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Abstract We consider an input-queued switch operating under the MaxWeight
scheduling algorithm. This system is interesting to study because it is a model for
Internet routers and data center networks. Recently, it was shown that the MaxWeight
algorithm has optimal heavy-traffic queue length scaling when all ports are uniformly
saturated. Here we consider the case when an arbitrary number of ports are saturated
(which we call the incompletely saturated case), and each port is allowed to saturate
at a different rate. We use a recently developed drift technique to show that the heavy-
traffic queue length under the MaxWeight scheduling algorithm has optimal scaling
with respect to the switch size even in these cases.
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1 Introduction

The n × n switch is a model that has been widely used and studied to understand the
behavior of Internet routers and data center switches. The importance of this model in
the design of Internet routers is well-known. In the mid to late 1990s when the Internet
was exploding, it served as an important model to study and design scheduling algo-
rithms for the switch fabric of Internet routers. The model is now used to understand
the design of data centers used for cloud-computing services. Today’s data centers
consist of a massive number of servers organized in racks, which are interconnected
through a data center network. An ideal data center network is a huge input-queued
switch with one port for each server. However, real switches are much smaller and they
have to be interconnected appropriately, and routing and scheduling algorithms have
to be designed, so that the overall network emulates an n × n switch. Designing such
a network is a challenging and active area of research; see [1,14] for example. Here,
we do not explicitly consider a data center network, but only consider the n×n switch
which is the underlying model (see [14], which argues why the model is appropriate
even for a data center network) and study the behavior of the well-known MaxWeight
algorithm [22] for this model.

As mentioned in [15], the n × n switch model also serves as a canonical theo-
retical example of a problem which exhibits the so-called multi-dimensional state
space collapse, which makes it difficult to study using traditional heavy-traffic theory.
Recently, it has been shown in [11] that the heavy-traffic behavior of the mean queue
length in an n×n switch operating under the MaxWeight scheduling algorithm can be
precisely characterized using a nontrivial extension of a drift technique introduced in
[6]. In particular, one of the key contributions of [11] is to extend the drift technique
to cover the case of multi-dimensional state space collapse. The result in [11] also
resolved an open question on the scaling behavior of the heavy-traffic queue length in
a switch operating under the MaxWeight algorithm. In particular, it showed that the
total heavy-traffic-scaled queue length is O(n) or the mean heavy-traffic-scaled delay
experienced by a packet is O(1). While there have been other results establishing
O(1) delay scaling, the significance of the result in [11] is that the result holds for
the original MaxWeight algorithm introduced in [22], with no additional scheduling
operations required.

The results in [11] were obtained under the assumption that every input and output
port of the switch is saturated (i.e., close to capacity), and the arrival rates to each input
port and each output port are close to capacity by the same amount. For the purposes of
this paper, we call a switch where only some of ports are saturated an “incompletely
saturated switch.” The main purpose of this paper is to show that the MaxWeight
algorithm has order-optimal scaling (in the number of ports of the switch) for the case
of an incompletely saturated switch and for the case where each port has a different
rate of saturation. The results in [11] were obtained by setting the drift of a test function
to zero in steady state. This function was carefully chosen based on the underlying
symmetry when all ports are saturated. Since we do not have such a symmetry in the
incompletely saturated switch, a new test function has to be used. The main reason for
this is that the geometry of the state space collapse is different here than in the all-port
saturated case considered in [11]. In this paper, we propose a novel test function to use
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for the incompletely saturated switch. Another major contribution of the paper is that
we express this function in a simple form, so that it can be generalized for use in other
problems that exhibit state space collapse into other regions. The case where each port
has a different rate of saturation is of theoretical importance since it corresponds to
the situation where the drift vector is not the identity matrix in the diffusion limit [8].
In fact, the diffusion limit is no longer symmetric in the components of the limiting
stochastic process (i.e., the diffusion limit is not symmetric across the ports), but here
we show that the technique in [11] works even in this asymmetric situation to produce
an exact formula for a certain linear combination of the queue lengths. This result can
be further used to show optimal queue length scaling under some conditions on the
saturation rates.

The rest of the paper is organized as follows. The model of an n× n switch and the
MaxWeight algorithm are presented in Sect. 2. General results on queue lengths are
presented in Sect. 3. In Sect. 4, we present various extensions and special cases in order
to interpret the general result. Concluding remarks are provided in the last section.

We remark that a very preliminary version of this paper appeared in [10].

1.1 Related work

TheMaxWeight algorithm for general stochastic networks, of which the n×n switch is
a special case, was presented in [22], where it was shown that algorithm is throughput-
optimal. The special case of the switch was considered in [12], where it was shown
that simpler algorithms such as MaxSize and maximal matchings are not throughput-
optimal. The case of nonstochastic arrivals was considered in [24], where in addition
to the throughput optimality of MaxWeight-type algorithms, a lower bound on the
throughput loss of simpler algorithms such as maximal matching was established.

Here we are interested in performance metrics beyond throughput optimality. In
particular, we are interested in understanding whether the MaxWeight matching algo-
rithm for switches achieves small queue lengths, at least under a heavy-traffic scaling
regime. Using diffusion limits, the heavy-traffic optimality of the MaxWeight algo-
rithm in a switch where only one port is saturated was established in [21], although
the final step of interchanging the order of the heavy-traffic scaling limit and letting
time go to infinity was not undertaken there. Motivated by this result, [6] studied the
switch directly in steady state, established heavy-traffic optimality, and introduced a
new drift method of studying stochastic networks in heavy-traffic. However, it should
be emphasized that the results in [6,21] apply only to the case of a single saturated
port since they both rely on state of the system collapsing to a single dimension in
the heavy-traffic limit. In a recent development, the case where all ports are uniformly
saturated (thus leading to the more difficult case of multi-dimensional state space
collapse) was studied in [11], where an exact expression for the heavy-traffic scaled
queue length under the MaxWeight algorithm is derived. Additionally, this expression
shows that the algorithm has heavy-traffic optimal scaling in the size of the switch,
resolving an open conjecture stated in [15]. The results in [11] use and significantly
extend the drift technique presented in [6].

State collapse in the case where multiple ports are saturated has been established
in [2,18,19] and, using the state space collapse result in [18], a diffusion limit was
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established in [8]. However, properties of the diffusion limit (such as its steady state
distribution or mean queue lengths) were difficult to establish. The result in [11] can
thus be interpreted as a derivation of the sum of the first moments of the limiting vector
stochastic process, but obtained without going through the usual fluid/diffusion limit
scaling arguments. An entirely different technique to study heavy-traffic optimality
was presented in [17], where the authors approximate the scheduling decisions made
by a switch which can change its schedule infinitely often to simulate a queueing
network with product-form steady state distribution as in [4]. The resulting algorithm
is heavy-traffic optimal, but has a very high computational complexity. The optimal
scaling of the queue length as a function of the switch size in the nonheavy-traffic limit
appears to be still open. Alternatively, one can consider asymptotic regimes other than
the heavy-traffic limit. The best known results in this regard are the ones in [13,16], but
these require algorithms that aremore involved than the originalMaxWeight algorithm.

2 System model and background

In this section, we present the model of an input-queued switch, the MaxWeight
scheduling algorithm, and some lemmas that will later play a key role in the
results.

Note on notation For ease of understanding, and to allow the reader to compare and
contrast with the results in [11], here we use definitions and notation consistent with
[11]. Since an n×n switch has n2 queues, we often deal with the Euclidean spaceRn2 .
To describe the elements of the space Rn2 , we will use the terms vector and matrix
interchangeably, because these elements may be viewed either as n2-dimensional
vectors or as n × n matrices. Both these views will be used in this paper for ease of
exposition. We primarily use the inner product and norm of the vector space Rn2 , but
we represent the vectors inRn2 as n× n matrices for convenience. Thus, x is a matrix
with the (i, j)th component denoted by xi j , and for two vectors x and y in Rn2 , their
inner product 〈x, y〉 and Euclidean norm ‖x‖ are defined by

〈x, y〉 �
n∑

i=1

n∑

j=1

xi j yi j , ‖x‖ �
√〈x, x〉 =

√√√√
n∑

i=1

n∑

j=1

x2i j .

For two vectors x and y in Rn2 , x ≤ y means xi j ≤ yi j for every (i, j). We use 1 to

denote the all ones vector. Let e(i) denote the vector defined by e(i)
i j = 1 for all j and

e(i)
i ′ j = 0 for all i ′ �= i and for all j . Thus, e(i) is a matrix whose i th row is all ones,

with zeros everywhere else. Similarly, let ẽ( j) denote the vector defined by ẽ( j)
i j = 1

for all i and ẽ( j)
i j ′ = 0 for all j ′ �= j and for all i , i.e., it is a matrix whose j th column is

all ones, with zeros everywhere else. We use
∑

i (.) without the limits on summation
to denote

∑n
i=1(.). For a random process q(t) and a function V (.), we will sometimes

use V (t) to denote V (q(t)). We use Var(.) to denote variance of a random variable
and Cov(.) to denote covariance between two random variables.
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2.1 The switch model and the MaxWeight algorithm

For the purposes of queueing-theoretical analysis, an n × n switch can be treated as
an n × n matrix of queues operating in a time-slotted discrete-time fashion. Let ai j (t)
denote the number of packet arrivals to the (i, j)th queue, i.e., the queue in the i th
row and j th column. We let a ∈ Rn2 denote the vector (ai j )i j . For every queue (i, j),
the arrival process ai j (t) is a stochastic process that is i.i.d. across time, with mean
E[ai j (t)] = λi j and variance Var(ai j (t)) = σ 2

i j for any time t . We assume that the
arrival processes are independent across queues (the processes ai j (t) and ai ′ j ′(t) are
independent for (i, j) �= (i ′, j ′)) and are also independent of the queue lengths or
schedules chosen in the switch. We further assume that for all i, j, t , ai j (t) ≤ amax
for some amax ≥ 1. The arrival rate vector is denoted by λ = (λi j )i j and the variance
vector (σ 2

i j )i j is denoted by (σ )2 or σ 2. We will use σ to denote (σi j )i j . We denote
the queue length of packets at input port i to be delivered at output port j at time t by
qi j (t). Let q ∈ Rn2 denote the vector of all queue lengths.

