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Abstract In this paper, we consider an MX /M/1/SET-VARI queue which has batch
arrivals, variable service speed and setup time.Ourmodel ismotivated by power-aware
servers in data centers where dynamic scaling techniques are used. The service speed
of the server is proportional to the number of jobs in the system. The contribution of
our paper is threefold. First, we obtain the necessary and sufficient condition for the
stability of the system. Second, we derive an expression for the probability generating
function of the number of jobs in the system. Third, our main contribution is the
derivation of the Laplace–Stieltjes transform (LST) of the sojourn time distribution,
which is obtained in series form involving infinite-dimensionalmatrices. In thismodel,
since the service speed varies upon arrivals and departures of jobs, the sojourn time of
a tagged job is affected by the batches that arrive after it. This makes the derivation of
the LST of the sojourn time complex and challenging. In addition, we present some
numerical examples to show the trade-off between the mean sojourn time (response
time) and the energy consumption. Using the numerical inverse Laplace–Stieltjes
transform, we also obtain the sojourn time distribution, which can be used for setting
the service-level agreement in data centers.
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1 Introduction

In this paper, we consider a single-server queue with batch Poisson arrivals, variable
service speed and setup time. Our model is motivated by power-aware servers in
data centers [9,10,17]. The CPU of a server is able to process at multiple speeds by
using either frequency scaling [13] or dynamic voltage and frequency scaling (DVFS)
techniques [11,15]. In recent years, CPUs with variable speed have become popular
because they can save energy consumption while keeping acceptable response time
for jobs. The server can automatically adjust its speed according to the workload in
the system. By doing so, the power consumption is small at low workload and is large
at high workload.

In this paper, we assume that jobs arrive at the system in batches according to a
Poisson process and that the arrival process is independent of the state of the sys-
tem. The service requirement of each job in a batch is independently and identically
distributed (i.i.d.) with an exponential distribution. The service speed of the server is
instantaneously adapted according to the number of jobs in the system. In particu-
lar, the service rate of the server is proportional to the number of jobs in the system.
Furthermore, the server is turned off immediately after becoming empty in order to
save energy consumption. At the moment when a batch arrives at an empty system,
the OFF server is turned on. However, some exponentially distributed setup time is
needed in order to reactivate the OFF server. We call the above queueing model the
MX /M/1/SET-VARI queue where SET and VARI stand for setup and variable service
rate, respectively.

The contribution of this paper is threefold. First, we obtain the necessary and suf-
ficient condition for the existence of the unique stationary queue length distribution,
which we call the stability condition hereafter. We show that the stability condition
of our model is that the logarithmic moment of the batch size is finite. Interestingly,
the system can be stable even if the mean batch size is infinite. Second, we derive the
probability generating function (PGF) of the number of jobs in the system. It should
be noted that the number of jobs in the system of our model is identical to that of the
MX /M/∞ queue with setup time, which to the best of our knowledge has not been
investigated in the literature. Third, we derive the Laplace–Stieltjes transform (LST)
of the sojourn time distribution, which is obtained in series form involving infinite-
dimensional matrices. The derivation of the sojourn time distribution is challenging
because the sojourn time of a tagged job depends on not only the state of the system
upon arrival but also on the batches arriving after it. Therefore, the sojourn time distri-
bution cannot be obtained directly from the PGF of the queue length distribution via
the distributional Little’s law [8].

Our model extends the one proposed by Lu et al. [9] in which anM/M/1/SET-VARI
queue was considered. In [9], the solution in terms of infinite series was presented for
the stationary queue length distribution. From the queue length distribution, the mean
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response time is obtained via Little’s law and themean power consumption is obtained.
These metrics are used in [9] to find the energy-response trade-off. However, the
sojourn time distribution was not considered in [9]. Baba [2] considered the MX /M/1
queue with setup time where the processing speed of the server is fixed. He derived the
PGF of the number of jobs in the system and the LST of the sojourn time distribution.
Adan and D’Auria [1] considered a single-server queueing system where jobs arrive
according to a Poisson arrival stream, the service requirements of jobs follow the
exponential distribution with mean 1 and the service rate of the server is controlled
by a threshold. They derived the stationary distribution of the number of jobs in the
system and the LST of the sojourn time distribution in explicit form. The sojourn time
distribution of our model is derived using first-step analysis, which is also adopted by
Adan and D’ Auria [1]. The difference is that the underlying Markov chain in Adan
andD’Auria [1] is homogeneous after a threshold, while our underlyingMarkov chain
is spatially nonhomogeneous. As a result, the former allows explicit expression while
our formulae involve inverse mappings of infinite matrices.

The remainder of this paper is organized as follows: In Sect. 2, we describe the
MX /M/1/SET-VARI queue in detail. In Sect. 3, we derive the stability condition. In
Sect. 4, we derive the PGF of the number of jobs in the system in an integral but
computable form. In Sect. 5, we derive the LST of the sojourn time distribution. In
Sect. 6, we present numerical experiments showing the energy-performance trade-
off and the sojourn time distribution by numerically inverting the Laplace–Stieltjes
transform. Finally, in Sect. 7, we present the conclusion of this paper and future work.

