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Abstract We consider gated polling systems with two special features: (i) retrials and
(ii) glue or reservation periods. When a type-i customer arrives, or retries, during a
glue period of the station i , it will be served in the following service period of that
station. Customers arriving at station i in any other period join the orbit of that station
and will retry after an exponentially distributed time. Such polling systems can be
used to study the performance of certain switches in optical communication systems.
When the glue periods are exponentially distributed, we obtain equations for the joint
generating functions of the number of customers in each station. We also present an
algorithm to obtain the moments of the number of customers in each station. When
the glue periods are generally distributed, we consider the distribution of the total
workload in the system, using it to derive a pseudo-conservation law which in turn is
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used to obtain accurate approximations of the individual mean waiting times. We also
investigate the problem of choosing the lengths of the glue periods, under a constraint
on the total glue period per cycle, so as to minimize a weighted sum of the mean
waiting times.

Keywords Polling system · Retrials · Glue periods

Mathematics Subject Classification 60K25

1 Introduction

This paper is devoted to the performance analysis of a class of single-server queueing
systems with multiple customer types. Our motivation is twofold: (i) to obtain insight
into the performance of certain switches in optical communication systems and (ii)
to obtain insight into the effect of having particular reservation periods, windows of
opportunity during which a customer can make a reservation for service. Our class of
queueing systems combines several features, viz. polling, retrials and the new feature
of so-called glue periods or reservation periods. Thesewill first be discussed separately,
while their relation to optical switching will also be outlined.

Polling systems are queueing models in which a single server visits a finite number
of, say, N stations in some prescribed order. Polling systems have been extensively
studied in the literature. For example, various different service disciplines (rules which
describe the server’s behavior while visiting a station) have been considered, both for
modelswith andwithout switchover times between stations.We refer to Takagi [20,21]
and Vishnevskii and Semenova [22] for literature reviews and to Boon, van der Mei
andWinands [5], Levy and Sidi [16] and Takagi [19] for overviews of the applicability
of polling systems.

Switches in communication systems form an important application area of polling
systems. Here, packets must be routed from the source to the destination, passing
through a series of links and nodes. In copper-based transmission links, packets from
various sources are time-multiplexed, and this may be modeled by a polling system.
In recent years, optical networking has become very important, because optical fibers
offer major advantages with respect to copper cables: huge bandwidth, ultralow losses
and an extra dimension, viz. a choice of wavelengths.

Buffering of optical packets is not similar to buffering in conventional time-
multiplexed systems, as photons cannot wait. Whenever there is a need to buffer
photons, they are sent into a local fiber loop, thus providing a small delay to the photons
without losing or displacing them. If, at the completion of a loop, a photon still needs to
be buffered, it is again sent into the fiber delay loop. Froma queueing theoretic perspec-
tive, this raises the need to add the feature of retrial queues to a polling system: instead
of having a queueing systemwith one server and N ordinary queues (i.e., N stations), it
has one server and N retrial queues (i.e., N orbits). Retrial queues have received much
attention in the literature; see, for example the books by Falin and Templeton [11]
and by Artalejo and Gomez-Corral [3]. Various multiclass retrial queues with multi-
ple orbits were investigated in [4,10,15,17]. However, these papers did not consider
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a polling model setting. Langaris [12–14] has pioneered the study of polling models
with retrial customers. His assumptions are quite different from ours (in particular,
he assumes exponential timers for station visits, which are renewed when a customer
arrival occurs), and are not aimed at the performance modeling of optical switches.

A third important feature in the present paper is that of so-called glue or reservation
periods. The glue period is activated just before the arrival of the server at a station.
During a glue period, customers arriving at the station (either new arrivals or retrying
customers) stick in the queue of that station and will be served during the following
service period of that station,whereas during anyother period, arriving customers at the
station join the orbit of that station andwill retry after an exponentially distributed time.
One motivation for studying glue periods is the following. A sophisticated technology
that one might try to add to the use of fiber delay loops in optical networking is varying
the speed of light by changing the refractive index of the fiber loop, cf. [18]. Using a
higher refractive index in a small part of the loop one can achieve ‘slow light’, which
implies slowing down the packets. This feature is, in our model, incorporated as glue
periods, where we slow down the packets arriving at the end of the fiber loop just
before the server arrives, so that they do not have to retry but get served during the
subsequent service period. Not restricting ourselves to optical networks, one can also
interpret a glue period as a reservation period, i.e., a period in which customers can
make a reservation at a station for service in the subsequent service period of that
station. In our model, the reservation period immediately precedes the service period
and could be seen as the last part of a switchover period.

The first attempt to study a polling model which combines retrials and glue periods
is [8], which mainly focuses on the case of a single server and a single station, but
also outlines how that analysis can be extended to the case of two stations. In [1],
an N -station polling model with retrials and deterministic glue periods is considered,
for the case of gated service at all stations. Under the gated service discipline, when
the server visits a station, the server serves only the customers that were present at
that station. The distribution of the steady-state joint station size (i.e., the number of
customers in each station) was derived in [1], both at an arbitrary epoch and at the
beginnings of the switchover, glue and service periods.

The main contributions of this paper are as follows. (i) When the glue periods are
exponentially distributed, we obtain equations for the joint generating functions of the
numbers of customers, both at embedded epochs and at arbitrary epochs, as well as a
system of linear equations for the moments of the station sizes. Also, we present an
algorithm to compute those moments. (ii) When the glue periods are generally dis-
tributed, we derive a pseudo-conservation law, i.e., an exact expression for a weighted
sum of the mean waiting times at all stations, which leads to accurate approximations
of the individual mean waiting times. (iii) We also investigate the problem of choosing
the lengths of the glue periods, under a constraint on the total glue period per cycle,
so as to minimize a weighted sum of the mean waiting times.

The rest of the paper is organized as follows. In Sect. 2, we describe the model.
Section 3 contains a detailed analysis for the generating functions and the moments
of the station sizes at different time epochs when the glue periods are exponentially
distributed. We also present a numerical example, which in particular provides insight
into the behavior of the polling system in the case of long glue periods. In Sect. 4, we
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derive a pseudo-conservation law for a system with generally distributed glue periods.
Subsequently, we use this pseudo-conservation law for deriving an approximation
for the mean waiting times at all stations. This approximation is used to minimize
weighted sums of the mean waiting times by optimally choosing the lengths of the
glue periods, given the total glue period per cycle. Finally, Sect. 5 lists some topics
for further research.

2 The model

We consider a single-server cyclic polling system with retrials and glue periods. This
model was first introduced in [8] for a single-station vacation model and a two-station
model with switchover times. Further, this was extended in [1] to an N -station model
with switchover times. In both papers, the model was studied for deterministic glue
periods. We index the stations by i , i = 1, . . . , N , in the order of server movement.
For ease of presentation, all references to station indices greater than N or less than 1
are implicitly assumed to be modulo N . Customers arrive at station i according to a
Poisson process with rate λi , and they are called type-i customers, i = 1, . . . , N . The
overall arrival rate is denoted by λ = λ1 + · · · + λN . The service times of customers
at station i are independent and identically distributed (i.i.d.) random variables with
a generic random variable Bi , i = 1, . . . , N . Let B̃i (s) = E[e−sBi ] be the Laplace–
Stieltjes transform (LST) of the service time distribution at station i . The switchover
times from station i to station i + 1 are i.i.d. random variables with a generic random
variable Si . Let S̃i (s) = E[e−sSi ] be the LST of the switchover time from station i to
station i+1, i = 1, . . . , N . The interarrival times, the service times and the switchover
times are assumed to be mutually independent. After the server switches to station i ,
a glue period occurs, which is followed by the service period of station i . After the
service period, the server starts switching to the next station. See Fig. 1. The glue
periods of station i are i.i.d. random variables with a generic random variable Gi . Let
G̃i (s) = E[e−sGi ] be the LST of the glue period distribution at station i .

Each station consists of an orbit and a queue. During a glue period, arriving cus-
tomers (either new arrivals or retrying customers) at station i stick and wait in the
queue of station i to receive service during the service period of station i , whereas
during any other period, arriving customers at station i join the orbit of station i and
will retry after a random amount of time. The inter-retrial time of each customer in

Fig. 1 A cycle starting from the beginning of a glue period of station 1
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the orbit of station i is exponentially distributed with mean ν−1
i and is independent of

all other processes.
A single server cyclically moves from one station to another serving the glued cus-

tomers at each of the stations. The service discipline at all stations is gated. During the
service period of station i , the server serves all glued customers in the queue of station i ,
i.e., all type-i customerswaiting at the end of the glue period (customers in the orbit and
newly arriving customers during the course of the service period will not be served).

