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Abstract We prove a functional central limit theorem for Markov additive arrival
processes where the modulating Markov process has the transition rate matrix scaled
up by nα (α > 0) and the mean and variance of the arrival process are scaled up
by n. It is applied to an infinite-server queue and a fork–join network with a non-
exchangeable synchronization constraint, where in both systems both the arrival and
service processes are modulated by a Markov process. We prove functional central
limit theorems for the queue length processes in these systems joint with the arrival
and departure processes, and characterize the transient and stationary distributions
of the limit processes. We also observe that the limit processes possess a stochastic
decomposition property.

Keywords Markov additive arrival process · Functional central limit theorem ·
Infinite-server queues · Fork–join networks with non-exchangeable synchronization ·
Gaussian limits · Stochastic decomposition

Mathematics Subject Classification 60F17 · 60K37 · 60K25 · 90B15 · 90B22

B Guodong Pang
gup3@psu.edu

Hongyuan Lu
hzl142@psu.edu

Michel Mandjes
m.r.h.mandjes@uva.nl

1 The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, College
of Engineering, Pennsylvania State University, University Park, PA 16802, USA

2 Korteweg-de Vries Institute (KdVI) for Mathematics, University of Amsterdam, Science Park
904, 1098 XH Amsterdam, The Netherlands

3 CWI, Science Park 123, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-016-9496-8&domain=pdf
http://orcid.org/0000-0001-6468-0429


382 Queueing Syst (2016) 84:381–406

1 Introduction

Markov additive arrival processes (MAAPs) have been used to model the arrival
processes of many stochastic systems, for example, telecommunication and service
systems in randomenvironments [2]. Their usefulness lies in capturing burstiness in the
arrival processes, thus departing from the usual renewal-type assumptions. MAAPs
are described by a couple (A, X), where the process A is the counting process of
arrivals, and the process X is a modulating Markov process. A popular model is the
Markov modulated Poisson process (MMPP), which has been widely used to model a
variety of relevant stochastic systems [2,25]. For a broad range of queues with MMPP
input, analytical results have been derived, often employing the matrix computational
approach. The main objective of this paper is to generate functional central limit theo-
rems (FCLTs) forMAAPs, in particular, the counting process A, and their applications
in specific, practically relevant, queueing systems.

FCLTs for MMPPs have been studied in the literature under two types of scalings.
In the first scaling, time is scaled up by a parameter n while space is scaled down
by

√
n, and thus the transition times of the modulating Markov process are implicitly

accelerated by a factor n. Under this scaling, assuming that the modulating Markov
process has a finite number of states and is irreducible, an FCLT can be proven for
the scaled arrival process, where the limit process is a Brownian motion [reviewed
in (2.1)–(2.5)]. This has been applied to prove heavy-traffic limits for single-server
queueing (network) models; see, for example, [25, Ch. 9]. Under this same scaling,
Steichen [23] considered an MAAP where the arrival process in each state can be
non-Poisson, and proved an FCLT with a Brownian motion limit. That result was also
applied to study some single-server queueing networks in [23].

In the second scaling, time is not scaled, but the arrival rates in each state are scaled
up by n and the space is scaled down by

√
n, while at the same time the transition rates

of the modulating Markov process are scaled up by nα for some α > 0. Under this
scaling, an FCLT has recently been proved for the scaled arrival process in [1], where
the limit process is a Brownian motion [reviewed in (2.6)–(2.8)]. This is then applied
in [1] to prove an FCLT for the M/M/∞ queue with MMPP input. This scaling is
useful in many-server systems, where the demand is relatively large but service times
do not scale as the demand gets larger, and the modulating Markov process may speed
up or slow down.

FCLTs for MAAPs MMPPs, in which the Poisson arrival rate jumps between several
values, significantly generalize the traditional Poisson setting. Nonetheless, in many
applications the assumption of the input being locally Poisson is not adequate. To
remedy this, we consider in this paper a general class of MAAPs, where the arrival
process in each state can be a general stationary counting process, including renewal
processes. We prove an FCLT for this class of MAAPs, in Theorem 2.1, under the
second type of scaling and under three regimes of α values, i.e., 0 < α < 1, α = 1,
and α > 1. The limit process is also a Brownian motion, whose variance coefficient
compactly captures the variabilities in the interarrival times in each state as well
as the variabilities in the modulating Markov process. We apply this FCLT to two
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queueing systems: a general infinite-server queue and a fork–join network with the
non-exchangeable synchronization (NES) constraint.

General infinite-server queue Several recent papers have studied infinite-server
queues with MMPP input. Exact analysis and related approximations have been
derived for specific infinite-server queues in random environments (Markov or semi-
Markov modulated) in [3,5,9,11,12,17,19]. In [1], an M/M/∞ queue with MMPP
input is studied, leading to an FCLT for the queue length process under the second
type of scaling mentioned above. [4] studies an M/GI/∞ queue with MMPP input
and general service times depending on the state of the modulating Markov process
upon arrival. The exact mean and variance formulas for the transient and stationary
distributions of the queue length process are provided, and asymptotic results are also
obtained in the regime where the arrival rates are scaled up by n and the transition
rates are scaled up by n1+ε for some ε > 0. Central limit theorems are proved for the
M/M/∞ queue with both the arrival and services modulated by a finite-state Markov
process in [6,7], where the arrival rates are scaled up by n.

In Sect. 3, we establish an FCLT for the queue length process joint with the arrival
and departure processes in the G/G/∞ queue where both the arrival process and
the service time distributions are modulated by a Markov process (applying Theorem
2.1), thus generalizing the existing literature substantially. The limiting queue length
and departure processes are continuous Gaussian processes, of which we characterize
the transient and steady-state distributions. We also derive a stochastic decomposition
property: the variabilities of the arrival process and modulating Markov process are
captured in one limit component, while those of the service process are captured in a
second independent limit component.

Fork–join network with NES In our second application, we consider a fork–join net-
work with NES, where both the arrival process and the joint service time distributions
of the parallel tasks of each job are modulated by a Markov process. In the network,
each job is forked into a fixed number of parallel tasks, each of which is processed in
a multiserver service station, and after service completion, each task will join a buffer
associated with the service station, waiting for synchronization. The NES constraint
requires that synchronization occurs only when all the tasks of the same job are com-
pleted. It is important to understand the joint dynamics of the service process as well
as the waiting buffers for synchronization.

Heavy-traffic limits are proved for a single-classmultiserver fork–join networkwith
NES, in the underloaded quality-driven (QD) regime [14] and the critically loaded
quality-and-efficiency driven (QED) regime [16]. The setup considered is such that
the arrival process is general (satisfying an FCLT), whereas the service times of the
parallel tasks form i.i.d. random vectors that can be correlated. In addition, in [15],
an infinite-server fork–join network with NES in a renewal alternating environment
(up–down cycles) is studied, where the service vectors of parallel tasks are correlated
and the service processes are interrupted during the down periods.

In this paper we study a multiserver fork–join network with NES in the QD regime,
where both the arrival and service processes are modulated by a Markov process. We
apply our FCLT for theMAAP to obtain amultidimensional Gaussian limit process for
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the processes representing the number of tasks in service at each station and the number
of tasks in the waiting buffer for synchronization associated with each station, jointly
with the arrival process and the process representing the number of synchronized jobs.
We characterize the transient and steady-state joint distributions of the limit queueing
processes, as multivariate Gaussian distributions, and of the synchronized process, as
a Gaussian distribution. We also observe a similar stochastic decomposition property
as in the infinite-server queues above, where the two independent limit components
capture the variabilities of the arrival and modulating Markov processes and of the
service processes separately.

