and E(Zk) = E(Xg) = p/(1 − ρ1) < ∞, given in (2.16). Then, by
Lemma A.6, we know that

P{HL
β1,2 > j} ∼ a1 · λ1λ

a1−1
2

ρ1(a1 − 1)
· j−a1+1L( j), (C.29)

P{HU
β1,2 > j} ∼ a1

(1 − ρ1)a1−1 · λ1λ
a1−1
2

ρ1(a1 − 1)
· j−a1+1L( j). (C.30)

Remark C.1 It follows from (C.24) that P{HL
β1,2

> j} ≤ P{Hβ1,2 > j} ≤ P{HU
β1,2

>

j}, whereas the asymptotic properties of P{HL
β1,2

> j} and P{HU
β1,2

> j} are
given in (C.29) and (C.30), respectively. This suggests that P{Hβ1,2 > j} ∼
c · λ1λ

a1−1
2

ρ1(a1−1) · j−a1+1L( j) as j → ∞ for some constant c ∈ (
a1, a1/(1 − ρ1)

a1−1
)
. In

Proposition C.1, we will verify that this assertion is true.

Proposition C.1 As j → ∞,

P{Hβ1,2 > j} ∼ 1 − ρ1

ρ1

[
1

(1 − ρ1)a1
− 1

]
· λ1λ

a1−1
2

ρ1(a1 − 1)
· j−a1+1L( j). (C.31)

To prove this proposition, we need the following two lemmas (Lemma C.1 and
Lemma C.2). Setting z1 = 1 in (B.7) and noting h(z2) = α(λ2 − λ2z2), we obtain

E(z
Hβ1,2

2 ) = Hβ1(1, z2) = 1

ρ1
· β1(λ2 − λ2z2) − α(λ2 − λ2z2)

1 − α(λ2 − λ2z2)
= γ (λ2 − λ2z2),

(C.32)
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where

γ (s) = 1

ρ1
· β1(s) − α(s)

1 − α(s)
. (C.33)

Lemma C.1 γ (s) is the LST of a probability distribution on [0,∞).

Proof By Theorem 1 in [15] (see p.439), the lemma is true iff γ (0) = 1 and
γ (s) is completely monotone, i.e., γ (s) possesses derivatives of all orders such that
(−1)n dn

dsn γ (s) ≥ 0 for s > 0, n ≥ 0. It is easy to check by (C.33) that τ(0) = 1. Next,
we only need to verify that γ (s) is completely monotone. By (C.33) and (2.10) and
using Taylor expansion, we have

γ (s) = 1

ρ1
· β1

(
s + λ1 − λ1

) − β1(s + λ1 − λ1α(s))

1 − α(s)

= 1

ρ1
· 1

1 − α(s)

[ ∞∑
n=0

β
(n)
1 (s + λ1)

n! (−λ1)
n −

∞∑
n=0

β
(n)
1 (s + λ1)

n! (−λ1α(s))n
]

= 1

ρ1
·

∞∑
n=1

(−λ1)
nβ

(n)
1 (s + λ1)

n!
(
1 + α(s) + · · · + (α(s))n−1

)
, (C.34)

where β
(n)
1 (·) represents the nth derivative of β1(·).

It is easy to check that, for n ≥ 1, both (−1)nβ(n)
1 (s + λ1) and 1 + α(s) + · · · +

(α(s))n−1 are completely monotone, and so is their product (by Criterion A.1 in
Appendix A). Therefore, γ (s) is completely monotone. �	
Remark C.2 Let Tγ be a r.v. whose the probability distribution has the LST γ (s). Then,

the expression Ez
Hβ1,2
2 = γ (λ2 − λ2z2) in (C.32) implies that Hβ1,2

d= Nλ2(Tγ ).

Lemma C.2 As t → ∞,

P{Tγ > t} ∼ 1 − ρ1

ρ1

[
1

(1 − ρ1)a1
− 1

]
λ1

ρ1(a1 − 1)
· t−a1+1L(t). (C.35)

Proof First, let us rewrite (C.33) as

γ (s) = 1

ρ1
− 1

ρ1
· 1 − β1(s)

s
· s

1 − α(s)
. (C.36)

In the following, we divide the proof of Lemma C.2 into two parts, depending on
whether a1 (> 1) is an integer or not.
Case 1: Non-integer a1 > 1. Suppose that n < a1 < n + 1, n ∈ {1, 2, . . .}. Since
P{Tβ1 > t} ∼ t−a1L(t) and (1 − ρ1)

a1+1P{Tα > t} ∼ t−a1L(t), we know that
β1,n < ∞, β1,n+1 = ∞, αn < ∞ and αn+1 = ∞. Define β1,n(s) and αn(s) in a
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manner similar to that in (A.3). Therefore,

1 − β1(s)

s
= β1,1 +

n∑
k=2

β1,k

k! (−s)k−1 + (−1)n
β1,n(s)

s
, (C.37)

1 − α(s)

s
= α1 +

n∑
k=2

αk

k! (−s)k−1 + (−1)n
αn(s)

s
. (C.38)

By Lemma A.7,

(1 − ρ1)
a1+1αn(s) ∼ βn(s) ∼ �(a1 − n)�(n + 1 − a1)

�(a1)
sa1L(1/s), s ↓ 0.

