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Abstract
We consider a network of infinite-server queues where the input process is a Cox
process of the following form: The arrival rate is a vector-valued linear transform of a
multivariate generalized (i.e., being driven by a subordinator rather than a compound
Poisson process) shot-noise process. We first derive some distributional properties of
the multivariate generalized shot-noise process. Then these are exploited to obtain
the joint transform of the numbers of customers, at various time epochs, in a sin-
gle infinite-server queue fed by the above-mentioned Cox process. We also obtain
transforms pertaining to the joint stationary arrival rate and queue length processes
(thus facilitating the analysis of the corresponding departure process), as well as their
means and covariance structure. Finally, we extend to the setting of a network of
infinite-server queues.
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1 Introduction

In queueing theory it is commonly assumed that the customer arrival process is a
Poisson process. Some recent empirical studies (see, for example, [4] for references)
suggest, however, that arrival processes may exhibit overdispersion, i.e., the variance
of the number of arrivals in an interval is larger than the corresponding mean. This
has triggered research on queueing systems with overdispersed input.

The focus of the present paper is on infinite-server queues with, as input process, a
doubly stochastic process, also known as a Cox process. Such a process can be seen as
a Poisson process inwhich the rate is not a constant; instead, the rate process {�(t), t ∈
R} itself is a (nonnegative) stochastic process. As an immediate consequence of the
law of total variance, Cox processes indeed are overdispersed. Before describing the
main contributions of the present paper, we first provide a brief account of the existing
literature in this area.
Literature In [7], the arrival process of the infinite-server queues is a Cox process
in which the arrival rate is a shot-noise process. More specifically, the jumps of the
shot-noise process occur according to a homogeneous Poisson process and are i.i.d.
(independent and identically distributed) with a general distribution, and between
jumps, the shot-noise process decays exponentially fast. The main object of study in
[7] is a feedforward network of infinite-server queues, and the main result is the joint
transform of the shot-noise-driven arrival rates and the numbers of customers in the
queues.

Infinite-server queues are also studied in [2] and [8], but the arrival process there is a
Hawkes process, the so-called self-exciting process—jumps in the shot-noise process
in turn increase the intensity of the occurrence of the jumps.DawandPender [2] present
several interesting motivating examples. They consider deterministic jump sizes in the
shot-noise process and study in particular theHawkes/Ph/∞ andHawkes/D/∞ queues,
obtaining detailed expressions formoments and autocovariances.Koops et al. [8] allow
generally distributed jumpsizes. For the case of exponentially distributed service times,
the joint Laplace and z-transform of theHawkes intensity and the number of customers
is characterized via a partial differential equation, and that PDE is exploited to obtain
recursive expressions for (joint) moments of the Hawkes intensity and the number of
customers. For the case of generally distributed service times, the Hawkes process is
viewed as a branching process, which allows expressing the z-transform of the number
of customers in terms of the solution of a fixed-point equation.
Main goals and results In this paper we aim to develop a general framework for the
study of infinite-server queues with, as input, a quite general Cox process and to
provide an exact analysis of networks of such queues. The modeling framework of
[7] is extended in several ways; in particular, the shot-noise process is multivariate
and not driven by a compound Poisson process, but by a Lévy subordinator. The class
of Lévy subordinators not only contains compound Poisson processes, but also, for
example, linear drifts and Gamma processes (where the latter process has the notable
property that it exhibits infinitely many jumps in any time interval of positive length).

The main results of the paper are compact, elegant, transform expressions for joint
distributions of arrival rates and numbers of customers, and properties of the depar-
ture processes, which reveal an interesting generalization of the classical results for the
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number-of-customers process and the departure process in the M/G/∞ queue. While
large parts of the paper are quite technical, we also try to make clear why a detailed
analysis of this complicated network is possible. In a nutshell, crucial for the anal-
ysis are the following convenient properties: (i) Lévy processes have stationary and
independent increments, (ii) in a shot-noise process with exponential decay, all shots
simultaneously decay at the same exponential rate, independently of each other, and
(iii) in (a network of) infinite-server queues, all customers move through the queues
independently, without interfering with each other.
Motivation Our motivation for this study is threefold. (i) We started studying queues
with Coxian input as a framework naturally allowing the incorporation of overdisper-
sion. (ii) When we realized that a detailed analysis of an isolated infinite-server queue
with Coxian input is possible, we were motivated to develop a very general frame-
work for studying networks of infinite-server queues with a multivariate Coxian input
process that is of great generality but still allows a detailed exact analysis. Together
with product-form networks and linear stochastic fluid networks (cf. [6]) these are
some of the rare examples of queueing networks for which one can obtain the joint
distribution of key performance measures. (iii) Finally, while infinite-server queues
with overdispersed input have various applications, we were in particular inspired by
Web server applications. Consider the number of simultaneous visitors to a popular
Web site or online video [11,12]. While the arrival process of visitors to the Web site
may well be a Poisson process, its rate may jump up due to some (external) event, then
decay gradually, only to jump up again because of another event. Such an example
formed one of the motivations for [2,7,8], which all study infinite-server queues with
an overdispersed arrival process.

Cox input processes driven by a multivariate Lévy subordinator are quite relevant
for the above-mentioned example of a Web site with a visit rate that jumps up because
of a certain event and subsequently decays again. They allow one to take into account
multiple, possibly related, events that affect the visit rate of theWeb site. Those events
could occur instantaneously (the Lévy subordinator being a compound Poisson pro-
cess), but there might also, for example, be a linear (fluid) component.

