
Queueing Systems (2019) 92:25–45
https://doi.org/10.1007/s11134-019-09609-y

Attractiveness of Brownian queues in tandem

Eric A. Cator1 · Sergio I. López2 · Leandro P. R. Pimentel3

Received: 8 June 2018 / Revised: 12 March 2019 / Published online: 27 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Consider a sequence of n bi-infinite and stationary Brownian queues in tandem.
Assume that the arrival process entering the first queue is a zero mean ergodic pro-
cess.We prove that the departure process from the n-th queue converges in distribution
to a Brownian motion as n goes to infinity. In particular this implies that the Brow-
nian motion is an attractive invariant measure for the Brownian queueing operator.
Our proof exploits the relationship between Brownian queues in tandem and the last-
passage Brownian percolation model, developing a coupling technique in the second
setting. The result is also interpreted in the related context of Brownian particles acting
under one-sided reflection.

Keywords Brownian queue · Tandem queues · Last-passage percolation · Exclusion
process

Mathematics Subject Classification 60K25 · 60K35

1 Introduction

Tandem queueing systems (TQ) are classical models in queueing theory consolidated
from many decades of research and generalized to stochastic networks with diverse
structures. A tandem queue is a system of queues where there is an initial arrival
process A1 and a sequence {Sn}n≥1 of service processes, all independent. The system
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is defined recursively: the initial queue is fed from the arrival process A1 and has
departures determined by the service process S1. For n ≥ 2, the arrival process for the
n-th queue is defined as the departure process of the (n-1)-th queue, and the depar-
tures are determined by the service process Sn . One fundamental result in queueing
theory is Burke’s theorem, which states that, given a Poisson process as arrival and an
independent Poisson process as service (where the service intensity is strictly larger
than the arrival one), the departure process is a Poisson process. This type of result,
where there is an invariant law of the process under the queueing operator, is known
as an Output theorem in the literature, and it allows us to compute explicitly many
features of tandem queues systems.

It is natural to consider the convergence of the departure process law from the
n-th queue, as n goes to infinity, when the initial arrival process is arbitrary. This
was answered in [20] in the case when the service processes are Poisson: there is
convergence to a Poisson process, under weak conditions on the initial arrival process.
In [23], the result was generalized to the case when the service processes are not
Poisson but independent and identically distributed. In this work, we study the same
question when the service processes are Brownian motions.

Let us start by introducing the Brownian Tandem Queues (TQ). We follow the
notation introduced in [21]. For real and continuous functions f ∈ C(R), set
f (x, y) := f (y) − f (x). Let a = (a(x): x ∈ R) denote some continuous arrival
process and for μ > 0 define the service process by s(1)(x) := μx − B(1)(x), where
B(1) = (B(1)(x): x ∈ R) is a two-sided Brownian motion independent of a. The
queue-length process is defined as

q(1)(x) := sup
z≤x

{
a(z, x) − s(1)(z, x)

}
. (1)

In order for q(1) to be stable (positive recurrent), we impose that the service process
s(1) has a drift larger than that of the arrival process. We do this by requiring

lim
x→−∞

a(x)

x
= 0 and lim

x→∞
a(x)

x
= 0.

The departure process is defined by

d(1)(x, y) := a(x, y) − q(1)(x, y), (2)

with the convention that d(1)(0) = 0, and hence we put d(1)(x) := d(1)(0, x).
The tandem queue model, in words, consists of a line of queues, where each queue

uses as input (arrival) process the output (departure) process of the queue that is just
in front of it in the line. In this context, we have an initial arrival process a and service
processes {s(n)}n∈N, where s(n)(x) = μx−B(n)(x) and

{
B(n) : n ∈ N

}
is a collection

of independent (two-sided) Brownian motions. One can define inductively the queue-
length and departure processes of the n-th Brownian queue. Assume that the departure
process (d(n)(x) : x ∈ R) is already defined. Then, we can define the queue-length
process of the (n + 1)-th Brownian queue as
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q(n+1)(x) := sup
z≤x

{
d(n)(z, x) − μ(x − z) + B(n+1)(z, x)

}
,

and the departure process from the n-th Brownian queue as

d(n+1)(x, y) := d(n)(x, y) − q(n+1)(x, y),

with the similar convention d(n+1)(0) = 0 and d(n+1)(x) := d(n+1)(0, x).
A measure on the space of continuous arrival functions with zero drift is called

invariant for the queueing operator (in equilibrium) if the departure process has the
same law as the arrival process. For the Brownian queue operator, the measure induced
by an independent standard Brownianmotion B is an invariant (ergodic) measure [21].
Our result is the uniqueness of such a measure, by proving attractiveness:

Theorem 1 Start the process of queues in tandem with a zero mean ergodic arrival
process. Then,

lim
n→∞ d(n) dist.= B . (3)

In our proof of Theorem 1, we will only use that B is an invariant ergodic measure for
the queue system. Uniqueness will follow from our method.

Essential for our proof is the connection of the Brownian TQ model to two related
Brownianmodels, namely the Brownian last-passage percolation (LPP) and the totally
asymmetric Brownian exclusion process (TABEP). We will introduce these models in
Sect. 3 and point out the relationships between the three models.