2 Model

In this section, we describe our queueing model, the MX /M/1/SET-VARI queue, in
detail. The MX /M/1/SET-VARI queue has a single-server operating under the FCFS
(First Come First Served) service discipline and an infinite buffer space. Batches of
jobs arrive at the system according to a Poisson process with rate λ. The numbers of
jobs in batches are i.i.d., where X is the batch size with distribution xi = P(X = i)
for i ∈ N := {1, 2, . . . } and the PGF (Probability Generating Function) is denoted by
̂X(z) := ∑

k≥1 xkz
k .

The special feature of ourmodel is that the service speed of the server is proportional
to the number of jobs in the system. In particular, the service rate is nμ, provided that
the number of jobs in the system is n. This is equivalent to the following assumption:
The service requirements of jobs are i.i.d. with exponential distribution with mean
1. The basic speed of the server when there is one job in the system is given by
μ ∈ (0,∞). When there are n jobs in the system, the speed of the server is scaled
up to nμ. Thus, when there are n jobs in the system, the residual sojourn time of
the ongoing job follows the exponential distribution with mean (nμ)−1 due to the
memoryless property of exponential distributions.

In order to save energy, the server is turned off immediately if the system becomes
empty upon a service completion. Furthermore, when a batch arrives at the empty
system, the server is turned on. However, the server needs some setup time before
it can process jobs. Therefore, if a batch arrives at the empty system, it has to wait
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Fig. 1 Transition diagram of the case x1 + x2 = 1

until the setup time finishes. We assume that the setup time follows the exponential
distribution with mean α−1. During the setup time, the server cannot serve a job but
consumes energy.

Let I (t) and N (t) denote the state of the server and the number of jobs in the system,
respectively, at time t . When the server is off or in the setup process, I (t) = 0, and
when the server is processing a job, I (t) = 1. In the current setting, the joint stochastic
process {Z(t) := (I (t), N (t)); t ≥ 0} is an irreducible continuous-timeMarkov chain
with state spaceS = {(0, j); j ∈ Z+} ∪ {(1, j); j ∈ N}, where Z+ := {0} ∪N. We
assume that x1 > 0 so that the Markov chain {Z(t)} is irreducible. Figure 1 shows the
state transition diagram of this Markov chain for a special case where the maximum
batch size is two.

Remark 1 Asmentioned in Sect. 1, the PGF of the number of jobs in the system of the
MX /M/1/SET-VARI queue is identical to that of the MX /M/∞ queue with setup time.
However, the sojourn time distributions of these two models may be different because
the sojourn time distribution of a tagged job of the latter is determined upon its arrival,
while that of the former is affected by future arrivals. Some researchers have studied
the MX /M/∞ queue without setup time. For example, Shanbhag [14] derived moment
generating functions of some performance measures, for example, the number of jobs
in the system and the sojourn time. Cong [3] derived the stability condition.

3 The stability condition

In this section, we derive the stability condition of our model. Because {Z(t); t ≥ 0}
is an irreducible and regular Markov chain, {Z(t)} is positive recurrent if and only if
a unique stationary distribution exists.

It follows from Theorem 1 that the stability condition of the MX /M/1/SET-VARI
queue is that the logarithmic moment of the batch size is finite. Cong [3] derived the
same stability condition for the special case of the MX /M/∞ queue without setup
time. The addition of the setup time does not change the stability of the system. This is
intuitively clear because the effects of setup times disappear when the system is under
heavy load (i.e., large number of jobs present).

It should be noted that the proof of Cong [3] is based on the transient solution,
which is derived using the method of collective marks. Here, we prove the stability
condition for amore general model than the one in Cong [3] using alternativemethods.
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Theorem 1 {Z(t); t ≥ 0} has a unique stationary distribution if and only if

E[log(X + 1)] < ∞. (3.1)

Proof It should be noted that {Z(t)} is positive recurrent if and only if there exists
an invariant measure ξ := (ξi, j )(i, j)∈S of {Z(t)} such that ξi, j > 0 for (i, j) ∈ S

and
∑

(i, j)∈S ξi, j < ∞ [12]. We define the generating functionŝξ0(z) and̂ξ1(z) as
follows:

̂ξ0(z) =
∞
∑

j=0

ξ0, j z
j , ̂ξ1(z) =

∞
∑

j=1

ξ1, j z
j .

The invariant measure ξ satisfies the following balance equations:

λξ0,0 = μξ1,1, (3.2)

(λ + α)ξ0, j = λ

j
∑

k=1

xkξ0, j−k, j = 1, 2, . . . , (3.3)

(λ + μ)ξ1,1 = αξ0,1 + 2μξ1,2, (3.4)

(λ + jμ)ξ1, j = αξ0, j + (1 + j)μξ1, j+1 + λ

j−1
∑

k=1

xkξ1, j−k, j = 2, 3, . . . .(3.5)

Multiplying (3.3) by z j , taking the sum over j ∈ N, and rearranging the result, we
obtain

̂ξ0(z) = (λ + α)ξ0,0

λ + α − λ̂X(z)
. (3.6)

Multiplying (3.4) by z and (3.5) by z j and taking the sum over j ≥ 2 yields

λ

∞
∑

j=1

ξ1, j z
j + μz

∞
∑

j=1

ξ1, j
(

z j
)′

= α

∞
∑

j=0

ξ0, j z
j − αξ0,0 + μ

∞
∑

j=1

ξ1, j
(

z j
)′ − μξ1,1 + λ

∞
∑

k=1

xkz
k

∞
∑

j=1

ξ1, j z
j .