The key scheduling constraints are that (i) at most one packet can be removed from
each queue in each time slot and (ii) at most one queue can be served in each row and
each column in each time slot. These constraints arise from technological constraints
in a real switch, where each row represents an input port and each column represents
an output port; see [20] for example. The scheduling constraints can be captured in
graph-theoretical language as follows: Let G denote a complete n × n bipartite graph
with n2 edges. Each node on the left side of the bipartite graph can be thought of as
representing a row in the matrix of switches and each node on the right side represents
a column. The schedule in each time slot is a matching on this graph G. Let si j be the
amount of service provided to queue (i, j) in a given time slot. Thus, si j = 1 if the link
between input port i and output port j is matched or scheduled, and si j = 0 otherwise,

and we denote s = (si j )i j . Then, the set of feasible schedules, S ⊂ {0, 1}n2 , is the set
of all vectors s which satisfy

n∑

i=1

si j ≤ 1,
n∑

j=1

si j ≤ 1 ∀ i, j ∈ {1, 2, . . . , n}.

Let S∗ denote the set of maximal feasible schedules. Then, it is easy to see that S∗ is
the set of all vectors s which satisfy

n∑

i=1

si j = 1,
n∑

j=1

si j = 1 ∀ i, j ∈ {1, 2, . . . , n}. (1)

A scheduling policy or algorithm picks a schedule s(t) in every time slot based
on the current queue length vector, q(t). In each time slot, the order of events is as
follows: Queue lengths at the beginning of time slot t are q(t). A schedule s(t) is then
picked for that time slot based on the queue lengths. Then, arrivals for that time a(t)
happen. Finally, the packets are served, and there is unused service if there are no
packets in a scheduled queue. The queue lengths are then updated to give the queue
lengths for the next time slot. The queue lengths therefore evolve as follows:
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qi j (t + 1) = [
qi j (t) + ai j (t) − si j (t)

]+

= qi j (t) + ai j (t) − si j (t) + ui j (t),

q(t + 1) = q(t) + a(t) − s(t) + u(t), (2)

where [x]+ = max(0, x) is the projection onto the positive real axis, and ui j (t) is the
unused service on link (i, j). Unused service is 1 only when link (i, j) is scheduled,
but has zero queue length; and it is 0 in all other cases. Thus, when ui j (t) = 1, we
have qi j (t) = 0, ai j (t) = 0, si j (t) = 1 and qi j (t + 1) = 0. Therefore, we have
ui j (t)qi j (t) = 0, ui j (t)ai j (t) = 0 and ui j (t)qi j (t + 1) = 0. Also note that since
ui j (t) ≤ si j (t), we have that

∑n
i=1 ui j ∈ {0, 1} and∑n

j=1 ui j ∈ {0, 1} for all i, j .
The MaxWeight algorithm is a popular scheduling algorithm for switches. In every

time slot t , each link (i, j) is given a weight equal to its queue length qi j (t) and the
schedule with the maximum weight among the feasible schedules S is chosen at that
time slot. In other words, using queue lengths as the weights, the permutation matrix
with the maximum weight is picked in every time slot. This algorithm is presented in
Algorithm 1.

Algorithm 1MaxWeight scheduling algorithm for an input-queued switch
Consider the complete bipartite graph described earlier. Let the queue length qi j (t) be the weight of the
edge between input port i and output port j . A maximum weight matching in this graph is chosen as the
schedule in every time slot, i.e.,

s(t) = argmax
s∈S

∑

i j

qi j (t)si j = argmax
s∈S

〈q(t), s〉 . (3)

Ties are broken uniformly at random.

Note that there is always a maximum weight schedule that is maximal. If the
MaxWeight schedule chosen at time t , s, is not maximal, there exists a maximal
schedule s∗ ∈ S∗ such that s ≤ s∗. For any link (i, j) such that si j = 0 and s∗

i j = 1,
qi j (t) = 0. If not, s would not have been a maximum weight schedule. Therefore, we
can pretend that the actual schedule chosen is s∗ and the links (i, j) that are in s∗ but
not in s have an unused service of 1. Note that this does not change the scheduling
algorithm, but it is just a notational convenience. Therefore, without loss of generality,
we assume that the schedule chosen in each time slot is a maximal schedule, i.e.,

s(t) ∈ S∗ for all time t.

Hence, the MaxWeight schedule picks one of the n! possible permutations from the
set S∗ in each time slot.

Under i.i.d. arrivals, the queue lengths process q(t) is a Markov chain. The switch
is said to be stable under a scheduling policy if the sum of all the queue lengths is finite
in an appropriate stochastic sense (see [20] for example). The capacity region of the
switch is the set of arrival rates λ for which the switch is stable under some scheduling
policy. A policy that stabilizes the switch under any arrival rate in the capacity region
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is said to be throughput-optimal. It is well-known [12,22] that the capacity region C
of the switch is convex hull of all feasible schedules:

C = Conv(S)

=
⎧
⎨

⎩λ ∈ Rn2+ :
n∑

i=1

λi j ≤ 1,
n∑

j=1

λi j ≤ 1 ∀ i, j ∈ {1, . . . , n}
⎫
⎬

⎭

=
{
λ ∈ Rn2+ :

〈
λ, e(i)

〉
≤ 1,

〈
λ, ẽ( j)

〉
≤ 1 ∀ i, j ∈ {1, . . . , n}

}
. (4)

For any arrival rate vector λ, ρ � maxi j {∑i λi j ,
∑

j λi j } is called the load. It is
also known that the queue lengths process is positive recurrent under the MaxWeight
algorithm whenever the arrival rate is in the capacity region C (equivalently, load
ρ < 1) and therefore is throughput-optimal [12,22], [20, Chap 4].

For any arrival rate in the capacity region C, due to positive recurrence of q(t), we
have that a steady state distribution exists under the MaxWeight policy. Let q denote
the steady state random vector. In this paper, we focus on the weighted average queue
length under the steady state distribution, i.e., E[∑i, j αi j qi j ], for some weights αi j ,
which can be shown to exist as in [11]. We consider a set of switch systems indexed by
a parameter ε, with arrival rate λε so that the arrival rate approaches the vector ν on the
boundary of the capacity region C in the limit as ε → 0. This is called the heavy-traffic
limit. We are interested in the weighted average queue length in the heavy-traffic limit,
i.e., limε→0 E[∑i, j αi j qi j ]. In particular, in this paper, we will consider cases where
the sum of the arrival rates at some rows and some columns approach 1, and they may
approach 1 at different rates at each column and row.

2.2 Kingman bound for a discrete-time queue

To establish our results, we later show that the total queue length along each row and
each column is lower-bounded. For this purpose, we use a bound on the steady state
queue length in a simple discrete-time queue [6]. While the well-known Kingman
bound is for continuous-time G/G/1 queues, due to the similarity in establishing the
result, the bound for the discrete-time case is also called the Kingman bound in [6]
and we use the same terminology here.We state the version of the result for the special
case where a queue can serve only one packet per slot here since this is what is used
in this paper. In this special case, instead of a bound, one has an exact expression for
the mean queue length which we present below.

Lemma 1 Consider a single server operating in discrete time. In each time slot,
packets arrive according to an i.i.d. arrival process α(t) with mean λ and variance
σ 2. Let q denote the queue length. Each packet needs exactly one time slot of service.
The server operates according to any nonidling policy, serving one packet in every
time slot whenever the queue is nonempty. Then, the queue is positive recurrent as
long as λ < 1, and the steady state mean queue length is given by
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E[q] = σ 2

2(1 − λ)
− λ

2
.

We note that the first term on the right-hand side of the above equation is what is
referred to as the Kingman bound in [6].

2.3 Moment bounds from Lyapunov drift conditions

In later sections of the paper, we establish state space collapse results by obtaining
moment bounds on certain quantities related to the queue length vector based on drift
of a Lyapunov function. A key ingredient in this approach is to obtain moment bounds
from drift conditions. A lemma from [7] was used in [6] to obtain these bounds, and
a different result from [3] was used in [11] to obtain tighter bounds. Here we state [3,
Theorem 1] in the form it was stated in [11].

Lemma 2 For an irreducible and aperiodicMarkov chain {X (t)}t≥0 over a countable
state space X , suppose Z : X → R+ is a nonnegative-valued Lyapunov function. We
define the drift of Z at X as

�Z(X) � [Z(X (t + 1)) − Z(X (t))] I(X (t) = X),

where I(.) is the indicator function. Thus,�Z(X) is a random variable that measures
the amount of change in the value of Z in one step, starting from state X. This drift is
assumed to satisfy the following conditions:

C1 There exists an η > 0, and a ζ < ∞ such that, for any t = 1, 2, . . . and for
all X ∈ X with Z(X) ≥ ζ,

E[�Z(X)|X (t) = X ] ≤ −η.

C2 There exists a D < ∞ such that, for all X ∈ X ,

P (|�Z(X)| ≤ D) = 1.

Further assume that the Markov chain {X (t)}t converges in distribution to a random
variable X. Then, for any r = 1, 2, . . .,

E[Z (X)r ] ≤ (2ζ )r + (4D)r
(
D+η

η

)r
r !.