Since we also consider networks of infinite-server queues, we can also model the
situation in which a visitor to a Web site, after a while, clicks in order to move to
another Web site.
Organization of the paper In Sect. 2 we introduce the multivariate shot-noise process
and we describe distributional properties of this process. Section 3 studies a single
infinite-server queue with, as input process, the above-described Cox process. The
general case of a network of infinite-server queues is dealt with in Sect. 4. Each
of these three sections starts with a brief overview of related known results: the one-
dimensional shot-noise process (Sect. 2.1), the classicalM/G/∞ queue (Sect. 3.1), and
a tandem network of M/G/∞ queues (Sect. 4.1). Section 5 contains some conclusions
and suggestions for further research.
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2 Multivariate shot-noise

In this preliminary section, we first briefly introduce shot-noise (Sect. 2.1) and define
multivariate shot-noise and its stationary version (Sect. 2.2), then we recall some
basic facts on Poisson randommeasures (Sect. 2.3), and we conclude in Sect. 2.4 with
describing distributional properties of the multivariate shot-noise process.

2.1 Shot-noise processes

We start our exposition by describing the classical shot-noise process {X(t), t ≥ 0}, as
follows: This process increases according to a compound Poisson process {J (t), t ≥
0} with jump rate c of the Poisson jump process {N (t), t ≥ 0} and independent,
identically distributed upward jumps B1, B2, . . . with Laplace–Stieltjes transform
β(·); see Fig. 1.

In between jumps, the process decreases with a state-dependent rate r X(t). Possible
representations are hence, with T1, T2, . . . denoting the jump epochs of the compound
Poisson process,

X(t) = e−r t X(0) +
∫ t

0
e−r(t−s)dJ (s) = e−r t X(0) +

N (t)∑
j=1

Bje
−r(t−Tj ), t ≥ 0; (1)

alternatively, X(·) is the unique solution of the stochastic integral equation

X(t) = X(0) +
N (t)∑
j=1

Bj − r
∫ t

0
X(s)ds, t ≥ 0. (2)

Fig. 1 The rate X(t) as a function of time t
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2.2 Definition of multivariate shot-noise

After having defined the classical shot-noise process, we now describe the generalized
version of the shot-noise process that we work with in this paper.

Let X(·) be a (generalized) d-dimensional multivariate shot-noise process, which
is defined as follows: Let J(·) be a d-dimensional subordinator, i.e., a d-dimensional
Lévy process which is non-decreasing in all components. Examples of such non-
decreasing Lévy processes include linear drifts, compound Poisson processes and
Gamma processes (but, obviously, not Brownian motion). We define the exponent of
J(·) by −η(·); it satisfies, for α ∈ R

d+ and with ′ denoting transposition,

η(α) = − log
(
E e−α′ J(1)

)
= α′c+

∫ ∞

0
(1 − e−α′x)ν(dx),

where c ∈ R
d+ and ν is an associated Lévy measure satisfying

ν
((

R
d+
)c ∪ {0}

)
= 0 and

∫
R
d+

(‖x‖ ∧ 1) ν(dx) < ∞;

cf. [9,13].
Also, let Q = (qi j ) be a (d×d)-matrix with nonnegative diagonal and non-positive

off-diagonal entries, and with all eigenvalues having strictly positive real parts. An
example of such a matrix is Q = (I − P ′)D, where D is a positive diagonal matrix
and P is a substochastic matrix satisfying Pn → 0 as n → ∞. A detailed motivation
for studying this setting is provided in [6, Section 4].

We now introduce, for X(0) componentwise strictly positive and independent of
J(·), the multivariate shot-noise process through

X(t) = e−QtX(0) +
∫

(0,t]
e−Q(t−s)d J(s); (3)

cf. (1) and (2) above.Alternatively, X(·) is the unique (strong) solution to the stochastic
integral equation

X(t) = X(0) + J(t) − Q
∫ t

0
X(s) ds. (4)

The cumulative external input to station i is Xi (0)+ Ji (t), the internal input rate from
station i to station j is

∑
j 
=i qi j X j (t), and the output rate (some of which goes to

other stations, while the rest leaves the system) is qi Xi (t), where qi = −qii ≥ 0. The
reason for the above assumption that the eigenvalues of Q have a strictly positive real
part is that it ensures that all the coordinates of the matrix e−Qt vanish as t → ∞ and
thus, from (3), it follows that the effect of each arriving particle vanishes as well.
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The process X(·) is Markovian and strictly positive (i.e., never hits or crosses any
of the axes). Moreover, it has a unique stationary/ergodic/limiting distribution. This
limiting distribution is identical to that of

X(∞) =
∫

(0,∞)

e−Qs d J(s). (5)

So far we have considered J(t) for positive values of t , but we can extend J(·) to
the whole real line (with J(0) = 0). It follows directly that

X∗(t) :=
∫

(−∞,t]
e−Q(t−s)d J(s) (6)

is a stationary process satisfying the same conditions that X does, that is, relations (3)
and (4). From here on we assume that X = X∗.

In Sect. 3 we shall consider an infinite-server queue with as arrival process a non-
homogeneous Poisson process with arrival rate function �(t) = a′X(t) at time t . But
first, in the next subsection, we review some well-known properties and results for
Poisson randommeasures. We need those properties and results in order to provide an
elegant treatment of the transforms of the arrival process and numbers of customers
in networks of infinite-server queues with Coxian arrivals. In Sect. 2.4 we already
demonstrate that by deriving an expression for the d-dimensional Laplace–Stieltjes
transform (LST) of X.