The utilization of the server at station i , ρi , is defined by ρi = λiE[Bi ] and the total
utilization of the server ρ is given by ρ = ∑N

i=1 ρi . It can be routinely shown that
a necessary and sufficient condition for the stability of this polling system is ρ < 1.
We therefore assume that ρ < 1. The mean cycle length, E[C], is independent of the
station involved (and the service discipline) and is given by

E[C] =
∑N

i=1(E[Gi ] + E[Si ])
1 − ρ

, (2.1)

which can be derived as follows: Since the probability of the server being idle (in

steady state) is 1 − ρ, and this equals
∑N

i=1(E[Gi ]+E[Si ])
E[C] by the theory of regenerative

processes, we have (2.1).
Let (X (i)

1 , X (i)
2 , . . . , X (i)

N ) denote the vector of numbers of customers of type 1
to type N in the system (hence in the orbit) at the start of a glue period of station
i , i = 1, . . . , N , in the steady state. Further, let (Y (i)

1 ,Y (i)
2 , . . . , Y (i)

N ) denote the
vector of numbers of customers of type 1 to type N in the system at the start of a
service period at station i , i = 1, . . . , N , in the steady state. We distinguish between
those who are queueing (glued) and those who are in the orbit of station i : We write
Y (i)
i = Y (iq)

i + Y (io)
i , i = 1, . . . , N , where q denotes in the queue and o denotes in

the orbit. Finally, let (Z (i)
1 , Z (i)

2 , . . . , Z (i)
N ) denote the vector of numbers of customers

of type 1 to type N in the system (hence in the orbit) at the start of a switchover from
station i to station i + 1, i = 1, . . . , N , in the steady state.

3 The polling system with retrials and exponential glue periods

In [1], the authors calculated the generating functions and the mean values of the
number of customers at different time epochs when the glue periods are deterministic.
In this section, we assume that the glue periods are exponentially distributedwithmean
E[Gi ] = 1/γi , i = 1, . . . , N . We will derive a set of partial differential equations for
the joint generating function of the station size (i.e., the number of customers in
each station) and then obtain a system of linear equations for the first and the second
moments of the station size. We also provide an iterative algorithm for solving the
system of linear equations.

Observe that the generating function for the vector of numbers of arrivals at sta-
tion 1 to station N during the service time of a type-i customer, Bi , is βi (z) :=
B̃i (
∑N

j=1 λ j (1− z j )) for z = (z1, z2, . . . , zN ). Similarly, the generating function for
the vector of numbers of arrivals at station 1 to station N during a switchover time
from station i to station i + 1, Si , is σi (z) := S̃i (

∑N
j=1 λ j (1 − z j )).
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3.1 Station size analysis at embedded time points

In this subsection, we study the steady-state joint distribution and the mean of the
numbers of customers in the system at the start of a glue period, service period and
switchover period. Let us define the following joint generating functions of the number
of customers in each station at the start of a glue period, service period and switchover
period:

R̃(i)
g (z) = E

[

z
X (i)
1

1 z
X (i)
2

2 · · · zX
(i)
N

N

]

,

R̃(i)
v (z, w) = E

[

z
Y (i)
1

1 z
Y (i)
2

2 · · · zY
(io)
i

i · · · zY
(i)
N

N wY (iq)
i

]

,

R̃(i)
s (z) = E

[

z
Z (i)
1

1 z
Z (i)
2

2 · · · zZ
(i)
N

N

]

,

for z = (z1, z2, . . . , zN ) with |zi | ≤ 1, i = 1, . . . , N , and |w| ≤ 1.
LetMo

i (t) represent the number of customers in the orbit of station i , i = 1, · · · , N ,

and ϒ(t) the number of glued customers, at time t . Further, let τ j be the time at which

an arbitrary glue period starts at station j , j = 1, . . . , N . Note that Mo
i (τ j ) = X ( j)

i .
We define

φi (z;w; t) = E

[
z
Mo

1 (τi+t)
1 · · · zM

o
N (τi+t)

N wϒ(τi+t)1{Gi>t}
]
,

φi (z, w) =
∫ ∞

0
φi (z;w; t)dt.

Then, all the generating functions for the numbers of customers in the steady state
described above canbe expressed in termsofφi (z, w), as shownbelow inProposition1.

Proposition 1 The generating functions R̃(i)
v (z, w), R̃(i)

s (z) and R̃(i)
g (z) satisfy the

following:

R̃(i)
v (z, w) = γiφi (z, w), (3.1)

R̃(i)
s (z) = γiφi (z, βi (z)), (3.2)

R̃(i)
g (z) = γi−1σi−1(z)φi−1(z, βi−1(z)). (3.3)

Proof Equation (3.1) is obtained according to the law of total expectation, as follows:

R̃(i)
v (z, w) =

∫ ∞

0
E

[
z
Mo

1 (τi+t)
1 · · · zM

o
N (τi+t)

N wϒ(τi+t) | Gi > t
]
γie

−γi tdt

=
∫ ∞

0
E

[
z
Mo

1 (τi+t)
1 · · · zM

o
N (τi+t)

N wϒ(τi+t)1{Gi>t}
]
γidt

= γiφi (z, w).

To obtain (3.2), observe that the customers at the end of a service period are the
customers in the orbit at the beginning of that visit plus the customers who arrive
during the service times of the glued customers at the beginning of that visit. Hence,
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R̃(i)
s (z) = E

[

z
Y (i)
1

1 z
Y (i)
2

2 · · · zY
(io)
i

i · · · zY
(i)
N

N [βi (z)]Y
(iq)
i

]

= R̃(i)
v (z, βi (z))

= γiφi (z, βi (z)).

Also, to obtain (3.3), observe that the customers at the end of a switchover from station
i −1 to station i are the customers in the orbit at the beginning of that switchover plus
the customers who arrived during that switchover period. Hence,

R̃(i)
g (z) = R̃(i−1)

s (z)σi−1(z),

from which, with (3.2), we get (3.3). ��
We have the following result for the generating functions φi (z, w), i = 1, . . . , N .

Theorem 1 The generating functions φi (z, w), i = 1, . . . , N, satisfy the following
equation:

νi (w − zi )
∂

∂zi
φi (z, w) −

⎛

⎝
N∑

j=1, j �=i

(λ j (1 − z j )) + λi (1 − w) + γi

⎞

⎠φi (z, w)

+ γi−1φi−1(z, βi−1(z))σi−1(z) = 0. (3.4)

Proof Note that

φi (z; w; t + �t)

= E

[
z
Mo

1 (τi+t+�t)
1 · · · zM

o
N (τi+t+�t)

N wϒ(τi+t+�t)1{Gi>t+�t}
]

=
∞∑

n1=0

· · ·
∞∑

nN=0

∞∑

k=0

P(Mo
1 (τi + t) = n1, . . . , M

o
N (τi + t) = nN ,

ϒ(τi + t) = k,Gi > t)

× E

[
z
Mo

1 (τi+t+�t)
1 · · · zM

o
N (τi+t+�t)

N wϒ(τi+t+�t)1{Gi>t+�t}
∣
∣Mo

1 (τi +t)=n1, . . . ,

Mo
N (τi + t) = nN , ϒ(τi + t) = k,Gi > t

]

=
∞∑

n1=0

· · ·
∞∑

nN=0

∞∑

k=0

P(Mo
1 (τi + t) = n1, . . . , M

o
N (τi + t) = nN ,

ϒ(τi + t) = k,Gi > t)zn11 · · · zni−1
i−1 z

ni+1
i+1 · · · znNN wk

× ((1 − e−νi�t )w + e−νi�t zi )
ni e

−
(∑N

j=1, j �=i (λ j (1−z j ))+λi (1−w)
)
�t
e−γi�t

= e
−
(∑N

j=1, j �=i (λ j (1−z j ))+λi (1−w)+γi

)
�t

× φi (z1, . . . , zi−1, zi + (1 − e−νi�t )(w − zi ), zi+1, . . . , zN ; w; t).
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Thus, we have

∂

∂t
φi (z;w; t) = νi (w − zi )

∂

∂zi
φi (z;w; t)

−
⎛

⎝
N∑

j=1, j �=i

(λ j (1 − z j )) + λi (1 − w) + γi

⎞

⎠φi (z;w; t).

Since φi (z;w; 0) = E[zX
(i)
1

1 z
X (i)
2

2 · · · zX
(i)
N

N ] = R̃(i)
g (z) = γi−1σi−1(z)φi−1(z, βi−1(z))

and φi (z;w;∞) = 0, integrating the above equation with respect to t from 0 to ∞
yields

− γi−1σi−1(z)φi−1(z, βi−1(z)) = νi (w − zi )
∂

∂zi
φi (z, w)

−
⎛

⎝
N∑

j=1, j �=i

λ j (1 − z j ) + λi (1 − w) + γi

⎞

⎠φi (z, w).

This completes the proof. ��

We now calculate the mean value of the station sizes at embedded time points
using the differential equation (3.4). For an N -tuple l = (l1, . . . , lN ) of nonnegative
integers, we define

|l| = l1 + · · · + lN , l! = l1!l2! · · · lN !,

and zl = zl11 z
l2
2 · · · zlNN . With this notation, we define the following scaled moment:


(l,m)
i = 1

l!m!
∂ |l|+m

∂zl∂wm
φi (z, w)

∣
∣
∣
z=1−,w=1−,

where ∂zl = ∂zl11 · · · ∂zlNN , and 1 is the N -dimensional row vector with all its com-
ponents equal to one. The first scaled moments of φi (z, w), i = 1, 2, . . . , N , can be
obtained from the following theorem.

Theorem 2 We have

(i) 
(0,0)
i = 1

γi
, i = 1, . . . , N.