(C.39)
Furthermore, it follows from (C.38) that

s

1 − α(s)
= 1/α1

1 + (1/α1)
∑n

k=2
αk
k! (−s)k−1 + (−1)n(1/α1)

αn(s)
s

= 1

α1
−

n−1∑
k=1

uks
k − (−1)n

αn(s)

α2
1s

+ O(sn), (C.40)

where u1, u2, . . . , un−1 are constants. By (C.36), (C.37) and (C.40), we have

γ (s) = 1 +
n−1∑
k=1

eks
k + (−1)n · 1

ρ1α1

[
β1,1

α1
· αn(s)

s
− β1,n(s)

s

]
+ O(sn),

(C.41)

where e1, e2, . . . , en−1 are constants. Based on the above, we define γn−1(s) in a
manner similar to that in (A.3). Applying (C.39), we have

γn−1(s) ∼ 1

ρ1α1

[
β1,1

α1
· αn(s)

s
− β1,n(s)

s

]

∼ λ1

ρ1
· 1 − ρ1

ρ1

[
1

(1 − ρ1)a1
− 1

]
· �(a1 − n)�(n + 1 − a1)

(a1 − 1)�(a1 − 1)
sa1−1L(1/s).

(C.42)

Then,making use of LemmaA.7, we complete the proof of LemmaC.2 for non-integer
a1 > 1.

Case 2: Integer a1 > 1. Suppose that a1 = n ∈ {2, 3, . . .}. Since P{Tβ1 >

t} ∼ t−nL(t) and (1 − ρ1)
n+1P{Tα > t} ∼ t−nL(t), we know that αn−1 < ∞

and β1,n−1 < ∞, but whether αn or β1,n is finite or not remains uncertain. This
uncertainty is essentially determined by whether

∫ ∞
x t−1L(t)dt is convergent or not.
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Define β̂1,n−1(s) and α̂n−1(s) in a way similar to that in (A.4). Then,

1 − β1(s)

s
= β1,1 +

n−1∑
k=2

β1,k

k! (−s)k−1 + (−s)n−1β̂1,n−1(s), (C.43)

1 − α(s)

s
= α1 +

n−1∑
k=2

αk

k! (−s)k−1 + (−s)n−1α̂n−1(s). (C.44)

By Lemma A.8, we obtain, for x > 0,

(1 − ρ1)
n+1α̂n−1(xs) − (1 − ρ1)

n+1α̂n−1(s)

∼ β̂1,n−1(xs) − β̂1,n−1(s) ∼ −(log x)L(1/s)/(n − 1)! as s ↓ 0.

(C.45)

Furthermore, it follows from (C.44) that

s

1 − α(s)
= 1/α1

1 + (1/α1)
∑n−1

k=2
αk
k! (−s)k−1 + (−s)n−1(1/α1)̂αn−1(s)

= 1

α1
−

n−1∑
k=1

u′
ks

k − (−s)n−1 α̂n−1(s)

α2
1

+ O(sn), (C.46)

where u′
1, u

′
2, . . . , u

′
n−1 are constants. By (C.36), (C.43) and (C.46), we have

γ (s) = 1 +
n−1∑
k=1

e′
ks

k + (−1)nsn−1 · 1

ρ1α1

[
β1,1

α1
· α̂n−1(s) − β̂1,n−1(s)

]
+ O(sn),

(C.47)

where e′
1, e

′
2, . . . , e

′
n−1 are constants. Based on this, we define γ̂n−2(s) in a way similar

to that in (A.4). Then,

γ̂n−2(s) = (−1)ne′
n−1 + 1

ρ1α1

[
β1,1

α1
· α̂n−1(s) − β̂1,n−1(s)

]
+ O(s). (C.48)

It follows from (C.47) and (C.45) that

lim
s↓0

γ̂n−2(xs) − γ̂n−2(s)

L(1/s)/(n − 2)! = 1

ρ1α1

[
β1,1

α1
· lim
s↓0

α̂n−1(xs)−α̂n−1(s)

(n − 1)L(1/s)/(n − 1)! −lim
s↓0

β̂1,n−1(xs) − β̂1,n−1(s)

(n − 1)L(1/s)/(n − 1)!
]

= λ1

ρ1

1 − ρ1

ρ1

[
1

(1 − ρ1)n
− 1

]
·
(

− 1

n − 1
log x

)
. (C.49)

Applying Lemma A.8, we complete the proof of Lemma C.2 for integer a1 = n ∈
{2, 3, . . .}. �	
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Proof of Proposition C.1 It follows directly from Remark C.2, Lemma C.2 and
Lemma A.3. �	

Referring toRemarkC.1,weknowfrom(C.31) that c=(1−ρ1)ρ
−1
1

[
1/(1−ρ1)

a1−1
]
.