2.3 Properties of Poisson randommeasures

Readers who are not familiar with Poisson randommeasures are referred to, for exam-
ple, Chapter 6 of Çinlar [1]. To proceed, we first recall that a Poisson randommeasure
N on some measurable space (X,G ) is a random measure having the property that,
for every pairwise disjoint A1, . . . , An ∈ G , the random variables N (A1), . . . , N (An)

are independent with N (Ai ) ∼ Poisson(μ(Ai )), where μ(A) = EN (A) is assumed
to be σ -finite. When μ(A) is 0 or ∞ then N (A) is defined to be almost surely 0 or ∞,
respectively. We note that it is well known that N is a Poisson random measure with a
(σ -finite) mean measure μ if and only if for any G -measurable f : X → R+ we have
that (cf. [1, Thm. 2.9 on p. 252]),

E exp

(
−

∫
f (s) dN (s)

)
= exp

(∫ (
1 − e− f (s)) dμ(s)

)
.

Observe that E
∫

f (s) N (ds) = ∫
f (s) dμ(s) (which holds even if N is not Poisson).

Finally, it is also known, and actually easy to check (first for indicators, then simple
functions, etc.), that if f1(·) and f2(·) are nonnegative G -measurable, then
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E

∫
f1(s) dN (s)

∫
f2(s) dN (s) =

∫
f1(s) f2(s)dμ(s)

+
∫

f1(s) dμ(s)
∫

f2(s)dμ(s).

Clearly, when
∫

f1(s)dμ(s),
∫

f2(s)dμ(s), and
∫

f1(s) f2(s)dμ(s) are all finite, then
this is equivalent to

Cov

(∫
f1(s)dN (s),

∫
f2(s)dN (s)

)
=

∫
f1(s) f2(s)dμ(s).

Let � = (�i ) be the mean rate of growth of the subordinator J(·), that is, �i :=
ci + ∫

R
d+ xiν(dx). We can also write �i = ci + ∫

R+ xiνi (dxi ), using the notation

νi (A) = ν
(
R
i−1+ × A × R

d−i+
)

.

It is also well known (see, for example, Chapter 4 of [13]) that there exists a
Poisson random measure N (·, ·) on R × R

d+ (equipped with its Borel σ -field) with
mean measure � ⊗ ν, where � is Lebesgue measure, such that

Ji (t) =

⎧⎪⎪⎨
⎪⎪⎩
ci t +

∫
(0,t]×R

d+
xi dN (s, x), t ≥ 0,

ci t −
∫

[t,0)×R
d+
xi dN (s, x), t < 0,

where x = (x1, . . . , xd)′. This property entails that ifwe take f1(s, x) = ∑d
i=1 gi (s)xi

and f2(s, x) = ∑d
i=1 hi (s)xi , then we can immediately conclude that for each Borel

g, h : R → R
d+ the following three identities hold:

E

∫
R

g(s)′ d J(s) =
∫
R

g(s)′� ds, (7)

E exp

(
−

∫
R

g(s)′d J(s)

)
= exp

(
−

∫
R

η(g(s))ds

)
, (8)

and

Cov

(∫
R

g(s)′d J(s),
∫
R

h(s)′d J(s)

)
=

∫
R

g(s)′	h(s)ds,

with

	 := −∇2η(0) =
∫
R
d+
xx′ν(dx),
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provided that the corresponding variances
∫
R
g(s)′	g(s)ds and

∫
R
h(s)′	h(s)ds are

both finite. With σi j denoting the (i, j)th coordinate of 	, it also holds that

σi j =
∫
R
d+
xi x jν(dx) =

∫
R
2+
xi x j νi j (dxi , dx j ), (9)

where νi j is the (i, j)th marginal measure associated with ν (i.e., the Lévy measure
associated with the (i, j)th coordinate of J(·)).

2.4 Distributional properties of multivariate shot-noise

Combining (5) with the powerful identity (8), we immediately obtain the following

Proposition 2.1 The d-dimensional Laplace–Stieltjes transform of X is given by

E e−α′X = exp

(
−

∫ ∞

0
η

(
e−Q′sα

)
ds

)
. (10)

In the usual manner, moments can be found from the LST. The first moment takes the
following form: With ∇η(0) the vector of first derivatives,

E X = Q−1 ∇η(0) = Q−1�.

We now identify the covariance matrix of X . From (9) it follows, as was also shown
in [6, Thm. 5.2], that the covariance matrix of X is given by

	0 =
∫ ∞

0
e−Qs 	 e−Q′s ds, (11)

and is the unique solution of

Q 	0 + 	0 Q
′ = 	. (12)

The next objective is to find an expression for the covariance between X(t) and
X(t + h), again bearing in mind that we started the process at −∞. Now, clearly

Y(t, h) :=
∫

(t,t+h]
e−Q(t+h−s) d J(s)

is independent of X(t), due to the independent increments property of J(·). As a
consequence, with

Z(t, h) :=
∫

(−∞,t]
e−Q(t+h−s) d J(s),
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we obtain, by splitting X(t + h) into the sum of Y(t, h) and Z(t, h) (cf. (6)), that

Cov(X(t), X(t + h)) = Cov(X(t),Y(t, h) + Z(t, h)) = Cov(X(t), Z(t, h)).

Denote (forh ≥ 0) by	h amatrix ofwhich the (i, j)th entry isCov(Xi (t), X j (t + h)).
It now follows from (9) that, by taking g(s) := e−Q′(t−s)x and h(s) := e−Q′(t+h−s)y,

x′	h y =
∫ t

−∞
x′e−Q(t−s)	e−Q′(t+h−s) y ds =

∫ ∞

0
x′ e−Qs 	 e−Q′(s+h) y ds,

for every x, y ∈ R
d . It thus follows, using (11), that

	h =
∫ ∞

0
e−Qs 	 e−Q′(s+h) ds = 	0 e

−Q′h . (13)

Combining the above, we find the following result.