(ii) 
(1 j ,0)
i and 

(0,1)
i , 0 ≤ i, j ≤ N, are given by the following recursion: for

j = 1, . . . , N,
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(0,1)
j = λ j

γ j
E[C], (3.5)


(1 j ,0)
j = λ j

ν j

(

E[C] − 1

γ j

)

, (3.6)


(1 j ,0)
i = γi+1

γi


(1 j ,0)
i+1 + λ j

γi

(

(δi, j−1 − ρi )E[C] − 1

γi+1
− E[Si ]

)

,

i = j − 1, j − 2, . . . , j − N + 1, (3.7)

where 0 is the N-dimensional row vector with all its elements equal to zero, 1 j is the
N-dimensional row vector whose j th element is one and all other elements are zero,
and δi j is the Kronecker delta. Note that if i is nonpositive in (3.7), then it is interpreted
as i + N.

Proof Taking the partial derivative of Eq. (3.4) with respect to z j and putting z =
1−, w = 1−, we have

−νiδi j
(1i ,0)
i + (1−δi j )λ j

γi
− γi

(1 j ,0)
i + γi−1

(1 j ,0)
i−1

+γi−1λ jE[Bi−1](0,1)
i−1 + λ jE[Si−1] = 0. (3.8)

Taking the partial derivative ofEq. (3.4)with respect tow and putting z = 1−, w = 1−
yields

νi
(1i ,0)
i + λi

γi
− γi

(0,1)
i = 0. (3.9)

Summing (3.8) over i = 1, . . . , N , we have

−ν j
(1 j ,0)
j + λ j

∑

i �= j

1

γi
+ λ j

N∑

i=1

γiE[Bi ](0,1)
i + λ j

N∑

i=1

E[Si ] = 0. (3.10)

Adding (3.9) and (3.10) and multiplying the resulting equation by E[Bj ] yields

ρ j

N∑

i=1

(
1

γi
+ E[Si ]

)

− γ jE[Bj ](0,1)
j + ρ j

N∑

i=1

γiE[Bi ](0,1)
i = 0,

and summing this over j = 1, . . . , N gives

N∑

i=1

γiE[Bi ](0,1)
i = ρE[C], (3.11)

where we have used (2.1). Plugging (3.11) into (3.10) leads to


(1 j ,0)
j = λ j

ν j

(

E[C] − 1

γ j

)

,
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which is (3.6). Inserting this equation into (3.9) yields (3.5). When i = j in Equation
(3.8), we have


(1 j ,0)
j−1 = γ j

γ j−1


(1 j ,0)
j + λ j

γ j−1

(

(1 − ρ j−1)E[C] − 1

γ j
− E[S j−1]

)

. (3.12)

On the other hand, when i �= j , i.e., i = j − 1, j − 2, . . . , j − N + 1, in Equation
(3.8), we have


(1 j ,0)
i−1 = γi

γi−1


(1 j ,0)
i + λ j

γi−1

(

−ρi−1E[C] − 1

γi
− E[Si−1]

)

. (3.13)

Finally, (3.7) follows from (3.12) and (3.13). ��

Next, we calculate 
(l,m)
i for |l| + m ≥ 2. Equation (3.4) can be written as

(νi (w − 1) − νi (zi − 1))
∂

∂zi
φi (z, w)

+
⎛

⎝λi (w − 1) +
N∑

j=1, j �=i

λ j (z j − 1) − γi

⎞

⎠φi (z, w)

+ γi−1φi−1(z, βi−1(z))σi−1(z) = 0.

From this we get

(γi + liνi )
(l,m)
i = 1{m≥1}(li + 1)νi

(l+1i ,m−1)
i + 1{m≥1}λi(l,m−1)

i

+
∑

j �=i

1{l j≥1}λ j
(l−1 j ,m)

i

+ 1{m=0}γi−1

∑

l ′≤l

|l−l ′|∑

k=0


(l ′,k)
i−1 �

(l−l ′)
i−1,k , (3.14)

where �
(l)
i,m = 1

l!
∂ |l|
∂zl

((βi (z) − 1)mσi (z))
∣
∣
z=1− and the inequality l ′ ≤ l is interpreted

componentwise. Therefore, from (3.14) we have the following proposition.

Proposition 2 For |l| + m ≥ 2,


(l,m)
i = 1{m≥1}λi

γi + liνi


(l,m−1)
i +

∑

j �=i

1{l j≥1}λ j

γi + liνi


(l−1 j ,m)

i

+ 1{m=0}γi−1

γi + liνi

∑

l ′≤l

|l−l ′|−1∑

k=0


(l ′,k)
i−1 �

(l−l ′)
i−1,k
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+ 1{m≥1}(li + 1)νi
γi + liνi


(l+1i ,m−1)
i + 1{m=0}γi−1

γi + liνi

∑

l ′≤l


(l ′,|l−l ′|)
i−1 �

(l−l ′)
i−1,|l−l ′|.

(3.15)

For each k ≥ 2, (3.15) is a systemof linear equations for {(l,m)
i : i = 1, . . . , N , l ∈

Z
N+ ,m ∈ Z+, |l| + m = k}, where Z+ denotes the set of nonnegative integers. The

system of equations (3.15) with |l| + m = k can be written in a matrix form as

X = AX + b, (3.16)

where X is a column vector with components 
(l,m)
i (i = 1, . . . , N , l ∈ Z

N+ ,m ∈
Z+, |l| + m = k), A is a nonnegative square matrix and b is a positive column
vector. Since X is also a positive vector, (3.16) implies that the maximal eigen-
value of A is strictly less than 1. Therefore, (3.16) uniquely determines 

(l,m)
i

(i = 1, . . . , N , l ∈ Z
N+ ,m ∈ Z+, |l| + m = k). Also, (3.15) uniquely determines


(l,m)
i (i = 1, . . . , N , l ∈ Z

N+ ,m ∈ Z+, |l| + m ≥ 2).

By solving the system of linear equations (3.15), we can obtain 
(l,m)
i (i =

1, . . . , N , l ∈ Z
N+ ,m ∈ Z+, |l| + m ≥ 2). One can use Gaussian elimination to

solve that system of equations. We will also use an iterative method, as shown below
in Theorem 3. This theorem can be easily proved by the fact that A is a nonnegative
square matrix with maximal eigenvalue less than 1 and b is a positive column vector
in (3.16).

Theorem 3 For i, l,m, n with i = 1, . . . , N, |l| + m = k, n ∈ Z+, define 
(l,m)
i (n)

as follows:


(l,m)
i (0) =0,


(l,m)
i (n) =1{m≥1}λi

γi + liνi


(l,m−1)
i +

∑

j �=i

1{l j≥1}λ j

γi + liνi


(l−1 j ,m)

i

+ 1{m=0}γi−1

γi + liνi

∑

l ′≤l

|l−l ′|−1∑

k=0


(l ′,k)
i−1 �

(l−l ′)
i−1,k

+ 1{m≥1}(li + 1)νi
γi + liνi


(l+1i ,m−1)
i (n − 1)

+ 1{m=0}γi−1

γi + liνi

∑

l ′≤l


(l ′,|l−l ′|)
i−1 (n − 1)�(l−l ′)

i−1,|l−l ′|, n ≥ 1.

Then, we have that

(i) 
(l,m)
i (n) is nondecreasing in n.

(ii) limn→∞ 
(l,m)
i (n) = 

(l,m)
i .
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3.2 Station size analysis at arbitrary time points

In the previous subsection, we found the generating functions of the number of cus-
tomers at the beginnings of the glue period, service period and switchover period in
terms of φi (z, w). We now represent the generating function of the number of cus-
tomers at arbitrary time points in terms of φi (z, w), as shown below in Theorem 4.
This will allow us to obtain the moments of the station size distribution at arbitrary
time points.

Theorem 4 (a) The joint generating function, R(i)
s (z), of the number of customers in

the orbit at an arbitrary time point in a switchover period from station i is given
by

R(i)
s (z) = γi

E[Si ]φi (z, βi (z))
1 − σi (z)

∑N
j=1 λ j (1 − z j )

. (3.17)

(b) The joint generating function, R(i)
g (z, w), of the number of customers in the queue

and in the orbit at an arbitrary time point in a glue period of station i is given by

R(i)
g (z, w) = γiφi (z, w). (3.18)

(c) The joint generating function, R(i)
v (z, w), of the number of customers in the queue

and in the orbit at an arbitrary time point in a service period of station i is given
by

R(i)
v (z, w) = γi

ρiE[C]
φi (z, w) − φi (z, βi (z))

w − βi (z)
1 − βi (z)

∑N
j=1 λ j (1 − z j )

. (3.19)

Proof (a) Notice that the number of customers in the orbit at an arbitrary time point in
a switchover period from station i is the sum of two independent terms: the number of
customers at the beginning of the switchover period and the number of customers who
arrived during the elapsed switchover period. The generating function of the former
is R̃(i)

s (z), and the generating function of the latter is given by 1−σi (z)

E[Si ]
(∑N

j=1 λ j (1−z j )
) .