Rearranging the above equation, we find that

d

dz
̂ξ1(z) = λ

μ
q(z)̂ξ1(z) + λ

μ
q(z)̂ξ0(z), (3.7)

where q(z) := (1 − ̂X(z))/(1 − z). We define Q(z) as the primitive function of q(z)
such that Q(0) = 0. The solution of (3.7) is given by
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̂ξ1(z) = H(z) exp
( λ

μ
Q(z)

)

, (3.8)

where H(z) is some function which will be determined later. Differentiating (3.8) and
substituting the result into (3.7), we obtain

d

dz
H(z) = exp

(

− λ

μ
Q(z)

) λ

μ
q(z)̂ξ0(z).

It follows from̂ξ1(0) = 0 and Q(0) = 0 that H(0) = 0. Therefore, we have

H(z) =
∫ z

0
exp

(

− λ

μ
Q(u)

) λ

μ
q(u)̂ξ0(u)du.

Substituting this equation into (3.8), we obtain

̂ξ1(z) = exp
( λ

μ
Q(z)

)

{ ∫ z

0
exp

(

− λ

μ
Q(u)

) λ

μ
q(u)̂ξ0(u)du

}

. (3.9)

It should be noted that (3.6) and (3.9) are equivalent to the system of balance equa-
tions (3.2)–(3.6).

Assuming that {Z(t)} is positive recurrent,wewill prove that (3.1) holds. Thus, there
exists an invariantmeasure ξ such that ξi, j > 0 for (i, j) ∈ S and

∑

(i, j)∈S ξi, j < ∞.
Therefore, we have

ξ0,0 ≤ ̂ξ0(z), for all z ∈ [0, 1], (3.10)

̂ξ0(z) +̂ξ1(z) ≤
∑

(i, j)∈S
ξi, j , for all z ∈ [0, 1]. (3.11)

From (3.9) and (3.10), we also have

̂ξ0(z) +̂ξ1(z) ≥ ξ0,0 + ξ0,0 exp
( λ

μ
Q(z)

)

∫ z

0
exp

(

− λ

μ
Q(u)

) λ

μ
q(u)du

= ξ0,0 + ξ0,0 exp
( λ

μ
Q(z)

)

∫ z

0

d

du

{

− exp
(

− λ

μ
Q(u)

)}

du

= ξ0,0 exp
( λ

μ
Q(z)

)

, for all z ∈ [0, 1]. (3.12)

Because of (3.11), ξi, j > 0, (i, j) ∈ S , and
∑

(i, j)∈S ξi, j < ∞. We can take the
limit of (3.12) as z ↑ 1 in order to obtain

∞
∑

(i, j)∈S
ξi, j ≥ ξ0,0 exp

( λ

μ
Q(1)

)

. (3.13)
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Using Q(z) = ∑

j≥1 P[X ≥ j]z j/j , we can show the following inequality:

Q(1) =
∞
∑

k=1

xk

{ k+1
∑

j=1

1

j
− log(k + 1)

}

+ E
[

− 1

X + 1
+ log(X + 1)

]

> γ − E
[ 1

X + 1

]

+ E[log(X + 1)]
≥ γ − 1/2 + E[log(X + 1)], (3.14)

where γ is Euler’s constant [16]. The first inequality in (3.14) is due to

k+1
∑

j=1

1

j
− log(k + 1) > γ,

while the second inequality in (3.14) is because X ≥ 1. Therefore, it follows from
(3.13), (3.18) and

∑

(i, j)∈S ξi, j < ∞ that E[log(X + 1)] < ∞.
Now, assuming that E[log(X + 1)] < ∞, we will prove the existence of a positive

invariant measure ξ such that
∑

(i, j)∈S ξi, j < ∞. We select an arbitrary ξ0,0 > 0.
First, we prove that ξi, j > 0 for any (i, j) ∈ S .We can recursively prove that ξ0, j > 0
for j ∈ N by using (3.3), and it follows from (3.2) that ξ1,1 > 0. In addition, comparing
the coefficients of z j on both sides of (3.7), we have, for j ∈ N,

( j + 1)ξ1, j+1 = λ

μ

j
∑

k=0

P[X > j − k]ξ0,k + λ

μ

j
∑

k=1

P[X > j − k]ξ1,k, (3.15)

where we have used q(z) = ∑

j≥0 P[X > j]z j . Due to ξ0,0 > 0, we can also
prove that ξ1, j > 0 for j ≥ 2 by using the recursive formula (3.15). Thus, under the
assumption that ξ0,0 > 0, it follows that ξi, j > 0 for any (i, j) ∈ S .