Proposition 2.2 The (R2d -valued) covariance matrix of (X(t), X(t + h)) is given by

(
	0 	0 e−Q′h

e−Qh 	0 	0

)
.

Since Q′ and e−Q′h commute, it also follows from (12) that

Q 	h + 	h Q
′ = 	 e−Q′h .

In fact, employing the method of proof of [6, Thm. 5.2], 	h is the unique solution of
this equation.

Remark 2.3 In the one-dimensional case, letting σ 2 and q denote the one-dimensional
versions of the matrices 	 and Q, respectively, we conclude that the covariance
between X(t) and X(t + h) is given by 1

2e
−qhσ 2/q.

3 Single infinite-server queue with a Cox input process

We consider an infinite-server queue in which, conditioned on J(·), the arrival process
is a non-homogeneous Poisson process with rate function �(t) = a′X(t) at time t ,
where a ∈ R

d+. It is throughout assumed that service times are i.i.d. and are independent
of J(·) (hence also of X(·)) and the arrival process. The service times have distribution
function F(·) and complementary distribution function F̄(·), and in addition we define
F(s, t) := F(t) − F(s) for s < t .

In this section, we start by reminding the reader of some well-known results
concerning the classical M/G/∞ queue (Sect. 3.1), subsequently we derive, for the
infinite-server queue with a Cox input process, the transform of queue lengths at vari-
ous time epochs jointlywith the numbers of arrivals in various time intervals (Sect. 3.2),
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and we conclude, in Sect. 3.3, with several calculations yielding moments as well as
the joint steady-state transform of the number of customers in the infinite-server queue
and the arrival rate.

3.1 TheM/G/∞ queue

In this subsection we consider the classical M/G/∞ queue with fixed arrival rate λ and
generic service time B. It is well known [3] that the number of customers L(t) at time
t , starting with L(0) = 0, is Poisson distributed with mean

λt
∫ t

0
P(B > t − u)

du

t
= λ

∫ t

0
P(B > u)du.

This is easily seen by observing that the number of arrivals in [0, t] is Poisson(λt), that
different customers do not interact and that, given that therewere n arrivals in [0, t], the
arrival epochs were independent and uniformly distributed on [0, t]. So the Poisson
arrival process is thinned, and the number of customers still present at t follows a
Poisson distribution. Thus, the generating function of L(t) immediately follows:

E[wL(t)|L(0) = 0] = exp

(
(w − 1)λ

∫ t

0
P(B > u)du

)
. (14)

The pleasing properties of non-interfering customer behavior and of the uniformly
distributed arrival epochs also quickly lead to elegant results for joint distributions of
customer numbers at various epochs. Another well-known result about the M/G/∞
queue, going back to Mirasol [10], is that in stationarity the departure process of the
queue also is Poisson. We now study the question of how these results change in the
setting of the Cox input process.

3.2 Transform of queue lengths and numbers of arrivals

Our first objective is to derive the transform of queue lengths at various points in time,
jointly with the number of arrivals in corresponding intervals.

To this end, we consider n ∈ N time intervals, say (t0, t1] up to (tn−1, tn] (where it
is assumed that ti−1 < ti for i = 1, . . . , n). Our goal is to establish the joint transform
of the queue lengths Li at each of the ti and the numbers of arrivals Ai in each of the
intervals (ti−1, ti ], i.e., we shall compute the transform, for w ∈ R

n+1 and z ∈ R
n ,

�(w, z) := E

(
n∏

i=0

w
Li
i ·

n∏
i=1

zAi
i

)
.

Notice that a job arriving in the interval (ti−1, ti ] contributes to Ai (and does not
contribute to any of the other A j ) and potentially contributes to Li up to Ln . More
precisely, supposing that the job arrives at s ∈ (ti−1, ti ], with probability F(t j −
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s, t j+1 − s) it contributes to Li up to L j , for j ∈ {i, . . . , n} and defining tn+1 := ∞.
Conditional on �(·) = λ(·) this concerns a Poisson contribution with parameter

∫ ti

ti−1

λ(s)F(t j − s, t j+1 − s) ds;

conditional on �(·) = λ(·) all these contributions are independent. In addition, we
recall that the probability-generating function (evaluated in z) of a Poisson random
variable with parameter λ equals exp(λ(z − 1)). Combining the above elements, we
obtain

�(w, z) = E exp

(∫ tn

−∞
�(s)ψ(s | w, z) ds

)
, (15)

where, with t−1 := −∞,

ψ(s | w, z) =
n∑

i=0

ψi (s | w, z)1{s∈(ti−1,ti ]};

the individual ψi (s | w, z) are defined by

ψ0(s | w, z) :=
n∑
j=0

F(t j − s, t j+1 − s)

⎛
⎝

j∏
i=0

wi − 1

⎞
⎠

=
n∑
j=0

F(t j − s, t j+1 − s)
j∏

i=0

wi + F(t0 − s) − 1

for i = 0, and

ψi (s | w, z) :=
n∑
j=i

F(t j − s, t j+1 − s)

⎛
⎝zi

j∏
k=i

wk − 1

⎞
⎠

=
n∑
j=i

F(t j − s, t j+1 − s)zi

j∏
k=i

wk + F(ti − s) − 1

for i ∈ {1, . . . , n}.
Representation (15) generally holds, i.e., for any nonnegative arrival rate process

�(·). For the case of multivariate shot-noise, however, the expression can be made
more explicit. To this end, we substitute (cf. (6))

�(s) = a′X(s) = a′
∫ s

−∞
e−Q(s−r)d J(r).
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By applying Eq. (10), we obtain that (15) equals

�(w, z) = E exp

(
a′

∫ tn

−∞

∫ s

−∞
e−Q(s−r)d J(r) ψ(s | w, z) ds

)

= E exp

(
a′

∫ tn

−∞

∫ tn

r
e−Q(s−r)ψ(s | w, z) ds d J(r)

)

= exp

(
−

∫ tn

−∞
η

(
−

∫ tn

r
e−Q′(s−r) ψ(s | w, z)ds a

)
dr

)
.