1.1 Organization of the paper

The rest of the paper is organized as follows. We finish this section below with a
summary of notation used in the paper. In Sect. 2 we present the general MAAP,
review the existing FCLTs for MAAPs, and state the new FCLT under the second type
of scaling. In Sect. 3 we apply the FCLT for the MAAP to a general infinite-server
queueingmodel with both arrival and service timesmodulated by aMarkov process. In
Sect. 4, we apply the FCLT for theMAAP to a fork–join network with both arrival and
service processes being modulated by a Markov process. The proofs of these results
are presented in Sect. 5. We make some concluding remarks in Sect. 6.

1.2 Notations

The following notation will be used throughout the paper. R and R+ (Rd and R
d+,

respectively) denote sets of real and real non-negative numbers (d-dimensional vectors,
respectively, d ≥ 2). For a, b ∈ R, we denote a∧b := min(a, b). For any x ∈ R+, �x�
is used to denote the largest integer no greater than x . We use a bold letter to denote
a vector, for example, x := (x1, . . . , xN ) ∈ R

N . 1(A) is used to denote the indicator
function of a set A. For two real-valued functions f and g, we write f (x) = O(g(x))
if lim supx→∞ | f (x)/g(x)| < ∞.

All random variables and processes are defined on a common probability space
(�,F , P). For any two complete separable metric spaces S1 and S2, we denote by
S1 × S2 their product space, endowed with the maximum metric, i.e., the maximum
of two metrics on S1 and S2. Sk is used to represent k-fold product space of any
complete and separable metric space S with the maximum metric for k ∈ N. For a
complete separable metric space S,D([0,∞),S) denotes the space of all S-valued
càdlàg functions on [0,∞), and is endowed with the Skorohod J1 topology (see, for
example, [8,10,25]). Denote D ≡ D([0,∞),R). The space D([0,∞),D), denoted
by DD, is endowed with the Skorohod J1 topology, that is, both inside and outside D
spaces are endowed with the Skorohod J1 topology. Let D([0,∞)k,R) ≡ Dk denote
the space of all “continuous from above with limits from below” real-valued functions
on [0,∞)k with the generalized Skorohod J1 topology [18,24] for k ≥ 2. Weak
convergence of probability measures μn to μ will be denoted by μn ⇒ μ.
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2 An FCLT for Markov additive arrival processes

Consider a Markov additive arrival process (A, X). The process X = {X (t) : t ≥ 0}
is a finite-state irreducible stationary Markov process with state space S = {1, . . . , I }
and transition rate matrix Q = (qi j )i, j=1,...,I . The process A = {A(t) : t ≥ 0}
is a counting process modulated by the Markov process X , defined as follows. Let
π = (π1, . . . , πI ) be the stationary distribution of the Markov process X . We assume
that the process starts in stationarity at time 0.

We introduce some auxiliary notations. Let � be a matrix with each row being the
steady-state vector π , and P(t) = (Pi j (t))i, j=1,...,I be the transition matrix, that is,
Pi j (t) := P(X (t) = j |X (0) = i) for each t ≥ 0. Let Z = (Zi j )i, j=1,...,I be the
fundamental matrix, given by

Zi j :=
∫ ∞

0
(Pi j (t) − π j )dt.

It holds that Z = (� − Q)−1 − �.
When the process A is anMMPP, that is, arrivals follow a Poisson process with rate

λi when X = i, i ∈ S, FCLTs are proved for the process A in two different scalings.
In the first scaling that was introduced in Sect. 1, both time and space are scaled by n,
and the diffusion-scaled process Ãn = { Ãn(t) : t ≥ 0} is defined by

Ãn(t) := n−1/2

(
A(nt) −

I∑
i=1

πiλi nt

)
, t ≥ 0. (2.1)

By Theorem 2.3.4 in [26], one can show that

Ãn ⇒ Ã in D as n → ∞, (2.2)

where Ã = { Ã(t) : t ≥ 0} is a driftless Brownian motion with variance coefficient

σ 2 := λ̄ + β̄, (2.3)

with

λ̄ :=
I∑

i=1

πiλi , (2.4)

and

β̄ := 2
I∑

i=1

I∑
j=1

λiλ jπi Zi j . (2.5)

See also the discussion in Example 9.6.2 in [25]. Note that under this scaling, the
transition rates of the modulating Markov process are scaled up by n.

In the second scaling introduced in Sect. 1, time is not scaled, but the arrival rates
λ are scaled by n and transition rate matrices are scaled by nα for α > 0. Namely,
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we consider a sequence of the processes (An, Xn) indexed by n, and write the cor-
responding quantities by a superscript n. Assume that λni /n → λi > 0 for i ∈ S as
n → ∞ and Qn = nαQ for some α > 0. Note that the stationary distribution of Xn

remains the same, π . Define the diffusion-scaled process Ân = { Ân(t) : t ≥ 0} by

Ân(t) := 1

nδ

(
An(t) −

I∑
i=1

πiλ
n
i t

)
, for δ > 0, t ≥ 0. (2.6)

Then it is shown in [1] that

Ân ⇒ Â in D as n → ∞, (2.7)

where the limit process Â = { Â(t) : t ≥ 0} is a driftless Brownian motion with
variance coefficient

σ 2(α) :=

⎧⎪⎨
⎪⎩

β̄, α < 1, δ = 1 − α/2,

λ̄ + β̄, α = 1, δ = 1/2,

λ̄, α > 1, δ = 1/2,

(2.8)

with λ̄ and β̄ being defined in (2.4) and (2.5), respectively.

Remark 2.1 When α = 1, the limit processes under both scalings in fact coincide,
as the arrival process and the modulating Markov process are sped up at the same
rate. When α > 1, the modulating Markov process is sped up at a faster rate than the
arrival process in each state, and thus the variability in the limit comes only from the
Poisson processes with the spatial scaling n−1/2. When 0 < α < 1, the modulating
Markov process is sped up at a slower rate than the arrival process in each state, and
thus the variability in the limit comes only from the modulating Markov process with
the spatial scaling n−(1−α/2).

In this paper, we consider the second type of scaling and prove an FCLT for the
diffusion-scaled processes Ân when the process An is general, including renewal
process, in each state of Xn .

Let τ nk be the kth jump time of Xn for k = 1, 2, 3, . . . and τ n0 ≡ 0. For each i ∈ S,
define

λni := E

[
An(τ nk + s) − An(τ nk )

s

∣∣∣Xn(u) = i for τ nk ≤ u ≤ τ nk + s

]
, (2.9)

and

νni :=E

[
(An(τ nk + s) − An(τ nk ))2 − (λni )

2s2

s

∣∣∣Xn(u) = i for τ nk ≤ u ≤ τ nk + s

]
.

(2.10)
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Assume that λλλn = (λn1, . . . , λ
n
I ) and νννn = (νn1 , . . . , νnI ) are positive vectors. Note

that when the process An is Poisson in each state of Xn , we have that λni = νni , i =
1, . . . , I . Note also that if the arrival process is renewal in each state, the parameter
νni = λni (c

n
a,i )

2, where cna,i is the coefficient of variation (CV) of the interarrival times
when the Markov process Xn is in state i .

Then, we can write, for each t ≥ 0,

E[An(t)|Xn(s), 0 ≤ s ≤ t] =
∫ t

0
λnXn(s)ds =

I∑
i=1

∫ t

0
λni 1(X

n(s) = i)ds, (2.11)

and

Var [An(t)|Xn(s), 0 ≤ s ≤ t] =
∫ t

0
νnXn(s)ds =

I∑
i=1

∫ t

0
νni 1(X

n(s) = i)ds. (2.12)

We make the following assumption on the parameters.

Assumption 1 The parameters λλλn and νννn satisfy

λλλn

n
→ λλλ ∈ R

I+,
νννn

n
→ ννν ∈ R

I+ as n → ∞.

The transition rate matrix Qn = nαQ for some α > 0.

We now state the main result of this section. Its proof, as well as the proofs of all
results presented in Sects. 3 and 4, is provided in Sect. 5.

