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Abstract We study a generalization of the M/G/1 system (denoted by rM/G/1)
with independent and identically distributed service times and with an arrival process
whose arrival rate λ0 f (r) depends on the remaining service time r of the current
customer being served.We derive a natural stability condition and provide a stationary
analysis under it both at service completion times (of the queue length process) and in
continuous time (of the queue length and the residual service time). In particular, we
show that the stationarymeasure of queue length at service completion times is equal to
that of a corresponding M/G/1 system. For f > 0, we show that the continuous time
stationary measure of the rM/G/1 system is linked to the M/G/1 system via a time
change.As opposed to theM/G/1 queue, the stationarymeasure of queue length of the
rM/G/1 system at service completions differs from itsmarginal distribution under the
continuous time stationary measure. Thus, in general, arrivals of the rM/G/1 system
do not see time averages. We derive formulas for the average queue length, probability
of an empty system and average waiting time under the continuous time stationary
measure. We provide examples showing the effect of changing the reshaping function
on the average waiting time.
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1 Introduction

The goal of the present note is the steady-state analysis of a single-server queueing
system with independent and identically distributed (iid) service times and an arrival
process whose rate is a function of the remaining service time of the current customer
being served, if the server is busy, or a constant λ0 otherwise. This is a generalization
of the M/G/1 system. Because the arrival rate is allowed to depend on the remaining
service time, we will denote it by the notation “rM/G/1.” Arrival processes with
remaining service time-dependent rates can be used tomodel systemswhere customers
can directly estimate the remaining service time by observing the amount of work that
a server has to treat and use this information to decide whether to join the queue or
not. This type of behavior occurs, for example, at checkout queues in supermarkets.
A potential application area for rM/ · /· systems is call centers [1,7] with inbound
and outbound calls. Modern call centers call out customers to connect them with a
server even when all servers are busy [17]; the decision to initiate an outbound call
can use estimates of the remaining service time of the busy servers. New approaches
to call center modeling also allow the control of the arrival process of inbound calls
by postponing their routing to an agent or by giving incentives to call back later [13];
such approaches can make use of estimates of the remaining service time of servers.
Generalizations of the rM/G/1 model may be useful in the analysis of these systems.

Queueswith queue-length-dependent andMarkov-modulated arrival or service time
distributions have been studied in the literature; see, for example, [4,6,12,18]. The only
workswe are aware of allowing the arrival rate to depend on the remaining service time
are [9–11]; these works study the remaining service time process (denoted byU (t) in
these works) when the arrival rate and the service rate of the arriving customer depend
on U ([10,11] further contain two-state Markov modulation whose transition rates
depend on U ). The analysis method used in these works is asymptotic approximation
as arrival, service and transition rates are scaled by a parameter whose value is sent to
∞. In the current work, we study, within a narrower framework, the joint queue length
and remaining service time distribution and our focus is on finding exact solutions.

To simplify exposition, we assume that the iid service times have a density, denoted
by g(·). We further comment on this assumption in Sect. 6. The arrival process of
customers is Poisson with constant arrival rate λ0 if the system is empty or λ0 f (r) if
the server is busy and the remaining service time of the customer being served is r .
In the particular case where f (r) = 1 for r ≥ 0, the system reduces to an M/G/1
queue. f can be interpreted in two ways: if f (r) ∈ (0, 1), r ∈ R+, then f (r) can be
thought of as the probability that an arriving customer joins the queue after having
observed the remaining service time r . f can also be thought of as a control parameter
that transforms / reshapes the constant arrival rate λ0 to optimize system performance.
With this interpretation in mind, we will refer to f as the “reshaping function” (the
“r” in the abbreviation rM/G/1 refers also to “reshaping” of the arrival process). For
the latter interpretation, a natural condition on a reshaping function is that it does not
change the overall average arrival rate to the system. In Proposition 10 of Sect. 4.2,
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the average arrival rate to an rM/G/1 system is computed to be α = λ0
1−λ0(ν̄−ν)

,

where ν = ∫ ∞
0 rg(r)dr is the average service length and ν̄ = ∫ ∞

0 F(r)g(r)dr with
F(r) = ∫ r

0 f (u)du. Thus, under the assumption

ν = ν̄, (1)

the average arrival rate of an rM/G/1 system remains λ0. This assumption will be in
force in Sect. 5, where we compare the average waiting times of a range of rM/G/1
systemswith the same service time distribution and average arrival rate λ0 but different
reshaping functions.

A natural framework for the study of the rM/G/1 queue is the piecewise-
deterministic processes (PDP) of [5]. Section 2 gives a construction of the rM/G/1
process as a piecewise-deterministic Markov process based on this framework. The
process is Xt = (Nt , Rt ); its first component represents the number of customers (i.e.,
queue length, including the customer being served) in the system; the second compo-
nent represents the remaining service time. Section 2.1 gives its generator and Sect. 2.2
derives the dynamics of the embedded randomwalkN , which is the sequence of queue
lengths observed at service completion times; Proposition 2 shows that the dynamics
of N equal those of the embedded random walk (at service completion times) of an
M/G/1 queue (whose state process is denoted by X̄ ) with constant arrival rate λ0
and with iid service times {σ̄k, k = 1, 2, 3, . . .}, where σ̄k = F(σk), and {σk} are the
iid service times of the original rM/G/1 system. The stationary distribution of the
rM/G/1 system at service completions (and arrivals) follows from this reduction; the
details are given in Sect. 3. Proposition 3 derives the stability condition ρ

.= λ0ν̄ < 1,
(15) gives the expected stationary queue length at service completions, and (16) gives
the stationary moment generating function of the queue length distribution at service
completions.

As opposed to M/G/1 queues, the stationary distribution of the queue length of
an rM/G/1 system in continuous time does not equal its stationary distribution at
service completions; therefore, for rM/G/1 queues, the continuous time stationary
distribution and service measures based on it must be computed directly. Section 4
begins with the statement and recursive solution of the balance equation for the sta-
tionary distribution of the continuous time process X , which consists essentially of
a sequence of linear ordinary differential equations (ODEs) where f serves as an r
dependent coefficient. Proposition 8 proves that the solution of the balance equation is
indeed the stationary measure of the process X under the stability assumption ρ < 1.
The proof is based on the PDP framework of [5]. A number of further computations
based on the continuous time stationary distribution are given in Sect. 4; in partic-
ular, Corollary 2 gives a simple formula for the stationary probability of an empty
rM/G/1 system in continuous time and Proposition 9 gives a formula for the sta-
tionary expected queue length in continuous time. Proposition 10 of Sect. 4.2 gives
the average arrival rate for the rM/G/1 system, and finally, (64) gives an explicit
formula for the average sojourn time of a customer in an rM/G/1 system. In general,
f may take the value 0 and this may make F noninvertible. For this reason, there
is not, in general, a bijective correspondence between the continuous time stationary
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distribution of the rM/G/1 process X and that of the M/G/1 process X̄ . However,
for f > 0 a bijective correspondence can be established; this is treated in Sect. 4.4.

Section 5 gives two examples showing the impact of reshaping the arrival process
on the average waiting time. We observe, as expected, that, for a given average arrival
rate, the closer the customers arrive to the end of a service, the shorter will be the
average waiting time in the system. Section 6 points out directions for future research.