3 Incompletely saturated switch

In this section, we will study the switch system when an arbitrary number of ports are
saturated. We consider the switch where n1 ≤ n input ports (rows) and n2 ≤ n output
ports (columns) are saturated. Without loss of generality, we assume that input ports
(rows) 1, 2, . . . , n1 and output ports (columns) 1, 2, . . . , n2 are saturated. Thus, we
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consider a point ν on the boundary of the capacity region that lies in Relint(Fn1n2),
the relative interior1 of the face Fn1n2 defined by

Fn1n2 �

⎧
⎨

⎩ν ∈ C :
n∑

j=1

νi j = 1 ∀ i ∈ {1, . . . , n1},
n∑

i=1

νi j = 1 ∀ j ∈ {1, . . . , n2}
⎫
⎬

⎭

=
{
ν ∈ C :

〈
ν, e(i)

〉
= 1 ∀ i ∈ {1, . . . , n1},

〈
λ, ẽ( j)

〉
= 1 ∀ j ∈ {1, . . . , n2}

}
. (5)

In otherwords, if we let δi = 1−∑ j νi j = 1−〈ν, e(i)
〉
and δ̃ j = 1−∑i νi j = 〈

ν, ẽ( j)
〉
,

we have that δi = 0 for i = 1, . . .n1, δ̃ j = 0 for j = 1, . . .n2 and δi > 0 for i > n1,
δ̃ j > 0 for j > n2.

We consider a sequence of systems indexed by ε. In this section, we consider an
i.i.d. arrival process a(ε)(t) with mean and variance given by

E[a(ε)(t)] = λ(ε) = ν − εk,

Var [a(ε)(t)] =
(
σ (ε)

)2
,

such that as ε → 0,
(
σ (ε)

)2 → σ 2. Here k ∈ Rn2+ is vector that represents the rates of
saturation of different ports. Define

κi (k) �
〈
k, e(i)

〉
=
∑

j

ki j and

κ̃ j (k) �
〈
k, ẽ( j)

〉
=
∑

i

ki j . (6)

For simplicity of notation, we will suppress the dependence on k. Note that
∑

i κi =∑
j κ̃ j . Let κavg �

∑
i κi/n = ∑

j κ̃ j/n, κmin = mini κi , κ̃min = min j κ̃ j and
similarly for κmax, κ̃max. Note that in [11], the setting when k = ν is studied, in which
case κi = 1 and κ̃ j = 1 for all i, j . In order to make sure that the heavy-traffic
parameter ε is comparable to this case, we assume without loss of generality that
κavg = 1. In other words, we normalize the vector k by assuming that 〈k, 1〉 = n.
Such a normalized k is called the saturation rate vector. We will study the switch in
the heavy-traffic limit as ε ↓ 0. Define

γ
(ε)
i � 1 −

∑

j

λ
(ε)
i j = δi + εκi ,

γ̃
(ε)
j � 1 −

∑

i

λ
(ε)
i j = δ̃ j + εκ̃ j .

1 The relative interior of a set is defined as its interior relative to its affine hull [5, Section 2.1.3].

123



288 Queueing Syst (2018) 88:279–309

Note that γ (ε)
i = εκi for i ≤ n1, and γ̃

(ε)
j = εκ̃ j for j ≤ n2. For the unsaturated ports,

limε↓0 γ
(ε)
i = δi > 0 for i > n1, and limε↓0 γ̃

(ε)
j = δ̃ j > 0 for j > n2.

3.1 Universal lower bound

We now present lower bounds on the steady state queue lengths that are satisfied by
any scheduling algorithm.

Proposition 1 Consider a set of switch systems with the arrival processes a(ε)(t)
described above, parameterized by 0 < ε < 1, such that the mean arrival rate

vector is λε = ν − εk for some ν ∈ Relint(Fn1n2), and the variance is
(
σ (ε)

)2
. For

1 ≤ i, j ≤ n, γi , γ̃ j are defined as above. Fix a scheduling policy under which the
switch system is stable for any 0 < ε < 1. Let q(ε)(t) denote the queue lengths process
under this policy for each system. Suppose that this process converges in distribution
to a steady state random vector q(ε). Then, for each of these systems, the steady state
mean queue lengths can be lower-bounded as follows:

E

⎡

⎣
∑

j

q(ε)
i j

⎤

⎦ ≥
∑

j

(
σ

(ε)
i j

)2

2γi
− 1 − γi

2
for all 1 ≤ i ≤ n, (7)

E

[
∑

i

q(ε)
i j

]
≥
∑

i

(
σ

(ε)
i j

)2

2γ̃ j
− 1 − γ̃ j

2
for all 1 ≤ j ≤ n. (8)

Therefore, in the heavy-traffic limit as ε ↓ 0, if
(
σ (ε)

)2 → σ 2, for the saturated ports
we have

lim inf
ε↓0 εE

⎡

⎣
∑

j

q(ε)
i j

⎤

⎦ ≥
∑

j σ
2
i j

2κi
for all 1 ≤ i ≤ n1,

lim inf
ε↓0 εE

[
∑

i

q(ε)
i j

]
≥
∑

i σ
2
i j

2̃κ j
for all 1 ≤ i ≤ n2,

and for the unsaturated ports we have

lim inf
ε↓0 εE

⎡

⎣
∑

j

q(ε)
i j

⎤

⎦ ≥ 0 for all i > n1,

lim inf
ε↓0 εE

[
∑

i

q(ε)
i j

]
≥ 0 for all i > n2.

Proof The queue lengths at each port can be lower-bounded by a single-server queue
as follows: Consider

∑
j q

(ε)
i j (t), the total queue length at input port (row) i . It can
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be lower-bounded sample path wise by a coupled single-server queue with arrival
process

∑
j a

(ε)
i j (t) [11, Proposition 1]. The mean and variance of the arrival process

for this single-server queue are then (1−γi ) and
(
σ

(ε)
i j

)2
, respectively, because of the

independence of the arrival processes across the queues in the matrix. Then, using the
Kingman bound for a single-server queue in Lemma 1, we get (7). Similarly lower
bounding the total queue length for output port (column) j ,

∑
i q

(ε)
i j (t), by a single-

server queue, we get (8). Taking the heavy-traffic limits using the facts that γ (ε)
i = εκi ,

γ̃
(ε)
j = εκ̃ j for saturated ports and limε↓0 γ

(ε)
i > 0, limε↓0 γ̃

(ε)
j > 0 for unsaturated

ports, gives the heavy-traffic limits. ��

3.2 State space collapse

In this subsection, wewill show that under theMaxWeight algorithm the queue lengths
vector concentrates close to a lower-dimensional cone. In order to make this more
precise, we need to first present the following definitions.

The heavy-traffic rate vector ν lies in the relative interior of the faceFn1n2 which is
at the intersection of hyperplanes with the n1 + n2 normal vectors, {e(i) for 1 ≤ i ≤
n1} ∪ {̃e( j) for 1 ≤ j ≤ n2}. Call the cone spanned by these normal vector Kn1n2 , and
the subspace spanned by these normal vectors Sn1n2 , i.e.,

Kn1n2 �
{
x ∈ Rn2 : x =

n1∑

i=1

wie(i) +
n2∑

j=1

w̃ j ẽ( j) where

wi ∈ R+ for 1 ≤ i ≤ n1, w̃ j ∈ R+ for 1 ≤ j ≤ n2
}

=
{
x ∈ Rn2 : x =

n∑

i=1

wie(i) +
n∑

j=1

w̃ j ẽ( j) where

wi ∈ R+ for 1 ≤ i ≤ n1 and wi = 0 for i > n1,

w̃ j ∈ R+ for 1 ≤ j ≤ n2 and w̃ j = 0 for j > n2
}
.

Sn1n2 �
{
x ∈ Rn2 : x =

n1∑

i=1

wie(i) +
n2∑

j=1

w̃ j ẽ( j) where

wi ∈ R for 1 ≤ i ≤ n1, w̃ j ∈ R for 1 ≤ j ≤ n2
}

(9)

=
{
x ∈ Rn2 : x =

n∑

i=1

wie(i) +
n∑

j=1

w̃ j ẽ( j) where

wi ∈ R for 1 ≤ i ≤ n1 and wi = 0 for i > n1,

w̃ j ∈ R for 1 ≤ j ≤ n2 and w̃ j = 0 for j > n2
}
.
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The components of any vector x in the subspace Sn1n2 can be written in the form
xi j = wi + w̃ j , where wi ∈ R for 1 ≤ i ≤ n1, wi = 0 for i > n1, w̃ j ∈ R for
1 ≤ j ≤ n2, and w̃ j = 0 for j > n1. The same is true for any vector x in the
cone Kn1n2 with the further restriction that wi ≥ 0 for 1 ≤ i ≤ n1 and w̃ j ≥ 0 for
1 ≤ j ≤ n2. This leads to the following lemma relating the structure of the coneKn1n2
and the subspace Sn1n2 .

Lemma 3 Let n1 < n and n2 < n. The cone Kn1n2 is the intersection of the space
Sn1n2 and the positive orthant, i.e.,

Kn1n2 = Sn1n2 ∩ Rn2+ .

Proof From the definitions above, it is clear that Kn1n2 ⊆ Sn1n2 and Kn1n2 ⊆ Rn2+ .

Therefore, we have Kn1n2 ⊆ Sn1n2 ∩ Rn2+ . Now suppose that x ∈ Sn1n2 ∩ Rn2+ . We
have that xi j = wi + w̃ j ≥ 0, where wi = 0 for i > n1 and w̃ j = 0 for j > n1.
Since n1 < n, we have xin = wi ≥ 0, and so we get that wi ≥ 0 for 1 ≤ i ≤ n1.
Similarly, we get that w̃ j ≥ 0 for 1 ≤ j ≤ n2, proving that x ∈ Kn1n2 and so

Sn1n2 ∩ Rn2+ ⊆ Kn1n2 . ��
Let x‖K denote the projection of x onto the convex cone Kn1n2 , and let x⊥K �

x− x‖K be the perpendicular component. Similarly, let x‖S denote the projection of x
onto the subspace Sn1n2 , and let x⊥S � x− x‖S be the perpendicular component. For
simplicity of notation, we suppress the dependence on n1 and n2 . In [11], x‖ and x⊥
were used to denote the projections we denote here by x‖K and x⊥K, respectively. We
will show that under the MaxWeight algorithm, all the moments of q⊥K are bounded
in steady state independent of ε. Since the �1 norm of the queues length vector ‖q‖1,
is�(1/ε), as shown in the previous subsection, this establishes that the perpendicular
component q⊥K is a negligible part of the queue lengths vector q for small ε. Thus,
we establish state space collapse onto the cone Kn1n2 .