Thus,

R(i)
s (z) = R̃(i)

s (z)
1 − σi (z)

E[Si ]
(∑N

j=1 λ j (1 − z j )
) ,

from which and (3.2) we get (3.17).
(b) By the theory of Markov regenerative processes,

R(i)
g (z, w) = γi

∫ ∞

0
φi (z;w; t)dt.

This equation yields (3.18).
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(c) Notice that the number of customers in the system at an arbitrary time point
in a service period consists of two parts: the number of customers in the system at
the beginning of the service of the customer currently in service and the number of
customers who arrived during the elapsed time of the current service. The generating
function of the former is given by (see Remark 3 of [1] for a detailed proof)

R̃(i)
v (z, w) − R̃(i)

v (z, βi (z))

E[Y (iq)
i ](w − βi (z))

= γi

E[Y (iq)
i ]

φi (z, w) − φi (z, βi (z))
w − βi (z)

, (3.20)

and the generating function of the latter is given by

1 − βi (z)

E[Bi ]
(∑N

j=1 λ j (1 − z j )
) . (3.21)

From (3.20) and (3.21), we have

R(i)
v (z, w) = γi

E[Y (iq)
i ]E[Bi ]

φi (z, w) − φi (z, βi (z))
w − βi (z)

1 − βi (z)
∑N

j=1 λ j (1 − z j )
.

Since ρi = E[Y (iq)
i ]E[Bi ]
E[C] , (3.19) follows from the above equation. ��

We introduce the following scaled moments:

�
(l,m)
g,i = 1

l!m!
∂ |l|+m

∂zl∂wm
R(i)
g (z, w)

∣
∣
∣
z=1−,w=1−,

�
(l,m)
v,i = 1

l!m!
∂ |l|+m

∂zl∂wm
R(i)

v (z, w)

∣
∣
∣
z=1−,w=1−,

�
(l)
s,i = 1

l!
∂ |l|

∂zl
R(i)
s (z)

∣
∣
∣
z=1−.

These moments satisfy the following theorem, which can be derived by using Equa-
tions (3.17), (3.18) and (3.19).

Theorem 5 We have

(i) �
(l,m)
g,i = γi

(l,m)
i .

(ii) �
(l,m)
v,i = γi

ρiE[C]
∑

l ′≤l
∑|l−l ′|

k=0 
(l ′,m+k+1)
i η

(l−l ′)
i,k ,

where η
(l)
i,m = 1

l!
∂ |l|
∂zl

(
−(βi (z)−1)m+1
∑N

j=1 λ j (1−z j )

) ∣
∣
∣
z=1−.
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(iii) �
(l)
s,i = γi

E[Si ]
∑

l ′≤l �
(l ′)
i ζ

(l−l ′)
i , where ζ

(l)
i = 1

l!
∂ |l|
∂zl

(
1−σi (z)∑N

j=1 λ j (1−z j )

) ∣
∣
∣
z=1− and

�
(l)
i = 1

l!
∂ |l|
∂zl

φi (z, βi (z))
∣
∣
z=1−. Moreover, �(l)

i is given by

�
(l)
i =

∑

l ′≤l

|l−l ′|∑

k=0


(l ′,k)
i �

(l−l ′)
i,k ,

where �
(l)
i,m = 1

l!
∂ |l|
∂zl

(βi (z) − 1)m
∣
∣
z=1−.

From now on, we obtain the first and second moments of the station sizes of each
type of customers in steady state. Let Mo

i and ϒ be the steady-state random variables
corresponding toMo

i (t) andϒ(t), respectively. That is,Mo
i is the number of customers

in the orbit of station i in the steady state and ϒ is the number of glued customers in
the steady state. Let Moq

i be the number of customers in the orbit of station i plus the
glued customers in the queue of station i in the steady state, and Mi be the number of
customers in station i (including the customer in service at station i) in the steady state.
Moreover, we define the following indicator random variables: for i = 1, . . . , N ,

Iv,i =
{
1 if the server is serving at station i in the steady state,
0 otherwise,

Ig,i =
{
1 if the server is in the glue period of station i in the steady state,
0 otherwise,

Is,i =
{
1 if the server is switching from station i to station i + 1 in the steady state,
0 otherwise.

Then, we have that for i = 1, . . . , N ,

Mo
i =

N∑

k=1

Mo
i (Iv,k + Ig,k + Is,k),

Moq
i = Mo

i + ϒ(Iv,i + Ig,i ),

Mi = Moq
i + Iv,i .

Therefore, the mean station sizes, E[Mo
i ],E[Moq

i ], and E[Mi ], i = 1, . . . , N , are
given by

E[Mo
i ] =

N∑

k=1

(

ρk�
(1i ,0)
v,k + E[Gk]

E[C] �
(1i ,0)
g,k + E[Sk]

E[C] �
(1i )
s,k

)

, (3.22)

E[Moq
i ] = E[Mo

i ] + ρi�
(0,1)
v,i + E[Gi ]

E[C] �
(0,1)
g,i , (3.23)

E[Mi ] = E[Moq
i ] + ρi . (3.24)
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Now, in order to obtain the second moments of the station sizes, E[Mo
i M

o
j ],

E[Moq
i Moq

j ], and E[MiMj ], i, j = 1, . . . , N , note that

Mo
i M

o
j =

N∑

k=1

Mo
i M

o
j (Iv,k + Ig,k + Is,k),

Moq
i Moq

j = Mo
i M

o
j +Mo

i ϒ(Iv, j + Ig, j )+Mo
j ϒ(Iv,i + Ig,i )+ϒ2(Iv,i + Ig,i )1{i= j},

MiMj = Moq
i Moq

j + Moq
i Iv, j + Moq

j Iv,i + Iv,i1{i= j}.

Therefore, the second moments of the station sizes are given by

E[Mo
i M

o
j ] =

⎧
⎨

⎩

∑N
k=1

(
ρk�

(1i+1 j ,0)
v,k + E[Gk ]

E[C] �
(1i+1 j ,0)
g,k + E[Sk ]

E[C] �
(1i+1 j )

s,k

)
if i �= j,

2
∑N

k=1

(
ρk�

(21i ,0)
v,k + E[Gk ]

E[C] �
(21i ,0)
g,k + E[Sk ]

E[C] �
(21i )
s,k

)
if i = j,

(3.25)

E[Moq
i Moq

j ] =
⎧
⎨

⎩

E[Mo
i M

o
j ]+ρi�

(1 j ,1)
v,i +ρ j�

(1i ,1)
v, j + E[Gi ]

E[C] �
(1 j ,1)
g,i + E[G j ]

E[C] �
(1i ,1)
g, j if i �= j,

E[(Mo
i )2]+2

(
ρi�

(1i ,1)
v,i + E[Gi ]

E[C] �
(1i ,1)
g,i +ρi�

(0,2)
v,i + E[Gi ]

E[C] �
(0,2)
g,i

)
if i= j,

(3.26)

E[MiMj ] =
{
E[Moq

i Moq
j ] + ρi�

(1 j ,0)
v,i + ρ j�

(1i ,0)
v, j if i �= j,

E[(Moq
i )2] + 2ρi�

(1i ,0)
v,i + 2ρi�

(0,1)
v,i + ρi if i = j.

(3.27)

3.3 A numerical example

In this subsection, we present numerical results for the first and second moments of
the number of customers in each station. The expression for the mean number of
customers in each station is given by (3.24), together with (3.22) and (3.23). By using
the formulas (3.25)–(3.27), we can obtain an expression for the variance of the number
of customers in each station and an expression for the covariance of the numbers of
customers in two different stations. Note that these moments are expressed in terms of


(l,m)
i , as shown in Theorem 5. Therefore, these moments can be obtained by using

Theorems 2 and 3. In the following numerical example, we consider a single-server
polling model with five stations (i.e., N = 5).
Example 1. We assume that the arrival rate of type-i customers is λi = 0.025 for all i ,
i = 1, . . . , 5. The service times of type-i customers are exponentially distributed with
means E[B1] = 1,E[B2] = 2,E[B3] = 4,E[B4] = 8 and E[B5] = 16, respectively.
Hence, the total utilization of the server is ρ =∑5

i=1 ρi = 0.775 < 1. The switchover
times from station i to station i + 1 are deterministic with E[Si ] = 1 for all i , i =
1, . . . , 5. The retrial rate of customers in the orbit of station i is νi = 1 for all i , i =
1, . . . , 5. The glue periods at station i are exponentially distributed with parameters
γi , i = 1, . . . , 5. We assume that γi is the same for all i , i.e., E[Gi ] = E[G] for all i ,
i = 1, . . . , 5.

In Fig. 2, we plot the mean number of customers in station i , E[Mi ], i = 1, . . . , 5,
varying the mean glue period E[G]. In Fig. 3, we plot the squared coefficient of
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(a) (b)

Fig. 2 Mean number of customers in station i , E[Mi ], i = 1, . . . , 5, varying E[G]. a 0 ≤ E[G] ≤ 10.
b 0 ≤ E[G] ≤ 1000

(a) (b)

Fig. 3 Squared coefficient of variation for the number of customers in station i , SCV[Mi ], i = 1, . . . , 5,
varying E[G]. a 0 ≤ E[G] ≤ 10. b 0 ≤ E[G] ≤ 1000

variation (SCV) for the number of customers in station i , SCV[Mi ], i = 1, . . . , 5,
varyingE[G]. In Fig. 4, we plot the correlation coefficient of the numbers of customers
in two different stations, Cor[M1, M2], Cor[M1, M3], Cor[M1, M4] andCor[M3, M5],
varying E[G]. In Figs. 2a, 3a and 4a, we vary E[G] from 0 to 10 in order to better
reveal the behavior of the system for small E[G]. In Figs. 2b, 3b and 4b, we vary E[G]
from 0 to 1000 in order to examine the behavior of the system for large E[G].