We have thus established the following result.

Theorem 3.1 For any w ∈ R
n+1 and z ∈ R

n,

�(w, z) = E

(
n∏

i=0

w
Li
i ·

n∏
i=1

zAi
i

)

= exp

(
−

∫ tn

−∞
η

(
−

∫ tn

r
e−Q′(s−r) ψ(s | w, z)ds a

)
dr

)
.

Interestingly, the above result directly enables us to describe the distribution of the
number of departures in all intervals. Let Di be the number of departures in (ti−1, ti ].
Then we would like to evaluate


(v) := E

(
n∏

i=1

v
Di
i

)
.

Now observe that Li = Li−1 + Ai − Di , and hence Di = Li−1 − Li + Ai . As a
consequence,


(v) = E

(
n∏

i=1

v
Li−1−Li+Ai
i

)
= E

(
v
L0
1 ·

n−1∏
i=1

(
vi+1

vi

)Li

· v−Ln
n ·

n∏
i=1

v
Ai
i

)
.

With w1(v) := v1, wi (v) := vi+1/vi for i ∈ {1, . . . , n − 1} and wn(v) := v−1
n , we

thus find the following result.

Proposition 3.2 For any v ∈ R
n,


(v) = �(w(v), v).

3.3 Explicit calculations

Let L(t) be the number of customers present at time t . In this subsection we compute
(i) the mean and variance of L(0), (ii) the joint transform of �(0) and L(0), and (iii)
the covariance between L(0) and L(t) for some t > 0. As before, we assume that the
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process started at −∞, so that it displays stationary behavior at time 0 (and conse-
quently at t as well). In principle, (factorial) moments can be derived by differentiating
�(w, z) suitably often and plugging inw = 1 and z = 1, but elegant direct arguments
can be given, as we show now.

We first introduce some notation. Define β as the mean service time:

β =
∫ ∞

0
F̄(s) ds.

The density of the residual service time Be is given by fe(s) := F̄(s)/β.

◦Mean and variance of3(0) and L(0)

It is easily checked that E�(0) = λ := a′ Q−1 � and Var�(0) = a′ 	0 a. We
therefore now concentrate on the mean and variance of L(0).

LetP(μ) denote a Poisson random variable with parameterμ. It is straightforward
that

E L(0) = E

(
P

(∫ 0

−∞
�(s)F̄(−s) ds

))
= E

(∫ 0

−∞
�(s)F̄(−s) ds

)
.

We thus find, with J shorthand notation for the entire path of the process J(·),

E[L(0) | J] =
∫ 0

−∞
�(s)F̄(−s) ds =

∫ ∞

0
�(−s)F̄(s) ds

= β

∫ ∞

0
�(−s) fe(s) ds = β E[�(−Be) | J]. (16)

For later use, we rewrite this expression as

β E[�(−Be) | J] = β E[a′X(−Be) | J] = β a′
E[X(−Be) | J]

= β

∫ 0

−∞

(
E a′ e−Q(−Be−s)1{s≤−Be}

)
d J(s)

d= β

∫ ∞

0

(
E e−Q′(s−Be)a 1{Be≤s}

)′
d J(s), (17)

where the last step is due to time-reversibility of J(·).
Applying (7), we obtain

E L(0) = β E�(0) = λβ. (18)

Now we move to computing Var L(0). Due to the fact that L(0) is mixed Poisson,
we have that Var(L(0) | J) = E(L(0) | J) and thus EVar(L(0) | J) = E L(0) = λβ.
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Using the law of total variance, (16), (18) and (9),

Var L(0) = EVar (L(0) | J) + Var (E[L(0) | J])
= λβ + Var (E(�(−Be) | J)) β2

= λβ + β2
∫ ∞

0
a′ (

E e−Q(s−Be)1{Be≤s}
)

	
(
E e−Q′(s−Be)1{Be≤s}

)
a ds.

(19)

Expression (19) can be substantially simplified, which we do later in this section.
Observe that Var L(0) ≥ E L(0), reflecting the fact that Coxian arrival rates lead to
overdispersed arrival processes; see, for example, [4,7].

◦ Joint transform of3(0) and L(0)

Here the goal is to determine E e−v�(0) wL(0). By arguments similar to those used in
Sect. 3,

E e−v�(0) wL(0) = E exp

(
(w − 1)

∫ 0

−∞
�(s)F̄(−s)ds − v �(0)

)

= E exp

(
(w − 1)a′

∫ 0

−∞
X(s)F̄(−s)ds − v a′X(0)

)
.