2 Dynamics of the process

The theory of piecewise-deterministic Markov Processes (PDP) of [5] provides the
idealmathematical framework for the analysis of the rM/G/1queue. For the definition
of the process, we will use the PDP definition given in [5, page 57], which uses the
following elements (all adopted from [5]): the state space of the process will be

E
.=

∞⋃

k=0

Ek, E0= B(0, δ)⊂R
2, Ek

.= {k}×R+ ={(k, r), r >0}, k ∈ {1, 2, 3, . . .},

where 0 = (0, 0) ∈ R
2 denotes the origin of R2 and B(0, δ) denotes an open ball

of radius δ < 1; 0 represents the empty system (in [5], the letter ζ denotes the
second component of x ∈ E ; we use r for the same purpose). The rM/G/1 process,
Xt = (Nt , Rt ) ∈ E , t ≥ 0, will evolve, on each Ek smoothly following the vector
field Xk : Ek �→ R

2 given by

Xk(x)
.=

{
(0,−1), k > 0,

0, otherwise,

until it jumps. Let us denote the jump times of X by the sequence {Ti , i = 1, 2, 3, . . .}.
The vector field Xk defines the following trivial flow:

φ(t, (k, r)) = (k, r − t), k > 0, φ(t, 0) = 0; (2)

the process X follows this flow in between its jumps:

Xt = (NTk , φ(t, XTk )) = (NTk , RTk − (t − Tk)), Tk < t < Tk+1. (3)

For A ⊂ R
2, let ∂A denote its boundary in the Euclidian topology. The exit boundary

of the process is

�∗ .= ∪∞
k=0∂Ek = ∂B(0, δ) ∪ (∪∞

k=1{(k, 0), k > 0}) .

For x = (k, r) ∈ E , define (following [5, page 57]) t∗(x)
.= inf{t > 0, φk(t, r) ∈

∂Ek}, where we use the convention that the infimum of the empty set is empty; t∗(x)
is the time when X reaches �∗ if it does not jump until this happens. By Definitions
(2) and (3), X moves with unit speed toward the k-axis on each Ek , k > 0, therefore,
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Fig. 1 The state space and a
sample path of X

E1 E2 E3 E4 E5

Xt

0

X0

r

k

t∗(x) = r, x = (k, r) ∈ E, k > 0.

For k = 0, the process remains constant 0 until an arrival occurs, which implies
t∗(0) = ∞. Figure 1 shows an example sample path of X ; the horizontal axis is the
k-axis, showing the number of customers in the system, and the vertical axis is the r -
axis, showing the remaining service time of the current customer in service. Dynamics
(3) mean that X travels with unit speed toward the k-axis in between its jumps. Two
types of jumps are possible: either an arrival, which is a jump to the right, or a service
completion, which is a jump to the left occurring when X hits the k-axis.

The jumpdynamics are specified by the rate functionλ : E → R+ and the transition
measure Q. For the rM/G/1 system, the jump rate function will be

λ(k, r)
.=

{
λ0 f (r), k > 0,

λ0, k = 0.

The transitionmeasure Q(·, x), x ∈ E∪�∗, for the rM/G/1 systemwill be as follows:
Q(·, x) is the Dirac measure on (k + 1, r) for x = (k, r), k > 0 and r > 0 (represents
an arrival to the busy system). For (k, 0) ∈ �∗, k > 0, Q(·, x) is the measure g(r)dr
on Ek−1 (represents the completion of a service and the start of another, this is exactly
when the sample path X hits the k-axis in Fig. 1); Q(·, 0) is the measure g(r)dr on
E1 (represents an arrival to the empty system).

2.1 Generator of X

LetE denote theσ -algebra ofBorel-measurable subsets of E . Let {Tn, n = 1, 2, 3, . . .}
denote the jump times of X . For h : E × R+ × � �→ R, h measurable, one writes
h ∈ L1(X) if
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E

[ ∞∑

i=1

∣
∣h(XTi , Ti , ω)

∣
∣

]

< ∞,

and h ∈ L loc
1 (X) if h1{t<σn} ∈ L1(X) for a sequence of stopping times σn ↗ ∞.

The characterization of the generator of X given in the next paragraph uses these
definitions.

The generator of any PDP process is derived explicitly in [5, Theorem (26.14), page
69]; for the rM/G/1 process X , it is given by the following operator:

Ah(x) =
{

− d
dr h(x) + λ0 f (r) (h(k + 1, r) − h(k, r)) , x = (k, r), k, r > 0,

+λ0g(r)(h(1, r) − h(0)), x = 0,

where h ∈ D(A), the domain of A, consisting of measurable functions h on E ∪ �∗
satisfying:

1. for each k > 0, h(k, ·) is absolutely continuous on R+,
2. h(k, 0) = ∫

h(k, r)g(r)dr, k > 0, and
3. Bh ∈ L loc

1 (X), where Bh is the process t �→ (h(X0) − h(Xt−)).

2.2 Embedded random walk at service completion times

Let Sk denote1 the sequence of service completion times

S1
.= inf{t, Xt− ∈ �∗}, Sn .= inf{t > Sn−1, Xt− ∈ �∗}, n > 1,

and define the process (Nn,Rn)
.= XSn , the state of the system right after service

completions. Let

p(k, λ) = e−λλk

k! , k = 0, 1, 2, 3, . . .

denote the Poisson distribution with rate λ and define

F(r)
.=

∫ r

0
f (r − u)du =

∫ r

0
f (u)du.

1 In [5], Sk denotes the inter-jump times of the PDP; here they denote the successive times when the process
hits the boundary of its state space.
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Proposition 1 The process {(Nn,Rn), n = 1, 2, 3, . . .} is a Markov chain with tran-
sition probabilities

P(Nn+1 − Nn = j |Nn,Rn) =
{
p( j + 1, F(Rn)), Nn > 0,

p( j, F(Rn)), Nn = 0
(4)

P(Rn+1 ∈ A|Nn+1) =
{

δ0(A), Nn+1 = 0,
∫
A g(r)dr, Nn+1 > 0,

(5)

where δ0 denotes the Dirac measure on 0.

Proof The definition of the process X (or its strong Markov property) implies that
(N ,R) is a Markov chain. The jump distribution Q determines where X jumps after
it hits �∗: X jumps to (NSn− −1, σn),where σn has density g, if NSn− > 1 or it jumps
to 0 = (0, 0) if NSn− = 0. This gives (5). To compute the conditional density ofNn+1
given (Nn,Rn) it suffices to compute that of

Nn+1 − Nn = (NSn+1 − NSn+1−) + (NSn+1− − NSn ). (6)

By the strong Markov property of X , the conditional distribution of NSn+1− − NSn
given (Nn,Rn) is the same as that of NS1− − N0 given (N0, R0). The two cases
(N0, R0) = 0 and N0, R0 > 0 are treated separately. Let us start with the latter:
conditioned on (X0 = (N0, R0) = x = (k, r)), k > 0, the dynamics of X imply the
following: S1 = t∗(x) = r , and Rt = r− t for t ∈ [0, r). In the same time interval, the
N process is Poisson with time-dependent rate λ0 f (r − t). Therefore, conditioned on
X0 = (k, r), k > 0, NS1− − N0 has Poisson distribution with rate F(r). Furthermore,
for k > 0, one has NS1− > 0, and therefore, once again by the definition of the jump
dynamics of X , NS1 − NS1− = −1 (i.e., the customer whose service has just finished
leaves the system). These and (6) imply