All of these models have been previously studied, and the connection between
them has been known for a while. Hambly et al. [11] defined the LPP Brownian
model and derived concentration results for the associated Brownian growth model.
The related Brownian particle system model has been studied in [5,6]: particles are
driven by Brownian motions, and each particle is reflected (only) on its left closest
particle. While models of Brownian motions interacting by exclusion on the real line
have been an active research topic [13,14,22], Ferrari, Spohn and Weiss successfully
constructed a strong version of a two-sided system with an infinite amount of particles
in a stationary regime [6], governed by an asymmetric Skorokhod-type reflection,
easily related to the LPP model. They accomplished this by a technique resembling
Loynes’ stability theorem for G/G/1 queues [17], and studied the finite-dimensional
distributions of the system, characterized in terms of the Airy process. For simplicity,
we name this Brownian particle system as the totally asymmetric Brownian exclusion
process (TABEP), as suggested by P. A. Ferrari. The queueing model related to this
particle process is exactly our Brownian TQ.

1.1 Contribution

In this article, we first revisit the connection between these three models: the LPP
Brownian model, the TABEP process and the TQ Brownian system. The relationship
between the LPPmodel and the TABEP process is mentioned in [6], while the relation
between the LPP model and the TQ system is described in [21]. This is completely
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analogous to the known relationship between standard Markovian Tandem Queues,
LPP on Z

2 with exponential weights and the TASEP (totally asymmetric exclusion
process). For the sake of completeness, these models are presented in Sect. 2.

Relying on these relations, we prove a result concerning the uniqueness of the
invariantmeasure for theBrownian queueing operator, by proving attractiveness to that
measure. In words, if we start with some zero mean ergodic process as initial arrival
process and let it pass through the Brownian queues in tandem, then the departure
process from the n-th queue converges in distribution to a Brownian motion as n goes
to infinity. This is precisely stated in Theorem 1.

For this purpose, we only use that the invariantmeasure under the queueing operator
is known [12]: it is the random measure associated with the Brownian motion. The
method of proof is a coupling technique developed in the LPP Brownian setting:
starting with two different initial arrival processes (called mass profiles in the LPP
Brownian model), we use the same service processes (the random environment in the
LPP context) to define the coupled evolution. Then, we can prove that the difference
between the associated departure processes (mass profiles) at each stage of the system
is converging to zero on compact sets. This is our main result, Theorem 3, which
implies the desired conclusion in the queueing context, Theorem 1. We point out that
this result can also be translated to an attractiveness result for a semi-infinite TABEP
system; see Theorem 2.

A key step in the method involves local comparison techniques which allow us to
bound the difference between mass profiles in terms of the so-called exit points in the
LPP literature. This implies that it is only necessary to control the exit points for a given
system (done in Lemma 4) and then to control the difference between the exit points
defined for each of the coupled systems. These exit points are naturally defined in the
LPP context, but we give an interpretation in the queueing setting in the following:
First, consider an arbitrary initial arrival process and a single node Brownian queue.
The exit point associated with time x is the last time Z(x, 1) before time x when
the Brownian queue was empty. Given node n of a tandem Brownian queue system
and some time x , define In−1(x, n) as the last time the n-th queue was empty before
time x , then In−2(x, n) to be the last time the (n-1)-th queue was empty before time
In−1(x, n), and so on, until we find the exit point Z(x, n) = I0(x, n). Hence, the exit
time can be found from this iterative process of marking the beginning of the current
excursion of the queue in each stage of the tandem system. This property is described
in more detail in Sect. 4.1.

Our method of proof differs substantially from the methods developed for discrete-
valued queueing systems: In [20], a coupling between the departure times in every step
of the tandem queue of each user is accomplished, while in [23] the waiting times of
each user in every node of the tandem queue system are considered for the coupling.

A rather simplified version of this result was presented in [15] where, using a path
coupling of the departures processes, a non-stationary and one-sided (in time) system
is studied with some particular initial conditions. Those techniques are non-applicable
to the current bi-infinite stationary setting.
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1.2 Structure of the paper

In Section 2, we first review the classical discrete models. Then, we define the totally
asymmetric Brownian exclusion process (Sect. 3.1) and the last-passage percolation
system (Sect. 3.2). In each of these subsections, our result is stated in the corresponding
context (Theorems 2 and 3) and the explicit relations between the models are shown.
In Sect. 3.2, the coupled dynamics are defined. In Sect. 3, we first present the definition
of exit points and the results concerning their control (Sect. 4.1) and then proceed to
show the comparison results and the proof of Theorem 3 (Sects. 4.2 and 4.3).

2 The discrete models

In this section, we review some fundamental relationships between the classical
Markovian tandem queue model (TQ), the exponential last-passage percolation model
(LPP) and the totally asymmetric simple exclusion process (TASEP).

Assume that we have K Markovian queues in tandem working under a FIFO disci-
pline. At time zero, the first queue starts working with N users in the line, while all the
other queues are empty. Define a collection of rate-one independent exponential ran-
dom variables {X(n, k)}n=1,...,N ,k=1,...,K , where X(n, k) represents the service time
of the n-th user at server k. Define D(n, k) as the time where the n-th user exits the
k-th server. Note that server k only starts to serve user n after user n − 1 has exited
server k and the service from server k − 1 to user n has been finished. Then, we have
the following recurrence structure:

D(n, k) = X(n, k) + max(D(n, k − 1), D(n − 1, k)), (4)

with boundary conditions D(0, 0) = 0 and D(n, k) = 0 if n < 0 or k < 0. We will
show how this structure is related to the aforementioned models.

Consider a collection of i.i.d. random variables {Wx : x ∈ (Z+)2} (also called
weights), distributed according to an exponential distribution function of parameter
one. In last-passage site percolation (LPP) models, each number Wx is interpreted as
the percolation (passage) time through vertex x = (x(1), x(2)). For a lattice vertex
x = (n, k) in (Z+)2, denote by �(x) the set of all up-right oriented paths γ =
(x0, x1, . . . , xk) from 0 to x, i.e., x0 = 0, xk = x and x j+1 − x j ∈ {e1, e2}, for
j = 0, . . . , k − 1, where e1 = (1, 0) and e2 = (0, 1). The weight (or passage time)
along γ is defined as

W (γ ) :=
k∑
j=0

Wxi .