Next, we prove that
∑

(i, j)∈S ξi, j < ∞. From (3.6), we have

̂ξ0(z) ≤ λ + α

λ + α − λ̂X(1)
ξ0,0 ≤ λ + α

α
ξ0,0, for all z ∈ [0, 1], (3.16)

where the second inequality is to cover the case P[X < ∞] < 1. From (3.9) and
(3.16), we also have

̂ξ0(z) +̂ξ1(z)

≤ ξ0,0
λ + α

α
+ ξ0,0

λ + α

α
exp

( λ

μ
Q(z)

)

∫ z

0
exp

(

− λ

μ
Q(u)

) λ

μ
q(u)du

= ξ0,0
λ + α

α
+ ξ0,0

λ + α

α
exp

( λ

μ
Q(z)

)

∫ z

0

d

du

{

− exp
(

− λ

μ
Q(u)

)}

du

= ξ0,0
λ + α

α
exp

( λ

μ
Q(z)

)

, for all z ∈ [0, 1]. (3.17)
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Using Q(z) = ∑

j≥1 P[X ≥ j]z j/j , we can show the following inequality:

Q(z) ≤
∑

j≥1

P[X ≥ j]1
j

=
∞
∑

k=1

xk

{ k
∑

j=1

1

j
− log(k + 1)

}

+ E[log(X + 1)]

< γ + E[log(X + 1)], for all z ∈ [0, 1], (3.18)

where the inequality in (3.18) is due to

k
∑

j=1

1

j
− log(k + 1) < γ.

Taking the limit of (3.17) as z ↑ 1, it follows from (3.18) that

lim
z↑1

{

̂ξ0(z) +̂ξ1(z)
} ≤ ξ0,0

λ + α

α
exp

( λ

μ
{γ + E[log(X + 1)]}

)

. (3.19)

Note that

lim
z↑1

{

̂ξ0(z) +̂ξ1(z)
} = lim

z↑1

∞
∑

j=0

ξ0, j z
j + lim

z↑1

∞
∑

j=1

ξ1, j z
j

=
∞
∑

j=0

lim
z↑1 ξ0, j z

j +
∞
∑

j=1

lim
z↑1 ξ1, j z

j

=
∞
∑

j=0

ξ0, j +
∞
∑

j=1

ξ1, j , (3.20)

where the second equation holds because ξi, j > 0 for (i, j) ∈ S . It follows from
(3.19), (3.20), ξ0,0 > 0 and E[log(X +1)] < ∞ that there exists an invariant measure
ξ such that ξi, j > 0 for (i, j) ∈ S and

∑

(i, j)∈S ξi, j < ∞. Therefore {Z(t)} is
positive recurrent. 	


4 The number of jobs in the system

In this section, we consider the number of jobs in the system in steady state, i.e.,
assuming E[log(X + 1)] < ∞. From Theorem 1, there exists the unique stationary
distribution π = (πi, j )i, j∈S , where πi, j := limt→∞ P[ I (t) = i, N (t) = j ] for
(i, j) ∈ S . We define the number of jobs in the system in steady state as N , and its
PGF as π̂(z) := ∑∞

j=0 π0, j z j +∑∞
j=1 π1, j z j . The PGF π̂(z) is given by Theorem 2.
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Theorem 2 π̂(z) is given as follows:

π̂(z) =
exp

(

λ
μ
Q(z)

) + ∫ z
0 exp

(

λ
μ
{Q(z) − Q(u)}) λ(λ+α)̂X ′(u)

{λ+α−λ̂X(u)}2 du

exp
(

λ
μ
Q(1)

) + ∫ 1
0 exp

(

λ
μ
{Q(1) − Q(u)}) λ(λ+α)̂X ′(u)

{λ+α−λ̂X(u)}2 du
. (4.1)

Proof The stationary distribution π is the positive invariant measure which satisfies
the normalizing condition, i.e., π̂(1) = 1. From (3.6) and (3.9), we have

π̂(z) = λ + α

λ + α − λ̂X(z)
π0,0

+
∫ z

0
exp

(

− λ

μ

{

Q(z) − Q(u)
}

) λ

μ
q(u)

λ + α

λ + α − λ̂X(z)
π0,0du. (4.2)

By partial integration, we obtain

π̂(z) = π0,0 exp
( λ

μ
Q(z)

)

+π0,0

∫ z

0
exp

( λ

μ

{

Q(z) − Q(u)
}

) λ(λ + α)̂X ′(z)
{λ + α − λ̂X(z)}2 du. (4.3)

From (4.3) and π̂(1) = 1, we obtain π0,0 as follows:

π−1
0,0 = exp

( λ

μ
Q(1)

)

+
∫ 1

0
exp

( λ

μ

{

Q(1) − Q(u)
}

) λ(λ + α)̂X ′(z)
{λ + α − λ̂X(z)}2 du. (4.4)

Substituting (4.4) into (4.3), we obtain Theorem 2. 	

Remark 2 As mentioned in Sect. 1, the number of jobs in the system in our model is
identical to that in the MX /M/∞ queue with setup time. Simplifying equation (2.9)
in Shanbhag [14] for the system without setup time, we know that the PGF of the
number of customers for that system, denoted by π̂∗(z), can be obtained as follows:

π̂∗(z) = exp
( λ

μ
{Q(z) − Q(1)}

)

. (4.5)

It is easy to see that (4.1) tends to (4.5) as α → ∞.

We can easily obtain the average number of jobs in the system.

Corollary 1 Assuming that E[X ] < ∞, E[N ] is given as follows:

E[N ] = λE[X ]
μ

{

λ + α

α

μ

α
π0,0 + 1

}

,

where π0,0 is given by (4.4).
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Proof Differentiating (4.1), we obtain

π̂ ′(z) = λ(λ + α)̂X ′(z)
(λ + α − λ̂X(z))2

π0,0 + λ

μ
q(z)π̂(z).