For ν ∈ Relint(Fn1n2), the vector in the relative interior of the face Fn1n2 , let
νmin � mini, j νi j . We assume that νmin > 0. Then, ν′

min > 0, where

ν′
min � min

{
νmin,min

i>n1

{
1 −

〈
ν, e(i)

〉}
, min
j>n2

{
1 −

〈
ν, ẽ( j)

〉}}
.

Proposition 2 Consider a set of switch systems under the MaxWeight scheduling
algorithm, with the arrival processes a(ε)(t), parameterized by 0 < ε < 1, and
maximum possible arrivals in any queue amax. The mean arrival rate vector is λε =
ν − εk for some ν ∈ Relint(Fn1n2) such that νmin � mini j νi j > 0, and a normalized

saturation rate vector k ∈ Rn2+ such that 〈k, 1〉 = n. Let the variance
(
σ (ε)

)2
of the

arrival process be such that ‖σ (ε)‖2 ≤ σ̃ 2 for some σ̃ 2 not dependent on ε. Let q(ε)(t)
denote the queue lengths process of each system,which is positive recurrent. Therefore,
the process q(ε)(t) converges to a steady state random vector in distribution, which
we denote by q(ε). Then, for each system with 0 < ε ≤ ν′

min/2‖k‖, the steady state
queue lengths vector satisfies
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E
[
‖q(ε)

⊥S‖r
]

≤ E
[
‖q(ε)

⊥K‖r
]

≤ (Mr )
r ∀r ∈ {1, 2, . . .},

where ν′
min is defined as above and Mr is a function of r, σ̃ , ν, amax, ν

′
min but indepen-

dent of ε.

Proof We omit the superscript (ε) in this proof for simplicity of notation. For the
Markov chain q, consider the Lyapunov function W⊥K(q) � ‖q⊥K‖. We will use
Lemma 2 to obtain moment bounds from the drift of W⊥K(.). Similar to [11, Propo-
sition 2], under the MaxWeight scheduling algorithm it can be shown that

E
[
�W⊥K(q)| q(t) = q

] ≤ 1

2‖q⊥K‖
(

‖λ‖2 + ‖σ‖2 + n − 2ε 〈q⊥K, k〉

+ 2E
[ 〈
q‖K, s(t) − ν

〉∣∣q(t) = q
]+ 2min

r∈C
〈q, ν − r〉

)
.

. (10)

Recall that since s ∈ S∗,
〈
e(i), s(t)

〉 = 1 and
〈
ẽ( j), s(t)

〉 = 1 for all i, j, t . Similarly,
since ν ∈ Fn1n2 , for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, we have

〈
e(i), ν

〉 = 1 and
〈
ẽ( j), ν

〉 =
1. By the definition of the cone Kn1n2 , the vector q‖K can be written as q‖K =∑n1

i=1 wie(i) + ∑n2
j=1 w̃ j ẽ( j). Putting all these together, we get

〈
q‖K, s(t) − ν

〉 = 0.
We now use the following claim to bound the last term in (10).

Claim 1 For any q ∈ Rn2 and ν ∈ Relint(Fn1n2) such that νmin > 0,

ν + ν′
min

‖q⊥K‖q⊥K ∈ C.

Proof We will verify that ν + ν′
min‖q⊥K‖q⊥K satisfies all the conditions in the definition

of C in (4) Note that q⊥K‖q⊥K‖ is a unit vector along some direction. Since νi j ≥ ν′
min,

clearly ν + ν′
min‖q⊥K‖q⊥K ∈ Rn2+ .

It is well-known that for any x ∈ Kn1n2 , 〈q⊥K, x〉 ≤ 0. Since e(i) ∈ Kn1n2 for
1 ≤ i ≤ n1, we have

〈
q⊥K, e(i)

〉 ≤ 0. Then, using the fact that ν ∈ Fn1n2 , we have,
for 1 ≤ i ≤ n1,

〈
ν + ν′

min

||q⊥K||q⊥K, e(i)
〉

≤ 1.

For i > n1,

〈
ν + ν′

min

||q⊥K||q⊥K, e(i)
〉

=
〈
ν, e(i)

〉
+ ν′

min

〈
q⊥K

||q⊥K|| , e
(i)
〉

(a)≤
〈
ν, e(i)

〉
+ ν′

min ≤ 1,
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where (a) follows from the Cauchy–Schwartz inequality and the last inequality follows

from the definition of ν′
min. It can similarly be shown that

〈
ν + νmin‖q⊥K‖q⊥K, ẽ( j)

〉
≤ 1

for 1 ≤ j ≤ n2 as well as j > n2, proving the claim. ��
Using the claim, the last term in (10) can be bounded as

2min
r∈C

〈q, ν − r〉 ≤ 2

〈
q, ν −

(
ν + ν′

min

‖q⊥K‖q⊥K
)〉

= −2

〈
q,

ν′
min

‖q⊥K‖q⊥K
〉

= −2ν′
min‖q⊥K‖.

Using this in (10) and bounding the −2ε 〈q⊥K, k〉 term using the Cauchy–Schwartz
inequality, we get

E
[
�W⊥K(q)

∣∣q(t) = q
] ≤ ‖λ‖2 + ‖σ‖2 + n

2‖q⊥K‖ − ν′
min + ε‖k‖

≤ ‖λ‖2 + ‖σ‖2 + n

2‖q⊥K‖ − ν′
min
2

, whenever ε ≤ ν′
min

2‖k‖
≤ −ν′

min
4

, for all q such that W⊥K(q) ≥ 2(‖λ‖2 + ‖σ‖2 + n)

ν′
min

.

Thus, the conditions of Lemma 2 is valid with ζ = 2(‖λ‖2+‖σ‖2+n)

ν′
min

and η = ν′
min
4 .

Moreover, ζ can be upper-bounded by ζ ≤ 2(‖ν‖2+‖σ‖2+n)

ν′
min

, an expression that doesn’t

contain ε. The conditions of Lemma 2 can be verified using nonexpansivity of projec-
tion and the fact that the maximum arrivals at every time are amax [11]. Then, from

Lemma 2, we get the bound on E
[
‖q(ε)

⊥K‖r
]
in the proposition. SinceKn1n2 ⊆ Sn1n2 ,

we have ‖q(ε)

⊥S‖r ≤ ‖q(ε)

⊥K‖r , completing the proof. ��

3.3 Asymptotically tight upper and lower bounds under the MaxWeight policy

In this subsection, we will use the state space collapse result from the previous sec-
tion to obtain lower and upper bounds on weighted sums of queue lengths under the
MaxWeight algorithm that are tight in heavy-traffic limit. It turns out that the queue
length behavior under theMaxWeight algorithmwhen there is at least one unsaturated
port is qualitatively different from the case when all ports are saturated. The reason for
this is discussed in Corollary 5 in Sect. 4. So, in this subsection, we focus on the case
when at least one port in not saturated. If all the input ports are saturated, from the
definition of the capacity region, it follows that all the output ports are also saturated,
i.e., whenever n1 = n, we also have n2 = n. Similarly, if all the output ports are
saturated, it again follows that all the input ports are saturated. Since we are interested
in an incompletely saturated switch, in this section we assume n1 < n and n2 < n.
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The queue length bounds are obtained by setting the drift of the following function
to zero in steady state:

V (q) = ∥∥q‖S
∥∥2 .

Its drift is defined as

�V (q) � [V (q(t + 1)) − V (q(t))] I(q(t) = q).

We now state the main result of the paper in a general form. In Sect. 4, we will interpret
this result as well as present various special cases.

Theorem 1 Consider a set of switch systems under the MaxWeight scheduling algo-
rithm, with the arrival processes a(ε)(t), parameterized by 0 < ε < 1, and maximum
possible arrivals in any queue amax. The mean arrival rate vector is λε = ν − εk for
some ν ∈ Relint(Fn1n2) such that νmin � mini j νi j > 0, and a normalized saturation

rate vector k ∈ Rn2+ such that 〈k, 1〉 = n. Let the variance
(
σ (ε)

)2
of the arrival

process be such that ‖σ (ε)‖2 ≤ σ̃ 2 for some σ̃ 2 not dependent on ε and assume that
n1 < n and n2 < n. Let q(ε)(t) denote the queue lengths process of each system,
which is positive recurrent. Therefore, the process q(ε)(t) converges to a steady state
random vector in distribution, which we denote by q(ε). Then, for each system with
0 < ε ≤ ν′

min/2‖k‖, the steady state queue lengths vector satisfies
1

2ε

〈(
σ (ε)

)2
, ζ

〉
− B1(ε) ≤ E

[〈
q(ε),α

〉]
≤ 1

2ε

〈(
σ (ε)

)2
, ζ

〉
+ B2(ε)

for any fixed weight vector α ∈ Rn2 such that
〈
α, e(i)

〉 = nκi for i ≤ n1 and
〈
α, ẽ( j)

〉 =
nκ̃ j for j ≤ n2, where B1(ε) as well as B2(ε) are o(

1
ε
), i.e., limε→0 εB1(ε) = 0 and

limε→0 εB2(ε) = 0. The vector ζ is defined by

ζi j �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 − 2n−n1−n2
n2−n1n2

if i ≤ n1 and j ≤ n2
1 + n2

n2−n1n2
if i ≤ n1 and j > n2

1 + n1
n2−n1n2

if i > n1 and j ≤ n2
0 if i > n1 and j > n2.