The last-passage time between 0 and x is defined as

L(x) ≡ L(n, k) := max
γ∈�(x)

W (γ ).
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By the up-right path structure and the dynamic programming principle, we have the
following Bellman equation:

L(n, k) = W (n, k) + max(L(n, k − 1), L(n − 1, k)). (5)

This equation is the same as (4) with the same boundary conditions, so the last-passage
percolation function is an equivalentway to describe the departure times froma tandem
queue system.

Let us define the related interacting particle system. Let � be the space of binary
sequences η : Z → {0, 1}. The elements η in � will be configurations of particles.
We will say that a configuration η such that η(x) = 1 has a particle at position x . If
η(x) = 0, we say that position x is empty or that we have a hole in that position. The
dynamics are defined by the infinitesimal generator

L[ f ](η) =
∑
x∈Z

η(x)(1 − η(x − 1))( f (ηx,x−1) − f (η)),

where ηx,x−1 is defined as the configuration that is identical to η except for the posi-
tions x and x − 1, where the original values are exchanged. The interpretation is the
following: from each possible site x , we have a constant rate of jump of the particles.
(If there is no particle at site x , nothing happens.) Once the clock at position x rings,
the particle in that place tries to jump to the site x − 1 and this is accomplished if the
site x − 1 is empty; otherwise, the jump is disregarded. This last condition emulates
an exclusion principle, which is the reason that this process is known as the totally
asymmetric simple exclusion process. It is a standardmicroscopic model for transport;
see, for example, [4].

Finally, we show the relationship between the TASEP process and the tandemqueue
model defined by (4). Let {ηt : t ≥ 0} be a TASEP process with initial configuration
η0. Assume the initial configuration η0 is such that η0(x) = 1[0,∞)(x) for every x ∈ Z,
which means that all the particles are to the right of the origin in consecutive positions.
Label each particle with its initial position, and define xl(t) to be the position of the
l-th particle at time t (so xl(0) = l for every l ∈ N). Define

ql(t) := xl(t) − xl+1(t) − 1, (6)

that is, the number of users in server l at time t is equal to the number of holes between
particles l and l+1 at time t . Note that (6) translates exactly the movement of particles
in the exclusion process to the tandem queue dynamics: every time that the particle l
moves to the left, one user is entering the l-th queue.Moreover, if the particle l which is
moving is not the first one, the number of users in the (l-1)-th queue diminishes by one,
so the user is leaving that queue. The exclusion property for particles translates into
the restriction of having a nonnegative number of users in each queue. Consider now
that holes are labeled in the starting configuration η0: the hole at position l < 0 will
have label −l. The model is symmetric in particles and holes: one can think of holes
traveling to the right which satisfy the exclusion property between them. Therefore,
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using (6), we have another interpretation of the departure time D(n, k): it is exactly
the time when particle k exchanges position with hole n.

The previous presented relationships are known and studied; see [19]. In the last two
decades, great progress has been made for LPP models and this has given insight into
an important question originally posed in queueing theory: the asymptotic distribution
of the departure time of the n-th user in line from the m-th queue (its order in the line
of queues), when the whole system starts empty, by making m and n grow to infinity
while keeping fixed the ratio between them [9,24]. On the other hand, strong results
fromqueueing theory concerning the existence and attractiveness of invariantmeasures
under the queueing operator [18,23] have been used to shed light on difficult questions
concerning LPP models, as for example the existence of semi-infinite geodesics and
Busemann functions for the lattice model in Z

2 with generally distributed weights;
see [7,8].

3 Convergence of the Brownianmodels

Theorem 1 states our convergence result for the Brownian TQ. In this section and the
next, we will restate basically the same result in the context of two different Brownian
models.

3.1 Convergence in the totally asymmetric Brownian exclusion process

Consider a semi-infinite system of Brownian interacting particles defined for all real
times x . Take some stationary, ergodic and continuous process {X (0)(x) : x ∈ R}
and define X (0)(x) as the position of the leftmost particle at time x . We introduce a
collection {B(n) : n ≥ 1} of independent two-sided standard Brownianmotions. Then,
for n ≥ 1, define

X (n)(x) = sup
y≤x

(X (n−1)(y) + B(n)(x) − B(n)(y)), x ∈ R . (7)

The system {X (n)(x) : x ∈ R}n≥0 will be called the totally asymmetric Brownian
exclusion process (TABEP) with leftmost particle X (0). By definition, the order of the
particles is preserved: X (0)(x) ≤ X (1)(x) ≤ · · · for every real time x (choosing y = x
in the argument of the supremum in (7) shows that X (n−1)(x) ≤ X (n)(x)). Note that
(7) implies that the TABEP is Markovian in n: conditionally on the information of
the process X (n), the process X (n+1) is independent of the collection {X (k)}k=1,...,n−1.
These two properties can be combined to give an informal interpretation: the n-th par-
ticle is obtained by reflecting an independent Brownianmotion to its left-side neighbor
(the (n-1)-th particle), and this is the only possible interaction between particles. (Note
that a particle does not notice the particles to the right of it.)

A sufficient condition to have a well-defined system is that for some positive con-
stant μ, X (0) satisfies
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lim inf
x→−∞

X (0)(x)

x
≥ μ and lim sup

x→∞
X (0)(x)

x
≤ μ. (8)

Note that the whole system is time stationary: one can prove inductively that the
distribution of X (n)(x) does not depend on x , for every n ≥ 0.