P(Nn+1 − Nn = j |Nn,Rn) = p( j + 1, F(Rn)),Nn > 0. (7)

The argument for the case X0 = 0 is parallel and gives

P(Nn+1 − Nn = j |(Nn,Rn) = 0) = p( j, F(Rτ ′
n
)), (8)

where τ ′
n is the first jump time of R after Sn . For (Nn,Rn) = 0, τ ′

n will be a jump
from state 0 (i.e., an arrival to the empty system) and, by X ’s definition, Rτ ′

n
’s density,

given the whole history of (N ,R), will again be g. This, (7) and (8) imply (4). �
The process N itself is a Markov chain:

Proposition 2 N is a Markov chain with transition matrix

M =

⎛

⎜
⎜
⎜
⎝

p(0) p(1) p(2) p(3) p(4) · · ·
p(0) p(1) p(2) p(3) p(4) · · ·
0 p(0) p(1) p(2) p(3) · · ·
0 0

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎠

, (9)
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where

p( j)
.=

∫ ∞

0
p( j, λ0F(r))g(r)dr. (10)

Proof The conditional distributions (4), (5) and the Markov property of the process
{(Nn,Rn)} imply that {Nn, n = 0, 1, 2, 3, . . .} is a Markov chain; the distribution of
its increments �Nn = Nn+1 − Nn is

P (�Nn = j |Nn) = E
[
E

[(
1Nn= j |Nn, Rn

)]Nn
] =

{
p( j + 1), Nn > 0,

p( j), Nn = 0.
(11)

This implies that M of (9) is the transition matrix of N . �
We now note the first connection between rM/G/1 and M/G/1 systems. That {σi }

is an iid sequence implies the same for σ̄i
.= F(σi ). Then, one can write (10) as

p( j) = E[ p( j, λ0σ̄1)], j = 0, 1, 2, 3, . . .

and, by [16, Proposition 3.3.2, page 57], these are exactly the transition probabilities
of the embedded random walk (at service completion times) of an M/G/1 system
with constant rate λ0 and iid service time sequence {σ̄i , i = 1, 2, 3, . . .}:
Corollary 1 The dynamics at service completion times of the rM/G/1 system with
arrival rate λ0 f (·) and iid service times {σi , i = 1, 2, 3, . . .} are identical to the
dynamics at service completion times of an M/G/1 system with constant arrival rate
λ0 and iid service times {σ̄i = F(σi ), i = 1, 2, 3, . . .}.

The next section computes the stationary distribution ofN under a natural stability
assumption; before we move on, let us make the following observation:

Remark 1 Let Et denote the elapsed service time since the beginning of the current
service. If we replace the arrival rate λ0 f (Rt ) with λ0 f (Et ), conditioned onRn = r ,
the number of arrivals between the nth service completion and (n + 1)st completion
will be a Poisson random variable with rate λ0

∫ r
0 f (u)du, i.e., the same as that of the

rM/G/1 system; therefore, the transition matrix M of the embedded walkN remains
unchanged if we replace the arrival rate λ0 f (Rt ) with λ0 f (Et ). This implies that all
of our computations concerning N above and in Sect. 3 below remain unchanged if
the arrival rate process is changed from λ0 f (Rt ) to λ0 f (Et ).

3 Stationary distribution at service completions or arrival times

A measure q is the stationary measure of N if and only if it satisfies

q = qM. (12)

We have seen in Corollary 1 that the dynamics of the rM/G/1 system at service
completion times are identical to that of the M/G/1 system with constant arrival
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λ0 and service times {σ̄i = F(σi )}; therefore, (12) is also the balance equation of
this M/G/1 system at its service completion times. The well-known solution of this
system is (see, for example, [16, page 238] or [2, page 281])

q( j) = q(0) p̄( j − 1) +
j−1∑

i=1

q(i) p̄( j − i), j = 1, 2, 3, . . . , (13)

where p̄( j)
.= ∑∞

i= j+1 p( j). In particular, a (possibly degenerate) invariant distribu-
tion always exists and is uniquely defined as soon as q(0) is fixed. By definition, q is
nondegenerate if and only if

∑∞
i=1 q(i) < ∞, i.e., if q is a finite measure on N. [16,

Proposition 10.3.1, page 239] gives precisely the condition for this to hold:

Proposition 3 q of (13) defines a finite measure if and only if −1 + ∑
n np(n) < 0,

i.e., if

ρ
.= λ0ν̄ = λ0E[σ̄i ] = λ0E[F(σi )] = λ0

∫ ∞

0
F(r)g(r)dr < 1. (14)

Then, under the stability condition (14), q(0) can be chosen so that
∑∞

i=0 q(i) = 1.
And, with this choice, q will be the unique stationary measure of the process N . To
determine the value of q(0) for which q is a proper probability measure, following
[16, page 239], one sums both sides of (13) to get

∞∑

j=1

q( j) = q(0)
ρ

1 − ρ
;

then, for
∑∞

i=0 q(i) = 1, we must have

q(0) = 1 − ρ.

In the rest of this article, we will take q(0) = 1−ρ whenever the stability assumption
(14) is made. Under these assumptions, q(0) is the stationary limit probability of an
empty rM/G/1 queue immediately after service completions:

Proposition 4 The distribution of Nn converges in total variation norm to q. In par-
ticular,

lim
n→∞ P(Nn = 0) = q(0) = 1 − ρ = 1 − λE[F(σ1)] = 1 − λ0

∫ ∞

0
F(r)g(r)dr.

Proof That q is the stationary distribution of N follows from (12). N is strongly
aperiodic; by [16, Proposition 10.3.1] it is positive when (14) holds. The convergence
in total variation norm follows from these and [16, Theorem 13.3.1]. �

ByCorollary 1, all results/computations for theM/G/1queue at service completion
times hold for the rM/G/1 queue. For example, the expected queue length at service
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completion times is given by the Pollaczek–Khinchine formula [2, Eq. (5.3), page
281]

Eq [N1] =
∞∑

k=1

kq(k) = ρ + λ20E[F(σ1)
2]

2(1 − ρ)
, (15)

where the subscript q of E denotes that the Markov chain N is run in its stationary
distribution, and the moment generating function of the stationary distribution is [2,
(5.8), page 283]

Eq [esN1 ] =
∞∑

k=1

eskq(k) = (1 − ρ)(1 − s)ψp(s)

ψp(s) − s
, (16)

where ψp is the moment generating function of the increments of N :

ψp(s) = E

[
eλ0(1−s)σ̄1

]
= E

[
eλ0(1−s)F(σ1)

]
.

Stationary distribution at arrival times Let SA
n be the sequence of arrival times to

the system. Then, (N A
n ,RA

n ) = (NSA
n

− 1, RSA
n
) is the embedded Markov chain of

X representing the state of the system just before arrivals. The fact that the queueing
process X changes in increments of 1 and−1 exactly at arrival and service completion
times implies that, under the stability assumption (14), the process N A will also
have stationary distribution q, the stationary distribution of N . For details of similar
arguments, we refer the reader to [2, Theorem 4.3, page 278] or [8, Sect. 5.3].