We can draw the following conclusions from these plots:

• If the glue period of a station is small, the chance for customers to retry in that
glue period is low, and therefore, the mean number of customers in the station is
large.

• If the glue period of a station is large, customers face a long delay before getting
served in the station, so the mean number of customers in the station is large.

• There exists an optimal glue length at which each station has a minimum mean
station size.

• The figures suggest that, as E[G] → ∞,
(i) the mean numbers of customers grow linearly,

123



Queueing Syst (2017) 87:293–324 309

(a) (b)

Fig. 4 Correlation coefficient of the numbers of customers in station i and station j , Cor(Mi , Mj ),
(i, j) = (1, 2), (i, j) = (1, 3), (i, j) = (1, 4) and (i, j) = (3, 5), varying E[G]. a 0 ≤ E[G] ≤ 10.
b 0 ≤ E[G] ≤ 1000

(ii) the squared coefficient of variation tends to a limit,
(iii) the correlation coefficients between the numbers of customers in different

stations tend to some limit.

In [23], the author considers classical polling systemswith a branching-type service
discipline like exhaustive or gated service, and without glue periods, for the case that
the switchover times become large. It is readily seen that our polling model starts
to behave very similarly as such a polling model when the glue periods grow large;
indeed, every type-i customer will now almost surely become glued during the first
glue period of station i that it experiences during its stay in the system, and therefore,
it will be served during the first service period of station i after its arrival to the
system–just as in an ordinary gated polling system. However, we cannot immediately
apply the asymptotic results of [23] when the switchover times become large, because
it considers deterministic switchover times, while the focus is on the waiting time
distribution.

4 The polling system with retrials and general glue periods

In [1] and in Sect. 3 of the present paper, we have presented the distribution and mean
of the number of customers at different time epochs for a gated polling model with
retrials and glue periods, where the glue periods are deterministic and exponentially
distributed, respectively. In this section, we assume that the glue periods have general
distributions. We first consider the distribution of the total workload in the system and
present a workload decomposition. Next, we use this to obtain a pseudo-conservation
law, i.e., an exact expression for a weighted sum of the mean waiting times. The
pseudo-conservation law is subsequently used to obtain an approximation for the
mean waiting times of all customer types. We present numerical results that indicate
that the approximation is very accurate. Finally, we use this approximation to optimize
a weighted sum of the mean waiting times,

∑N
i=1 ciE[Wi ], where ci , i = 1, . . . , N ,

are positive constants and E[Wi ] is the mean waiting time of a type-i customer until
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the start of its service, by choosing the glue period lengths, given the total glue period
in a cycle.

4.1 Workload distribution and decomposition

Define V as the amount of work in the system in the steady state. Furthermore, let
B̃(s) =∑N

i=1 λi (1− B̃i (s)). The LST of the amount of work at an arbitrary time can
be written as

E

[
e−sV

]
= 1

E[C]
N∑

i=1

(
E[Si ]E

[
e−sV (S)

i

]
+ E [Gi ]E

[
e−sV (G)

i

]

+ρiE[C]E
[
e−sV (D)

i

])
, (4.1)

where V (S)
i , V (G)

i and V (D)
i are the amount ofwork in the system during the switchover

time from station i , the glue period of station i and the service period of station i ,
respectively.

Let V (X)
i , V (Y )

i and V (Z)
i be the work in the system at the start of the glue period

of station i , the service period of station i and the switchover period from station i ,
respectively. We know that

E

[
e−sV (S)

i

]
= E

[
e−sV (Z)

i

] 1 − S̃i (B̃(s))

E[Si ]B̃(s)
,

E

[
e−sV (G)

i

]
= E

[
e−sV (X)

i

] 1 − G̃i (B̃(s))

E[Gi ]B̃(s)
.

Therefore,

N∑

i=1

(
E

[
e−sV (S)

i

]
E[Si ] + E[e−sV (G)

i ]E[Gi ]
)

=
N∑

i=1

(

E[e−sV (Z)
i ]1 − S̃i (B̃(s))

B̃(s)
+ E

[
e−sV (X)

i

] 1 − G̃i (B̃(s))

B̃(s)

)

=
N∑

i=1

(
E[e−sV (Z)

i ] − E[e−sV (Z)
i ]S̃i (B̃(s)) + E[e−sV (X)

i ] − E[e−sV (X)
i ]G̃i (B̃(s))

B̃(s)

)

=
N∑

i=1

⎛

⎝E[e−sV (Z)
i ] − E[e−sV (X)

i+1 ] + E[e−sV (X)
i ] − E[e−sV (Y )

i ]
B̃(s)

⎞

⎠

=
N∑

i=1

(
E[e−sV (Z)

i ] − E[e−sV (Y )
i ]

B̃(s)

)

. (4.2)
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Furthermore, using the last formula of the proof of Theorem 2 in Boxma et al. [7], but
with our notation, we have

ρiE[C]E
[
e−sV (D)

i

]
=

E

[
e−sV (Y )

i

]
− E

[
e−sV (Z)

i

]

B̃(s) − s
. (4.3)

Substituting (4.2) and (4.3) in (4.1), we have

E[e−sV ] = s

E[C](s − B̃(s))

N∑

i=1

(
E[e−sV (Z)

i ] − E[e−sV (Y )
i ]

B̃(s)

)

. (4.4)

Define the idle time as the time the server is not serving customers (i.e., the sum of
all the switchover and glue periods). Let V (I dle) be the amount of work in the system
at an arbitrary moment in the idle time. We have, by (4.2) and (2.1),

E[e−sV (I dle)] = 1

E

[∑N
i=1(Si + Gi )

]
N∑

i=1

(
E[e−sV (S)

i ]E[Si ] + E[e−sV (G)
i ]E[Gi ]

)

= 1

E

[∑N
i=1(Si + Gi )

]
N∑

i=1

(
E[e−sV (Z)

i ] − E[e−sV (Y )
i ]

B̃(s)

)

= 1

(1 − ρ)E[C]
N∑

i=1

(
E[e−sV (Z)

i ] − E[e−sV (Y )
i ]

B̃(s)

)

. (4.5)

It is known that the LST of the amount of work at the steady state, VM/G/1, in the
standard M/G/1 queue where the arrival rate is

∑N
i=1 λi and the LST of the service

time distribution is
∑N

i=1
λi∑N
j=1 λ j

B̃i (s), is given by

E[e−sVM/G/1 ] = (1 − ρ)s

s − B̃(s)
. (4.6)

From Eqs. (4.4), (4.5) and (4.6), we have

E[e−sV ] = E[e−sVM/G/1 ]E[e−sV (I dle)].

In Theorem 2.1 of [6], a workload decomposition property has been proved for
a large class of single-server multiclass queueing systems with service interruptions
(like switchover periods or breakdowns). It amounts to the statement that, under certain
conditions, the steady-state workload is in distribution equal to the sum of two inde-
pendent quantities: (i) the steady-state workload in the corresponding queueing model
without those interruptions and (ii) the steady-state workload at an arbitrary interrup-
tion epoch. The gated polling model with glue periods and retrials of the present paper
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satisfies all the assumptions of Theorem 2.1 of [6], and therefore, in agreement with
what we have seen above, the workload decomposition indeed holds.

4.2 Pseudo-conservation law

By the workload decomposition, it is shown in [6] that

N∑

i=1

ρiE[Wi ] = ρ

∑N
i=1 λiE[B2

i ]
2(1 − ρ)

+ρ

E

[(∑N
i=1(Si + Gi )

)2
]

2E
[∑N

i=1(Si + Gi )
] +

E

[∑N
i=1(Si + Gi )

]

2(1 − ρ)

(

ρ2 −
N∑

i=1

ρ2
i

)

+
N∑

i=1

E[Fi ],

(4.7)

where Fi is thework left in station i at the end of a service period of station i (and hence
at the start of a switchover from station i). Other than E[Fi ], Eq. (4.7) is independent
of the service discipline. Note that E[Fi ] = E[Z (i)

i ]E[Bi ]. To find E[Z (i)
i ], we will

derive a relation betweenE[Z (i)
i ] andE[Y (iq)

i ].E[Y (iq)
i ] consists of the following three

parts:

(i) Mean number of type-i customers who were already present at the end of the
previous visit to station i and who are glued during the glue period just before
the current visit to station i .

(ii) Mean number of type-i customers who have arrived during the time interval from
the end of the previous visit to station i to the start of the glue period of station i
just before the visit to station i , and who are glued during that glue period.

(iii) Mean number of type-i customers who arrive during the glue period of station i
just before the visit to station i .