Combining this relation with (cf. (6))

∫ 0

−∞
X(s)F̄(−s)ds =

∫ 0

−∞

∫ s

−∞
e−Q(r−s) d J(r) F̄(−s) ds

=
∫ 0

−∞

∫ 0

r
e−Q(r−s) F̄(−s)ds d J(r)

=
∫ ∞

0

∫ s

0
e−Q(s−r) F̄(r)dr d J(s),

yields

E e−v�(0) wL(0) = E exp

(
a′

∫ ∞

0
�(v,w, s) d J(s)

)
,

where

�(v,w, s) := (w − 1)
∫ s

0
e−Q(s−r) F̄(r) dr − v e−Qs

= (w − 1)β E e−Q(s−Be)1{Be≤s} − v e−Qs .

Applying (8), we thus obtain the following result.
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Proposition 3.3

E e−v�(0) wL(0) = exp

(
−

∫ ∞

0
η

(−�(v,w, s)′a
)
ds

)
.

It is possible to apply this joint transform to the computation of moments of L(0) and
�(0), as well as their mixed moments, but lower moments can typically be computed
by direct arguments. The mean and variance of �(0) and L(0) have been identified
above. We therefore now focus on the covariance between �(0) and L(0). Since
E[�(0) | J] = �(0) (as X(·) is a functional of J(·)), and since Be is independent of
J , we find

Cov(�(0), L(0)) = Cov(E[L(0) | J],�(0)) = Cov(E[�(−Be) | J],�(0))

= Cov(�(−Be),�(0)) = ECov(�(−Be),�(0) | Be)

= a′
E	Be a = a′ 	0 E e−Q′Be a ,

where we employ the fact that the covariance matrix between X(t) and X(t + h),
which is the same as that between X(t − h) and X(t), is given by 	h = 	0 e−Q′h .

◦ Covariance between L(0) and L(t)

The starting point is the law of total covariance:

Cov (L(0), L(t)) = ECov (L(0), L(t) | J) + Cov(E[L(0) | J],E[L(t) | J]).

We evaluate the two terms separately. The first term can be rewritten as follows: Let
C1(t) denote the number of customers that arrive before time 0 and depart in (0, t];
C2(t) is the number of customers that arrive before time 0 and depart after t ; finally,
C3(t) is the number of customers that arrive in (0, t] and depart after t . Evidently, due
to the conditional independence of these three quantities,

Cov (L(0), L(t) | J) = Cov (C1(t) + C2(t),C2(t) + C3(t) | J)

= Var (C2(t)| J ) = E(C2(t) | J),

with, mimicking the above arguments,

E(C2(t) | J)
d= β

∫ ∞

0
E

(
e−Q′(s+t−Be)a 1{t<Be≤t+s}

)
d J(s),

where the last equality is due to the fact that the conditional distribution ofC2(t) given
J is Poisson. Thus, with Fe(·) denoting the distribution function of Be and F̄e(·) the
corresponding complementary distribution function,
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ECov (L(0), L(t) | J) = β

∫ ∞

0
E

(
a′e−Q(s+t−Be)�1{t<Be≤t+s}

)
ds

= β E

(∫ ∞

Be−t

(
a′e−Q(s−(Be−t))�

)
ds 1{Be>t}

)

= β E

(∫ ∞

0
a′e−Qs ds 1{Be>t}

)
�

= β a′Q−1 � P(Be > t) = λβ F̄e(t).

Next, we move to the second term. To this end, we first recall (cf. (16) and (17)) that

E[L(0) | J] =β

∫ ∞

0
E

(
e−Q′(s−Be)a 1{Be≤s}

)
d J(s),

E[L(t) | J] =β

∫ ∞

−t
E

(
e−Q′(s+t−Be)a 1{Be≤s+t}

)
d J(s).

As J has independent increments, when considering the covariance between
E[L(0) | J] and E[L(t) | J], we can restrict ourselves to integrating over s > 0 only;
more concretely,

Cov(E[L(0) | J],E[L(t) | J])
= β2

Cov

(∫ ∞

0
E

(
e−Q′(s−Be)a 1{Be≤s}

)
d J(s),

∫ ∞

0
E

(
e−Q′(s+t−Be)a 1{Be≤s+t}

)
d J(s)

)

= β2
∫ ∞

0
E

(
a′ e−Q(s−Be)1{Be≤s}

)
	 E

(
e−Q′(s+t−Be) a 1{Be≤s+t}

)
ds , (20)

where the last step follows by using (9).
As it turns out, the last formula (as well as (19)) may be simplified, as follows: Let

Be,1 and Be,2 be two i.i.d. copies of Be. Recalling (12) and denoting x+ := x ∨ 0 and
x− := −x ∧ 0 = (−x)+, (20) can be rewritten as

β2a′
∫ ∞

0
E

(
e−Q(s−Be)1{Be≤s}

)
	 E

(
e−Q′(s+t−Be)1{Be≤s+t}

)
ds a

= β2a′
E

(∫ ∞

Be,1∨(Be,2−t)
e−Q(s−Be,1)	 e−Q′(s+t−Be,2)ds

)
a

= β2a′
E

(
e−Q(Be,1−Be,2+t)−

(∫ ∞

0
e−Qs	 e−Q′sds

)
e−Q′(Be,1−Be,2+t)+

)
a

= β2a′
E

(
e−Q(Be,1−Be,2+t)−	0 e

−Q′(Be,1−Be,2+t)+
)
a ,
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where, in the last equality, (11) has been used. For any s ∈ R we have that, recalling
Equation (13),

a′ e−Qs− 	0 e
−Q′s+a = a′ 	0 e

−Q′|s|a = a′ 	|s| a.