4 Stationary distribution in continuous time

One of the key properties of M/G/1 systems is that their stationary queue length
distribution at service completion times is equal to the same distribution under their
continuous time stationarymeasure.Wewill see inCorollary 2 below that the rM/G/1
system does not possess this property; hence, the continuous time stationary measure
and related performance measures (such as the average waiting time) for the rM/G/1
queue have to be computed separately. This is the goal of the present section. The
following verification argument will give us the stationary distribution of X :

1. Derive the balance equation for the stationary distribution,
2. Solve the balance equation,
3. Invoke [5, Proposition (34.7), page 113] to show that the solution is indeed the

stationary measure of X (see Proposition 8 below).

For a measure μ on E and k ∈ {1, 2, 3, . . .}, we say that μ has density m on Ek if
μ(A ∩ Ek) = ∫ ∞

0 1A((k, r))m(r)dr , for any measurable A ⊂ E . Define

M
.= {μ is a measure on E having density m(k, ·) on Ek, k = 1, 2, 3, . . .}.
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The balance equation for the stationary distribution is

A∗(μ)(x) = 0, x ∈ E, (17)

where A∗ is the conjugate operator (acting on measures μ ∈ M ) of the generator
operator A:

A∗(μ)(x) =

⎧
⎪⎨

⎪⎩

d
dr m(k, r) + λ0 f (r)(m(k − 1, r) − m(k, r)) + m(k + 1, 0)g(r), k > 1, r > 0,
d
dr m(1, r) + λ0μ(0)g(r) + m(2, 0)g(r) − λ0 f (r)m(1, r), r > 0,

m(1, 0) − μ(0)λ0.

(18)

The goal of this section is to show that (up to scaling) there is a unique solution μ∗ to
the balance equation (17) and this solution is the stationary measure of the continuous
time rM/G/1 process X . Keep μ∗(0) > 0 as a free parameter to be fixed below. The
third line of (18) gives

A∗(μ∗)(0) = μ∗(0)λ0 − m∗(1, 0) = 0,

m∗(1, 0) = μ∗(0)λ0. (19)

The last equality and the second line of (18) imply that (17) reduces to the following
equation for m(1, ·):

d

dr
m(1, r) + g(r)(m∗(1, 0) + m∗(2, 0)) − λ0 f (r)m(1, r) = 0, r > 0. (20)

The classical linear ODE theory implies that the unique solution of (20) vanishing at
∞ is

m∗(1, r) = (
m∗(1, 0) + m∗(2, 0)

)
∫ ∞

r
g(u)e(F(r)−F(u))λ0du. (21)

Substituting r = 0 gives the following formula for m∗(2, 0):

m∗(1, 0) = (
m∗(1, 0) + m∗(2, 0)

)
p(0) (22)

or

m∗(2, 0) .= 1 − p(0)

p(0)
m∗(1, 0) > 0, (23)

where

p(0) =
∫ ∞

0
g(r)e−F(r)λ0dr

is the 0 increment probability of the embedded Markov chain N , given in (10). That
m∗(2, 0) > 0 implies m∗(1, ·) > 0. Next derive a second expression for m∗(2, 0) by
integrating both sides of (21) over [0,∞):
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∫ ∞

0
m∗(1, r) f (r)dr =(

m∗(1, 0)+m∗(2, 0)
)
∫ ∞

0
f (r)

∫ ∞

r
g(u)e(F(r)−F(u))λ0dudr

= (
m∗(1, 0) + m∗(2, 0)

) 1

λ0
(1 − p(0)),

where we have used Fubini’s theorem, m(1, ·) > 0 and the change of variable s =
F(r). Definition (23) of m∗(2, 0) implies m∗(1, 0) = p(0)

1−p(0)m
∗(2, 0); substituting

this in the last line above gives

m∗(2, 0) = λ0

∫ ∞

0
m∗(1, r) f (r)dr. (24)

Formulas (19), (21) and (23) uniquely determine m∗(1, ·) and m∗(2, 0) given μ∗(0).
For k > 1, (17) uses the first line of (18):

d

dr
m(k, s) + λ0 f (r)(m(k − 1, s) − m(k, s)) + m(k + 1, 0)g(r) = 0, r > 0. (25)

The unique solution of this linear equation for k = 2 decaying at ∞ is

m∗(2, r) = m∗(3, 0)
∫ ∞
r

g(u)e(F(r)−F(u))λ0du + λ0

∫ ∞
r

e(F(r)−F(u))λ0m∗(1, u) f (u)du, (26)

wherem∗(3, 0) is yet to be determined. To determine it, set r = 0 in the above display
to get

m∗(3, 0) = 1

p(0)

(

m∗(2, 0) − λ0

∫ ∞

0
e−F(u)λ0m∗(1, u) f (u)du

)

. (27)

With this, m∗(2, ·) and m∗(3, 0) are determined uniquely, given μ(0). (24) and the
definition of m∗(3, 0) imply m∗(3, 0) > 0, which in its turn implies m∗(2, ·) > 0.

Letting r → ∞ in (26) gives limr→∞ m∗(2, r) = 0. This and the integration of
(25) on [0,∞) gives

−m∗(2, 0) + λ0

∫ ∞

0
m∗(1, r) f (r)dr − λ0

∫ ∞

0
m∗(2, r) f (r)dr + m∗(3, 0) = 0.

This and (24) now imply a similar equation for m∗(3, 0):

m∗(3, 0) = λ0

∫ ∞

0
m∗(2, r) f (r)dr. (28)
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For k > 2, one solves (25) inductively, using k = 2 as the base case, to get the
following sequence of unique positive solutions of (25) vanishing at ∞:

m∗(k + 1, 0)
.= 1

p(0)

(

m∗(k, 0) − λ0

∫ ∞

0
e−F(u)λ0m∗(k − 1, u) f (u)du

)

, (29)

m∗(k, r) .= m∗(k + 1, 0)
∫ ∞

r
g(u)e(F(r)−F(u))λ0du

+ λ0

∫ ∞

r
e(F(r)−F(u))λ0m∗(k − 1, u) f (u)du, (30)

r > 0, and the solution satisfies

m∗(k + 1, 0) = λ0

∫ ∞

0
f (r)m∗(k, r)dr.

The last formulas are the extension of (26) and (27) to k > 2. Let us note the foregoing
computations as a proposition:

Proposition 5 Given μ∗(0) > 0, the balance equation (17) has a unique positive
solution μ∗ given by (19), (21), (23) for k = 1 and (26), recursively, for k ≥ 2. The
solution satisfies

m∗(k + 1, 0) = λ0

∫ ∞

0
m∗(k, r) f (r)dr (31)

for k ≥ 1.

The next proposition links the quantities m∗(k, 0) to the stationary distribution of
the embedded chain N :

Proposition 6 Let μ∗ = (μ∗(0),m∗(k, ·), k = 1, 2, 3, . . .) be the unique solution
(up to the choice of μ∗(0) > 0) of the balance equation (17) derived in Proposition 5
above. Then, the measure

m∗ .= (m∗(1, 0),m∗(2, 0),m∗(3, 0), · · · )

on N+ is M-invariant, i.e.,

m∗M = m∗ (32)

and

m∗ = cq (33)
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for some c > 0, where q is the stationary measure given in (13). In particular,

∞∑

k=1

m∗(k, 0) < ∞ (34)

if the stability assumption (14) holds.