(11)

Thus, in the heavy-traffic limit as ε ↓ 0, we have

lim
ε→0

εE
[〈
q(ε),α

〉]
= 1

2

〈
σ 2, ζ

〉
.

Moreover, for any i > n1 and j > n2,

lim
ε→0

εE
[
q(ε)
i j

]
= 0.

Note that, in general, the weights αi j are allowed to be negative. We now present the
proof of the theorem.
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Proof We consider the switch for a fixed 0 < ε ≤ ν′
min/2‖k‖. For simplicity of

notation, we again omit the superscript (ε) in this proof. Similar to the notation in
[11], we use q to denote the steady state queue length vector and a to denote the
steady state arrival vector, which is identically distributed to the vector a(t) at any
time t . We use s(q) and u(q) for the schedule and unused service to explicitly show
their dependence on the queue lengths. If the queue length at time t is q, then the
queue length at time t +1, q+a− s(q)+u(q), is denoted by q+. Since q is the steady
state queue length, it has the same distribution as q+.

It can be easily shown using Lemma 2 that, in steady state, E[‖q‖2] is finite, and
consequently we have

E[V (q)] < ∞ and E[‖q‖1] = E[
∑

i j

qi j ] < ∞, (12)

where ‖.‖1 denotes the �1 norm. See Lemma 5 in [11] for details. Setting the drift of
V (q) to zero in steady state, we get

0 = E[�V (q)]
= E[V (q + a − s(q) + u(q)) − V (q)]
= E

[∥∥(q + a − s(q) + u(q))‖S
∥∥2 − ∥∥q‖S

∥∥2
]

(a)= E
[∥∥q‖S + (a − s(q))‖S + u‖S(q)

∥∥2 − ∥∥q‖S
∥∥2
]

= E
[∥∥q‖S + (a − s(q))‖S

∥∥2 + 2
〈
q‖S + (a − s(q))‖S ,u‖S(q)

〉]

+E
[∥∥u‖S(q)

∥∥2 − ∥∥q‖S
∥∥2
]

= E
[∥∥q‖S + (a − s(q))‖S

∥∥2 + 2
〈
q‖S + (a − s(q))‖S + u‖S(q),u‖S(q)

〉]

−E
[∥∥u‖S(q)

∥∥2 + ∥∥q‖S
∥∥2
]

(b)= E
[∥∥q‖S + (a − s(q))‖S

∥∥2 + 2
〈
q+

‖S ,u‖S(q)
〉
− ∥∥u‖S(q)

∥∥2 − ∥∥q‖S
∥∥2
]

= E
[∥∥(a − s(q))‖S

∥∥2 + 2
〈
q‖S , (a − s(q))‖S

〉− ∥∥u‖S(q)
∥∥2 + 2

〈
q+

‖S ,u‖S(q)
〉]

,

where (a) and (b) follow from the fact that projection onto a subspace is linear. There-
fore, we have

2E
[〈
q‖S , (s(q) − a)‖S

〉] = E
[∥∥(a − s(q))‖S

∥∥2
]

− E
[∥∥u‖S(q)

∥∥2
]

(13)

+ 2E
[〈
q+

‖S ,u‖S(q)
〉]

. (14)

We will now study each of the terms in this equation. Consider the LHS term in (13).
Since any vector of the form x⊥S is orthogonal to the space Sn1n2 , we get

2E
[〈
q‖S , (s(q) − a)‖S

〉]

123



Queueing Syst (2018) 88:279–309 295

= 2E
[〈
q‖S , (s(q) − a)‖S

〉]+ 2E
[〈
q‖S , (s(q) − a)⊥S

〉]

= 2E
[〈
q‖S , s(q) − a

〉]

(a)= 2E
[〈
q‖S , s(q) − λ

〉]

= 2E
[〈
q‖S , s(q) − (ν − εk)

〉]

= 2εE
[〈
q‖S , k

〉]+ 2E
[〈
q‖S , s(q) − ν

〉]

(b)= 2εE

⎡

⎣
〈

n1∑

i=1

wie(i) +
n2∑

j=1

w̃ j ẽ( j), k

〉⎤

⎦

+ 2E

⎡

⎣
〈

n1∑

i=1

wie(i) +
n2∑

j=1

w̃ j ẽ( j), s(q) − ν

〉⎤

⎦

(c)= 2εE

⎡

⎣
n1∑

i=1

wi

〈
e(i), k

〉
+

n2∑

j=1

w̃ j

〈
ẽ( j), k

〉
⎤

⎦

+ 2E

⎡

⎣
n1∑

i=1

wi

〈
e(i), s(q) − ν

〉
+

n2∑

j=1

w̃ j

〈
ẽ( j), s(q) − ν

〉
⎤

⎦

(d)= 2ε

n
E

⎡

⎣
n1∑

i=1

wi

〈
e(i),α

〉
+

n2∑

j=1

w̃ j

〈
ẽ( j),α

〉
⎤

⎦

= 2ε

n
E

⎡

⎣
〈

n1∑

i=1

wie(i) +
n2∑

j=1

w̃ j ẽ( j),α

〉⎤

⎦

= 2ε

n
E
[〈
q‖S ,α

〉]

= 2ε

n
E
[〈q,α〉]− 2ε

n
E
[〈
q⊥S ,α

〉]
, (15)

where (a) follows from the fact that the arrivals are independent of queue lengths. From
the definition of the space Sn1n2 in (9), we know that the vector q‖S can be represented
as
∑n1

i=1 wie(i)+∑n2
j=1 w̃ j ẽ( j) for somewi ∈ R, 1 ≤ i ≤ n1, and w̃ j ∈ R, 1 ≤ i ≤ n1,

giving (b). Since the schedule is always assumed to be maximal, from (1), we have
that

〈
e(i), s

〉 = 1 for all i . Since the first n1 rows are saturated, we have from (5) that〈
e(i), ν

〉 = 1 for 1 ≤ i ≤ n1. Therefore, we get that
〈
e(i), s(q) − ν

〉 = 0 for 1 ≤ i ≤ n1,
and similarly we have

〈
ẽ( j), s(q) − ν

〉 = 0 for 1 ≤ j ≤ n2. Consequently, the second
term in (c) vanishes. From the definition of κi in (6) and the assumption on α, we have
that

〈
e(i), k

〉 = κi = 〈
e(i),α

〉
/n for 1 ≤ i ≤ n1. Similarly for 1 ≤ j ≤ n2, we have〈

ẽ( j), k
〉 = κi = 〈

ẽ( j),α
〉
/n, giving us (d). Using the Cauchy–Schwartz inequality, we

can bound the last term in (15) as follows:
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− E
[∥∥q⊥S

∥∥] ‖α‖ ≤ E
[〈
q⊥S ,α

〉] ≤ E
[∥∥q⊥S

∥∥] ‖α‖ ,

−M1 ‖α‖ ≤ E
[〈
q⊥S ,α

〉] ≤ M1 ‖α‖ , (16)

where the last set of inequalities follow from the state space collapse in Proposition 2.
Putting this back in (15), we get

− 2ε

n
M1 ‖α‖ ≤ 2E

[〈
q‖S , (s(q) − a)‖S

〉]− 2ε

n
E
[〈q,α〉] ≤ 2ε

n
M1 ‖α‖ . (17)

We now consider the first term on theRHSof (13). Let f1, f2, . . . , fL be an orthonormal
basis of the space Sn1n2 , where L is the dimension of the space Sn1n2 . From the
definition of the space Sn1n2 , we know that each of these vectors fl can be written as
fli j = vli + ṽl j for some vli , ṽl j ∈ R for all i, j with vli = 0 for i > n1, ṽl j = 0 for
j > n2. Then the norm of the projection onto the subspace Sn1n2 can be written in
terms of the projections onto the basis vectors as follows:

E
[∥∥(a − s(q))‖S

∥∥2
]

= E

⎡

⎣
∑

l

〈a − s(q), fl 〉2
⎤

⎦

=
∑

l

E

⎡

⎢⎣

⎛

⎝
∑

i j

(ai j − si j (q)) fli j

⎞

⎠
2
⎤

⎥⎦

=
∑

l

E

⎡

⎢⎣

⎛

⎝
∑

i j

(ai j − si j (q))(vli + ṽl j )

⎞

⎠
2
⎤

⎥⎦

=
∑

l

E

⎡

⎢⎣

⎛

⎝
∑

i

vli

⎛

⎝
∑

j

(ai j − si j (q))

⎞

⎠+
∑

j

ṽl j

⎛

⎝
∑

i

(ai j − si j (q))

⎞

⎠

⎞

⎠
2
⎤

⎥⎦

(a)=
∑

l

E

⎡

⎣

⎛

⎝
∑

i

vli

⎛

⎝
∑

j

ai j − (1 − κi ε)

⎞

⎠+
∑

j

ṽl j

⎛

⎝
∑

i

ai j − (1 − κ̃ j ε)