Now let us confirm that a1 < c < a1/(1 − ρ1)
a1−1, which is equivalent to checking

that a1ρ1(1−ρ1)
a1−1+(1−ρ1)

a1 < 1 and a1ρ1+(1−ρ1)
a1 > 1. This is true because

a1ρ1(1 − ρ1)
a1−1 + (1 − ρ1)

a1 is decreasing in ρ1 ∈ (0, 1) and a1ρ1 + (1 − ρ1)
a1 is

increasing in ρ1 ∈ (0, 1).

Tail asymptotics for Hˇ2,2

Aswe shall see in the next subsection, ourmain results do not require a detailed asymp-
totic expression for P{Hβ2,2 > j}. It is enough to verify that it is o(1) · j−a1+1L( j)
as j → ∞.

Taking z1 → 1 in (B.16), we have

E(z
Hβ2,2

2 ) = Hβ2(1, z2) = p

ρ2
·

∞∑
k=1

kbβ2,k · Dk(1, z2). (C.50)

It follows from (C.50) that Hβ2,2
d= Dk,2, with probability (p/ρ2)kbβ2,k , for k ≥ 1.

Define the r.v. HU
β2,2

d= DU
k,2, with probability (p/ρ2)kbβ2,k , for k ≥ 1. Then, by

(C.23), we have, Hβ2,2 ≤st HU
β2,2

. Note that HU
β2,2

has the PGF

E(z
HU

β2,2

2 ) = p

ρ2
·

∞∑
k=1

kbβ2,k · E(z
DU
k,2

2 ) = p

ρ2
·

∞∑
k=1

kbβ2,k · (qh(z2) + pz2)
k−1.

(C.51)

Let N∗ be a r.v. with probability distribution P{N∗ = k} = (p/ρ2)kbβ2,k , k ≥ 1.

Therefore, (C.51) implies HU
β2,2

d= ∑N∗−1
k=1 Zk , where N∗ is independent of Zk , k ≥ 1.

Similar to (C.27), we can write

P{N∗ > m} = (p/ρ2)

[
mbβ2,m+1 +

∞∑
k=m+1

bβ2,k

]
, (C.52)

where bβ2,k = ∑∞
n=k bβ2,n . By the definition of bβ2,n given in (3.10) and applying

Lemma A.3 and Lemma A.4, we know that bβ2,k = P{Nλ(Tβ2) > k − 1} = O(1) ·
k−a2L(k) as k → ∞. Furthermore, by (C.52) and applying Proposition 1.5.10 in [4],
we have

P{N∗ > m} = O(1) · m−a2+1L(m) as m → ∞. (C.53)

As pointed out in Sect. 2, P{Zk > j} ∼ Const · j−a1L( j) as j → ∞. By
Lemma A.6, we know P{HU

β2,2
> j} = O(1) · max

(
j−a2+1L( j), j−a1L( j)

)
as
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j → ∞. Since P{Hβ2,2 > j} ≤ P{HU
β2,2

> j} and a2 > a1, we have

P{Hβ2,2 > j} = O(1) · max
(
j−a2+1L( j), j−a1L( j)

)
= o(1) · j−a1+1L( j).

(C.54)

After the above preparations, we now return to the proof of the tail asymptotic
properties for Mik, i, k = 1, 2.

By (C.15) and applying Lemma A.2, together with (C.20), we have

P{M11 > j} ∼ ρ1

1 − ρ1
P{Hβ1,1 > j} = ρ1

1 − ρ1
P{Sβ1,1 > j} (refer to (C.11)),

(C.55)

P{M12 > j} ∼ ρ1

1 − ρ1
P{Hβ1,2 > j} (refer to (C.31)). (C.56)

Immediately, from (C.16) and (C.20),

P{M21 > j} = ϑP{Hβ2,1 > j} = ϑP{Sβ2,1 > j} (refer to (C.13)).

(C.57)

By (C.17) and applying Lemma A.5, together with (C.54),

P{M22 > j} = ϑP{Hβ2,2 + Ka + Kc > j} ∼ ϑP{Ka + Kc > j} (refer to (C.9)).

(C.58)
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