Theorem 2.1 Under Assumption 1, for the diffusion-scaled process Ân in (2.6), (2.7)
holds,where the limit process Â is a driftlessBrownianmotionwith variance coefficient

σ 2(α) :=

⎧⎪⎨
⎪⎩

β̄, 0 < α < 1, δ = 1 − α/2,

ν̄ + β̄, α = 1, δ = 1/2,

ν̄, α > 1, δ = 1/2,

(2.13)

with β̄ being defined in (2.5) and

ν̄ :=
I∑

i=1

πiνi . (2.14)

Remark 2.2 When the modulating Markov process Xn is in state i , if the process An

is renewal, we obtain ν̄ = ∑I
i=1 πiλi c2a,i , where λi is the arrival rate and ca,i is the

CV of the interarrival times in the limit and νi = λi c2a,i .
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3 Application to infinite-server queues

In this section we apply the FCLT of the MAAP process, Theorem 2.1, to G/GI/∞
queues with Markov modulated arrival and service processes. It is shown in [13] that
an FCLT for the number of customers/jobs in a G/GI/∞ queue holds, provided that
the arrival process satisfies an FCLT and the service times are i.i.d. with a general
distribution. Our FCLT below extends the existing results in [1] and [4] by allowing
more general arrival process, in that in each state of the underlyingMarkov process, the
arrival process can be a general stationary point process, including a renewal process.
It also proves the joint convergence of arrivals, queue length, and departure processes
(rather than just queue length). The limiting queue length process is a continuous
Gaussian process and possesses a stochastic decomposition property. Our results also
generalize [13] for G/G/∞ queues in a Markov random environment.

Consider a sequence of G/G/∞ queues modulated by a Markov process Xn ,
behaving as described in Sect. 2. The arrival process An is anMAAPwith τ nk denoting
the arrival time of job k, k ≥ 1. The service times {ηk,i : k ≥ 1} are i.i.d. with a general
distribution Fi (independent of n) when the underlying Markov process Xn is in state
i upon the customer’s arrival. Namely, we assume that the service time distribution of
a customer is determined at the epoch of the arrival time, according to the state of the
underlying Markov process Xn . We also assume that conditional on the modulating
Markov process Xn , the arrival and service processes are independent, and that the
system starts empty. Let Fc

i := 1 − Fi , i = 1, . . . , I . Let Qn = {Qn(t) : t ≥ 0} be
the queue length process describing the evolution of the number of customers in the
system. Let Dn = {Dn(t) : t ≥ 0} be the departure process counting the number of
completed jobs. We have the following balance equation:

Dn(t) = An(t) − Qn(t), t ≥ 0. (3.1)

Define the diffusion-scaled processes Q̂n = {Q̂n(t) : t ≥ 0} and D̂n = {D̂n(t) : t ≥
0} by

Q̂n(t) := n−δ(Qn(t) − nq(t)),

D̂n(t) := n−δ(Dn(t) − nd(t)) = Ân(t) − Q̂n(t), t ≥ 0. (3.2)

where

q(t) :=
I∑

i=1

λiπi

∫ t

0
Fc
i (s)ds, and d(t) :=

I∑
i=1

λiπi

∫ t

0
Fi (s)ds, t ≥ 0.

Theorem 3.1 For the sequence of G/GI/∞ models with Markov modulated arrival
and service processes described above,

( Ân, Q̂n, D̂n) ⇒ ( Â, Q̂, D̂) in D
3 as n → ∞,

where Â is the arrival limit defined in Theorem 2.1, the process D̂ = {D̂(t) : t ≥ 0}
is defined by D̂(t) := Â(t) − Q̂(t), t ≥ 0, and
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Q̂ :=
{
Q̂1, δ = 1 − α/2, 0 < α < 1,

Q̂1 + Q̂2, δ = 1/2, α ≥ 1.

The limit process Q̂1 = {Q̂1(t) : t ≥ 0} is a continuous Gaussian process, defined by

Q̂1(t) := σ(α)

∫ t

0

( I∑
i=1

πi F
c
i (t − s)

)
dW (s), t ≥ 0,

where W is a standard Brownian motion and σ 2(α) is defined in (2.13). The limit
process Q̂2 = {Q̂2(t) : t ≥ 0} is a continuous Gaussian process defined by

Q̂2(t) :=
I∑

i=1

∫ t

0

∫ ∞

0
1(s + xi > t)d K̂i (πiλi s, xi ), (3.3)

where the processes K̂i = {K̂i (s, x) : s, x ≥ 0}, i = 1, . . . , I , are independent Kiefer
processes with mean 0 and covariance function

Cov(K̂i (s, x), K̂i (t, y)) = (s ∧ t)(Fi (x ∧ y) − Fi (x)Fi (y)), s, t, x, y ≥ 0,

for each i = 1, . . . , I . The processes W and K̂i , i = 1, . . . , I , are independent, and
thus so are the processes Q̂1 and Q̂2.

Here the integrals in (3.3) are defined in the mean-square sense following [13]; see
the precise definition in (5.35)–(5.36).

Remark 3.1 We remark that there is a stochastic decomposition property in the limit
process, as shown in the independence of Q̂1 and Q̂2. Note that the corresponding
prelimit processes are evidently dependent because of themodulatingMarkov process.
The limit process Q̂1 captures the variabilities resulting from the arrival process, as
well as those resulting from the modulating Markov process. The limit process Q̂2
captures the variabilities from the service process, while, perhaps surprisingly, it is not
affected by the variabilities of the modulating Markov process other than the steady-
state distribution π . This is also shown in the following characterization of the limit
processes.

Corollary 3.1 Under the assumptions of Theorem3.1, the limit process Q̂ isGaussian,
with mean 0 and covariance function

Cov(Q̂(t), Q̂(t + u))

=

⎧⎪⎪⎨
⎪⎪⎩

β̄
∫ t
0

(∑I
i=1 πi Fc

i (s)
)(∑I

i=1 πi Fc
i (s + u)

)
ds, δ = 1 − α/2, 0 < α < 1,

σ 2(α)
∫ t
0

(∑I
i=1 πi Fc

i (s)
)(∑I

i=1 πi Fc
i (s + u)

)
ds

+∑I
i=1 πiλi

∫ t
0

(
Fi (s)Fc

i (u + s)
)
ds, δ = 1/2, α ≥ 1,
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for t, u ≥ 0, where β̄ and σ 2(α) are defined in (2.5) and (2.13), respectively. Its
stationary distribution has variance

Var(Q̂(∞))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β̄
∫∞
0

(∑I
i=1 πi Fc

i (s)
)2
ds, δ = 1 − α/2, 0 < α < 1,

∑I
i=1 πiλims,i + σ 2(α)

∫∞
0

(∑I
i=1 πi Fc

i (s)
)2
ds − ∑I

i=1 πiλi
∫∞
0 (Fc

i (s))2ds,

δ = 1/2, α ≥ 1,

with ms,i being the mean service time associated with Fi . In addition, the limit process
D̂ is Gaussian, with mean 0 and covariance function

Cov(D̂(t), D̂(t + u))

=

⎧⎪⎪⎨
⎪⎪⎩

β̄
∫ t
0

(∑I
i=1 πi Fi (s)

)(∑I
i=1 πi Fi (s + u)

)
ds, δ = 1 − α/2, 0 < α < 1,

σ 2(α)
∫ t
0

(∑I
i=1 πi Fi (s)

)(∑I
i=1 πi Fi (s + u)

)
ds

+∑I
i=1 πiλi

∫ t
0

(
Fi (s)Fc

i (u + s)
)
ds, δ = 1/2, α ≥ 1,

for t, u ≥ 0, and limt→∞ t−1Var(D̂(t)) = σ 2(α).