⎞

⎠

−ε

⎛

⎝
∑

i

κivli +
∑

j

κ̃ j ṽl j

⎞

⎠

⎞

⎠
2
⎤

⎥⎦

(b)=
∑

l

V ar

⎛

⎝
∑

i

vli

∑

j

ai j +
∑

j

ṽl j

∑

i

ai j

⎞

⎠+ ε2
∑

l

⎛

⎝
∑

i

κivli +
∑

j

κ̃ j ṽl j

⎞

⎠
2

(c)=
∑

l

⎡

⎣Var

⎛

⎝
∑

i

vli

∑

j

ai j

⎞

⎠+ Var

⎛

⎝
∑

j

ṽl j

∑

i

ai j

⎞

⎠

+ 2Cov

⎛

⎝
∑

i

vli

∑

j ′
ai j ′ ,

∑

j

ṽl j

∑

i ′
ai ′ j

⎞

⎠

⎤

⎦+ ε2
∑

l

〈k, fl 〉2

123



Queueing Syst (2018) 88:279–309 297

(d)=
∑

l

⎡

⎣
∑

i

v2li
V ar

⎛

⎝
∑

j

ai j

⎞

⎠+
∑

j

ṽ2l j
V ar

⎛

⎝
∑

i

ai j

⎞

⎠

+ 2
∑

i j

vli ṽl j Cov

⎛

⎝
∑

j ′
ai j ′ ,

∑

i ′
ai ′ j

⎞

⎠

⎤

⎦+ ε2
∥∥k‖S

∥∥2

(e)=
∑

l

⎡

⎣
∑

i

v2li

∑

j

σ 2
i j +

∑

j

ṽ2l j

∑

i

σ 2
i j + 2

∑

i j

vli ṽl j σ
2
i j

⎤

⎦+ ε2
∥∥k‖S

∥∥2

=
∑

l

⎡

⎣
∑

i j

(vli + ṽl j )
2σ 2

i j

⎤

⎦+ ε2
∥∥k‖S

∥∥2

=
∑

i j

∑

l

f 2li j σ
2
i j + ε2

∥∥k‖S
∥∥2

=
∑

i j

∑

l

〈
χ (i j), fl

〉
σ 2
i j + ε2

∥∥k‖S
∥∥2

=
∑

i j

∥∥∥χ (i j)
‖S

∥∥∥
2
σ 2
i j + ε2

∥∥k‖S
∥∥2

= 1

n

〈
σ 2, ζ

〉
+ ε2

∥∥k‖S
∥∥2 , (18)

where χ (i j) is the matrix with 1 in the (i, j)th position and 0 everywhere else. Since
a maximal schedule is always picked, from (1), we get (a). Equation (b) follows from
the fact that the total arrival rate for row i is (1 − κiε) and that for column j it is
(1 − κ̃ jε). Expanding the variance of two random variables along with the definition
of κi and κ̃ j in (6) gives (c). Independence of the arrival processes across the ports
gives (d) and (e). The following lemma, which is proved in Appendix 1, gives (18).

Lemma 4 For all 1 ≤ i, j ≤ n,

∥∥∥χ (i j)
‖S
∥∥∥
2 = ζi j

n
,

where ζ is defined in (11).

We will now focus on the second term on the RHS of (13). In order to do this, we
will first obtain a bound on the unused service. We know from (12) that E[∑i j qi j ]
is finite and so E[∑ j qi j ] finite for each i . For i ≤ n1, setting the drift of

∑
j qi j to

zero in steady state, we get

E

⎡

⎣
∑

j

qi j

⎤

⎦ = E

⎡

⎣
∑

j

q+
i j

⎤

⎦

= E

⎡

⎣
∑

j

qi j + ai j − si j (q) + ui j (q)

⎤

⎦ ,
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0 =
∑

j

(νi j − εki j ) − 1 + E

⎡

⎣
∑

j

ui j (q)

⎤

⎦ ,

E

⎡

⎣
∑

j

ui j (q)

⎤

⎦ = εκi ,

where the last equality follows from (5) since the row i is saturating. Similarly, for
j ≤ n2, we have that E

[∑
i ui j (q)

] = εκ̃ j .

For any x ∈ Rn2 , let x̂ ∈ Rn2 denote its projection on to the space spanned by the
vectors χ (i j) for i ≤ n1 or j ≤ n2. Call this space Xn1n2 . Clearly, this space contains

the space Sn1n2 , i.e., Sn1n2 ⊆ Xn1n2 . In other words, the vector x̂ ∈ Rn2 is obtained by
replacing the (n − n1)(n − n2) components with i > n1 and j > n2 with zeros, i.e.,

x̂i j �
{
xi j if i ≤ n1 or j ≤ n2
0 if i > n1 and j > n2.

Moreover, for any x ∈ Rn2 , x − x̂ is orthogonal to the space Xn1n2 and so is also
orthogonal to the space Sn1n2 .

Now the second term on the RHS of (13) can be upper-bounded as follows:

E
[∥∥u‖S(q)

∥∥2
]

= E
[∥∥(̂u(q) + u(q) − û(q))‖S

∥∥2
]

(a)= E
[∥∥(̂u(q))‖S + (u(q) − û(q))‖S

∥∥2
]

(b)= E
[∥∥(̂u(q))‖S

∥∥2
]

(c)≤ E
[
‖(̂u(q))‖2

]

= E

⎡

⎣
∑

i j

û2i j (q)

⎤

⎦

(d)= E

⎡

⎣
∑

i j

ûi j (q)

⎤

⎦

≤ E

⎡

⎣
n1∑

i=1

∑

j

ui j (q)

⎤

⎦+ E

⎡

⎣
n2∑

j=1

∑

i

ui j (q)

⎤

⎦

(e)= ε

n1∑

i=1

κi + ε

n2∑

j=1

κ̃ j

≤ 2ε 〈k, 1〉
= 2εn, (19)
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where (a) follows from linearity of projection onto a subspace. Since, for any vector
x, x − x̂ is orthogonal to the space Sn1n2 , we get (b). Inequality (c) is true due to
the nonexpansive property of projection. Since, ui j ∈ {0, 1}, we have (d). Since the
saturation rate vector k is assumed to be normalized, we get (19). Using the trivial
lower bound of zero, we have

0 ≤ E
[∥∥u‖S(q)

∥∥2
]

≤ 2εn. (20)

We will now consider the final term, the one in (14).

2E
[〈
q+

‖S ,u‖S(q)
〉]

= 2E
[〈
q+

‖S ,u(q)
〉]

(a)= 2E
[〈
q+

‖S , û(q)
〉]

(b)= 2E
[〈
q+, û(q)

〉]− 2E
[〈
q+

⊥S , û(q)
〉]

= −2E
[〈
q+

⊥S , û(q)
〉]

, (21)

where (a) follows from the fact that x − x̂ is orthogonal to the space Sn1n2 . Since, by
the definition of unused service in (2), we have that q+

i j = 0 whenever ui j (q) > 0, the
first term in (b) vanishes. Therefore, using the Cauchy–Schwartz inequality, we get

− 2

√

E

[∥∥∥q+
⊥S

∥∥∥
2
]
E
[
‖̂u(q)‖2

]
≤ 2E

[〈
q+

‖S , u‖S (q)
〉]

≤ 2

√

E

[∥∥∥q+
⊥S

∥∥∥
2
]
E
[
‖̂u(q)‖2

]
,

−2M2

√
E
[‖̂u‖2] ≤ 2E

[〈
q+

‖S , u‖S (q)
〉]

≤ 2M2

√
E
[‖̂u‖2], (22)

−2M2
√
2εn ≤ 2E

[〈
q+

‖S , u‖S (q)
〉]

≤ 2M2
√
2εn, (23)

where (22) is obtained by using the fact that, in steady state, E
[∥∥q+

⊥S
∥∥2
]

=
E
[∥∥q⊥S

∥∥2
]
, which is bounded by M2 from state space collapse in Proposition 2.

We get (23) from the bound in (19).
Substituting (17), (18), (20) and (23) in (13) and (14), we get the theorem with

B1(ε) = M1 ‖α‖ − nε

2

∥∥k‖S
∥∥2 + n2 + 2M2

n
√
n√
2ε

,

B2(ε) = M1 ‖α‖ + nε

2

∥∥k‖S
∥∥2 + 2M2

n
√
n√
2ε

.

��
Themain idea of the proof is to set the drift of a carefully chosen test function V (.) to

zero. The choice of this function is crucial to obtain tight heavy-traffic bounds.Wewill
now briefly motivate our choice of the function V (.). For a discrete-time single-server
(G/G/1) queue, with q(t) that evolves according to q(t+1) = q(t)+a(t)−s(t)+u(t),
the right test function to obtain tight queue length bounds is q2. Such a bound is known
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as the Kingman bound [20, Section 10.1]. Next, consider a load balancing system
under the ‘Join the shortest queue’(JSQ) policy operating in discrete time. There are a
finite number of servers, each with a separate queue, similar to supermarket checkout
lanes. Whenever a user arrives into the system, (s)he joins the queue with the shortest
length, breaking ties uniformly at random. Tight heavy-traffic queue length bounds
are obtained for this system in [6] by first showing that the queue lengths collapse
to a single dimension where they are all equal. Then, tight bounds are obtained by
setting the drift of the quadratic test functionE[(∑i qi )

2] to zero in steady state. This
function is the same as

∥∥q‖
∥∥2 (up to a factor of n, which is not important), where

q‖ denotes the projection of the queue length vector q onto the region of state space
collapse, which is the line along the vector that has ones in all components.

These examples motivate us to choose the norm square of projection of the queue
lengths vector onto the region of state space collapse as the test function in general.
In the case of the switch, this would be

∥∥q‖K
∥∥2. However, a projection operator onto

a convex cone is difficult to study because it is not linear. Moreover, a closed form
expression for projection onto a general cone is not known. Therefore, we relax this
function and use

∥∥q‖S
∥∥2 as the test function. Since we use the relaxed function, it is

sufficient to use state space collapse into the space Sn1n2 , as opposed to the stronger
form of state space collapse into the coneKn1n2 . Note that, in the proof of Theorem 1,
we use state space collapse only at two instances, viz., (16) and (22), and both these

use the weaker result, E
[
‖q(ε)

⊥S‖r
]
. In other words, we only use the fact that the state

collapses to the space Sn1n2 and not the cone Kn1n2 . Such a relaxation works because
of the property of the cone Kn1n2 that it is just the intersection of the space it spans,

Sn1n2 , with the positive orthant Rn2+ , as proved in Lemma 3. Therefore, any positive
queue length vector that is in the space Sn1n2 is also in the cone Kn1n2 . Since queue
length vectors are nonnegative, if we know that a queue length vector collapses onto
the space Sn1n2 , we know that it should collapse onto the cone Kn1n2 .