Taking the limit as z ↑ 1 in the above equation yields

π̂ ′(1) = lim
z↑1 π̂ ′(z)

= λ(λ + α)E[X ]
α2 π0,0 + λ

μ
lim
z↑1

1 − ̂X(z)

1 − z

= λ(λ + α)E[X ]
α2 π0,0 + λ

μ
E[X ],

where the third equality is due to L’Hospital’s rule. From the relation E[N ] = π̂ ′(1),
we obtain Corollary 1. 	


5 Sojourn time distribution

In this section, we derive the LST of the sojourn time distribution. Note that the LST
of a distribution function F(t) is defined as F∗(s) := ∫

t≥0 e
−st F(dt). We assume that

E[X ] < ∞ in this section for the existence of the equilibrium distribution.
In the MX /M/1/SET-VARI queue, the server changes the speed upon arrivals and

departures of jobs. Therefore, the sojourn time distribution of a tagged job is affected
by the batches that arrive after it. This makes the derivation of the sojourn time distri-
bution complex and challenging. We first derive the conditional LST for the sojourn
time distribution. Then, combining with the queue length distribution, we obtain the
unconditional LST for the sojourn time distribution.

First, we consider the case where the server is processing a job when the tagged
job arrives. Let S1(n,m) denote the residual sojourn time of the tagged job, given that
it is in the mth position and the system state is (1, n). Conditioning on the first-step
transitions, we have, for m ∈ N and n ≥ m,

S1(n,m) = Y

λ + nμ
+

⎧

⎪

⎨

⎪

⎩

S1(n − 1,m − 1), w.p.
nμ

λ + nμ
,

S1(n + k,m), w.p.
λxk

λ + nμ
, k ∈ N,

(5.1)

where Y denotes the exponential random variable with mean 1, and S1(n, 0) = 0 for
n ∈ N. Furthermore, let ψ1(n,m, s) denote the LST of S1(n,m). Taking the LST of
both sides of (5.1), we obtain, for m ∈ N and n ≥ m,
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ψ1(n,m, s) = nμ

s + λ + nμ
ψ1(n − 1,m − 1, s)

+ λ

s + λ + nμ

∞
∑

k=1

xkψ1(n + k,m, s), (5.2)

where ψ1(n, 0, s) = 1. We use the convention that ψ1(n,m, s) = 0 for n < m.
Furthermore, we define the infinite column vector ψ1(m, s) as

ψ1(m, s) = (ψ1(0,m, s), . . . , ψ1(m − 1,m, s), ψ1(m,m, s), ψ1(m + 1,m, s), . . . )
,

where a
 denotes the transposed vector of a. Note that the nth element of ψ1(m, s)
is ψ1(n − 1,m, s) for n ≥ m + 1.

We define infinite matrices Λ(1) and M as

Λ(1) = (

Λ
(1)
i j

)

(i, j)∈N×N
, (5.3)

Λ
(1)
i j =

⎧

⎨

⎩

λx j−i

s + λ + (i − 1)μ
, 1 < i < j,

0, otherwise,

M = (

Mi j
)

(i, j)∈N×N
, (5.4)

Mi j =
⎧

⎨

⎩

(i − 1)μ

s + λ + (i − 1)μ
, 1 < i = j + 1,

0, otherwise.

Rearranging (5.2) by using these matrices, we obtain

ψ1(m, s) = Mψ1(m − 1, s) + Λ(1)ψ1(m, s), m ∈ N. (5.5)

From ψ1(n, 0, s) = 1 for any n ∈ N, we have

ψ1(0, s) = 1,

where 1 is the infinite column vector whose elements are all equal to 1. Let ‖ z ‖2
denote the Euclidean norm of the vector z. We prove that the operator norm of the
infinitematrixΛ(1), ‖ Λ(1) ‖= sup‖z‖2=1 ‖ Λ(1)z ‖2, is strictly smaller than 1. Indeed,
for all z = (z1, z2, . . . )
 such that ‖ z ‖2= 1, we have

‖ Λ(1)z ‖2 =
(

∑

i>1

(
∑

j>i

λx j−i

s + λ + (i − 1)μ
z j

)2)1/2

=
(

∑

i>1

λ

s + λ + (i − 1)μ

(
∑

j>i

x j−i z j
)2)1/2

<
λ

λ + s

(
∑

i>1

(
∑

j≥1

x j z j+i

)2)1/2
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≤ λ

λ + s

(
∑

i>1

∑

j≥1

x j
(

z j+i

)2)1/2

≤ λ

λ + s

(
∑

j≥1

x j ||z||22
)1/2

= λ

λ + s
,

where the second inequality holds because of Jensen’s inequality. Thus,

‖ Λ(1) ‖≤ λ

λ + s
< 1.

Because ‖ Λ(1) ‖ is strictly smaller than 1, (I − Λ(1)) has an inverse mapping, where
I is the infinite identity matrix [6, Section 29, Theorem 8]. Therefore, from (5.5), we
obtain the following recurrence equations, for m ∈ N:

ψ1(m, s) = (I − Λ(1))−1Mψ1(m − 1, s).