Note that (i) equals (1− G̃i (νi ))E[Z (i)
i ] because the mean number of type-i customers

who were present at the end of the previous visit to station i is E[Z (i)
i ], and the

probability that a customer who was present at the end of the previous visit to station
i is glued during the glue period just before the current visit to station i is 1− G̃i (νi ).
(ii) equals (1− G̃i (νi ))λi ((1 − ρi )E[C] − E[Gi ]). Here, λi ((1 − ρi )E[C] − E[Gi ])
is the mean number of type-i customers who have arrived during the time interval
from the end of the previous visit to station i to the start of the glue period of station
i just before the visit to station i . Finally, (iii) equals λiE[Gi ]. Therefore,

E[Y (iq)
i ] =(1 − G̃i (νi ))E[Z (i)

i ] + (1 − G̃i (νi ))(1 − ρi )λiE[C] + G̃i (νi )E[Gi ]λi .
(4.8)
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Since ρi = E[Y (iq)
i ]E[Bi ]
E[C] , we have E[Y (iq)

i ] = λiE[C]. Hence, by (4.8), we get

E[Z (i)
i ] = λiρiE[C] + λi G̃i (νi )

1 − G̃i (νi )
(E[C] − E[Gi ]) .

Therefore, E[Fi ] is given by

E[Fi ] = ρ2
i E[C] + ρi G̃i (νi )

1 − G̃i (νi )
(E[C] − E[Gi ]) . (4.9)

The first term on the right-hand side equals the mean amount of work for type-i
customers who arrived at station i during a service period of station i . The second
term is interpreted as follows: Since λi (E[C] − E[Gi ]) is the mean number of type-i
customers who arrive during one cycle excluding the glue period of station i in that
cycle, (G̃i (ν))kρi (E[C] − E[Gi ]) is the mean amount of work for type-i customers
who arrive during the kth previous cycle excluding the glue period of station i in
that cycle, and who are present at the end of the current service period of station i .
Therefore, the second term, which is

∑∞
k=1(G̃i (ν))kρi (E[C] − E[Gi ]), is the mean

amount of work for type-i customers who were present in the orbit of station i at the
beginning of the service period of station i .

From Eqs. (4.7) and (4.9), together with (2.1), we obtain the following pseudo-
conservation law:

N∑

i=1

ρiEWi = ρ

⎛

⎜
⎜
⎝

∑N
i=1 λiE[B2

i ]
2(1 − ρ)

+
E

[(∑N
i=1(Si + Gi )

)2
]

2E
[∑N

i=1(Si + Gi )
]

⎞

⎟
⎟
⎠

+
(

ρ2 +
N∑

i=1

ρ2
i

)
E

[∑N
i=1(Si + Gi )

]

2(1 − ρ)

+
N∑

i=1

ρi G̃i (νi )

1 − G̃i (νi )

⎛

⎝
E

[∑N
j=1(S j + G j )

]

1 − ρ
− E[Gi ]

⎞

⎠ . (4.10)

4.3 Approximation of the mean waiting times

Wenowuse the pseudo-conservation law tofind an approximation for themeanwaiting
times of all customer types. Belowwebriefly sketch the idea behind the approximation.
Everitt [9] has developed a method to approximate the mean waiting times in an
ordinary gated polling system (without retrials and glue periods). The idea in this
approximation is that an arriving customer first has to wait for the residual cycle time,
until the server begins a new visit to its station. Subsequently, it has to wait for the
service times of all customers of the same type, who arrived before it, in the elapsed
cycle time. This leads to E[Wj ] = (1 + ρ j )E[Rc j ], where E[Rc j ] is the mean of the
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residual time of a cycle starting with a visit to station j , which is the same as the mean
of the elapsed time of a cycle starting with a visit to station j . Next, Everitt assumed
that for all j , this mean residual cycle time is independent of j , i.e., E[Rc j ] ≈ E[Rc],
leading to the approximation E[Wj ] ≈ (1 + ρ j )E[Rc] for the model without retrials
and glue periods.

In this paper, we introduce a similar type of approximation, including one extra
term, for the mean waiting times in the model with retrials and glue periods:

E[Wj ] ≈ (1 + ρ j )E[Rc] + G̃ j (ν j )

1 − G̃ j (ν j )

(
E[C] − E[G j ]

)
. (4.11)

In the Appendix, we provide a detailed derivation of (4.11). The first term on the right-
hand side of (4.11) is the same as the term in [9]. The second termon the right-hand side
is added because not every customerwho arrives in a particular cycle receives service in
that cycle. The type- j customers arriving during any period other than the glue period
of station j receive service in the following service periodwith probability 1−G̃ j (ν j ).
Furthermore, the type- j customers arriving during any period other than a glue period
of station j have to wait for a geometric number (with parameter 1− G̃ j (ν j )) of cycles
before receiving service. Since a type- j customer arrives during a period other than

a glue period of station j with probability
E[C]−E[G j ]

E[C] , the mean number of cycles

until an arbitrary type- j customer receives its service is
E[C]−E[G j ]

E[C] × G̃ j (ν j )

1−G̃ j (ν j )
. The

second term is obtained by multiplying this mean number of cycles and the mean
cycle time.

It should be noted that, in reality, the mean residual cycle times for station i and
station j ( j �= i) are not equal. A key element of our approximation is to assume that
they are equal. We can now use the pseudo-conservation law to determine the one
unknown term E[Rc]: By substituting (4.11) in (4.10) and using (2.1), we get

E[Rc] ≈ ρ

ρ +∑N
i=1 ρ2

i

×

⎛

⎜
⎜
⎝

∑N
i=1 λiE[B2

i ]
2(1 − ρ)

+
E

[(∑N
i=1(Si + Gi )

)2
]

2E
[∑N

i=1(Si + Gi )
] + ρ

E

[∑N
i=1(Si + Gi )

]

2(1 − ρ)

⎞

⎟
⎟
⎠

+
∑N

i=1 ρ2
i

ρ +∑N
i=1 ρ2

i

⎛

⎝
E

[∑N
i=1(Si + Gi )

]

2(1 − ρ)

⎞

⎠ . (4.12)

Substitution of (4.12) into (4.11) yields an approximation for the mean waiting times
of all customer types: For j = 1, 2, . . . , N ,
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E[Wj ] ≈ 1 + ρ j

ρ +∑N
i=1 ρ2

i

×

⎧
⎪⎪⎨

⎪⎪⎩
ρ

⎛

⎜
⎜
⎝

∑N
i=1 λiE[B2

i ]
2(1 − ρ)

+
E

[(∑N
i=1(Si +Gi )

)2
]

2E
[∑N

i=1(Si +Gi )
] +ρ

E

[∑N
i=1(Si +Gi )

]

2(1 − ρ)

⎞

⎟
⎟
⎠

+
N∑

i=1

ρ2
i

⎛

⎝
E

[∑N
i=1(Si + Gi )

]

2(1 − ρ)

⎞

⎠

⎫
⎬

⎭

+ G̃ j (ν j )

1 − G̃ j (ν j )

⎛

⎝
E

[∑N
i=1(Si + Gi )

]

1 − ρ
− E[G j ]

⎞

⎠ . (4.13)

We now consider various examples to compare the above approximation results
with the exact analysis from [1] for deterministic glue periods and from Sect. 3 of
the present paper for exponentially distributed glue periods. Further, we will compare
the results of this approximation with the simulation results for the case that the glue
periods follow a gamma distribution.

Deterministic glue periods

In the numerical example of Table 1, we consider a two-station polling system. The
switchover times and service times are exponentially distributed. We keep the param-
eters of station 1 fixed, λ1 = 1,E[B1] = 0.45,E[S1] = 1,G1 = 0.5, ν1 = 1, and
vary the parameters of station 2.

Exponential glue periods

In the numerical example of Table 2, we consider a three-station polling system. The
switchover times are deterministic, and the service times are exponentially distributed.
Wekeep the parameters of station 1fixed,λ1 = 1,E[B1] = 0.3,E[G1] = 0.5. Further,
the switchover times and the exponential retrial rates of all three stations are fixed,
S1 = S2 = S3 = 1 and ν1 = ν2 = ν3 = 1.

Gamma-distributed glue periods

In the above two examples, we can get the exact mean waiting times using the method
in [1] and Sect. 3 of this paper. In the numerical examples of Table 3, we compare the
approximate mean waiting times with simulation results, for a polling system where
the lengths of the glue periods are gamma-distributed.