Let us remark that the system defined above is a two-sided time stationary extension
of a TABEP system with initial positions, defined by Ferrari et al. [6]. In that work,
they considered the particular case of initial positions where the starting positions of
the particles are given by a rate μ Poisson process on [0,∞) and the leftmost particle
is given by

X (0)(x) = B(0)(x) + μx,

where {B(0)(x) : x ∈ R} is a Brownian motion. Using Burke’s theorem for Brownian
motion [21], they constructed a stationary bi-infinite system of ordered particles

· · · ≤ X (−1)(x) ≤ X (0)(x) ≤ X (1)(x) ≤ · · · , ∀x ≥ 0,

where each particle has the distribution of a standard Brownian motion (where the ini-
tial position is not zero) and, for each positive time x , the set of positions is distributed
as a rate μ Poisson process on the line.

Now, we show the relation to the tandem Brownian queues. Consider a TABEP
system {X (n)}n≥0, defined by (7). Define the arrival process a(x) := μx − X (0)(x)
and the service processes s(n)(x) := μx − B(n)(x) for each n ≥ 1. (Note that a has
zero drift and s(n)(x) has positive drift μ.) Then, the associated first queue-length
process is given by

q(1)(x) = sup
y≤x

(X (0)(y) − X (0)(x) + B(1)(x) − B(1)(y)), ∀x ∈ R,

the first departure process is

d(1)(x) = q(1)(0) + X (0)(0) + μx − sup
y≤x

(X (0)(y) + B(1)(x) − B(1)(y)), ∀x ∈ R,

and, by (7), we conclude that d(1)(x) = X (0)(0) + q(1)(0) + μx − X (1)(x) (we are
using the convention d(1)(0) = 0).

Analogous formulae hold for any n ≥ 1, by induction: Suppose now that for a fixed
natural k we have

d(k)(x) = X (0)(0) +
k∑

i=1

q(i)(0) + μx − X (k)(x), ∀x ∈ R.
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Then,

q(k+1)(x) = sup
y≤x

(d(k)(y, x) − s(n)(y, x))

= sup
y≤x

(X (k)(y) − X (k)(x) + B(k)(x) − B(k)(y)), ∀x ∈ R.

Since d(k+1)(0) = d(k)(0) = 0, this implies that

d(k+1)(x) = d(k)(x) − q(k+1)(x) + q(k+1)(0) (9)

= X (0)(0) +
k+1∑
i=1

q(i)(0) + sup
y≤x

(X (k)(y) + B(k)(x) − B(k)(y)), ∀x ∈ R,

(10)

where we also used the induction hypothesis. By (7), it follows that

d(k+1)(x) = X (0)(0) +
k+1∑
i=1

q(i)(0) + μx − X (k+1)(x), ∀x ∈ R.

An important remark is that, by using (7), we get that

q(n)(x) = X (n)(x) − X (n−1)(x),

so the distance between the particles n − 1 and n is equal to the n-th queue-length
process at time x . Thus, (3) is equivalent to Theorem 2.

Theorem 2 Start a two-sided TABEP with an ergodic process as the leftmost particle
which satisfies (8) for some positive constant μ. Then, the limit of the (centered) n-th
particle converges to a two-sided Brownian motion with drift μ, that is,

lim
n→∞

(
X (n)(x) − X (n)(0)

)
dist.= B(x) + μx . (11)

3.2 Convergence of the Brownian last-passage percolation system

In this section, we define the elements of the theory of last-passage percolation systems
[3] with Brownian passage times, as developed in [11], and show its relationship with
tandem Brownian queues. Let ω := {

B(n) : n ∈ Z
}
be a collection of i.i.d. two-sided

Brownian motions. Define the order “<” in R × Z as the coordinate-wise order. For
x = (x, k) < y = (y, l) ∈ R × Z, denote by �(x, y) the set of all real increasing
sequences γ = (x = z0 ≤ z1 ≤ · · · ≤ zl−k+1 = y). The passage time of γ is defined
as

L(γ ) :=
l−k∑
i=0

B(k+i)(zi , zi+1).
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The last-passage time between x and y is given by

L(x, y) := sup
γ∈�(x,y)

L(γ ) . (12)

The passage time of a path γ can be seen as a continuous real-valued process
X = (X(z) : z ∈ �), where

� = {z = (z1, . . . , zl−k) : x ≤ z1 ≤ · · · ≤ zl−k ≤ y} ⊆ R
l−k .

Since � is compact, by continuity, we have that the maximum is attained at some
location. In [16] is proven that, for x and y fixed, the maximum is attained at a unique
location with probability one. However, it is not true that this uniqueness holds simul-
taneously for all points x, y ∈ R × N. To see an example, for x > 0 define

Z(x) = {z ∈ [0, x] : B(0)(0, z) + B(1)(z, x) = L(0, (x, 1))},

where 0 = (0, 0). Put Wx := B(0)(x) − B(1)(x) and note that z ∈ Z(x) is equivalent
to Wz = supu∈[0,x] Wu . Thus, by Lévy’s theorem, we have that

{x ≥ 0 : #Z(x) > 1} dist.= {x ≥ 0 : √
2 lx is strictly increasing},

where lx is the local time of a standard Brownian motion.
We will call the geodesic (or the maximizer) between x and y to be the path γ (x, y)

such that

L(γ (x, y)) = L(x, y).

To introduce the last-passage percolation system, we consider an initial profile
ν = (ν(x) , x ∈ R) such that ν(0) = 0 and

lim inf
y→−∞

ν(y)

y
> 0, (13)

and define the (discrete time) evolution of ν as the Markov process (M (n)
ν : n ≥ 0),

where M (0)
ν = ν,

Lν(x, n) := sup
z≤x

{ν(z) + L ((z, 1), (x, n))} and M (n)
ν (x) := Lν(x, n) − Lν(0, n) .