Solving this equation, we obtain

ψ1(m, s) = {(I − Λ(1))−1M}m1. (5.6)

Next, we consider the case where the server is not processing a job when the tagged
job arrives. Let S0(n,m) denote the residual sojourn time of the tagged job, given that
the tagged job is in the mth position and the system state is (0, n). Let ψ0(n,m, s)
denote the LST of S0(n,m) for n ∈ N and m ≤ n. In addition, we define the infinite
column vector ψ0(m, s) as

ψ0(m, s) = (ψ0(0,m, s), . . . , ψ0(m − 1,m, s), ψ0(m,m, s),

ψ0(m + 1,m, s), . . . )
,

where ψ0(n, 0, s) = 1, n ∈ Z+, and ψ0(n,m, s) = 0, n ∈ Z+ and m > n. We use the
convention that ψ0(n,m, s) = 0 for n < m. As with the analysis for ψ1(m, s), i.e.,
(5.1)–(5.6), we obtain

ψ0(m, s) = (I − Λ(0))−1Aψ1(m, s), (5.7)

where the infinite matrices Λ(0) and A are defined as follows:

Λ(0) = (

Λ
(0)
i j

)

(i, j)∈N×N
, Λ

(0)
i j =

⎧

⎨

⎩

λx j−i

s + λ + α
, 1 < i < j,

0, otherwise,
(5.8)

A = (

Ai j
)

(i, j)∈N×N
, Ai j =

{ α

s + λ + α
, 1 < i = j,

0, otherwise.
(5.9)
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Note that (I − Λ(0)) has an inverse mapping, which can be proved similarly to the
analysis for Λ(1).

Next, we derive the unconditional LST of the sojourn time distribution. To this end,
we define τ(i, n,m) as the probability that the tagged job is located in themth position
and the state of the system becomes (i, n) immediately after its arrival. Let (I ,Lp)

denote the state of the system just before the tagged job arrives at the system. Let
P denote the position at which the tagged job is located immediately after it enters
the system. Let ˜X denote the number of jobs in the batch to which the tagged job
belongs. Under the assumption thatE[X ] < ∞, the distribution of ˜X is the equilibrium
distribution of X , given in [4], for k ∈ N,

P[˜X = k] = kxk
E[X ] .

In addition, from PASTA [18], we have, for (i, n) ∈ S ,

P[I = i, Lp = n] = πi,n .

Let X (n,m) := {k ; xk > 0, n ≤ k ≤ m}. We obtain, for n ∈ N and n ≥ m,

τ(1, n,m)

=
∑

k∈X (n−m+1,n−1)

P[I = 1, Lp = n − k, ˜X = k, P = m]

=
∑

k∈X (n−m+1,n−1)

P[P = m|I = 1, Lp = n − k, ˜X = k]

×P[I = 1, Lp = n − k, X̃ = k]
=

∑

k∈X (n−m+1,n−1)

1

k
P[X̃ = k|I = 1, Lp = n − k]P[I = 1, Lp = n − k]

=
∑

k∈X (n−m+1,n−1)

1

k

kxk
E[X ]π1,n−k

=
n−1
∑

k=n−m+1

π1,n−k
xk

E[X ] .

Similarly to the above, we obtain, for n ∈ Z+ and n ≥ m,

τ(0, n,m) =
n

∑

k=n−m+1

π0,n−k
xk

E[X ] .

Since we use the convention thatψi (n,m, s) = 0 for n < m, the LST of the sojourn
time distribution, denoted by ψ(s), can be expressed as follows by using ψ0(n,m, s)
and ψ1(n,m, s):
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ψ(s) =
∞
∑

n=1

n
∑

m=1

τ(0, n,m)ψ0(n,m, s) +
∞
∑

n=2

n
∑

m=2

τ(1, n,m)ψ1(n,m, s)

=
∞
∑

m=1

∞
∑

n=m

n
∑

k=n−m+1

π0,n−k
xk

E[X ]ψ0(n,m, s)

+
∞
∑

m=2

∞
∑

n=m

n−1
∑

k=n−m+1

π1,n−k
xk

E[X ]ψ1(n,m, s). (5.10)

It is obvious that the infinite series included in ψ(s) converges. The reason is that
∑∞

n=1
∑n

m=1 τ(0, n,m) + ∑∞
n=2

∑n
m=2 τ(1, n,m) = 1 and 0 ≤ ψi (n,m, s) ≤ 1 for

i = 1, 2, n ∈ N and 1 ≤ m ≤ n.
For a compact expression of (5.10), we define the infinite matrices Im , for m ∈ N,

and B as

Im = (

Ii j
)

(i, j)∈N×N
, Ii j =

{

1, 1 ≤ i = j ≤ m,

0, otherwise,
(5.11)

B = (

Bi j
)

(i, j)∈N×N
, Bi j =

{

x j−i , 1 ≤ i < j,
0, otherwise.

(5.12)

In addition, we define the infinite row vectors π0 and π1 as

π0 = (π0,0, π0,1, π1,2, . . . ), π1 = (0, π1,1, π1,2, . . . ).