Remark 3.2 When Fi , i = 1, . . . , I , are identical, our results establish an FCLT for
G/GI/∞ queues with an MAAP and i.i.d. service times. Moreover, when the arrival
process is an MMPP and the service times are exponential with rate μ (independent
of the modulating Markov process), our results reduce to those in [1] for M/M/∞
queues.

4 Application to fork–join networks

In this section we apply the FCLT for the MAAP to a many-server fork–join network
with the non-exchangeable synchronization (NES) constraint, where both the arrival
process and the joint service time distribution of the parallel tasks are modulated by a
Markov process.

Consider a sequence of many-server fork–join networks with NES indexed by n
and let n → ∞. We assume that the systems are operating in the QD regime, which
is asymptotically equivalent to systems with infinite-server service stations. There is
a single class of customers. Let the arrival processes An be an MAAP as described in
Sect. 2. Let ηηη�,i = (η

�,i
1 , . . . , η

�,i
K ) be the service times that customer � brings in for

the K parallel tasks when the underlying Markov process Xn is in state i at the epoch
of arrival. Assume that the service times {ηηη�,i : � ≥ 1} are i.i.d. with a continuous joint
distribution function F (i) andmarginals F (i)

k , k = 1, . . . , K and i = 1, . . . , I . Let F (i)
j,k

be the joint distribution of the service times of parallel tasks j, k for j, k = 1, . . . , K
and i = 1, . . . , I . Let F (i)

m be the distribution of the maximum of the service times
η

�,i
1 , . . . , η

�,i
K , i.e., F (i)

m (x) = P(η
1,i
j ≤ x, ∀ j) for x ≥ 0. Denote G(i)

k := 1 − F (i)
k

for k = 1, . . . , K , and G(i)
m := 1 − F (i)

m , i = 1, . . . , I .
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Let Qn = (Qn
1, . . . , Q

n
K ) be the numbers of tasks in service at service stations k =

1, . . . , K . LetYn = (Yn
1 , . . . ,Yn

K ) be the numbers of tasks that have completed service
but are waiting for service at the waiting buffers for synchronization corresponding
to the service stations k = 1, . . . , K . Let Sn = {Sn(t) : t ≥ 0} be the process
counting the number of synchronized jobs.Define the diffusion-scaledprocesses Q̂

n =
(Q̂n

1, . . . , Q̂
n
K ), Ŷ

n = (Ŷ n
1 , . . . , Ŷ n

K ) and Ŝn by

Q̂n
k (t) := 1

nδ
(Qn

k (t) − nqk(t)),

Ŷ n
k (t) := 1

nδ
(Yn

k (t) − nyk(t)), k = 1, . . . , K , t ≥ 0,

and

Ŝn(t) := 1

nδ
(Sn(t) − ns(t)), t ≥ 0,

where

qk(t) :=
I∑

i=1

λiπi

∫ t

0
G(i)

k (s)ds,

yk(t) :=
I∑

i=1

λiπi

∫ t

0
(G(i)

m (s) − G(i)
k (s))ds, k = 1, ..., K , t ≥ 0,

and

s(t) :=
I∑

i=1

λiπi

∫ t

0
F (i)
m (s)ds, t ≥ 0.

Theorem 4.1 For the fork–join networkswithNESandMarkovmodulated arrival and
service processes described above, ( Ân, Q̂

n
, Ŷ

n
, Ŝn) ⇒ ( Â, Q̂, Ŷ , Ŝ) in D

2K+2 as
n → ∞, where Â is the arrival limit defined inTheorem2.1, Q̂ = (Q̂1, . . . , Q̂K ), Ŷ =
(Ŷ1, . . . , ŶK ), and Ŝ are defined as follows:

Q̂k :=
{
Q̂k,1, δ = 1 − α/2, 0 < α < 1,

Q̂k,1 + Q̂k,2, δ = 1/2, α ≥ 1,

Ŷk :=
{
Ŷk,1, δ = 1 − α/2, 0 < α < 1,

Ŷk,1 + Ŷk,2, δ = 1/2, α ≥ 1,

Ŝ :=
{
Ŝ1, δ = 1 − α/2, 0 < α < 1,

Ŝ1 + Ŝ2, δ = 1/2, α ≥ 1.

The limit processes Q̂k,1 = {Q̂k,1(t) : t ≥ 0}, Ŷk,1 = {Ŷk,1(t) : t ≥ 0}, and
Ŝ1 = {Ŝ1(t) : t ≥ 0} are continuous Gaussian processes defined by
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Q̂k,1(t) := σ(α)

∫ t

0

(
I∑

i=1

πi G
(i)
k (t − s)

)
dW (s), t ≥ 0,

Ŷk,1(t) := σ(α)

∫ t

0

(
I∑

i=1

πi (F
(i)
k (t − s) − F (i)

m (t − s))

)
dW (s), t ≥ 0,

Ŝ1(t) := σ(α)

∫ t

0

(
I∑

i=1

πi F
(i)
m (t − s)

)
dW (s), t ≥ 0,

where W is a standard Brownian motion with variance coefficient σ 2(α) as defined in
Theorem 2.1. The limit processes Q̂k,2 = {Q̂k,2(t) : t ≥ 0}, Ŷk,2 = {Ŷk,2(t) : t ≥ 0}
and Ŝ2 = {Ŝ2(t) : t ≥ 0} are continuous Gaussian processes defined by

Q̂k,2(t) :=
I∑

i=1

∫ t

0

∫
R

K+
1(s + xk > t)d K̂ i (πiλi s, x), t ≥ 0,

Ŷk,2(t) :=
I∑

i=1

∫ t

0

∫
R

K+

(
1(s + xk ≤ t) − 1(s + x j ≤ t, ∀ j)

)
d K̂ i (πiλi s, x), t ≥ 0,

Ŝ2(t) :=
I∑

i=1

∫ t

0

∫
R

K+

(
1(s + x j ≤ t, ∀ j)

)
d K̂ i (πiλi s, x), t ≥ 0,

where K̂ i (s, x) are independent multiparameter Kiefer processes (Gaussian random
field) with mean 0 and covariance Cov(K̂ i (s, x), K̂ i (t, y)) = (s ∧ t)(F (i)(x ∧ y) −
F (i)(x)F (i)(y)) for s, t ≥ 0 and x, y ∈ R

K+ . The integrals in Q̂k,2(t), Ŷk,2(t), and

Ŝ2(t) are defined in the mean squared sense. The Brownian motion W is independent
from K̂ i , i = 1, . . . , I , and thus Q̂k,1 and Q̂ j,2 are independent, and so are Ŷk,1 and
Ŷ j,2 for each k, j = 1, . . . , K. Ŝ1 and Ŝ2 are also independent.

Remark 4.1 We remark that there is also a stochastic decomposition property (analo-
gous to the one we have seen for the infinite-server queueing model). The variabilities
in the arrival process and the Markov process are captured in Q̂k,1, Ŷk,1, and Ŝ1 for
each k, while the variabilities in the service process are captured in Q̂k,2, Ŷk,2, and Ŝ2.