Proof By Definition (9) of the matrix M , (32) is the following sequence of equations:

p(n)(m∗(1, 0) + m∗(2, 0)) +
n+1∑

k=2

m∗(k + 1, 0)p(n + 1 − k) = m∗(n + 1, 0), (35)

n = 0, 1, 2, 3, . . . For n = 0, (35) reduces to (22), which holds by definition. To prove
(35) for n > 0, multiply both sides of (20) by e−F(r)λ0 (F(r)λ0)n

n! and integrate from 0
to ∞ to get

0 =
∫ ∞

0

d

dr
m∗(1, r)e−F(r)λ0 (F(r)λ0)n

n! dr + (m∗(1, 0) + m∗(2, 0))p(n)

− λ0

∫ ∞

0
m∗(1, r)e−F(r)λ0 (F(r)λ0)n

n! f (r)dr.

Integration by parts on the first integral gives

0 = (m∗(1, 0) + m∗(2, 0))p(n) − λ0

∫ ∞

0
e−F(r)λ0 (F(r)λ0)n−1

(n − 1)! m∗(1, r) f (r)dr.

(36)

For k = 2, . . . , n+1,multiply both sides of (25) by e−F(r)λ0 (F(r)λ0)n+1−k

(n+1−k)! and integrate
by parts the first term to get

m∗(k + 1, 0)p(n + 1 − k)+λ0

∫ ∞

0
e−F(r)λ0 (F(r)λ0)n+1−k

(n + 1 − k)! m∗(k − 1, r) f (r)dr

− λ0

∫ ∞

0
e−F(r)λ0 (F(r)λ0)n−k

(n + 1 − k)!m
∗(k, r) f (r)dr =0.

(37)

Summing the last display over k, adding to result (36) and finally noting (29) give
(35) for n > 0. The Markov chain N is a constrained random walk on Z+ with iid
increments and hence is obviously irreducible and will therefore have (up to scaling)
a unique stationary distribution; (33) follows from this. (34) follows from (33) and
Proposition 3. �
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Define

S(r)
.=

∞∑

k=1

m∗(k, r),

whose finiteness under the stability assumption follows from (31) and the previous
proposition [see (34)]; (31) also implies

λ0

∫ ∞

0
S(r) f (r)dr = S(0) − m∗(1, 0) = S(0) − λ0μ

∗(0). (38)

Remember that μ∗(0) is still a free parameter. The next proposition computes∫ ∞
0 S(r)dr and S(0) in terms of μ∗(0) and in terms of the system parameters.

Proposition 7 Suppose the stability assumption (14) holds. Then

S(0) = λ0
μ∗(0)
1 − ρ

, (39)

and ∫ ∞

0
S(r)dr = S(0)ν. (40)

Proof Summing the termsof the balance equationgives S′(r) = −S(0)g(r), therefore,

S(r) = S(0)G(r), (41)

where

G(r)
.= P(σ1 > r) =

∫ ∞

r
g(u)du. (42)

Integrating both sides of (41) over [0,∞) gives (40). Next, multiply both sides by
f (r) and integrate over [0,∞]:

∫ ∞

0
S(r) f (r)dr = S(0)

∫ ∞

0
f (r)G(r)dr = S(0)ν̄,

where we have integrated by parts the middle integral. The last display and (38) imply

λ0S(0)ν̄ = S(0) − λ0μ
∗(0),

S(0) = λ0μ
∗(0) 1

1 − ρ
,

which proves (39). �
Let us fix the value for μ∗(0) to

μ∗(0) = 1 − ρ = q(0); (43)
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we will assume (43) whenever the stability assumption (14) is made. This implies, by
(39) and (41),

S(0) = λ0, S(r) = λ0G(r). (44)

A second implication is given in the next lemma.

Lemma 1 Let μ∗(0) be fixed as in (43), i.e., we take μ∗(0) = q(0). Then

m∗ = λ0q, (45)

where m∗ = (m∗(1, 0),m∗(2, 0), . . .) is as in Proposition 6. In particular,

∞∑

k=1

km∗(k + 1, 0) = λ0

∞∑

k=1

kq(k) = λ0Eq [N1]. (46)

Proof We know by (33) that m∗ = cq for some c > 0. Because q is a probability
measure, this implies, c = ∑∞

k=1m
∗(k, 0) = S(0), which equals λ0 by (44). This

proves (45); (46) follows from (45). �

Withμ∗(0) fixed as in (43), the measureμ∗ is determined uniquely via Proposition
5. Note that

μ∗(E) = μ∗(0) +
∫ ∞

0
S(r)dr = 1 − ρ + λ0ν, (47)

where we have used (40), (39) and (43). Thus, in general, with μ∗(0) fixed as in (43),
μ∗(E) �= 1- to get a proper probability measure, renormalize μ∗:

μ∗
1

.= μ∗/μ∗(E).

Proposition 8 below proves that μ∗
1 is the unique stationary measure of the rM/G/1

process X under the stability assumption (14). The proof will require a subclass of
functions in D(A) that can separate measures in M . The following lemma identifies
such a class.

Lemma 2

S
.= {h ∈ D(A), sup

x∈E
|h′(x)| < ∞, sup

x∈E
|h(x)| < ∞}

is a separating class of functions for measures in M .

Proof For μ1, μ2 ∈ M , μ1 = μ2 if and only if

∫ b

a
m1,k(r)dr =

∫ b

a
m2,k(r)dr
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for all 0 < a < b < ∞ and k > 0 (m1,k and m2,k are densities of μ1 and μ2 on Ek).
Define the standard mollifier

η(x)
.=

{
Cηe

1
|x |1−1 , |x | < 1,

0, |x | > 1,

where Cη > 0 is such that
∫ 1
−1 η(x)dx = 1. For any interval (a, b), 0 < a < b, define

hn : E → [0, 1], 1/m < 1/2a as follows: for x = ( j, r) ∈ E , j < k, hn(x) = 0. For
x = (k, r)

hn(x) = n
∫ 1

−1
η(u/n)1(a,b)(u + r)dr, j = k. (48)

For j > k, we proceed recursively:

hn( j, 0) =
∫ ∞

0
hn( j − 1, r)g(r)dr, hn( j, r) = hn( j, 0)n

∫ 1

nr−1
η(x/n)dx, (49)

where we write hn( j, 0) instead of hn(( j, 0)) to simplify notation. By its definition,
hn ∈ S and limn→∞ hn(k, r) = 1{(k,r),r∈(a,b)} almost surely for any measure μ ∈
M . This and the bounded convergence theorem imply

lim
n→∞

∫

E
hn(x)μ(dx) =

∫ b

a
m(k, r)dr.

This proves that functions of the form hn , and therefore the classS containing them,
are a separating class for measures inM .

It remains to show that hn ∈ D(A). The following three conditions for this are
listed in Sect. 2.1: (1) hn must be absolutely continuous, and this follows from its
definitions (48) and (49); (2) hn must satisfy hn(( j, 0)) = ∫ ∞

0 hn( j − 1, r)g(r)dr ,
and this again holds by definition; and (3) Bhn ∈ Lloc

1 (X), and this follows from the
fact that hn is bounded. �
Proposition 8 If the stability assumption (14) holds, then μ∗

1 is the unique stationary
measure of the process X. In particular, if X0 has distributionμ∗

1 then Xt has the same
distribution for all t > 0.