(14)
TheMarkov property follows from the following fact: for all n ≥ 1 and k ∈ {0, . . . , n−
1}

Lν(x, n) − Lν(0, k) = sup
z≤x

{
M (k)

ν (z) + L ((z, k + 1), (x, n))
}

, (15)

which is an application of the dynamic programming principle. This is a graphical
construction of the process where the space-time random environment is given by
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the collection of Brownian motions ω = {
B(n) : n ∈ Z

}
. The variational formula

expresses the profile at time n as a function of the profile at time k < n plus some strip
of the space-time environment which is independent of the profile at time k. We note
that this construction allows us to run the last-passage percolation system, started with
two arbitrary initial profiles ν1 and ν2, simultaneously with the same environment ω

(basic coupling). Formally speaking, we define the joint process (M (n)
ν1 , M (n)

ν2 )n≥0 by
setting

(x, n) �→
{
Lν1(x, n) := supz≤x {ν1(z) + L ((z, 1), (x, n))} ,

Lν2(x, n) := supz≤x {ν2(z) + L ((z, 1), (x, n))} ,
(16)

and putting M (n)
νi (x) := Lνi (x, n) − Lνi (0, n) for x real and i = 1, 2. Notice that

L ((z, 1), (x, n)) is a function that only depends on ω.
The analogy with the queueing system is as follows: Assume that ν(x) has drift μ

and take
a(x) = μx − ν(x) and s(n)(x) := μx − B(n)(x). (17)

Then,

q(1)(x) := sup
z≤x

{
a(z, x) − s(1)(z, x)

}
= Lν(x, 1) − ν(x),

and

d(1)(x) := a(x) + q(1)(0) − q(1)(x) = μx − M (1)
ν (x).

From this, using definitions (1), (2), (14) and induction, one can check the analogous
relation for all n ≥ 2:

q(n)(x) = sup
z≤x

{
d(n−1)(z, x) − s(n)(z, x)

}
= Lν(x, n) − Lν(x, n − 1),

and

d(n)(x) = a(x) + q(n)(0) − q(n)(x) = μx − M (n)
ν (x).

Thus, (3) and (11) are consequences of (19). Define

Bμ(x) = μx + B(x),

where B is a standardBrownianmotion. Using the invariance of the Brownianmeasure
under the queueing operator, it is immediate that Bμ is invariant:

M (n)
μ ≡ M (n)

Bμ

dist.:= Bμ, for all n ≥ 0.

The main contribution of this article is the next theorem, from which (3) [and (11)]
will follow.
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Theorem 3 Let μ ∈ (0,∞) and assume that, almost surely,

lim inf
x→−∞

ν(x)

x
≥ μ and lim sup

x→∞
ν(x)

x
≤ μ . (18)

Consider the basic coupling (M (n)
ν , M (n)

μ )n≥0 constructed by running the last-passage
percolation system, started with ν and Bμ, simultaneously with the same environment
ω = {

B(n) : n ∈ Z
}
. Then, for all compact K ⊆ R and ε > 0,

lim
n→∞P

(
sup
x∈K

|M (n)
ν (n, μ−2n + x) − M (n)

μ (n, μ−2n + x)| > ε

)
= 0 . (19)

It should be clear that an ergodic initial profile satisfies (18) almost surely (note that
in that case, we have translation invariance of the law of M (n)

ν and M (n)
μ , so that we

can get rid of the translation by μ−2n). We note that (19) implies local convergence
for initial profiles beyond the ergodic condition: one could take a deterministic profile
satisfying (18).

4 Proofs

4.1 Shape theorem and exit points

First proven in [1,10], using that L(0, (n, n)) has the same law as the largest eigenvalue
of a n×n GUE randommatrix, the shape theorem below is presented by Hambly et al.
[11] as a consequence of concentration results for the Brownian directed percolation
paths:

lim
n→∞

1

n
L(0, (xn, tn))

a.s.= 2
√
xt . (20)

Note that, by Brownian scaling,

{L(0, (rn, n)) : r ∈ [0, x]} dist.= {√
xL(0, (sn, n)) : s ∈ [0, 1]} . (21)

Remark By Lemma 7 in [11], there exist constants c1, c2 ≥ 0 such that

P

(∣∣∣ L(0, (n, n))

n
− 2

∣∣∣ ≥ 2y
)

≤ c1 exp{−c2 n(y − εn)
2}, (22)

for all n ≥ 0, and y > εn , where

εn := 2 − EL(0, (n, n))

n
+ 1

n1/4
.

Since εn → 0, we can choose n large such that εn < 4−1δ and take y = 2−1δ. This
implies that there exist constants c3, c4 > 0 such that for all δ > 0 there exists N > 0
such that
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P

(∣∣∣ L(0, (n, n))

n
− 2

∣∣∣ ≥ δ
)

≤ c3 exp{−c3 nδ2},
for all n ≥ N . We notice that a better upper bound could be produced by using the
coupling method [2] to prove that

E|L(0, (n, n)) − 2n| = O(n1/3),

which would imply that εn = O(n−1/4). For the Brownian last-passage percolation
model, we have all the ingredients necessary for the couplingmethod: we know explic-
itly the invariant regime and the shape function.