Corollary 4.1 Under the assumptions of Theorem 4.1, the limit process ( Q̂, Ŷ) is
a multidimensional Gaussian process with mean zero and covariance functions, for
j, k = 1, . . . , K , t, t ′ ≥ 0,

Cov(Q̂ j (t), Q̂k(t
′))

=
{
Cov(Q̂ j,1(t), Q̂k,1(t ′)), δ = 1 − α/2, 0 < α < 1,

Cov(Q̂ j,1(t), Q̂k,1(t ′)) + Cov(Q̂ j,2(t), Q̂k,2(t ′)), δ = 1/2, α ≥ 1,

Cov(Ŷ j (t), Ŷk(t
′))
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=
{
Cov(Ŷ j,1(t), Ŷk,1(t ′)), δ = 1 − α/2, 0 < α < 1,

Cov(Ŷ j,1(t), Ŷk,1(t ′)) + Cov(Ŷ j,2(t), Ŷk,2(t ′)), δ = 1/2, α ≥ 1,

Cov(Q̂ j (t), Ŷk(t
′))

=
{
Cov(Q̂ j,1(t), Ŷk,1(t ′)), δ = 1 − α/2, 0 < α < 1,

Cov(Q̂ j,1(t), Ŷk,1(t ′)) + Cov(Q̂ j,2(t), Ŷk,2(t ′)), δ = 1/2, α ≥ 1,

where

Cov(Q̂ j,1(t), Q̂k,1(t
′)) = σ 2(α)

∫ t∧t ′

0

(
I∑

i=1

πi G
(i)
j (t−s)

)(
I∑

i=1

πi G
(i)
k (t ′ − s)

)
ds,

Cov(Ŷ j,1(t), Ŷk,1(t
′)) = σ 2(α)

∫ t∧t ′

0

(
I∑

i=1

πi

(
F (i)
j (t − s) − F (i)

m (t − s)
))

×
(

I∑
i=1

πi

(
F (i)
k (t ′ − s) − F (i)

m (t ′ − s)
))

ds,

Cov(Q̂ j,1(t), Ŷk,1(t
′)) = σ 2(α)

∫ t∧t ′

0

(
I∑

i=1

πi G
(i)
j (t − s)

)

×
(

I∑
i=1

πi

(
F (i)
k (t ′ − s) − F (i)

m (t ′ − s)
))

ds,

Cov(Q̂ j,2(t), Q̂k,2(t
′)) =

I∑
i=1

πiλi

∫ t∧t ′

0

(
F (i)
j,k(t − s, t ′ − s)

−F (i)
j (t − s)F (i)

k (t ′ − s)
)
ds,

Cov(Ŷ j,2(t), Ŷk,2(t
′)) =

I∑
i=1

πiλi

∫ t∧t ′

0

(
F (i)
j,k(t − s, t ′ − s)

− F (i)
j (t − s)F (i)

k (t ′ − s)

−F (i)
j,m(t − s, t ′ − s) + F (i)

j (t − s)F (i)
m (t ′ − s)

− F (i)
k,m(t ′ − s, t − s)

+ F (i)
k (t ′ − s)F (i)

m (t − s) + F (i)
m ((t − s) ∧ (t ′ − s))

−F (i)
m (t − s)F (i)

m (t ′ − s)
)
ds,

Cov(Q̂ j,2(t), Ŷk,2(t
′)) =

I∑
i=1

πiλi

∫ t∧t ′

0

(
F (i)
j,m(t − s, t ′ − s)−F (i)

j (t−s)F (i)
m (t ′−s)

−F (i)
j,k(t − s, t ′ − s) + F (i)

j (t − s)F (i)
k (t ′ − s)

)
ds
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withσ 2(α) being defined in (2.13), and, for j = 1, . . . , K and x, y ≥ 0, Fj,m(x, y) :=
F(z) for z ∈ R

K+ satisfying z j = x ∧ y and z j ′ = y for j ′ �= j .

In addition, the limit process Ŝ is a continuous Gaussian process with mean zero
and covariance functions, for t, t ′ ≥ 0,

Cov(Ŝ(t), Ŝ(t ′)) =
{
Cov(Ŝ1(t), Ŝ1(t ′)), δ = 1 − α/2, 0 < α < 1,

Cov(Ŝ1(t), Ŝ1(t ′)) + Cov(Ŝ2(t), Ŝ2(t ′)), δ = 1/2, α ≥ 1,

where

Cov(Ŝ1(t), Ŝ1(t
′))

= σ 2(α)

∫ t∧t ′

0

(
I∑

i=1

πi F
(i)
m (t − s)

)(
I∑

i=1

πi F
(i)
m (t ′ − s)

)
ds,

Cov(Ŝ2(t), Ŝ2(t
′))

=
I∑

i=1

πiλi

∫ t∧t ′

0

(
F (i)
m ((t − s) ∧ (t ′ − s)) − F (i)

m (t − s)F (i)
m (t ′ − s)

)
ds

with σ 2(α) being defined in (2.13), and limt→∞ t−1Var(Ŝ(t)) = σ 2(α).

5 Proofs

5.1 Proof of Theorem 2.1

In this section we prove Theorem 2.1. First of all, we write the process Ân as

Ân(t) = Ân
1(t) + Ân

2(t), t ≥ 0, (5.1)

where

Ân
1(t) := 1

nδ

(
An(t) −

∫ t

0
λnXn(s)ds

)
(5.2)

and

Ân
2(t) := 1

nδ

(∫ t

0
λnXn(s)ds −

I∑
i=1

πiλ
n
i t

)
. (5.3)

We now focus on proving the convergence of Ân
1. Without loss of generality, we

pick state 1 as the reference state. Let T̃ n
0 be the first time that Xn(t) reaches state

1 from the initial state, and T n
k be the (k + 1)th jump time of Xn(t) reaching state 1

(i.e., the kth excursion time). Define a counting process associated with the sequence
{T n

k : k = 1, 2, . . .}:

Nn(t) := max{k : T n
k ≤ t, k = 0, 1, 2, . . .}, t ≥ 0, and T n

0 := 0.
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Then we can decompose the process Ân
1 into three processes:

Ân
1(t) = Ân

1,1(t) + Ân
1,2(t) + Ân

1,3(t), t ≥ 0, (5.4)

where

Ân
1,1(t) := 1

nδ

(
An(t ∧ T̃ n

0 ) −
∫ t∧T̃ n

0

0
λnXn(s)ds

)
, (5.5)

Ân
1,2(t) := 1

nδ

Nn(t)∑
k=1

(
An(T n

k ) − An(T n
k−1) −

∫ T n
k

T n
k−1

λnXn(s)ds

)
, (5.6)

Ân
1,3(t) := 1

nδ

(
An(t) − An(T n

Nn(t)) −
∫ t

T n
Nn (t)

λnXn(s)ds

)
. (5.7)

We will prove the convergence of the three processes Ân
1,1, Â

n
1,2, and Ân

1,3 in the
following lemmas.

Before proving the convergence of the three processes Ân
1,1, Â

n
1,2, and Ân

1,3, we
present some properties of the processes Nn and the sequence {T n

k : k = 0, 1, 2, . . .}.
Let

T̆ n
k := T n

k − T n
k−1

for k = 1, 2, . . .. Then {T̆ n
k : k = 1, 2, . . .} forms an i.i.d. sequence of random

variables. Let γ n := E[T̆ n
1 ]. It is evident that γ n < ∞ and there exists γ > 0 such

that γ n = n−αγ , since Xn has transition rate matrix Qn = nαQ. Thus, it follows
from the FLLN for delayed renewal processes that

1

nα
Nn ⇒ γ −1e in D as n → ∞, (5.8)

where e(t) ≡ t for t ≥ 0.

Lemma 5.1 For any ε > 0 and fixed T > 0,

lim
n→∞ P

(
sup

t∈[0,T ]
∣∣ Ân

1,1(t)
∣∣ > ε

)
= 0. (5.9)

Proof It suffices to show that

lim
n→∞ E

[
sup

t∈[0,T ]
∣∣ Ân

1,1(t)
∣∣
]

= 0. (5.10)
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By (5.5), we obtain the following upper bound:

E

[
sup

t∈[0,T ]
∣∣ Ân

1,1(t)
∣∣
]

≤ 1

nδ
E

[
sup

t∈[0,T ]
An(t ∧ T̃ n

0 )

]
+ 1

nδ
E

[
sup

t∈[0,T ]

∫ t∧T̃ n
0

0
λnXn(s)ds

]

≤ 1

nδ
E
[
E
[
An(T ∧ T̃ n

0 )
∣∣ Xn(s) : s ≤ T

]]

+ 1

nδ
E

[∫ T∧T̃ n
0

0
λnXn(s)ds

]

= 2

nδ
E

[∫ T∧T̃ n
0

0
λnXn(s)ds

]

≤ 2

nδ

(
max
i∈S

λni

)
E[T̃ n

0 ]. (5.11)

By Assumption 1, we have that 1
n maxi∈S λni → maxi∈S λi < ∞ as n → ∞.