Even though we only need the weaker version of state space collapse, viz., the

bound on E
[
‖q(ε)

⊥S‖r
]
, we proved a stronger version, viz., the bound on E

[
‖q(ε)

⊥K‖r
]

in Proposition 2 for completeness. The proof of weaker state space collapse can be
much simpler because projection onto a subspace is a linear operator, while projec-
tion onto a convex cone is not. Therefore, we can write down the complete proof of
Theorem 1 (including the weaker version of Proposition 2) without even referring to
the cone Kn1n2 .

The intuition behind our choice of the test function as discussed above may be
applicable to other problem settings beyond just the switch system. For any problem
that exhibits state space collapse into a cone that satisfies a property similar to Lemma
3, we may be able to use

∥∥q‖S
∥∥2 as the test function with appropriately defined inner

product and norm. Moreover, as illustrated in the proof of Theorem 1, we don’t need
to know the explicit closed form of q‖S to use this test function. Our presentation

of the test function in the form
∥∥q‖S

∥∥2 that is easily generalizable to other problem
settings is a major contribution of this paper. Such a test function with a novel inner
product has been successfully used in [9,23]. The reason for the choice of

∥∥q‖S
∥∥2

as a test function is the following: When a quadratic test function is chosen, and the
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drift is set to zero, we get several terms as in (14). Among these terms, the cross term
between q+ and u(q), as in (14), is the crucial term to bound in heavy-traffic. Under
state space collapse, this term should be small and can be bounded using an argument
similar to that in the set of equations ending in (21).

We nowmake a short remark about the scheduling policy. In the proof of Theorem1,
we do not use any details about the scheduling policy, except for the fact that it is
throughput-optimal and exhibits state space collapse as in Proposition 2. Therefore, the
queue length bounds in Theorem 1 hold true under any throughput-optimal algorithm
that exhibits state space collapse as in Proposition 2. Moreover, in the proof of state
space collapse in Proposition 2, we use the details of theMaxWeight scheduling policy
only in the Claim 1 in Sect. 3.2.

4 Discussion

In this section, we present various corollaries and extensions of Theorem 1, and inter-
pret the results. The following corollary gives a bound on the sum of the queue lengths.

Corollary 1 Consider the set of switch systems operating under the MaxWeight algo-
rithm as described in Theorem 1, with 0 ≤ n1, n2 < n. Then, in the heavy-traffic limit,
we have

1

2κmax

〈
σ 2, ζ

〉
≤ lim

ε→0
εE

⎡

⎣
∑

i j

q(ε)
i j

⎤

⎦ ≤ 1

2κmin

〈
σ 2, ζ

〉
,

where κmax = maxi≤n1, j≤n2{κi , κ̃ j } and κi≤n1, j≤n2 = mini j {κi , κ̃ j }. Moreover, under
any stable algorithm the sum of all the queue lengths is lower-bounded by

lim
ε→0

εE

⎡

⎣
∑

i j

q(ε)
i j

⎤

⎦ ≥ 1

2
max

{〈
σ 2, ζ ′〉 ,

〈
σ 2, ζ ′′〉} ,

where ζ ′
i j = 1/κi and ζ ′

i j = 1/̃κ j .

Proof It is easy to see that there exists a weight vector α ∈ Rn2+ such that κmin ≤ αi j

for all i, j ,
〈
α, e(i)

〉 = nκi for i ≤ n1 and
〈
α, ẽ( j)

〉 = nκ̃ j for j ≤ n2. Using such a
weight vector in Theorem 1, we get the upper bound. Similarly, by picking an α such
that κmax ≥ αi j for all i, j we get the lower bound. ��

If the saturation rate vector k is such that κmax/κmin is a constant that does not scale
with n, it is easy to see that the sum of all the queue lengths under MaxWeight are
within a constant factor of the universal lower bound after noting that ζi j ≤ 2 for all
i, j .

For some values of k, we get an exact expression for the sum of queue lengths in
heavy-traffic.
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Corollary 2 Suppose that k = ν in the set of switch systems described in Theorem 1,
so that λε = ν(1− ε) for some ν ∈ Relint(Fn1n2) such that νmin � mini j νi j > 0 and
0 ≤ n1, n2 < n. Then, in heavy-traffic we have

lim
ε→0

εE

⎡

⎣
∑

i j

q(ε)
i j

⎤

⎦ = 1

2
〈σ , ζ 〉 and

lim
ε→0

εE
[
q(ε)
i j

]
= 0 ∀ i > n1, j > n2.

Proof Since κi = 1 and κ̃ j = 1 for i ≤ n1 and j ≤ n2, we pick αi j = 1 for all i, j .
Since theweight vectorα satisfies the condition in Theorem1, the corollary follows.

��
The following corollary considers the case when exactly one port of the switch

is saturated. Under this condition, the switch is said to satisfy the complete resource
pooling condition and was studied in [21]. In this case, the state collapses onto a line.
Without loss of generality, the corollary is stated when an input port is saturated.

Corollary 3 Consider the set of switch systems operating under the MaxWeight algo-
rithm as described in Theorem 1, with n1 = 1, n2 = 0 and k = ν so that λε = ν(1−ε)

for some ν ∈ Relint(F10) such that νmin � mini j νi j > 0. Then, in heavy-traffic we
have

lim
ε→0

εE

⎡

⎣
∑

j

q(ε)
1 j

⎤

⎦ =
∑

1 j σ
2
1 j

2
and

lim
ε→0

εE
[
q(ε)
i j

]
= 0 ∀ i > 1, j.

Moreover,MaxWeight is heavy-traffic optimal, i.e., limε→0 εE
[∑

i j q
(ε)
1 j

]
isminimized

under the MaxWeight algorithm.

The proof follows directly from Theorem 1 and the universal lower bound in Propo-
sition 1. In order to clearly see the scaling of queue lengths in terms of n, we state
the following corollary under Bernoulli arrivals, which again follows from Corollary
2 and Proposition 1.

Corollary 4 Consider the set of switch systems operating under the MaxWeight algo-
rithm, as described in Theorem 1. Suppose that the arrival process for each queue is
Bernoulli with the arrival rate vector λ(ε), where λ

(ε)
i j = (1−ε)/2n for i > n1, j > n2

and λ
(ε)
i j = (1− ε)/n otherwise, with 0 ≤ n1, n2 < n so that n1 inputs and n2 outputs

are saturating. Then, in the heavy-traffic limit, we have

lim
ε→0

εE

⎡

⎣
∑

i j

q(ε)
i j

⎤

⎦ = n1 + n2
2

(
1 − 1

n

)
.
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Moreover, under any stable algorithm the sumof all the queue lengths is lower-bounded
by

lim
ε→0

εE

⎡

⎣
∑

i j

q(ε)
i j

⎤

⎦ ≥ max{n1, n2}
2

(
1 − 1

n

)
.

So, we know that MaxWeight is within less than a factor of two away from heavy-
traffic optimality under incomplete saturation. A similar observation was made under
the completely saturated case in [11]. It is not clear if the gap is because the lower
bound is loose or because MaxWeight is a constant factor away from heavy-traffic
optimality. Under the MaxWeight algorithm, the sum of all queue lengths is as if we
have (n1+n2) separate queues, each with variance (1− 1

n ), which is the total variance
of the arrivals in each row or column. This is because there are (n1 + n2) independent
constraints on the capacity region that are tight in the limit. This is the same reason
why the state collapses to the (n1 + n2)-dimensional space Sn1n2 . So, in general the
number of tight constraints in the limit is important.

Theorem 1 is valid only for the incompletely saturated switch, n1 < n and n2 < n.
However, a similar result can be proved for the completely saturated case n1 = n2 = n
as follows.

Corollary 5 Consider the set of switch systems operating under the MaxWeight algo-
rithm, parameterized by 0 < ε < 1, as described in Theorem 1, with the only difference
being that, n1 = n2 = n. Then, as long as 0 < ε ≤ ν′

min/2‖k‖, the steady state queue
lengths vector satisfies

(
1 − 1

2n

) ∥∥σ (ε)
∥∥2

ε
− B3(ε, n) ≤ E

[〈
q(ε),α

〉]
≤
(
1 − 1

2n

)∥∥∥σ (ε)
∥∥∥
2 + B4(ε, n)

for any fixed weight vector α ∈ Rn2 such that
〈
α, e(i)

〉 = nκi and
〈
α, ẽ( j)

〉 = nκ̃ j for
all 1 ≤ i, j ≤ n, where B3(ε) and B4(ε) are o(

1
ε
). Thus, in the heavy-traffic limit as

ε ↓ 0, we have

lim
ε→0

εE
[〈
q(ε),α

〉]
=
(
1 − 1

2n

)
‖σ‖2 .