From now on, we will treat ν as a fixed deterministic profile satisfying (18). Define
the exit point from (x, n) as

Zν(x, n) = sup {z ≤ x : Lν(x, n) = ν(z) + L((z, 1), (x, n))} . (23)

We note that it is well defined. First, since we have the same asymptotic hypothesis
(13) on the profile ν, one can use similar arguments to Proposition 4.1 of [3] to
prove that the function Lν(x, n) is well defined. By Brownian continuity, the map
z → L((z, 1), (x, n)) is continuous, as is the profile ν (by hypothesis). Then, the set
{z ∈ C : Lν(x, n) = ν(z) + L((z, 1), (x, n))} is non-empty for any compact set C . To
prove that the supremum over z ≤ y can be restricted to some compact set, one can
mimic the proof of Lemma 4.3 in [3].

The name exit point comes from the next geometric interpretation in last-passage
percolation: Zν(x, n) is the time before x when the path which maximizes the quantity
ν(z) + L((z, 1), (x, n)) leaves the initial profile ν (that can be visualized on the line
{(x, 0) : x ∈ R}) to percolate to the point (x, n).

The exit point (23) can also be described in terms of the tandem queue-
ing system. First, let us examine the interpretation for Zν(x, 1). Let z∗ be in
{z ≤ x : Lν(x, 1) = ν(z) + L((z, 1), (x, 1))}. Then,

ν(z∗) + L((z∗, 1), (x, 1)) ≥ ν(z) + L((z, 1), (x, 1)), ∀z ≤ x,

and, by (17), this implies that

a(z) − s(1)(z) ≥ a(z∗) − s(1)(z∗), ∀z ≤ x .

In other words,

a(z∗, x) − s(1)(z∗, x) ≥ a(z, x) − s(1)(z, x), ∀z ≤ x,

so q(1)(x) = a(z∗, x)−s(1)(z∗, x) [by the definition (1)]. This implies that q(1)(z∗) =
0, so the value Zν(x, 1) is the last time when the queue-length process q(1) was empty
before time x . For n arbitrary, using the expression (15), one can check that the value
Zν(x, n) can be obtained inductively: let In−1(x, n) be the last time when q(n) was

123



38 Queueing Systems (2019) 92:25–45

empty before time x , then In−2(x, n) is the last time when q(n−1) was empty before
time In−1(x, n), and so on, until we find the exit point Zν(x, n) = I0(x, n).

In the next result, we show that, in probability, the exit point is asymptotically
sublinear.

Lemma 1 Let μ ∈ (0,∞) and assume (18). Then, for all C ∈ R and ε > 0,

lim
n→∞P

(
n−1|Zν(μ

−2n + C, n)| > ε
)

= 0.

Proof By Brownian scaling (21), one can restrict attention to μ = 1. For fixed δ > 0,
take B1+δ and construct L1+δ and Lν simultaneously using the basic coupling (16).
Since

L ((z, 1), (n + C, n)) ≤ L1+δ(n + C, n) − B1+δ(z),

and

L ((1, 0), (n + C, n)) = L ((1, 0), (n + C, n)) + ν(0) ≤ Lν(n + C, n)

(recall that ν(0) = 0), we have that

{Zν(n + C, n) ≥ u} = {∃ z ∈ [u, n + C] : ν(z) + L ((z, 1), (n + C, n)) = Lν(n + C, n)}

is contained in the event

{∃ z ∈ [u, n + C] : B1+δ(z) − ν(z) ≤ L1+δ(n + C, n) − L ((1, 0), (n + C, n))} .

By (18), there exists K0 > 0 such that ν(z) ≤ (1 + δ/2)z for all z > K0. Hence, if
u > K0, then {Zν(n + C, n) ≥ u} is contained in the event

{∃ z ∈ [u, n + C] : B2−1δ(z) ≤ L1+δ(n + C, n) − L ((1, 0), (n + C, n))
}

. (24)

Now, we recenter the Brownian motion with drift at position u by writing

B2−1δ(z) := B2−1δ(u) + B̄2−1δ(z),

where B̄2−1δ(z) := B2−1δ(z) − B2−1δ(u) for z ≥ u. Notice that {B̄2−1δ(z) : z ≥ u}
has the same distribution as the process {B2−1δ(z) : z ≥ 0} and it is independent of
B2−1δ(u). Let

A(u) := B2−1δ(u) + min
z≥u

B̄2−1δ(z).

This minimum is well defined because B̄2−1δ has a positive drift, and its distribution
is given by minus an exponential random variable of parameter 2−1δ (its value will
not play an important role when n grows to infinity, since δ is fixed). Thus, by (24),

{Zν(n + C, n) ≥ u} ⊆ {A(u) ≤ L1+δ(n + C, n) − L ((1, 0), (n + C, n))} , ∀u ≤ n + C .

(25)
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The strategy is to show that if u = εn, we can choose δ > 0 such that the event on
the r.h.s. of (25) has small probability. For ε1 > 0, to be defined later, we have that
the event on the r.h.s. of (25) has probability bounded by

P

(
L((1, 0), (n + C, n)) − 2n ≤ −ε1n

)
+ P

(
A(u) ≤ L1+δ(n + C, n) − 2n + ε1n

)
.

By the shape theorem,

lim
n→∞P

(
L ((1, 0), (n + C, n)) − 2n ≤ −ε1n

)
= 0.

On the other hand,

P

(
A(u) ≤ L1+δ(n + C, n) − 2n + ε1n

)
≤ P

(
2−1δu − 2ε1n ≤ L1+δ(n + C, n) − 2n

)

+P

(
A(u) ≤ 2−1δu − ε1n

)
. (26)

We now use a result in Section 4 of [21], where it is shown (in our notation) that
Lλ(0, n) − Lλ(0, 0) (this is the vertical increment) is distributed as the sum of n
independent exponential random variables, each with expectation 1/λ. We already
know that x �→ Lλ(x, n) − Lλ(0, n) (the horizontal increment) is distributed as
Brownian motion with drift λ. This shows us how to recenter L1+δ(n + C, n):

P

(
2−1δu − 2ε1n ≤ L1+δ(n + C, n) − 2n

)

= P

(
� − 2ε1n ≤ L1+δ(n + C, n) −

(
(1 + δ) + 1

1 + δ

)
n

)
,

where

� := 2n −
(

(1 + δ) + 1

1 + δ

)
n + δ

2
u

= − δ2

(1 + δ)
n + δ

2
u

>

(
δ

2

u

n
− δ2

)
n .