Since Qn = nαQ, it is evident that E[T̃ n
0 ] = O(1/nα) (see, for example, [21, pp.

256–257]). Thus, it follows that

2

nδ

(
max
i∈S

λni

)
E[T̃ n

0 ] → 0 as n → ∞,

and we have proved (5.10). ��
Lemma 5.2 For any ε > 0 and fixed T > 0,

lim
n→∞ P

(
sup

t∈[0,T ]
∣∣ Ân

1,3(t)
∣∣ > ε

)
= 0. (5.12)

Proof For each k = 1, 2, 3, . . ., define

Ăn
k := sup

0≤t≤T̆ n
k

1

nδ

∣∣∣∣∣An(T n
k−1 + t) − An(T n

k−1) −
∫ T n

k−1+t

T n
k−1

λnXn(s)ds

∣∣∣∣∣ . (5.13)

To prove (5.12), it suffices to prove that

lim
n→∞ E

[
Ăn
N (T )+1

] = 0. (5.14)

By (5.13) and conditioning, we obtain that

E
[
Ăn
Nn(T )+1

] ≤ 1

nδ
E
[∣∣∣An(T n

Nn(T )+1) − An(T n
Nn(T ))

∣∣∣
]

+ 1

nδ
E

[∫ T n
Nn (T )+1

T n
Nn (T )

λnXn(s)ds

]

≤ 2

nδ
E

[∫ T n
Nn (T )+1

T n
Nn (T )

λnXn(s)ds

]
≤ 2

nδ

(
max
i∈S λni

)
E[T̆ n

1 ] → 0 as n → ∞,
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where the convergence follows from Assumption 1 and E[T̆ n
1 ] = n−αγ . Thus, the

lemma is proved. ��
Lemma 5.3

Ân
1,2 ⇒

{
0, δ = 1 − α/2, 0 < α < 1,

Â1, δ = 1/2, α ≥ 1,
(5.15)

in D as n → ∞, where the limit process Â1 is a driftless Brownian motion with
variance coefficient ν̄ defined in (2.14).

To prove this lemma, we need the following lemma, whose proof follows from a
direct generalization of Theorem 2.7 in [22].

Lemma 5.4 Let {ξn,i : i ≥ 1} be an i.i.d. sequence for each n and Un(t) :=∑�nα t�
i=1 ξn,i for each t ≥ 0 and any α > 0. Then Un ⇒ U in D as n → ∞,

where U is a stochastic process with stationary independent increments, if and only
if Un(t) ⇒ U (t) in R for each t as n → ∞.

Proof of Lemma 5.3 Define a process Ăn
1,2 = { Ăn

1,2(t) : t ≥ 0} by

Ăn
1,2(t) :=

�nα t/γ �∑
k=1

(
Ăn
k − 1

nδ

∫ T n
k

T n
k−1

λnXn(s)ds

)
, t ≥ 0, (5.16)

where Ăn
k is defined in (5.13). We first show that, for each t ≥ 0,

Ăn
1,2(t) ⇒

{
0, δ = 1 − α/2, 0 < α < 1,

Ă(t), δ = 1/2, α ≥ 1,
(5.17)

in R as n → ∞, where Ă(t) has a normal distribution with mean 0 and variance
ν̄t , with ν̄ defined in (2.14). This follows from applying the CLT for doubly indexed
sequences by noting that the summation terms in (5.16) are i.i.d. for each given n. It
suffices to show that, as n → ∞,

nαVar

(
Ăn
1 − 1

nδ

∫ T n
1

T̃ n
0

λnXn(s)ds

)
→

{
0, δ = 1 − α/2, 0 < α < 1,

ν̄γ, δ = 1/2, α ≥ 1.
(5.18)

By conditioning, we obtain

Var

(
Ăn1 − 1

nδ

∫ T n
1

T̃ n
0

λnXn(s)ds

)

= Var
(
Ăn1

) + Var

(
1

nδ

∫ T n
1

T̃ n
0

λnXn(s)ds

)
− 2Cov

(
Ăn1,

1

nδ

∫ T n
1

T̃ n
0

λnXn(s)ds

)

= E
[
Var

(
Ăn1 |Xn(s) : T̃ n

0 ≤ s ≤ T n
1
)] + Var

(
E
[
Ăn1 |Xn(s) : T̃ n

0 ≤ s ≤ T n
1
])
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+ 1

n2δ
Var

(∫ T n
1

T̃ n
0

λnXn(s)ds

)

−2
1

nδ

(
E

[
Ăn1

∫ T n
1

T̃ n
0

λnXn(s)ds

]
− E

[
Ăn1

]
E

[∫ T n
1

T̃ n
0

λnXn(s)ds

])

= 1

n2δ
E

[∫ T n
1

T̃ n
0

νnXn(s)ds

]
+ 2

n2δ
Var

(∫ T n
1

T̃ n
0

λnXn(s)ds

)
− 2

n2δ
Var

(∫ T n
1

T̃ n
0

λnXn(s)ds

)

= 1

n2δ
E

[∫ T n
1

T̃ n
0

νnXn(s)ds

]
= 1

n2δ

I∑
i=1

νni E

[∫ T n
1

T̃ n
0

1(Xn(s) = i)ds

]
. (5.19)

Under the assumption on the underlying Markov process Xn , we obtain that for each
i = 1, . . . , I and t ≥ 0,

∫ t

0
1(Xn(s) = i)ds ⇒ πi t as n → ∞. (5.20)

Since E[T̆ n
1 ] = n−αγ , we obtain that as n → ∞,

nα−2δ
I∑

i=1

νni E

[∫ T n
1

T̃ n
0

1(Xn(s) = i)ds

]
→

{
0, δ = 1 − α/2, 0 < α < 1,

ν̄γ, δ = 1/2, α ≥ 1.
(5.21)

Thus, we have proved (5.17). By Lemma 5.4, we obtain that

Ăn
1,2 ⇒

{
0, δ = 1 − α/2, 0 < α < 1,

Â1, δ = 1/2, α ≥ 1,
(5.22)

in D as n → ∞. Now by (5.8), Theorem 11.4.5 of [25], and the continuous mapping
theorem, we can conclude the convergence in (5.15). ��

Completing the Proof of Theorem 2.1 Recall the representation of the process Ân in
(5.1)–(5.3) and (5.4)–(5.7). By Lemmas 5.1 and 5.2, we obtain that Ân

1,1 ⇒ 0 and

Ân
1,3 ⇒ 0 as n → ∞, respectively. By Lemma 5.3, we obtain that (i) Ân

1,2 ⇒ Â1 in

D as n → ∞, when δ = 1/2 and α ≥ 1, where Â1 is a driftless Brownian motion
with variance parameter ν̄, and (ii) Ân

1,2 ⇒ 0 in D as n → ∞, when δ = 1− α/2 and
0 < α < 1.

By Proposition 3.2 in [1], we obtain that

Ân
2 ⇒

⎧⎪⎨
⎪⎩
Â2, δ = 1 − α/2, 0 < α < 1,

Â2, δ = 1/2, α = 1,

0, δ = 1/2, α > 1,

(5.23)
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in D as n → ∞, where the limit process Â2 = { Â2(t) : t ≥ 0} is a Brownian motion
with mean 0 and variance coefficient β̄. Here, the Brownian motion Â1 is independent
of Â2. Thus the proof is complete. ��

5.2 Proofs for applications to infinite-server queues

Proof of Theorem 3.1. We first note that the process Qn can be written as

Qn(t) =
An(t)∑
k=1

I∑
i=1

1(τ nk + ηk,i > t)1(Xn(τ nk ) = i)

=
∫ t

0

∫ ∞

0

I∑
i=1

1(s + xi > t)1(Xn(s) = i)d

⎛
⎝An(s)∑

k=1

1(ηk,i ≤ xi )

⎞
⎠ , t ≥ 0.