Proof The uniqueness follows from the uniqueness claim of Proposition 5. By [5,
Proposition (34.7), page 113], μ∗

1 is the stationary distribution of X if

∫
Ah(x)μ∗

1(dx) = 0 (50)

for a class of functions h ∈ D(A) that forms a separating class for measures in M
to which μ∗

1 belongs; by Lemma 2 S ⊂ D(A) is such a class. Thus, to prove the
proposition it suffices to prove (50) for h ∈ S . By definition,

∫
Ah(x)μ∗

1(dx) = 1

μ∗(E)

∫
Ah(x)μ∗(dx),
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and one can directly work with the measureμ∗ rather than the normalizedμ∗
1. For any

h ∈ S ,

∫

E
Ah(x)μ∗(dx) = lim

N→∞

N∑

k=1

∫ ∞
0

(

− dh

dr
(k, r) + λ0 f (r)(h(k + 1, r) − h(k, r))

)

m∗(k, r)dr. (51)

We begin by an integration by parts:

N∑

k=1

∫ ∞
0

(

− dh

dr
(k, r) + λ0 f (r)(h(k + 1, r) − h(k, r))

)

m∗(k, r)dr

=
N∑

k=1

∫ ∞
0

(
dm∗
dr

(k, r) − h(k, 0)m∗(k, 0) + λ0 f (r)(h(k + 1, r) − h(k, r))

)

m∗(k, r)dr.

h(k, 0) = ∫ ∞
0 g(r)h(k − 1, r)dr because h ∈ D(A), therefore,

=
N∑

k=1

∫ ∞
0

(
dm∗
dr

(k, r) − g(r)h(k − 1, r)m∗(k, 0) + λ0 f (r)(h(k + 1, r) − h(k, r))

)

m∗(k, r)dr.

Rearrange the terms in the sum to factor out the common h(k, r):

=
N∑

k=1

∫ ∞
0

(
dm∗
dr

(k, r) − g(r)m∗(k + 1, 0) + λ0 f (r)(m
∗(k − 1, r) − m∗(k, r))

)

h(k, r)dr

+
∫ ∞
0

m∗(N , r) f (r)λ0h(N + 1, r)dr.

Now A∗μ∗ = 0 implies

=
∫

m∗(N , r) f (r)λ0h(N + 1, r)dr;

the last integral goes to 0 with N because
∫
m∗(N , r) f (r)dr → 0 and h is bounded.

Therefore, the limit on the right-hand side of (51) is 0. This proves (50) and establishes
that μ∗ is the unique stationary distribution of the process X . �

The last proposition and Proposition 8 give

Corollary 2 The stationary probability of an empty system in continuous time for a
stable rM/G/1 queue is

μ∗
1(0) = μ∗(0)

μ∗(E)
= 1 − ρ

1 − ρ + λ0ν
.
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4.1 Expected queue length

AsCorollary 2 demonstrates, the probability of a stable rM/G/1 being empty under its
continuous time stationary distribution does not, in general, equal the same probability
under its stationary distribution at service completion or arrival times:

Pμ∗
1
(Nt = 0) = μ∗

1(0) = 1 − ρ

1 − ρ + λ0ν
�= q(0) = 1 − ρ.

Thus, in general, the steady-state queue length distribution of a stable rM/G/1 sys-
tem in continuous time differs from the same distribution at service completion and
arrival times. The following proposition gives a formula for Eμ∗

1
[N1] under μ∗

1, the
expected queue length under the stationary distribution in continuous time; in general,
this quantity will not equal Eq [N1], the expected queue length under the stationary
distribution at service completion times.

Proposition 9 The expected rM/G/1 queue length under its continuous time station-
ary measure equals

Eμ∗ [Nt ] = 1

μ∗(E)

(

λ20

∫ ∞

0

(∫ x

0
u f (u)du

)

g(x)dx + (
(1 − ρ) + Eq [N1]

)
λ0ν

)

,

(52)
where Eq [N1] is the stationary mean queue length at service completion times whose
formula is given in (15).

Proof The proof proceeds parallel to that of Proposition 7. Set

ϕ(r)
.=

∞∑

k=1

m∗
k(r)k; (53)

by definition

Eμ∗
1
[Nt ] = Eμ∗ [Nt ]/μ∗(E) = 1

μ∗(E)

∫ ∞

0
ϕ(r)dr. (54)

Let us compute
∫ ∞
0 ϕ(r)dr . Multiply the first and the second lines of the balance

equation (17) by k, k = 1, 2, 3, 4, . . . , and sum over k to get

dϕ

dr
(r) + λ0 f (r)S(r) +

(

μ∗(0)λ0 +
∞∑

k=1

m∗
k+1(0)k

)

g(r) = 0, (55)

where, as before,

S(r) =
∞∑

k=1

m∗
k(r) = S(r) = λ0G(r);
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the last equality follows from (44). (43) and (46) simplify the terms in parentheses in
(55) to

(

μ∗(0)λ0 +
∞∑

k=1

m∗
k+1(0)k

)

= λ0
(
(1 − ρ) + Eq [N1]

)
,

where Eq [N1] is the stationary mean queue length at service completions. Then, the
unique solution of (55) vanishing at ∞ is

ϕ(r) = λ20

∫ ∞

r
f (u)G(u)du + (

(1 − ρ) + Eq [N1]
)
λ0G(r).

Integrating the last display over r over [0,∞] yields
∫ ∞

0
ϕ(r)dr = λ20

∫ ∞

0

∫ ∞

r
f (u)G(u)dudr + (

(1 − ρ) + Eq [N1]
)
λ0ν

= λ20

∫ ∞

0

(∫ x

0
u f (u)du

)

g(x)dx + (
(1 − ρ) + Eq [N1]

)
λ0ν.

This and (54) give (52). �

4.2 Average arrival rate

The random variable

An
.= Nn+1 − Nn + 1

represents the number of arrivals to the rM/G/1 system between the nth and (n+1)st
service completions. It follows from (58) that its conditional distribution given Nn is

P( An = j |Nn) =
{
p( j), Nn > 0,

p( j + 1), Nn = 0.
(56)

It follows from the Markov property of N that (N ,A) is a Markov chain and is
stationary whenever N is, with stationary distribution

P(A∞ = j,N∞ = k) =
{
p( j)q(k), k > 0,

p( j + 1)q(0), k = 0.

Then, by the ergodic theorem for stable Markov chains,

lim
n→∞

1

n

∞∑

n=1

An = q(0)

⎛

⎝1 +
∞∑

j=1

j p( j)

⎞

⎠ + (1 − q(0))

⎛

⎝
∞∑

j=1

j p( j)

⎞

⎠

= q(0) + ρ = 1 − ρ + ρ = 1. (57)
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Define the interservice time

τn
.= Sn+1 − Sn;

similar to the sequenceAn , the distribution of τn is completely determined byN with
the following conditional distribution:

P(τn > t |Nn) =
{
G(t), Nn > 0,
∫ ∞
0 λ0e−λ0sG((t − s)+)ds, Nn = 0,

(58)

where the second distribution is the convolution of g and the exponential distribution
with rate λ0 (this is the distribution of the sum of a service time and the first arrival
time to the system). The process (N , τ ) is stable whenever N is, with stationary
distribution

P(τ∞ > t,N∞ = k) =
{
G(t)q(k), k > 0,
(∫ ∞

0 λ0e−λ0sG((t − s)+)ds
)
q(0), k = 0.