If u = εn and we pick δ := 4−1ε, we get the next lower bound for �:

� >

(
δ

2
ε − δ2

)
n

= ε2

16
n .
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Thus, for ε1 := ε2

64 ,

P

(
2−1δu − 2ε1n ≤ L1+δ(n + C, n) − 2n

)

≤ P

(
32−1ε2n ≤ L1+δ(n + C, n) −

(
(1 + δ) + 1

1 + δ

)
n

)
.

We have already seen that L1+δ(0, n) − n/(1 + δ) has expectation 0 and variance of
order n, and also that L1+δ(n+C, n)−L1+δ(0, n)−(1+δ)n has expectationC(1+δ)

and variance of order n, so we conclude that

lim
n→∞P

(
32−1ε2n ≤ L1+δ(n + C, n) −

(
(1 + δ) + 1

1 + δ

)
n

)
= 0,

and hence
lim
n→∞P

(
2−1δu − 2ε1n ≤ L1+δ(n + C, n) − 2n

)
= 0.

To bound the second summand in (26), take u = εn and write

lim
n→∞P

(
A(u) ≤ 2−1δu − ε1n

)
= lim

n→∞P

( B(εn)

n
+ minz≥εn B̄2−1δ(z)

n
≤ −ε1

)
= 0.

By (24), this concludes the proof of

lim
n→∞P (Zν(n + C, n) > εn) = 0 .

To get the analogous result for {Zν(n + C, n) < −εn}, one just needs to adapt the
same argument. ��

4.2 Local comparison and attractiveness

In the next lemmas, we will always construct Lν1 and Lν2 simultaneously using the
basic coupling (16).

Lemma 2 If x < y and Zν1(y, n) ≤ Zν2(x, n), then

Lν1(y, n) − Lν1(x, n) ≤ Lν2(y, n) − Lν2(x, n).

Proof Recall the definition of the geodesic γ (x, y) between two points x < y inR×Z

in Sect. 3.2. Denote by γ z
n (x) the geodesic between (z, 1) and (x, n). Notice that

L ((z, 1), (x, n)) = L ((z, 1), (y,m)) + L((y,m), (x, n)),

for any (y,m) ∈ γ z
n (x).

Assume that Zν1(y, n) ≤ Zν2(x, n) and let z1 ≡ Zν1(y, ) and z2 ≡ Zν2(x, n). Let
c be a crossing point between the two geodesics γ

z1
n (y) and γ

z2
n (x). Such a crossing
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point always exists because x ≤ y and z1 ≤ z2 (by assumption). We remark that, by
superadditivity of L ,

Lν2(y, n) ≥ ν2(z2) + L ((z2, 1), (y, n)) ≥ ν2(z2) + L ((z2, 1), c) + L (c, (y, n)) .

We use this, and that (since c ∈ γ
z2
n (x))

ν2(z2) + L ((z2, 1), c) − Lν2(x, n) = −L (c, (x, n))

in the following inequality:

M (n)
ν2

(x, y) = Lν2(y, n) − Lν2(x, n)

≥ ν2(z2) + L ((z2, 1), c) + L (c, (y, n)) − Lν2(x, n)

= L (c, (y, n)) − L (c, (x, n)) .

By superadditivity,
−L (c, (x, n)) ≥ Lν1(c) − Lν1(x, n),

and hence (since c ∈ γz1(y, n))

M (n)
ν2

(x, y) ≥ L (c, (y, n)) − L (c, (x, n))

≥ L (c, (y, n)) + Lν1(c) − Lν1(x, n)

= Lν1(y, n) − Lν1(x, n)

= �M (n)
ν1

(x, y).

��
Lemma 3 Assume that ν1(y) − ν1(x) ≤ ν2(y) − ν2(x) for all x < y. Then,

Lν1(y, n) − Lν1(x, n) ≤ Lν2(y, n) − Lν2(x, n), ∀ x < y.

Proof Let

z1 := Zν1(y, n) and z2 := Zν2(x, n).

If z1 ≤ z2, then this follows from Lemma 2 (we do not need to use the assumption).
If z1 > z2, then

Lν2 (y, n) − Lν2 (x, n) − (
Lν1 (y, n) − Lν1 (x, n)

)

= Lν2 (y, n) − (
ν2(z2) + L ((z2, 1), (x, n))

) −
((

ν1(z1) + L ((z1, 1), (y, n))
) − Lν1 (x, n)

)

= Lν2 (y, n) − (
ν2(z2) + L ((z1, 1), (y, n))

) −
((

ν1(z1) + L ((z2, 1), (x, n))
) − Lν1 (x, n)

)

= Lν2 (y, n) − (
ν2(z2) + L ((z1, 1), (y, n))

) +
(
Lν1 (x, n) − (

ν1(z1) + L ((z2, 1), (x, n))
))
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= Lν2 (y, n) − (
ν2(z1) + L ((z1, 1), (y, n))

) +
(
Lν1 (x, n) − (

ν1(z2) + L ((z2, 1), (x, n))
))

+(
ν2(z1) − ν2(z2)

) − (
ν1(z1) − ν1(z2)

)
.