Rearranging (5.10) by using these matrices and vectors, we obtain

ψ(s) =
∞
∑

m=1

π0

E[X ] ImB(I − Im)ψ0(m, s)

+
∞
∑

m=1

π1

E[X ] ImB(I − Im)ψ1(m, s). (5.13)

From (5.6), (5.7) and (5.13), we obtain the LST of the sojourn time distribution as
follows:

Theorem 3 The LST of the sojourn time distribution, ψ(s), is given as follows:

ψ(s) =
∞
∑

m=1

1

E[X ]
[

π0 ImB(I − Im)(I − Λ(0))−1A
][

(I − Λ(1))−1M
]m

1

+
∞
∑

m=1

1

E[X ]
[

π1 ImB(I − Im)
][

(I − Λ(1))−1M
]m

1,

where Λ(1), M, Λ(0), A, Im and B are given by (5.3), (5.4), (5.8), (5.9), (5.11 and
(5.12, respectively.
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Remark 3 TheLSTof the sojourn timedistributiongiven inTheorem3 is in series form
involving infinite-dimensional matrices. Therefore, an approximation is necessary for
numerical calculation. In Sect. 6.2, for numerical experiments, we present a method to
approximate ψ(s). However, we have not yet been able to find a bound for the error. It
is important future work to find an approximation method with guaranteed accuracy.

6 Numerical results

In this section, we present some numerical results for the MX /M/1/SET-VARI queue.
We consider three types of distribution for X : the binomial distributionwith parameters
n ∈ N and 0 < p < 1, denoted by Binom(n, p), the discrete uniform distribution with
parameters a, b ∈ N (a ≤ b), denoted by Unif{a, b}, and the geometric distribution
with parameter 0 < p < 1, denoted by Geo(p).

6.1 Energy consumption and response time trade-off

We consider the trade-off between the average energy consumption and the average
sojourn time. In order to compare the variable speed CPU with the fixed speed CPU,
we also consider theMX/M/1/SET-FIX queue where the service speed is fixed, while
other settings are kept the same as the MX /M/1/SET-VARI queue. We use the PGF
of the number of jobs in the system derived for the MX/M/1/SET-FIX queue in [2].
The assumptions regarding energy consumption per unit time for each state are given
in Table 1.

Note that the constants Kservice and Kset from Table 1 depend on the particular
system. Let E[Wv] and E[Wf] denote the average sojourn time of the variable speed
queue and that of the fixed speed queue, respectively. In addition, let E[Pv] and E[Pf]
denote the average energy consumption of the variable speed queue and the fixed speed
queue, respectively. E[Pv] and E[Pf] can be expressed as follows:

E[Pv] = μ2{π̂0(1) − π0,0 + π̂ ′′
1 (1) + π̂ ′

1(1)},
E[Pf] = μ2

(λ + α)(λ + αλE[X ]/μ)
.

We will explore the relationship between the average sojourn time and the average
power consumption. In addition, we will compare E[Wv] with E[Wf] under the con-
dition that E[Pv] = E[Pf]. In what follows, we assume that α = 0.1 and λE[X ] = 1.

Table 1 Energy consumption
per unit time at each state [7,9]

State Variable Fixed

Service (1, j) j ≥ 1 Kservice × ( jμ)2 Kservice × μ2

Setup (0, j) j ≥ 1 Kset × μ2

Idle (0, 0) 0
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Fig. 2 λE[X ] = 1.0, α = 1.0. X follows the binomial distribution

Note that λE[X ] is the mean number of jobs arriving per unit time. In the numerical
experiments, the value of λ and the distribution of X changewhile keepingλE[X ] = 1.

The procedure of numerical experiments is as follows. First, fixing the value ofμ ∈
(0, 3], we compute the average energy consumption per unit time of theMX /M/1/SET-
VARI queue, denoted by Av, and the average sojourn time. Letμf(A) denote the unique
service rate which realizes the average energy consumption A in the fixed queue. Next,
we compute μf(Av) by

μf(Av) = ( − αλE[X ] +
√

(αλE[X ])2 + 4λAv(λ + α)
)

/(2λ).

As a result, the energy consumption for both models is kept the same. Finally, we
compute the average sojourn time of theMX /M/1/SET-FIX queue under the parameter
μf(Av). In this numerical experiment, we compute the average sojourn time from the
average number of jobs in the system using Little’s formula [8].

In Fig. 2, we present the results when X is Binom(9, 1/6) (and λ = 0.4) and when
X is Binom(9, 1/3) (and λ = 0.25). Jobs in the case of Binom(9, 1/3) are more
likely to arrive in larger batches than those in the case of Binom(9, 1/6). In Fig. 3,
we present the results when X is Unif{1, 4} (and λ = 0.4) and when X is Unif{1, 7}
(and λ = 0.25). Similarly, jobs in the case of Unif{1, 7} are likely to arrive in larger
batches than those in the case of Unif{1, 4}.

In all the cases in Figs. 2 and 3,we observe the trade-off between the average sojourn
time and the average power consumption, i.e., the average sojourn time is smaller when
the average power consumption is larger. In addition, keeping the average number of
arrivals per unit time (λE[X ]) and the average power consumption the same, arriving
in larger batches results in a smaller average sojourn time. This result seems intuitively
true and might be proven.