Thus, denoting by R(t) the autocorrelation function (with R(0) = 1), then adding the
two terms yields

R(t) · Var L(0) = Cov(L(0), L(t)) = λβ F̄e(t) + β2 a′
E

(
	|Be,1−Be,2+t |

)
a . (21)

In particular, when t = 0, (21) provides us with a simplified expression for Var L(0).
The density of Be,1 − Be,2 is clearly symmetric around zero and is given by

g(x) =
∫ ∞

0
fe(y) fe(y + |x |) dy.

Since fe(·) = β−1 F̄(·) is non-increasing on [0,∞), this implies that g(·) is unimodal.
Weend this subsection by considering the one-dimensional case. Since bothh(x) :=

e−q|x | (q > 0) and g(x) are symmetric and unimodal (around zero), it follows by [15]
that so is their convolution. Alternatively, this follows also from [5] as h(·) is also
log-concave. This implies that

E e−q|Be,1−Be,2+t | =
∫ ∞

−∞
e−q|x+t |g(x) dx =

∫ ∞

−∞
e−q|−x+t |g(−x) dx

=
∫ ∞

−∞
e−q|t−x |g(x) dx

is unimodal with a mode at zero, hence non-increasing on [0,∞), and thus so is R(·).
A similar result holds if a is an eigenvector associated with a real-valued (positive)
eigenvalue q of Q′ since then a′ 	0 e−Q′|x | a = a′ 	0 a e−q|x |. However, in general,
even though a′ 	0 e−Q′|x | a is a symmetric function, it is not clear if it is decreasing
on [0,∞) or if it is log-concave. However, since it vanishes as |x | → ∞, it is clear
that R(t) vanishes as t → ∞.

4 The network case

In this section we consider networks of infinite-server queues with a Cox input pro-
cess. There are n queues, with the arrival rate of queue k being a non-homogeneous
Poisson process with rate function �k(t) = a′

kX(t). This is the same as defining the
vector of arrival processes to be �(t) = AX(t) for some matrix A with rows a′

k . The
X(t) process is the same multivariate shot-noise process as before. Notice that in this
construction the arrival processes at the various queues are potentially dependent.

Define by pkm(t) the probability that a job entering at queue k at time 0 is at queue
m at time t ; likewise, pk0(t) is the probability that a job entering at queue k at time 0
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has left the network by time t . In the case of exponentially distributed service times
and probabilistic routing, these pkm(t)’s can be computed more explicitly (relying on
the machinery developed for phase-type distributions).

Before studying the joint queue length distribution in the network (Sect. 4.2) and
presenting an example (Sect. 4.3), we briefly remind the reader of the structure of the
joint queue length distribution in the case of twoM/G/∞ queues in tandem (Sect. 4.1).
This helps sharpen our intuition and will make it easier to digest and understand the
results of Sect. 4.2.

4.1 TwoM/G/∞ queues in tandem

Consider a model of two M/G/∞ queues 1, 2 in series, with arrival rate λ at queue 1,
generic service time Bi at queue i , i = 1, 2, and all customers moving from queue 1 to
2 before leaving the system. Queue 2 has no external arrivals. The same concepts that
were underlying the results mentioned in Sect. 3.1 (see, in particular, (14)) quickly
lead to the following expression for the generating function of the joint distribution of
the two queue lengths L1(t), L2(t):

E[wL1(t)
1 w

L2(t)
2 |L1(0) = L2(0) = 0]

= exp

(
(w1 − 1)λ

∫ t

0
P(B1 > u)du + (w2 − 1)λ

∫ t

0
P(B1 < u, B1 + B2 > u)du

)
.

Furthermore, the generating function of the steady-state joint queue length distribution
is given by

E[wL1
1 w

L2
2 ] = exp

(
(w1 − 1)λEB1 + (w2 − 1)λEB2

)
.

4.2 Joint queue length

We focus on analyzing the stationary joint queue length distribution. In principle,
virtually all quantities studied in the previous section can be derived again, at the
expense of introducing rather heavy notation.

In this section,we let Km denote the stationary queue length at nodem ∈ {1, . . . , n}.
Our objective is to compute the joint probability-generating function

�(w) = E

(
n∏

m=1

wKm
m

)
.

Using the same arguments as in the previous section, we conclude that Km has a mixed
Poisson distribution. More precisely, Km has a Poisson distribution with (random)
parameter

∫ 0

−∞

n∑
k=1

�k(s)pkm(−s) ds. (22)
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It follows that

�(w) = E

(
n∏

m=1

wKm
m

)
= E exp

(
n∑

m=1

(wm − 1)
∫ 0

−∞

n∑
k=1

�k(s) pkm(−s) ds

)

= E exp

(
n∑

m=1

(wm − 1)
∫ 0

−∞

n∑
k=1

a′
kX(s) pkm(−s) ds

)
. (23)

Substituting (cf. (6))

X(s) =
∫ s

−∞
e−Q(s−r)d J(r)

in (23) gives

�(w) = E exp

(
n∑

k=1

a′
k

∫ 0

−∞

∫ 0

r
e−Q(s−r) πk(s | w) ds d J(r)

)
,

with

πk(s | w) :=
n∑

m=1

pkm(−s) (wm − 1) =
n∑

m=1

pkm(−s) wm + pk0(−s) − 1.

This leads to the following result.

Theorem 4.1 For any w ∈ R
n,

�(w) = E

(
n∏

m=1

wKm
m

)

= exp

(
−

∫ 0

−∞
η

(
−

n∑
k=1

∫ 0

r
e−Q′(s−r) πk(s | w) ds ak

)
dr

)
.