Proof Note that Proposition 2 is valid in the casewhen n1 = n2 = n.Most of the proof
of Theorem 1 also holds true, except for Lemma 4. The norm of the projections of
unit vectors χ (i j) onto the cone Snn is different from ζi j . This fundamental difference
in behavior for the case n1 = n2 = n is for the following reason: For n1, n2 < n, the
cone Sn1n2 is spanned by the vectors e(i), ẽ( j) for i ≤ n1, j ≤ n2, which are linearly
independent, and so the cone Sn1n2 has dimension (n1 + n2). When n1 = n2 = n,
the vectors e(i), ẽ( j) for i ≤ n, j ≤ n are not linearly independent because, clearly,∑

i e
(i) = ∑

j ẽ
( j), and so the dimension of the cone Snn is smaller than 2n. It can

be shown that the cone Snn has dimension (2n − 1) [25, page 20]. The proof will
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be complete once we calculate
∥∥∥χ (i j)

‖S
∥∥∥
2
for all i, j . By symmetry, we have that these

norms have the same value for all i, j , i.e.,
∥∥∥χ (i j)

‖S
∥∥∥
2 = ξ for some ξ , which can be

calculated as follows: Suppose f1, f2, . . . , f2n−1 is an orthonormal basis of Snn . We
have

n2ξ =
∑

i j

∥∥∥χ (i j)
‖S
∥∥∥
2

=
∑

i j

2n−1∑

l=1

〈
χ (i j), fl

〉2

=
2n−1∑

l=1

∑

i j

〈
χ (i j), fl

〉2

(a)=
2n−1∑

l

‖fl‖2‖S
= 2n − 1,

where (a) follows from the fact that {χ (i j)}i j is anorthonormal basis ofR(n2). Replacing
ζi j by ξ = (2n − 1)/n2, we get the corollary. ��
Similar to Corollary 1, we can get lower and upper bounds on the sum of queue lengths
in heavy-traffic using κmax and κmin. We now state the following corollary to illustrate
the use of the weight vectors α.

Corollary 6 Consider the completely saturated switch system in Corollary 5 with
k = ν. Then, in the heavy-traffic limit the queue lengths satisfy the following relations:

lim
ε→0

εE

⎡

⎣
∑

i j

q(ε)
i j

⎤

⎦ =
(
1 − 1

2n

)
‖σ‖2 ,

lim
ε→0

εE

⎡

⎣
∑

i j

qi jν
(ε)
i j

⎤

⎦ =
(
2n − 1

2n2

)
‖σ‖2 ,

lim
ε→0

εE

⎡

⎣
∑

i j

q(ε)
iπ(i)

⎤

⎦ =
(
2n − 1

2n2

)
‖σ‖2 for any permutation π.

Proof The proof follows directly from Corollary 5 by choosing α = 1, α = nν and
α = nPπ , respectively, where Pπ is the permutation matrix corresponding to the
permutation π . ��
Note that the first result above is the main result of [11]. Even though the proof of
Theorem 1 in [11] is written in a different style, it is equivalent to the proof presented
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here, because the function used there is equivalent to the norm
∥∥q‖S

∥∥2. It can be shown
(using the orthogonality principle) that, for any vector q ∈ Rn2 , its projection onto
the space Snn is given by

q‖Si j =
∑

i qi j
n

+
∑

j qi j

n
−
∑

i j qi j

n2
.

Taking the norm, we get

∥∥q‖S
∥∥2 = 1

n

⎛

⎜⎝
∑

i

⎛

⎝
∑

j

qi j

⎞

⎠
2

+
∑

j

(
∑

i

qi j

)2

− 1

n

⎛

⎝
∑

i j

qi j

⎞

⎠
2
⎞

⎟⎠ ,

which is the function used in [11] scaled by n. We now present a further special case,
which was also studied in [11], to contrast it with the result in Corollary 4.

Corollary 7 Suppose that the traffic of the completely saturated systems in Corollary
5 is uniform Bernoulli with uniform saturation rate, i.e., λ(ε) = (1− ε)/n1. In heavy-
traffic we have

lim
ε→0

εE

⎡

⎣
∑

i j

q(ε)
i j

⎤

⎦ = 2n − 1

2

(
1 − 1

n

)
.

Notice that the behavior of the queue length here is similar to (2n−1) separate queues.
This is consistent with the discussion after Corollary 4 because in the heavy-traffic
limit, among the 2n constraints in the capacity region, we have only (2n − 1) linearly
independent ones.

5 Conclusion

We consider the heavy-traffic queue length behavior in an input-queued switch oper-
ating under the MaxWeight algorithm. It was recently shown in [11] that, in the
heavy-traffic regime, the queue length scales optimally with the size of the switch
when all the ports in the switch saturate at the same rate. In this paper, we considered
the case when an arbitrary set of ports saturate, and each port is allowed to saturate at
different rate. We obtained an exact heavy-traffic characterization of a linear combi-
nation of queue lengths and showed that the MaxWeight algorithm achieves optimal
scaling of the sum of all the queue lengths in heavy-traffic.
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question about heavy-traffic queue length behavior in a switchwhen different ports saturate at different rates.
This research was supported by NSF Grants CMMI-1562276, CIF-1409106, and ARO Grant W911NF-16-
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Appendix A: Proof of Lemma 4

Proof In order to calculate the norm of the projections of the unit vectorsχ (i j), wewill
first consider the projections of an arbitrary vector x on to the space Sn1n2 . From the
definition of the cone Sn1n2 , we know that the projection x‖S of x can be decomposed
as

x‖S =
n1∑

i=1

wie(i) +
n2∑

j=1

w̃ j ẽ( j).

From the Orthogonality Principle, we have that

〈
x − x‖S , e(i)

〉
= 0 for i ≤ n1,

〈
x − x‖S , ẽ( j)

〉
= 0 for j ≤ n2.

Note that

〈
e(i), e(k)

〉
=
{
0 i �= k

n i = k
,

〈
ẽ( j), ẽ(l)

〉
=
{
0 j �= l

n j = l
,

〈
e(i), ẽ( j)

〉
= 1 ∀i, j.

Therefore, we get

nwi +
n2∑

j=1

w̃ j =
∑

j

xi j for i ≤ n1 and nw̃ j +
n1∑

i=1

wi =
∑

i

xi j for i ≤ n2.

Defining W = ∑n1
i=1 wi and W̃ = ∑n2

j=1 w̃ j , and summing each set of equations
above, we get

nW + n1W̃ =
n1∑

i=1

∑

j

xi j and nW̃ + n2W =
n2∑

j=1

∑

i

xi j .

Solving for W and W̃ we get

W = n
∑n1

i=1

∑
j xi j − n1

∑n2
j=1

∑
i xi j

n2 − n1n2
and

W̃ = n
∑n2

j=1

∑
i xi j − n2

∑n1
i=1

∑
j xi j

n2 − n1n2
. (24)
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Therefore, wi and w̃ j can be written as

wi =
∑

j xi j − W̃

n
for i ≤ n1 and w̃ j =

∑
i xi j − W

n
for i ≤ n2. (25)

The norm of the projection x‖S is then given by

∥∥x‖S
∥∥2 = 〈

x‖S , x‖S
〉

=
〈

n1∑

i=1

wie(i) +
n2∑

j=1

w̃ j ẽ( j),

n1∑

i=1

wie(i) +
n2∑

j=1

w̃ j ẽ( j)

〉

= n
n1∑

i=1

w2
i +

n1∑

i=1

wi

n2∑

j=1

w̃ j +
n2∑

j=1

w̃ j

n1∑

i=1

wi + n
n2∑

j=1

w̃2
j

= n
n1∑

i=1

w2
i + n

n2∑

j=1

w̃2
j + 2WW̃ . (26)

Wewill now consider the four cases in the definition of ζ in (11) and calculate
∥∥∥χ (i j)

‖S
∥∥∥
2
.

Case 1: When 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2
Using (24) and (25), it is easy to see that, when x = χ (i j),

W = n − n1
n2 − n1n2

,

wk =
{

1−W̃
n k = i

−W̃
n k �= i

,

W̃ = n − n2
n2 − n1n2

,

w̃l =
{

1−W
n l = j

−W
n l �= j

,

∥∥∥χ (i j)
‖S
∥∥∥
2 = n

n1∑

k=1

w2
k + n

n2∑

l=1

w̃2
l + 2WW̃

= n

[
(n1−1)

(−W̃

n

)2

+
(
1−W̃

n

)2

+(n2−1)

(−W

n

)2

+
(
1 − W

n

)2
]

+ 2
(n − n1)(n − n2)

(n2 − n1n2)2

= 1

n

[
n1(n − n2)2

(n2 − n1n2)2
− 2(n − n2)

(n2 − n1n2)
+ n2(n − n1)2

(n2 − n1n2)2
− 2(n − n1)

(n2 − n1n2)
+ 2

]

+ 2
(n − n1)(n − n2)

(n2 − n1n2)2

= 2

n
− 2n − n1 − n2

n(n2 − n1n2)
,

where the last equality is obtained after direct algebraic simplification.
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Case 2: When 1 ≤ i ≤ n1 and j > n2
Again, using (24) and (25), it is easy to see that, when x = χ (i j),

W = n

n2 − n1n2
, W̃ = −n2

n2 − n1n2
,

wk =
{

1−W̃
n k = i

−W̃
n k �= i

, w̃l = −W

n
,

∥∥∥χ (i j)
‖S
∥∥∥
2 = n

n1∑

k=1

w2
k + n

n2∑

l=1

w̃2
l + 2WW̃

= n

[
(n1 − 1)

(−W̃

n

)2

+
(
1 − W̃

n

)2

+ n2

(−W

n

)2
]

+ 2
(n)(−n2)

(n2 − n1n2)2

= 1

n

[
n1(−n2)2

(n2 − n1n2)2
− 2(−n2)

(n2 − n1n2)
+ n2(n)2

(n2 − n1n2)2
+ 1

]
− 2nn2

(n2 − n1n2)2

= 1

n
+ n2

n(n2 − n1n2)
.

Case 3: When i ≥ n1 and 1 ≤ j ≤ n2
Using the same argument as in Case 2, by symmetry, we get

∥∥∥χ (i j)
‖S
∥∥∥
2 = 1

n
+ n1

n(n2 − n1n2)
.

Case 4: When i ≥ n1 and j ≥ n2
When x = χ (i j), with i ≥ n1 and j ≥ n2, it is orthogonal to the space Sn1n2 , and so

we get
∥∥∥χ (i j)

‖S
∥∥∥
2 = 0. ��
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