The law of large numbers for Markov chains [16, Theorem 17.0.1, page 422] implies

lim
n→∞

1

n

∞∑

n=1

τn = lim
n→∞

1

n
Sn = q(0)

(
1

λ0
+ ν

)

+ (1 − q(0))ν

= q(0)
1

λ0
+ ν = (1 − ρ)

1

λ0
+ ν. (59)

Proposition 10 Let At denote the number of arrivals to an rM/G/1 queue up to time
t. Then, the ergodic average arrival rate to the rM/G/1 system equals

lim
t→∞

A(t)

t
= α

.= λ0

1 − ρ + λ0ν
= λ0

μ∗(E)
. (60)

Proof

lim
n→∞

ATn

Tn
= lim

n→∞
ATn/n

Tn/n
= λ0

1 − ρ + λ0ν
, (61)

which follows from (57) and (59). For any other sequence tm ↗ ∞, we know that
there exists a sequence nm with Tnm < tm < Tnm+1. The Borel Cantelli Lemma and
the fact that An has finite moments independent of n imply

lim
n→∞

An

Tn
= 0. (62)
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It follows from the monotonicity of Tn and An that

ATnm

Tnm+1
≤ Atm

tm
≤ ATnm+1

Tnm
.

This, (62) and (61) imply (60). �

4.3 Average sojourn and waiting time

Let ςk be the sojourn time (the total amount of time spent) of the kth customer arriving
to the system. Little’s law is the following statement:

lim
n→∞

1

n

n∑

k=1

ςk = limt→∞ Nt/t

limt→∞ At/t
. (63)

The classical proof of this result outlined in [14] depends on the distribution of X only
to the following extent: that N represents the number of customers in a single-server
queueing system and that the ergodic limits related to N and A exist; the existence of
the ergodic limits follows from the stationarity of N (see, for example, [3, Theorem
1.6.4, page 50]) and Proposition 10 above. Therefore, the classical proof requires no
change for the current setup. For the rM/G/1 system, (63) and Proposition 10 give
the following formula for the average sojourn time:

lim
n→∞

1

n

n∑

k=1

ςk = Eμ∗
1
[Nt ]
α

= λ0

∫ ∞

0

(∫ x

0
u f (u)du

)

g(x)dx + (
(1 − ρ) + Eq [N1]

)
ν. (64)

This gives the following formula for the average waiting time:

ω
.= λ0

∫ ∞

0

(∫ x

0
u f (u)du

)

g(x)dx + (
(1 − ρ) + Eq [N1]

)
ν − ν

= λ0

∫ ∞

0

(∫ x

0
u f (u)du

)

g(x)dx + (
Eq [N1] − ρ

)
ν, (65)

where Eq [N1] can be computed with formula (15).

4.4 Connection to M/G/1 queue in continuous time

By Corollary 1, we know that the embedded randomwalkN at service completions of
the rM/G/1 queue has identical dynamics to that of an M/G/1 queue with constant
rate λ0 and sequence of service times {F(σ1), F(σ2), . . .}—which implies that these
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systems have the same stationary measures at service completions. Then, a natural
question is whether there is a similar correspondence between the continuous time
stationary distributions. When f takes the value 0 over a nonzero interval, its integral
F becomes not invertible. Because of this, in general, the continuous time stationary
distribution of theM/G/1 systemcannot completely bemapped to that of the rM/G/1
system (remember that σi has density g; when f = 0 is allowed, F(σi ) may have no
density and F(σi ) may have compact support even when σ takes values in all of R+).
However, for f > 0 an exact mapping between the stationary measures is possible;
the details follow.

Assuming f > 0 implies F(r) = ∫ r
0 f (u)du is strictly increasing. Let H denote

its inverse function; that F is differentiable implies the same for H and the inverse
function has the derivative

dH

ds
(s) = 1

f (H(s))
. (66)

Define

ḡ(s)
.= g(H(s))

dH

ds
(s) = g(H(s))

f (H(s))
, s > 0.

For f > 0, the change of variable formula of calculus implies that F(σi ) has density ḡ.
The same formula allows one to rewrite the operatorA∗ defining the balance equations
of the rM/G/1 system in the s = F(r) variable thus:

Ā∗(μ)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

d
ds m(k, s) + λ0(m(k − 1, s) − m(k, s)) + m(k + 1, 0)ḡ(s), k > 1, s > 0,

d
ds m(1, s) + ḡ(s)λ0μ(0) + ḡ(s)m(2, 0) − λ0m(1, s), s > 0,

μ(0)λ0 − m(1, 0),

(67)

μ ∈ M . The equation
Ā∗(μ) = 0 (68)

is the balance equation of the M/G/1 system with rate λ0 and service density ḡ. Let
us denote the continuous time process representing this M/G/1 system by X̄ (which
can be written in the PDP framework employed in Sect. 2). The relation between the
solution of (68) and the solution of the balance equation (17) is given in the following
proposition.

Proposition 11 Assume f > 0. Let μ∗ be the solution of (17) given in Proposi-
tion 5. Then μ̄∗ ∈ M , defined by μ̄∗(0) .= μ̄∗(0) and by the densities m̄∗(k, s) .=
m∗(k, H(s)) on Ek, k = 1, 2, 3, . . . , solves (68) and does so uniquely up to the choice
of μ̄∗(0). Furthermore, if the stability condition (14) holds and μ̄∗(0) is set to 1 − ρ,
we have μ̄∗(E) = 1 and μ̄∗ is the unique continuous time stationary measure of X̄ .

Proof A∗(μ∗) = 0 ⇒ Ā∗(μ̄∗) = 0 follows from the chain rule. The uniqueness
claim follows from the linearity of (68). That μ̄∗(E) = 1 under Assumption (14) and
μ̄∗(0) = 1 − ρ follows from the following observation:
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μ̄∗(Ek) =
∫ ∞

0
m̄∗(k, s)ds =

∫ ∞

0
m∗(k, r) f (r)dr = q(k), k > 0;

the first equality follows from the change of variable r = H(s), and the last equality
follows from (31) and (45). That μ̄∗ is the stationary measure of X̄ is proved exactly
as in the proof of Proposition 8. �

5 Illustration

Let us now observe the consequences of the results derived in the previous section over
two examples. Figure 2a shows the average waiting times for three rM/G/1 systems
with uniformly distributed service time on the interval [0, 1], as a function of the arrival
rate λ0.We consider three cases for the reshaping function f , increasing, constant and
decreasing in r : f (r) = 3

4 (2−2r)1(0,1)(r), f (r) = 1(0,1)(r) and f (r) = 3r1(0,1)(r)
(the constant case corresponds to the M/U/1 queue). All of these reshaping functions
f satisfy (1); therefore, they all have the same average arrival rate α = λ0, utilization
ρ = λ0/2 and empty system probability μ∗(0) = q(0) = 1 − ρ. Moreover, for all of
these reshaping functions f and the assumed system parameters, formula (65) for the
average waiting time has a simple explicit expression: for f (r) = 3

4 (2−2r)1(0,1)(r),

ω = ω1 = λ0

8
+ 3λ20

40(1 − ρ)
,

for f (r) = 1(0,1)(r) (this is the M/U/1 case),

ω = ω2 = λ0

6
+ λ20

12(1 − ρ)
,

and for f (r) = 3r1(0,1)(r),

ω = ω3 = λ0

4
+ 9λ20

80(1 − ρ)
.