We consider a five-station polling system in which the glue periods, switchover
times and service times are all gamma-distributed. We simulate such a system to
find the mean waiting times. We also give a 95% confidence interval for the mean
waiting times obtained using simulations.We have generated one million cycles, split-

123



316 Queueing Syst (2017) 87:293–324

Table 1 Comparison of the exact and approximate mean waiting times for a polling system with deter-
ministic glue periods

λ2 E[B2] E[S2] G2 ν2 Exact (E[W1],E[W2]) Approx (E[W1],E[W2])
1 0.45 1 0.5 1 (71.61, 71.61) (71.61, 71.61)

0.5 0.45 1 0.5 1 (21.44, 20.34) (21.49, 20.24)

0.5 0.2 1 0.5 1 (15.18, 13.96) (15.21, 13.83)

0.5 0.2 2 0.5 1 (20.52, 18.82) (20.55, 18.71)

0.5 0.2 2 1 1 (23.01, 11.48) (22.99, 11.67)

0.5 0.2 2 1 0.5 (22.97, 20.31) (22.99, 20.20)

Table 2 Comparison of the exact and approximate mean waiting times for a polling system with exponen-
tially distributed glue periods

λ2 E[B2] E[G2] λ3 E[B3] E[G3] Exact (E[W1],E[W2],E[W3]) Approx (E[W1],E[W2],E[W3])

1 0.3 0.5 1 0.3 0.5 (121.0, 121.0, 121.0) (121.0, 121.0, 121.0)

1 0.3 0.5 0.5 0.3 0.5 (47.59, 47.58, 46.74) (47.71, 47.71, 46.24)

1 0.3 0.5 0.5 0.1 0.5 (33.65, 33.64, 32.54) (33.69, 33.69, 31.97)

2 0.3 0.5 0.5 0.1 0.5 (246.8, 246.6, 242.3) (242.4, 257.1, 230.2)

2 0.15 0.5 0.5 0.1 0.5 (33.52, 33.51, 32.42) (33.56, 33.56, 31.86)

2 0.15 2 0.5 0.1 0.5 (44.88, 19.71, 43.64) (45.22, 19.50, 42.92)

2 0.15 2 0.5 0.1 1 (48.66, 21.42, 28.75) (49.03,21.17, 27.98)

ting this into ten periods of 105 cycles and using the results of these ten periods to
obtain confidence intervals. Then, we compare the simulation results with the results
obtained using the approximation formula. Here, k and θ are, respectively, the shape
and the scale parameters of the gamma distribution with probability density function

1
�(k)θk

xk−1e− x
θ .

The values of the parameters are listed in Table 3a. Table 3b shows themeanwaiting
times by simulation, along with 95% lower and upper confidence bounds. Table 3c
shows the approximate mean waiting times.

The numerical results suggest that the approximations of the mean waiting times
are very accurate. In only two cases (the fourth case in Table 2 and case (iii) in Table
3), the error is in the order of 5%; in all other cases, we find errors that are typically less
than 2%. This is probably due to the fact that the pseudo-conservation law is exact,
while the mean residual cycle times E[Rc j ] typically do not differ too much from
queue to queue. We also would like to mention two facts, which emphasize that our
approximation (4.13) is quite simplistic, but which also suggest a certain robustness
of the polling system as well as our approximation.

(i) The approximate mean waiting times for the two totally symmetric stations are
the same, independent of their order in the system, but this is not quite true in reality.
Consider a five-station polling model with deterministic glue periods, and exponential
service time and switchover time distributions. Let λ = (0.1, 0.05, 0.1, 0.38, 0.38),
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E[B1] = E[B3] = E[B4] = E[B5] = 1, E[B2] = 0.2, E[Si ] = 1 for all
i , i = 1, . . . , 5, E[G1] = E[G2] = E[G3] = 1, E[G4] = E[G5] = 5, and
(ν1, ν2, ν3, ν4, ν5) = (2, 1, 2, 10, 10). We get the exact and the approximate mean
waiting times as

(E[W1],E[W2],E[W3],E[W4],E[W5])
= (456.146, 700.203, 456.126, 445.931, 445.956),

Approx (E[W1],E[W2],E[W3],E[W4],E[W5])
= (452.478, 677.977, 452.478, 450.035, 450.035).

We can see that even in a very asymmetric case, while the exact mean waiting times
are not the same for the symmetric stations 1 and 3, they are still very close and the
approximation is within 5% of them.

(ii) The approximate mean waiting time at one station is independent of the change
in the retrial rates of the other stations, which is also not true in reality. Consider
a two-station polling model with deterministic glue periods, and exponential ser-
vice time and switchover time distributions. Let λ1 = λ2 = 1, E[B1] = E[B2] =
0.45, E[S1] = E[S2] = 1, E[G1] = E[G2] = 0.5, and ν1 = 1. For ν2 = 1/1000,
we get the exact and the approximate mean waiting times as (E[W1],E[W2]) =
(68.0292, 59014.9628) and Approx(E[W1],E[W2]) = (71.6074, 59011.3845). Fur-
ther for ν2 = 1000, we get the exact and the approximate mean waiting
times as (E[W1],E[W2]) = (73.4677, 24.2730) and Approx(E[W1],E[W2]) =
(71.6074, 26.1333). We can see that in both cases, even though the exact meanwaiting
times are not the same for station 1, the approximation is still within 5% of them.

4.4 Optimal choice of the glue period distributions

In this subsection, we discuss an optimization problem for the choice of the distribu-
tions of the glue periods,Gi , i = 1, . . . , N , to minimize the weighted sum of the mean
waiting times

∑N
i=1 ciE[Wi ], subject to the constraint

∑N
i=1 E[Gi ] = L , where ci ,

i = 1, . . . , N , and L are positive constants. Because we do not have explicit formula
for the mean waiting time, it is difficult to exactly solve the constrained minimiza-
tion problem. Instead of finding the exact solution of the constrained minimization
problem, we will find the optimal choice of the distributions of Gi , i = 1, . . . , N , to

minimize
N∑

i=1

ciUi

subject to
N∑

i=1

E[Gi ] = L ,

where Ui is the approximation of E[Wi ] given by the right-hand side of (4.13). Note
that under the constraint

∑N
i=1 E[Gi ] = L , the objective function of the minimization

problem becomes as follows:
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N∑

i=1

ciUi =
N∑

i=1

ci (1 + ρi )

ρ +∑N
j=1 ρ2

j

[

ρ

(∑N
j=1 λ jE[B2

j ]
2(1 − ρ)

+E[(∑N
j=1 S j )

2] + 2L
∑N

j=1 E[S j ] + E[(∑N
j=1 G j )

2]
2E[∑N

j=1 S j + L]

)

+E[∑N
j=1 S j + L]

2(1 − ρ)

⎛

⎝ρ2 +
N∑

j=1

ρ2
j

⎞

⎠

⎤

⎦

+
N∑

i=1

ciE[e−νi Gi ]
1 − E[e−νi Gi ]

⎛

⎝
E

[∑N
j=1 S j + L

]

1 − ρ
− E[Gi ]

⎞

⎠ . (4.14)

By Jensen’s inequality, it can be shown that if the nondeterministic glue period dis-
tributions with means gi are changed to the degenerate (deterministic) ones with the
same means gi , i = 1, . . . , N , then the right-hand side of (4.14) becomes strictly
smaller. Therefore, the above optimization problem becomes as follows:

minimize U (g1, . . . , gN )

subject to

gi > 0, i = 1, . . . , N , (4.15)
N∑

i=1

gi = L , (4.16)

where

U (g1, . . . , gN )

=
N∑

i=1

ci (1 + ρi )

ρ +∑N
j=1 ρ2

j

[

ρ

(∑N
j=1 λ jE[B2

j ]
2(1 − ρ)

+ E[(∑N
j=1 S j )

2] + 2L
∑N

j=1 E[S j ] + L2]
2E[∑N

j=1 S j + L]

)

+
∑N

j=1 E[S j ] + L

2(1 − ρ)

⎛

⎝ρ2 +
N∑

j=1

ρ2
j

⎞

⎠

⎤

⎦+
N∑

i=1

ci

(

−1 + 1

1 − e−νi gi

)(∑N
j=1 E[S j ] + L

1 − ρ
− gi

)

.

(4.17)

Since U (g1, . . . , gN ) is continuous on D ≡ {(g1, . . . , gN ) : g1 > 0, . . . , gN >

0, g1 + · · · + gN = L} and U (g1, . . . , gN ) → ∞ as min{g1, . . . , gN } → 0+,
U (g1, . . . , gN ) takes a minimum at a point in D. At a minimum point (g1, . . . , gN ),
there exists a Lagrange multiplier κ satisfying

fi (gi ) = κ, i = 1, . . . , N , (4.18)

where

fi (gi )≡ci − ci
1 − e−νi gi

− ciνie−νi gi

(1 − e−νi gi )2

(∑N
j=1 E[S j ]+L

1 − ρ
− gi

)

, i =1, . . . , N .
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For each i = 1, . . . , N , the function fi : (0, L) → (−∞, fi (L)) is bijective, continu-
ous and strictly increasing. Therefore, it has the inverse function hi : (−∞, fi (L)) →
(0, L), which is also continuous and strictly increasing. Therefore, Eq. (4.18) and the
constraints (4.15) and (4.16) can be written as

∑N
j=1 h j (κ) = L , −∞ < κ < min{ f1(L), . . . , fN (L)}, (4.19)

gi = hi (κ), i = 1, . . . , N . (4.20)

Since limκ→−∞
∑N

j=1 h j (κ) = 0, limκ→(min{ f1(L),..., fN (L)})−
∑N

j=1 h j (κ) > L and
∑N

j=1 h j (κ) is strictly increasing in κ , (4.19) has a unique solution, say κ∗. Therefore,
from (4.20), the optimal solution (g∗

1 , . . . , g
∗
N ) is given by

g∗
i = hi (κ

∗), i = 1, . . . , N .