(5.24)

From this, we obtain the following representation for the diffusion-scaled process Q̂n :
Q̂n(t) = Q̂n

1(t) + Q̂n
2(t) for t ≥ 0, where

Q̂n
1(t) :=

∫ t

0
Fc
Xn(s)(t − s)d Ân(s) =

∫ t

0

I∑
i=1

Fc
i (t − s)1(Xn(s) = i)d Ân(s) (5.25)

and

Q̂n
2(t) := n1/2−δ

I∑
i=1

∫ t

0

∫ ∞

0
1(s + xi > t)1(Xn(s) = i)

d

⎛
⎝ 1√

n

An(s)∑
k=1

(
1(ηk,i ≤ xi ) − Fi (xi )

)
⎞
⎠ . (5.26)

We next prove the convergences of Q̂n
1 and Q̂n

2.
To prove the convergence of Q̂n

1, we show that

lim
n→∞ P

(
sup

0≤t≤T

∣∣Q̂n
1(t) − Q̂1(t)

∣∣ > ε

)
= 0. (5.27)

Note that

P

(
sup

0≤t≤T

∣∣Q̂n
1(t) − Q̂1(t)

∣∣ > ε

)

≤ P

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

I∑
i=1

Fc
i (t − s)1(Xn(s) = i)d

(
Ân(s) − Â(s)

)∣∣∣∣∣ > ε

)
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+ P

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

I∑
i=1

Fc
i (t − s)

(
1(Xn(s) = i) − πi

)
d Â(s)

∣∣∣∣∣ > ε

)
, (5.28)

where Â is the limit process of the arrivals Ân as given inTheorem2.1.The convergence
to zero of the first term on the right-hand side of (5.28) follows from the convergence
Ân ⇒ Â in Theorem 2.1. To prove the convergence of the second term in (5.28), we
first observe that the process Q̂n

1,2 = {Q̂n
1,2(t) : t ≥ 0} defined by

Q̂n
1,2(t) :=

∫ t

0

I∑
i=1

Fc
i (t − s)

(
1(Xn(s) = i) − πi

)
d Â(s), t ≥ 0,

is a Markov process. It is easy to check that the generators of the processes Q̂n
1,2

converge to zero. Thus, by [10, Ch. IV, Thm. 2.5], we obtain the convergence of the
second term in (5.28). To show the joint convergence

( Ân, Q̂n
1) ⇒ ( Â, Q̂1) in D

2 as n → ∞, (5.29)

by endowing the product space with the maximummetric we see that the convergence
of Ân by assumption and Q̂n

1 in (5.27), as well as the continuity of their limits Â and
Q̂1, imply that (5.29) holds.

Nextwewill show the convergence of Q̂n
2.Define the sequential empirical processes

K̂ n
i = {K̂ n

i (t, x) : t, x ≥ 0} by

K̂ n
i (t, x) := 1√

n

�nt�∑
k=1

(1(ηk,i ≤ x) − Fi (x)), t, x ≥ 0,

for each i = 1, . . . , I . By [13, Lemma 3.1] and the independence of K̂ n
i , i = 1, . . . , I ,

we know

K̂ n
i ⇒ K̂i in DD as n → ∞, (5.30)

where K̂i , i = 1, . . . , I , are independent Kiefer processes defined in Theorem 3.1.
We let An

i = {An
i (t) : t ≥ 0} be the process counting the number of arrivals whose

service type is i , i.e.,

An
i (t) := max

{
j ≥ 0 : τ nk j 1(X

n(τ nk j ) = i) ≤ t
}

, t ≥ 0, (5.31)

where k0 := 0 and τ n0 := 0, for i = 1, . . . , I . Define the fluid-scaled processes
Ān
i := n−1An

i for each i = 1, . . . , I . Thus, Theorem2.1 directly implies the functional
weak law of large numbers (FWLLN) for An

i , i.e.,

( Ān
1, . . . , Ā

n
I ) ⇒ (π1λ1e, . . . , πIλI e) in D

I as n → ∞. (5.32)
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We can rewrite (5.26) as

Q̂n
2(t) = −n1/2−δ

I∑
i=1

Q̂n
2,i (t), t ≥ 0, (5.33)

where the processes Q̂n
2,i = {Q̂n

2,i (t) : t ≥ 0} are defined by

Q̂n
2,i (t) :=

∫ t

0

∫ ∞

0
1(s + xi ≤ t)d K̂ n

i ( Ān
i (s), xi ), t ≥ 0. (5.34)

Tightness of the processes {Q̂n
2,i : n ≥ 1} in D follows directly from the tightness of

the corresponding processes for the G/GI/∞ queues in [13], for i = 1, . . . , I . Thus,
we obtain the processes {Q̂n

2 : n ≥ 1} that are tight.
We now focus on proving the joint convergence of finite-dimensional distributions

of Q̂n
1 and Q̂n

2. We only need to show the case δ = 1/2, since otherwise the limit Q̂2

vanishes. Define the process Q̂2,i = {Q̂2,i (t) : t ≥ 0} by

Q̂2,i (t) :=
∫ t

0

∫ ∞

0
1(s + xi ≤ t)d K̂i (πiλi s, xi ), (5.35)

for t ≥ 0 and i = 1, . . . , I . The integral Q̂2,i in (5.35) is understood as a mean-square
integral. Specifically, we define

Q̂2,i (t) := l.i.ml→∞ Q̂2,i,l(t), t ≥ 0, (5.36)

where l.i.m represents mean-square limit, that is,

lim
l→∞ E

[(
Q̂2,i (t) − Q̂2,i,l(t)

)2] = 0,

and

Q̂2,i,l(t) :=
∫ t

0

∫ ∞

0
1l,t (s, x)d K̂i (πiλi s, xi )

=
l∑

j=1

�K̂i
((πiλi s

l
j−1, 0); (πiλi s

l
j , t − slj ))

with 1l,t (·, ·) defined by

1l,t (s, x) := 1(s = 0)1(x ≤ t) +
l∑

j=1

1(slj−1 < s ≤ slj )1(x ≤ t − slj )

with the points 0 = sl1 < sl2 < · · · < sll = t being chosen so that max1≤ j≤l |slj −
slj−1| → 0 as l → ∞, and for a1 ≤ a2, b1 ≤ b2, and i = 1, . . . , I ,
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�K̂i
((a1, b1); (a2, b2)) = K̂i (a2, b2)− K̂i (a1, b2)− K̂i (a2, b1)+ K̂i (a1, b1). (5.37)

We define the additional processes Q̂n
2,i,l = {Q̂n

2,i,l(t) : t ≥ 0} and Q̆n
2,i,l =

{Q̆n
2,i,l(t) : t ≥ 0} by

Q̂n
2,i,l(t) :=

∫ t

0

∫ ∞

0
1l,t (s, x)d K̂ n

i ( Ān
i (s), xi )

=
l∑

j=1

�K̂ n
i
(( Ān(slj−1), 0); ( Ān(slj ), t − slj )),

Q̆n
2,i,l(t) :=

∫ t

0

∫ ∞

0
1l,t (s, x)d K̂ n

i (πiλi s, xi )

=
l∑

j=1

�K̂ n
i
((πiλi s

l
j−1, 0); (πiλi s

l
j , t − slj )),

where�K̂ n
i
is defined similarly to�K̂i

in (5.37) with K̂i replaced by K̂ n
i . By the weak

convergence of K̂ n
i to K̂i in DD as n → ∞, we easily obtain that, for i = 1, . . . , I ,

Q̆n
2,i,l

f.d.d.−−−→ Q̂2,i,l as n → ∞,

where
f.d.d.−−−→ stands for the convergence in finite-dimensional distributions. By noting

that Q̆n
2,i,l , i = 1, . . . , I , and An are independent from each other, togetherwith (5.29),

we have

( Ân, Q̂n
1, Q̆

n
2,1,l , . . . , Q̆

n
2,I,l)

f.d.d.−−−→ ( Â, Q̂1, Q̂2,1,l , . . . , Q̂2,I,l) as n → ∞.