By superadditivity,

Lν2(y, n) − (
ν2(z1) + Lz1(y, n)

) ≥ 0,

and

Lν1(x, n) − (
ν1(z2) + Lz2(x, n)

) ≥ 0,

while, by assumption,

ν2(z1) − ν2(z2) ≥ ν1(z1) − ν1(z2),

since z1 > z2. ��

4.3 Proof of Theorem 3

Without loss of generality, we will assume that μ = 1 [again by Brownian scaling
(21)] and that K = [0,C]withC > 0. We take as an initial profile a Brownian motion
with drift 1,

B1(x) := x + B(x),

and also

Bμ± := μ±x + B(x),

with μ± := 1 ± δ and δ > 0. Thus,

Bμ−(y) − Bμ−(x) ≤ B1(y) − B1(x) ≤ Bμ+(y) − Bμ+(x).

Lemma 4 Let μ ∈ (0,∞) and assume (18). Then, for all C > 0,

lim
n→∞P

(
Zμ−(n + C, n) ≤ Zν(n, n) and Zν(n + C, n) ≤ Zμ+(n, n)

)
= 1.

Proof Let us first prove that

lim
n→∞P

(
Zμ−(n + C, n) ≤ Zν(n, n)

) = 1.

For any ε > 0,

P
(
Zμ−(n + C, n) > Zν(n, n)

) ≤ P
(
Zμ−(n + C, n) > −εn

)+P (Zν(n, n) < −εn) .
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Thus, by Lemma 1, it is enough to show that (for fixed δ,C > 0) we can choose ε > 0
such that

lim
n→∞P

(
Zμ−(n + C, n) ≤ −εn

) = 1 . (27)

By shift invariance of Brownian motion (B(x + C) − B(C)
dist.= B(x)),

P
(
Zμ−(n + C, n) > −εn

) = P
(
Zμ−(n, n) > −εn − C

) ≤ P
(
Zμ−(n, n) > −2εn

)
,

for n ≥ C/ε. Since

n = μ−2− n +
(
1 − μ−2−

)
n and

(
1 − μ−2−

)
< −δ,

(recall that δ ∈ (0, 1/2)) by using shift invariance again,

P
(
Zμ−(n, n) > −2εn

) ≤ P

(
Zμ−(μ−2− n, n) > (δ − 2ε)n

)
.

Hence, if ε < δ/2, Lemma 1 implies (27). The proof of

lim
n→∞P

(
Zν(n + C, n) ≤ Zμ+(n, n)

) = 1

is analogous. ��
If Zμ−(n+C, n) ≤ Zν(n, n) and Zν(n+C, n) ≤ Zμ+(n, n), then Zμ−(n+x, n) ≤

Zν(n, n) and Zν(n + x, n) ≤ Zμ+(n, n) for all x ∈ [0,C]. We use that Zν(y, n) is a
non-decreasing function of y (for fixed n). By Lemma 2,

M (n)
μ− (n, n + x) ≤ M (n)

ν (n, n + x) ≤ M (n)
μ+ (n, n + x),

for all x ∈ [0,C], and, by Lemma 3,

M (n)
μ− (n, n + x) ≤ M (n)

1 (n, n + x) ≤ M (n)
μ+ (n, n + x),

for all x ∈ [0,C]. Therefore,

|M (n)
ν (n, n + x) − M (n)

1 (n, n + x)| ≤ M (n)
μ+ (n, n + x) − M (n)

μ− (n, n + x)

≤ M (n)
μ+ (n, n + C) − M (n)

μ− (n, n + C) ,

for all x ∈ [0,C]. We use that M (n)
μ+ (n, n + x) − M (n)

μ− (n, n + x) is a non-decreasing
function of x (Lemma 3). Hence, if Zμ−(n + C, n) ≤ Zν(n, n) and Zν(n + C, n) ≤
Zμ+(n, n), then

sup
x∈[0,C]

|M (n)
ν (n, n+x)−M (n)

1 (n, n+x)| ≤ M (n)
μ+ (n, n+C)−M (n)

μ− (n, n+C) . (28)
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Since M (n)
μ+ (n, n + C) − M (n)

μ− (n, n + C) ≥ 0 (Lemma 3) and

E

(
M (n)

μ+ (n, n + C) − M (n)
μ− (n, n + C)

)
= (μ+ − μ−)C = 2δC,

we have that

P

(
M (n)

μ+ (n, n + C) − M (n)
μ− (n, n + C) > ε

)
≤ 2C

ε
δ.

Together with Lemma 4 and (28), this implies that

lim sup
n→∞

P

(
sup

x∈[0,C]
|M (n)

ν (n, n + x) − M (n)
1 (n, n + x)| > η

)
≤ 2C

ε
δ,

under (18). Since δ > 0 is arbitrary, we must have that

lim sup
n→∞

P

(
sup

x∈[0,C]
|M (n)

ν (n, n + x) − M (n)
1 (n, n + x)| > ε

)
= 0

under hypothesis (18), and Theorem 3 is proven. ��

Conclusion

We proved that under mild conditions an initial flow passing through an infinite system
ofBrownian tandemqueues converges in distribution to aBrownianmotion. The strong
relationship between the queueing system and the last-passage Brownian percolation
model is fundamental for the proof since it allows us to construct a coupling between
different initial configurations using the concept of exit points in the LPP setting. This
is a convenient way to manipulate the busy periods associated with the tandem queues.
One wonders if this relation, or the one with the TABEP system, could be useful to
compute non-asymptotic formulae for the queueing system. An example of this kind
of result, whose interpretation in the Brownian tandem queues setting has not yet been
studied, is presented in [5], where an explicit determinantal formula is obtained for
the joint distribution of particles in a periodic finite system of particles interacting by
one-sided reflection.
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