We will now consider a few numerical examples to look at the dependency of
different systemcharacteristics and the respective optimal glue periods. In [2], a similar
system was studied with a focus on optical switches, where the revenue of the system
depended on distributing glue periods optimally to each station. In these examples, we
will look at the problem of minimizing

∑N
i=1 ciUi , that is, the weighted waiting cost

of the system given that the sum of expected values of glue periods is fixed. Since the
optimization problem showed that the system performs best when the glue periods are
deterministic, we will only consider models with deterministic glue periods.

We consider a three-station model, and in each case vary one parameter to study
how the system performs under certain changes. In all the cases, the sum of the lengths
of deterministic glue periods is fixed, L = 3, and the service times and the switchover
times are exponentially distributed. The switchover times are symmetric and fixed for
all three stations, i.e., E[Si ] = 2 for all i = 1, 2, 3.

(i) Case 1: In this case, we keep all system parameters symmetric except the arrival
rate λi of each station. Let νi = 1, E[Bi ] = 1 and ci = 1 for all i = 1, 2, 3. In
Table 4, we show the optimal values of g1, g2, g3 and

∑N
i=1 ciUi for different

values of λi .
(ii) Case 2: In this case, we keep all system parameters symmetric except the mean

service time E[Bi ] of each station. Let λi = 1, νi = 1, and ci = 1 for all
i = 1, 2, 3. In Table 5, we show the optimal values of g1, g2, g3 and

∑N
i=1 ciUi

for different values of E[Bi ].
(iii) Case 3: In this case, we keep all system parameters symmetric except the retrial

rate νi of each station. Let λi = 0.25, E[Bi ] = 1 and ci = ρi for all i = 1, 2, 3.
In Table 6, we show the optimal values of g1, g2, g3 and

∑N
i=1 ciUi for different

values of νi . Note that in this case
∑N

i=1 ciUi =∑N
i=1 ρiE[Wi ].

(iv) Case 4: In this case, we keep all system parameters symmetric except the weight
ci of each station. Let λi = 0.25, E[Bi ] = 1 and νi = 1 for all i = 1, 2, 3. In
Table 7, we show the optimal values of g1, g2, g3 and

∑N
i=1 ciUi for different

values of ci .

We can draw the following conclusions about the optimal allocation of the glue
periods using the above method:
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Table 4 Optimal lengths of the
glue periods for different arrival
rates

λ1 λ2 λ3 g1 g2 g3
∑N

i=1 ciUi

0.3 0.3 0.3 1 1 1 359.898

0.3 0.2 0.2 1 1 1 115.063

0.3 0.2 0.1 1 1 1 84.362

Table 5 Optimal lengths of the
glue periods for different mean
service times

E[B1] E[B2] E[B3] g1 g2 g3
∑N

i=1 ciUi

0.3 0.3 0.3 1 1 1 422.888

0.3 0.2 0.2 1 1 1 137.887

0.3 0.2 0.1 1 1 1 101.876

Table 6 Optimal lengths of the
glue periods for different retrial
rates

ν1 ν2 ν3 g1 g2 g3
∑N

i=1 ciUi

3 3 3 1.0000 1.0000 1.0000 84.001

3 2 2 0.8340 1.0830 1.0830 90.680

3 2 1 0.7134 0.9157 1.3710 101.679

Table 7 Optimal lengths of the
glue periods for different
weights

c1 c2 c3 g1 g2 g3
∑N

i=1 ciUi

3 3 3 1.0000 1.0000 1.0000 418.823

3 2 2 1.1268 0.9366 0.9366 323.736

3 2 1 1.2311 1.0263 0.7426 271.086

• The optimal allocation depends on the arrival rate or the mean service time of
a station only via the factor ρ. This is due to the fact that the second term of
(4.17) only involves ρ, while the first term on the right-hand side of Eq. (4.17)
is independent of gi . However, the exact optimal allocation might depend on the
arrival rate or the mean service time of a station.

• The higher the retrial rate, the shorter the length of the glue period assigned to the
station.

• The higher the weight allocated to a station, the longer the length of the glue period
assigned to the station. This helps us in scenarios when a waiting cost is associated
with the stations.

5 Conclusions and suggestions for further research

In this paper, we have studied a gated polling model with the special features of
retrials and glue, or reservation, periods. For the case of exponentially distributed
glue periods, we have presented an algorithm to obtain the moments of the number
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of customers in each station. We expect that this method can be adapted to handle
phase-type distributed glue periods.

For generally distributed glue periods, we have obtained an expression for the
steady-state distribution of the total workload in the system, and we have used it
to derive a pseudo-conservation law for a weighted sum of the mean waiting times,
which in turn led us to an accurate approximation of the individual mean waiting
times. A topic for further research is to analyze the exact waiting time distribution, for
exponentially distributed glue periods and for deterministic glue periods.

The introduction of the concept of a glue period was motivated by the wish to
obtain insight into the performance of certain switches in optical communication
systems. We have considered the optimal choice of the glue period lengths, under the
constraint that the total glue period length per cycle is fixed. A topic for further study
is the unconstrained counterpart of this optimization problem; a complication one then
faces is that the objective function for the optimization can be nonconvex. In fact, it
is possible that the Hessian of the objective function is not positive semi-definite even
for the two-station system. However, it still seems to be intuitively natural that there
will exist a unique solution for the optimization problem.

Not restricting ourselves to optical communications, one can also interpret a glue
period as a reservation period–awindow of opportunity for claiming service at the next
visit of the server to a station. It would be interesting to study the reservation periods in
more detail and in particular to consider the problem of choosing reservation periods
in such a way that some objective function is optimized.

Acknowledgements We are grateful to the reviewer and the associate editor for valuable comments and
suggestions, which considerably improved this paper. The research is supported by the IAP program BEST-
COM, funded by the Belgian government, and by the Gravity program NETWORKS, funded by the Dutch
government. The authors gratefully acknowledge several discussions with Professor Ton Koonen (TU
Eindhoven) about optical communications. B. Kim’s research was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2017R1A2B4012676).
J. Kim’s research was supported by Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03029542).

Appendix: Approximation of the mean waiting times

Below we outline a method to approximate the mean waiting times of all customer
types. The arrival of a type-i customer occurs either during a glue period of station
i or during any other period. At the start of the service period, the customers which
will be served in the current service period are fixed. The mean length of the service
period is now the same irrespective of the order in which these customers are served.
Without loss of generality, we will assume that the customers who arrive during a glue
period of station i are served first and then customers who retry are served.

Let W̄i and W̃i denote the waiting times of type-i customers who arrive during a
glue period of station i and any other period, respectively. Further, Gires denotes the
residual time of a glue period of station i . Finally, Cires denotes the residual time of a
non-glue period of station i . A type-i customer arriving during a glue period of station
i has to wait for the residual glue period. Further, it has to wait for all the customers
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who arrived before it during the glue period. Therefore,

E[W̄i ] = E[Gires ] + ρiE[Gires ] = (1 + ρi )E[Gires ].

A type-i customer arriving during a non-glue period of station i has to wait for the
residual non-glue period and the glue period. Then, it either gets in the queue for service
or it remains in the orbit. With probability G̃i (νi ) it remains in the orbit and has to wait
until the next visit to get served, and this repeats. Therefore, on average, it has to wait
for G̃i (νi )/(1 − G̃i (νi )) cycles before it gets into the queue for service. When it gets
in the queue, it has to wait for all the type-i customers who have arrived during the
glue period to be served, and then the customers who arrived before it and who will be
served in the current service period (on average this number is approximately equal to
the number of customers who arrived during the residual non-glue period before the
arrival of the tagged customer). Therefore,

E[W̃i ] ≈ E[Cires ] + E[Gi ] + G̃i (νi )

1 − G̃i (νi )
E[C] + ρiE[Gi ] + ρiE[Cires ]

= (1 + ρi )
(
E[Cires ] + E[Gi ]

)+ G̃i (νi )

1 − G̃i (νi )
E[C].

The probability that a type-i customer arrives during a glue period of station i is
E[Gi ]/E[C], and the probability that it arrives during a non-glue period equals 1 −
(E[Gi ]/E[C]). Therefore,

E[Wi ] = E[Gi ]
E[C] E[W̄i ] + E[C] − E[Gi ]

E[C] E[W̃i ]

≈ (1 + ρi )

(
E[Gi ]
E[C] E[Gires ] + E[C] − E[Gi ]

E[C]
(
E[Cires ] + E[Gi ]

)
)

+ G̃i (νi )

1 − G̃i (νi )
(E[C] − E[Gi ]) .

Let Rci be the residual cycle time of the system with respect to station i . Then,

E[Rci ] = E[Gi ]
E[C] E[Gires ] + E[C] − E[Gi ]

E[C]
(
E[Cires ] + E[Gi ]

)
, i = 1, · · · , N .

We assume that E[Rci ] = E[Rc] for all i = 1, . . . , N . We thus obtain (4.11):

E[Wi ] ≈ (1 + ρi )E[Rc] + G̃i (νi )

1 − G̃i (νi )
(E[C] − E[Gi ]) .
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