4.3 Example

In this illustrative examplewe consider a two-node tandem system inwhich the service
times at both nodes are exponential with parameter κ > 0. We assume for ease that
there is only input at the first queue and that all customers move from the first queue
to the second queue. It is immediate that, for t � 0,

p11(t) = e−κt , p12(t) = κt e−κt , p10(t) = 1 − e−κt − κt e−κt ;

use that the sojourn time in the system is Erlang(2). We find that

π1(t | w1, w2) = (w1 − 1) eκt − (w2 − 1) κt eκt .
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Assume for ease that d = 1 (i.e., one-dimensional shot-noise). We choose a1 = 1
(whereas a2 = 0, as we assumed no external input to the second queue). As a conse-
quence, we have that �1(t) = X(t) and �2(t) = 0, where X(t) can be represented
as

X(t) =
∫

(−∞,t]
e−q(t−s) dJ (s),

for some q > 0 and a (scalar) Lévy subordinator J (·) (with exponent −η(·)).
Appealing to Thm. 4.1,

�(w1, w2) = E
[
w

K1
1 w

K2
2

] = exp

(
−

∫ 0

−∞
η

(
−

∫ 0

r
e−q(s−r)π1(s | w1, w2) ds

)
dr

)
.

(24)

To evaluate this expression, observe that

∫ 0

r
e−q(s−r)π1(s | w1, w2) ds =

∫ 0

r
e−q(s−r) (

(w1 − 1) eκs − (w2 − 1) κs eκs) ds

= (w1 − 1)
eqr − eκr

κ − q
+ (w2 − 1)

(
κr eκr

κ − q
+ κ(eqr − eκr )

(κ − q)2

)
.

(25)

It is easy to obtain moments of K1 and K2 from (24) and (25) by differentiation with
respect to w1 and w2, respectively. In particular, straightforward algebra yields

E[K1] = E[K2] = η′(0)
κq

.

Remark 4.2 Similar calculations can be performed for considerably more general net-
works. Application of Thm. 4.1 requires (i) expressions for the matrix exponential of
Q′ and (ii) expressions for πk(s | w) (and therefore for pkm(s)) for s � 0. To this end,
evaluate, using common techniques from linear algebra, the matrix exponential of Q′;
this can be done relying on standard computer algebra. Assuming the eigenvalues of Q
to have multiplicity 1 (where we note that higher multiplicities can be dealt with too,
but require some additional care), we thus obtain a matrix whose entries are weighted
sums of exponentials. Likewise, if the service times are of phase type, then the prob-
abilities pkm(s) can be written in terms of (specific entries of) a matrix exponential,
and therefore (again under mild conditions) also as a weighted sum of exponentials.
It thus follows that the integrand e−Q′(s−r) πk(s | w) is a mixture of exponentials
(in s) and can be integrated by elementary calculus. This allows the computation of
the (mixed) moments pertaining to the stationary queue lengths.
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We now return to our tandem example. Suppose that J (·) corresponds to a Gamma
process [9, Section 1.2.4] with (without loss of generality) rate and shape parameters
both equal to 1, i.e.,

η(α) = − log

(
1

1 + α

)
= log(1 + α).

The probability-generating function of the queue length in the first queue is therefore

�(w, 1) = exp

(
−

∫ 0

−∞
log

(
1 + (1 − w)

eqr − eκr

κ − q

)
dr

)
.

Using the Taylor expansion of the logarithm, the exponent of this expression can be
rewritten as

∫ 0

−∞

∞∑
n=1

(−1)n

n

(
v(w) (eqr − eκr )

)n dr ,

with v(w) := (1 − w)/(κ − q). Relying on the binomium, this equals

∫ 0

−∞

∞∑
n=1

(−1)n

n
(v(w))n

(
n∑

k=0

(
n

k

)
(−1)n−k eqrk+κr(n−k)

)
dr .

Swapping the order of the summations and the integral, we obtain

∞∑
n=1

1

n
(v(w))n

n∑
k=0

(
n

k

)
(−1)k

1

qk + κ(n − k)
.

We thus end up with

E
[
wK1

] = exp

(
−

∞∑
n=1

1

n
(v(w))n

n∑
k=0

(
n

k

)
(−1)k

1

qk + κ(n − k)

)
.

A similar procedure yields the probability-generating function of the second queue,
but the resulting expressions are slightly more complicated.

5 Conclusions and suggestions for further research

In this paper we have considered a network of infinite-server queues where the input
process is a Cox process that allows much modeling flexibility; the arrival rate is
represented as a linear combination of the components of a multivariate generalized
shot-noise process. We have derived various distributional properties of the multi-
variate shot-noise process, subsequently exploiting them to obtain the joint transform
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of the numbers of customers, at consecutive time epochs, in an infinite-server queue
with, as input process, such a Cox process. We have also derived the joint steady-
state transform of the vectors of arrival rate and queue length, as well as their means
and covariance structure, and we have studied the departure process from the queue.
Finally, we extended our analysis to the setting of a network of infinite-server queues,
allowing the arrival processes at the various queues to be dependent Cox processes.

In a follow-up study [14] we investigate several related aspects. Specifically, (i)
we develop a recursive scheme that allows us to obtain higher-order moments of
(�(t), L(t)), (ii)wederive asymptotics of the queue length process, under assumptions
regarding the tail behavior of the shot-noise process, (iii) we study the heavy-traffic
behavior of the queue length process, and (iv) we obtain several numerical results
for means, variances and correlations; this includes a numerical exploration of the
sensitivity of various performancemetrics with respect to the service time distribution.
It could also be investigated to what extent the assumption of exponential decay in the
shot-noise process can be relaxed.
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