123



Queueing Syst (2017) 86:241–260 257

Fig. 3 λE[X ] = 1.0, α = 1.0. X follows the discrete uniform distribution

Let’s compare the variable speed queue with the fixed queue. Our numerical results
show that for high-performance applications, in which delays must be kept small,
having variable speed can result in both shorter delays and lower energy than having
fixed speed, while the opposite is true for applications where energy usage is more
important than delay performance.

These observations could be explained as follows: Energy consumption in the vari-
able service queue monotonically increases with the number of jobs in the system
while that in fixed service queue is constant whenever there are jobs in the system.

6.2 The sojourn time distribution

In Figs. 4 and 5, we present the probability densities of the sojourn time distributions
computed by numerically inverting the Laplace–Stieltjes transform. In what follows,
we assume that α = 0.1 and λE[X ] = 1. The LST of the sojourn time distribution
is given in Theorem 3, but it is in series form involving infinite-dimensional matri-
ces. Therefore, as mentioned in Remark 3, approximation is necessary for numerical
calculation.

We present a procedure to compute the LST of the sojourn time distribution, ψ(s).
First, we truncate the infinite vectors π0 and π1 to the vectors of their first (N∗ + 1)
elements, where the constant N∗ is determined by

N∗ = inf
{

n ∈ N; 1 −
∑n

j=0
π0, j −

∑n

j=1
π1, j < 10−4}.

This is equivalent to disregarding the stateswithmore than N∗ jobs in the systemwhose
probability is 10−4. We compute π0,0 by (4.4) and πi, j , i = 0, 1, j = 1, . . . , N∗, by
(3.3), (3.4) and (3.5). In addition, we truncate the infinite matrices appearing in ψ(s)
to their (N∗ + 1) × (N∗ + 1) north-west corner matrices. We compute each element
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Fig. 4 Comparison of the cases in which X follows different distributions. λ = 0.4, α = 0.1, μ =
0.1, E[X ] = 2.5

Fig. 5 Comparison of the cases in which X follows different distributions. λ = 0.25, α = 0.1, μ =
0.1, E[X ] = 4.0

of the infinite matrices by (5.3), (5.4), (5.8), (5.9), (5.11) and (5.12). Let ψ∗(s) denote
the function computed by Theorem 3 using the truncated matrices and vectors. In our
numerical experiments, we use the value of ψ∗(s) as an approximation to the LST of
the sojourn time distribution. It is important future work to estimate the error of this
approximation. Our extensive numerical experiments show that the approximation is
fairly accurate in the sense that the final results do not changemuch as N∗ is increased.

Next, we present the procedure to compute the value of the sojourn time distribution
for t ∈ [0, T ] by numerically inverting the Laplace–Stieltjes transform [5] for fixed
T > 0. The function f (K )(t) and the constant K ∗(t) are defined as follows:
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f (K )(t) = h

π
exp

( 6

T
t
){ψ(6/T )

2
+ ∑K

k=1Re
[

ψ(6/T + ikh) exp(ikht)
]

}

,

K ∗(t) = inf
{

K ∈ N; ∣

∣ f (K )(t) − f (K−1)(t)
∣

∣ < 10−4},

where i = √−1 and Re(a + ib) = a. In our numerical experiments, we use the value
of f (K ∗(t))(t) as the sojourn time distribution. The constant h is the step size; we set
h = 1/100.

In Figs. 4 and 5, we investigate the impact of the batch size distribution on the
sojourn time distribution. Figure 4 presents the sojourn time distribution for λ = 0.4,
E[X ] = 2.5 andμ = 0.1,while Fig. 5 shows that forλ = 0.25,E[X ] = 4 andμ = 0.1.
Note that in both figures λE[X ] = 1. We observe that the curves of Binom(9, 1/6)
and Uni(1, 4) almost coincide. The values of second, third and fourth moments are
7.5, 25.8 and 99.2 for Binom(9, 1/6), and 7.5, 25.0 and 113.5 for Uni(1, 4). On the
other hand, the values of second, third and fourth moments are 10.0, 58.8 and 480.0 for
Geo(1/2.5). This suggests that high-order moments (roughly fourth or higher) have
less influence in the sojourn time distribution.

Compared with Fig. 4, the curves for the binomial distribution, uniform distribution
and geometric distribution are different in Fig. 5. The second moments are 18.0 for
Binom(9, 1/3), 20.0 for Uni(1, 4) and 38.0 for Geo(1/2.5). This suggests that the sec-
ond moment of the batch size has a significant impact on the sojourn time distribution.

7 Conclusion

In this paper, we have studied the MX /M/1/SET-VARI queue. We have derived the
PGF of the number of jobs in the system in an integral form. Furthermore, we have
derived the LST of the sojourn time distribution, which is obtained in series form
involving infinite-dimensional matrices. Through numerical experiments, we have
been able to observe some insights into the sojourn time distribution and the average
energy consumption. One remark is that the stationary queue length distribution and
the sojourn time distribution of the finite buffer version can be obtained using almost
the same procedure as for the infinite buffer model, so we have omitted that analysis
here. Furthermore, the finite buffer is easier in the sense that it is always stable and the
sojourn time distribution does not involve infinite matrices. As future work, we plan
to consider the model where the service rate is an arbitrary function of the number of
jobs in the system. Models with general setup time and service time distributions may
also be investigated somewhere else.
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