In order to establish the joint convergence of Ân, Q̂n
1, and Q̂n

2,i in finite-dimensional
distributions, i = 1, . . . , I , i.e.,

( Ân, Q̂n
1, Q̂

n
2,1, . . . , Q̂

n
2,I )

f.d.d.−−−→ ( Â, Q̂1, Q̂2,1, . . . , Q̂2,I ) as n → ∞, (5.38)

it is sufficient to show the following: for any T > 0 and ε > 0,

lim
n→∞ P

(
sup

0≤t≤T
|Q̂n

2,i,l(t) − Q̆n
2,i,l(t)| > ε

)
= 0, i = 1, . . . , I, (5.39)

and, for t > 0 and ε > 0,

lim
l→∞ lim

n→∞ P
(
|Q̂n

2,i,l(t) − Q̂n
2,i | > ε

)
= 0, i = 1, . . . , I. (5.40)
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We can easily obtain (5.39) from (5.30) and (5.32), as well as the continuity of K̂i , i =
1, . . . , I . Following the proof of [13, Lemma 5.3], we immediately see that (5.40) also
holds. Therefore, we have shown (5.38). By the continuousmapping theorem, together
with (5.33) and δ = 1/2, we further have

( Ân, Q̂n
1, Q̂

n
2)

f.d.d.−−−→ ( Â, Q̂1, Q̂2) as n → ∞.

Since {Q̂n
1 : n ≥ 1} and {Q̂n

2 : n ≥ 1} are tight as previously shown, we have
established the weak convergence of Q̂n joint with Ân when δ = 1/2 and α ≥ 1.
Furthermore, by noting (3.1) and (3.2), as well as the continuous mapping theorem,
we obtain the weak convergence of ( Ân, Q̂n, D̂n) jointly. The case when δ = 1−α/2
and 0 < α < 1 can be obtained analogously by noting that the limit Q̂n

2 vanishes as
n → ∞. Therefore, the proof of Theorem 3.1 is complete. ��

Proof of Corollary 3.1 The covariance functions of Q̂ can be obtained similarly to
[13, Lemma 5.1] in combination with Itô isometry as well as the fact that the Kiefer
processes K̂i , with i = 1, . . . , I , and the arrival limit Â are independent of each other.
The covariance functions of D̂ can also be derived similarly. We omit the details here
for brevity. ��

5.3 Proofs for applications to fork–join networks

Proof Sketch of Theorem 4.1 We first note that the processes Qn
k ,Y

n
k , and S can be

represented as

Qn
k (t) =

An(t)∑
�=1

I∑
i=1

1(τ n� + η
�,i
k > t)1(Xn(τ n� ) = i)

=
I∑

i=1

∫ t

0

∫
R

K+
1(s + xik > t)1(Xn(s) = i)d

⎛
⎝An(s)∑

�=1

1(ηηη�,i ≤ xi )

⎞
⎠ ,

Yn
k (t) =

An(t)∑
�=1

I∑
i=1

(1(τ n� + η
�,i
k ≤ t) − 1(τ n� + η

�,i
j ≤ t, ∀ j))1(Xn(τ n� ) = i)

=
I∑

i=1

∫ t

0

∫
R

K+
(1(s + xik ≤ t) − 1(s + xij ≤ t, ∀ j))1(Xn(s) = i)

d

⎛
⎝An(s)∑

�=1

1(ηηη�,i ≤ xi )

⎞
⎠ ,
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Sn(t) =
An(t)∑
�=1

I∑
i=1

1(τ n� + η
�,i
j ≤ t, ∀ j)1(Xn(τ n� ) = i)

=
I∑

i=1

∫ t

0

∫
R

K+
1(s + xij ≤ t, ∀ j)1(Xn(s) = i)d

⎛
⎝An(s)∑

�=1

1(ηηη�,i ≤ xi )

⎞
⎠ .

Then we can obtain the representations for the diffusion-scaled processes Q̂n
k , Ŷ

n
k , and

Ŝn as follows:

Q̂n
k (t) =

I∑
i=1

∫ t

0
G(i)

k (t − s)1(Xn(s) = i)d Ân(s)

+ n1/2−δ
I∑

i=1

∫ t

0

∫
R

K+
1(s + xik > t)d K̂

n
i ( Ā

n
i (s), x

i ), (5.41)

Ŷ n
k (t) =

I∑
i=1

∫ t

0
(F (i)

k (t − s) − F (i)
m (t − s))1(Xn(s) = i)d Ân(s)

+ n1/2−δ
I∑

i=1

∫ t

0

∫
R

K+
(1(s + xik ≤ t) − 1(s + xij ≤ t, ∀ j))d K̂

n
i ( Ā

n
i (s), x

i ),

(5.42)

Ŝn(t) =
I∑

i=1

∫ t

0
F (i)
m (t − s)1(Xn(s) = i)d Ân(s)

+ n1/2−δ
I∑

i=1

∫ t

0

∫
R

K+
1(s + xij ≤ t, ∀ j)d K̂

n
i ( Ā

n
i (s), x

i ), (5.43)

where the processes An
i , i = 1, . . . , I , are defined in (5.31), and the multiparameter

sequential empirical processes K̂
n
i = {K̂ n

i (t, x) : t ≥ 0, x ∈ R
K+} are defined by

K̂
n
i (t, x) := 1√

n

�nt�∑
�=1

(1(ηηη�,i ≤ x) − F (i)(x)), t ≥ 0, x ∈ R
K+ .

The weak convergence of the first terms in (5.41)–(5.43) follows analogously from
the proof for (5.25) in Theorem 3.1. Note from [14, Thm. 3.1] and the independence
of K̂

n
i , i = 1, . . . , I , that

K̂
n
i ⇒ K̂

n
i in D([0,∞),DK ) as n → ∞, (5.44)

where K̂ i , i = 1, . . . , I , are independent generalizedKiefer processeswith covariance
functions in Theorem 4.1. With similar argument to the proof in Theorem 3.1 and [14,
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Sect. 6.2], we can also show the weak convergence of the second terms in (5.41),
(5.42) and (5.43), as well as the joint convergence of ( Â, Q̂, Ŷ , Ŝ). The details are
omitted for brevity. ��
Proof of Corollary 4.1 The covariance functions of Q̂ j (t) and Ŷk(t ′), and Ŝ(t) and
Ŝ(t ′) are analogous to [14, Thm. 3.4] for j, k = 1, . . . , K , and t, t ′ ≥ 0, together with
the fact that the generalized Kiefer processes K̂ i ’s are independent, i = 1, . . . , I . We
omit the details for brevity. ��

6 Concluding remarks

We have studied a large class of MAAPs that can capture more burstiness and vari-
abilities than MMPPs. Under mild conditions on the parameters, we have established
an FCLT for the MAAPs. The FCLT is applied to non-Markovian infinite-server sys-
tems and fork–join networks with NES. It can be also similarly applied to obtain
two-parameter heavy-traffic limits for infinite-server systems as in [20]. The FCLT
can be potentially applied to study large-scale service systems in Markov random
environments, for example, queueing networks in which all stations are modulated by
the same Markov process. The results can also be used to study resource allocation
and system design problems for such queueing and network models. It may also be
interesting to study the (sample-path) large deviation problems for queueing systems
with MAAPs.
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