We noteω1 < ω2 < ω3 for all λ0 such that ρ < 1: i.e., pushing arrivals toward service
completions (while keeping the average arrival rate constant) reduces average waiting
times. Figure 2a shows the graphs of these functions as λ0 varies.

Let us now consider an example in which the service time is exponentially dis-
tributed with mean ν = 1 and the reshaping function f (r) = (1− e−t )−110≤r≤t ; this
function restricts arrivals to the last t units of time of service and it satisfies (1). The
average waiting time ω of (65) reduces for this case to

ω(t, λ0) = λ0
1 − e−t (t + 1)

1 − e−t

(

1 + λ20

(1 − e−t )(1 − ρ)

)

;
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Fig. 2 Average waiting time as
a function of the average arrival
rate for different reshaping
functions. a g(r) = 1(0,1)(r), b
g(r) = e−r ,
f (r) = 1

1−e−t 1(0,t)(r)

(a)

(b)
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ω is increasing in t , i.e., once again, concentrating arrivals near service completions
(while keeping the average arrival rate constant) reduces the average waiting time.
Figure 2b shows the graph of ω(t, ·) for t = 1, 2 and t = ∞ (the last corresponds to
an M/M/1 queue).

We conclude this section with the following observation from our second example:
set t = 3ν = 3 in the last example, i.e., we restrict arrivals to the interval [0, 3ν],
where ν is the mean service time. For λ0 = 0.7, the system’s utilization is ρ = 0.7 and
the corresponding average waiting time turns out to be ω(3, 0.7) = 1.6041; the same
waiting time for the sameparameter values butwithout reshaping isω(∞, 0.7) = 1.84.
Thus, this not so heavy reshaping reduces average waiting time by 13%.

6 Conclusion

Let us comment briefly on possible future research. We have assumed that the ser-
vice time distribution has a density g. The analysis at service completions does not
depend on this assumption, and the results of Sects. 2.2 and 3 continue to hold without
change when σi does not have a density. The analysis of Sect. 4 does make use of
the assumption that σi has a density, but the resulting performance measure formulas
(average queue length, probability of an empty system, average waiting time) remain
meaningful even when σi does not have a density and one expects these results to
hold under general service distributions. One simple method of extending our anal-
ysis to the general case would be, first, a smooth approximation of the given service
distribution, and then taking weak limits. The details of such an argument could be
given in future work. The special case of a deterministic constant service time case
can be directly handled by appropriate modifications of the balance equation and our
arguments based on it.

A natural question is the convergence of the distribution of Xt to the stationary
distribution μ∗. As one of the referees pointed out, one way to establish this with
precise rates of convergence would be to apply the approach of [15] based on coupling
(at the first hitting time to 0) and monotonicity arguments. Future research could
attempt to give details of this.

In many situations, one may only have an estimate of the remaining service time
(rather than the ability to directly observe it, as assumed in the current work). One
possible future work is the modeling and analysis of such a setup. We think that, given
the possible applications in call centers, another natural direction is the treatment of
many servers. Instead of allowing the rate to depend directly on the remaining service
times of all of the servers, a possibility is to allow it to depend on a function of them
(for example, their minimum or an estimate of it). Finally, it may also be of interest to
apply the approach used in the present article to models where the arrival and service
rates depend on the queue length as well as the remaining service time.
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1. Akşin, O.Z., Armony, M., Mehrotra, V.: The modern call-center: a multi-disciplinary perspective on
operations management research. Prod. Oper. Manag. 16, 665–688 (2007)

123



Queueing Syst (2018) 88:139–165 165

2. Asmussen, S.: Applied Probability and Queues, vol. 51. Springer, Berlin (2008)
3. Baccelli, F., Brémaud, P.: Palm Probabilities and Stationary Queues, vol. 41. Springer, Berlin (2012)
4. Bekker, R., Borst, S.C., Boxma, O.J., Kella, O.: Queues with workload-dependent arrival and service

rates. Queueing Syst. 46(3–4), 537–556 (2004)
5. Davis, M.H.A.: Markov Models & Optimization, vol. 49. CRC Press, Boca Raton (1993)
6. Dshalalow, J.: On single-server closed queueswith priorities and state dependent parameters. Queueing

Syst. 8(1), 237–253 (1991)
7. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review, and research prospects.

Manuf. Serv. Oper. Manag. 5, 73–141 (2003)
8. Kleinrock, L.: Queueing Systems, Theory, vol. I. Wiley, Hoboken (1975)
9. Knessl, C., Matkowsky, B.J., Schuss, Z., Tier, C.: Busy period distribution in state-dependent queues.

Queueing Syst. 2(3), 285–305 (1987)
10. Knessl, C., Matkowsky, B.J., Schuss, Z., Tier, C.: A Markov-modulated M/G/1 queue i: stationary

distribution. Queueing Syst. 1(4), 355–374 (1987)
11. Knessl, C., Matkowsky, B.J., Schuss, Z., Tier, C.: A Markov-modulated M/G1 queue ii: busy period

and time for buffer overflow. Queueing Syst. 1(4), 375–399 (1987)
12. Kumar, D., Zhang, L., Tantawi, A.: Enhanced inferencing: estimation of a workload dependent perfor-

mancemodel. In: Proceedings of the Fourth International ICSTConference on Performance Evaluation
Methodologies and Tools, p. 47. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (2009)

13. Legros, B., Jouini, O., Koole, G.: Optimal scheduling in call centers with a callback option. Perform.
Eval. 95, 1–40 (2016)

14. Little, J.D.C., Graves, S.C.: Little’s law. In: Chhajed, D., Lowe, T.J. (eds.) Building Intuition: Insights
from Basic Operations Management Models and Principles, pp. 81–100. Springer (2008)

15. Lund, R.B., Meyn, S.P., Tweedie, R.L., et al.: Computable exponential convergence rates for stochas-
tically ordered Markov processes. Ann. Appl. Probab. 6(1), 218–237 (1996)

16. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn. Cambridge University
Press, Cambridge (2012)

17. Pang, G., Perry, O.: A logarithmic safety staffing rule for contact centers with call blending. Manag.
Sci. 61(1), 73–91 (2014)

18. Perry, D., Stadje,W., Zacks, S., et al.: A duality approach to queues with service restrictions and storage
systems with state-dependent rates. J. Appl. Probab. 50(3), 612–631 (2013)

123


	Stationary analysis of a single queue with remaining service time-dependent arrivals
	Abstract
	1 Introduction
	2 Dynamics of the process
	2.1 Generator of X
	2.2 Embedded random walk at service completion times

	3 Stationary distribution at service completions or arrival times
	4 Stationary distribution in continuous time
	4.1 Expected queue length
	4.2 Average arrival rate
	4.3 Average sojourn and waiting time
	4.4 Connection to M/G/1 queue in continuous time

	5 Illustration
	6 Conclusion
	References




