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Abstract Burke’s theorem is a well-known fundamental result in queueing theory,
stating that a stationary M/M/1 queue has a departure process that is identical in law
to the arrival process and, moreover, for each time t , the following three random
objects are independent: the queue length at time t , the arrival process after t and
the departure process before t . Burke’s theorem also holds for a stationary Brownian
queue. In particular, it implies that a certain “complicated” functional derived from two
independent Brownian motions is also a Brownian motion. The aim of this overview
paper is to present an independent complete explanation of this phenomenon.
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1 Introduction

Consider two independent standard Brownian motions B1
t , B

2
t and an independent

exponential random variable Z with mean 1. The following often comes as a surprise.

Theorem 1 For any λ > 0, the process

D(λ)
t : = inf

0≤s≤t

{
1

λ
Z + B1

s + B2
t − B2

s + λ(t − s)

}
∧ (B2

t + λt), t ≥ 0, (1)
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is a standard Brownian motion.

Recall that a Brownian motion Bt is 1/2-self-similar, meaning that (Bαt , t ≥
0)

(d)=(α1/2Bt , t ≥ 0), for all α > 0, where
(d)= means equality in distribution (of

the two objects as random elements in the space of continuous functions). However, it
is not possible to deduce that D(λ)

t is 1/2-self-similar directly from the formula. The
only thing directly observable is that

(
D(λ)
t , t ≥ 0

) (d)=
(
λ−1D(1)

λ2t
, t ≥ 0

)
,

by the 1/2-self-similarity of Bi
t , i = 1, 2, implying that proving the theorem for λ = 1

proves it for all λ.
To understand what this formula says it is worth our while playing with it until we

realize its “geometric” meaning. Let x : [0,∞) → R be any function representing the
motion of a particle. Let α : [0,∞) → R be another function such that α(0) ≤ x(0)
and define1

z(t) : = x(t) − inf
0≤s≤t

(x(s) − α(s)) ∧ 0. (2)

Clearly, z(t) ≥ x(t) − (x(t) − α(t)) = α(t) for all t , whereas �(t) : =
− inf0≤s≤t (x(s) − α(s)) ∧ 0 satisfies �(0) = 0 and �(t1) ≤ �(t2) if t1 < t2 (� is
increasing). Now take any increasing function m : [0,∞) → R such that m(0) = 0.
Then �(t) ≤ m(t) for all t ≥ 0. We call the function z the reflection of x upwards at
α, and this conveys a natural physical meaning. See Fig. 1 for an example. Reversing
directions, we can reflect x downwards at some function β : [0,∞) → R, so long as
x(0) ≤ β(0), via the formula

w(t) = x(t) + inf
0≤s≤t

(β(s) − x(s)) ∧ 0. (3)

This is natural: if R↑ is the mapping (x, α) �→ z then the mapping R↓ : (x, β) �→ w is
obtained by applying R↑ to (−x,−α) and then reversing the sign. That is, R↓(x, β) =
−R↑(−x,−β). We call w the reflection of x downwards at β and can easily ascribe
physical meaning to it.

If we now take a look and rewrite the formula (1) for D(λ)
t as

D(λ)
t =

(
B2
t + λt

)
+ inf

0≤s≤t

{
1

λ
Z + B1

s −
(
B2
s + λs

)}
∧ 0, (4)

we see, by comparison to (3), that D(λ)
t is the reflection of x(t) = B2

t +λt (a Brownian
motion with drift λ) downwards at β(t) = 1

λ
Z + B1

t (a Brownian motion starting from
an independent exponential randomvariablewith rateλ). See Fig. 2,why this reflection
is a standard Brownian motion, for any λ, is what we will explain later.

1 To save parentheses, I decided that minimization takes precedence over addition/subtraction, so c±a∧b
means c ± (a ∧ b).
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Fig. 1 An example of reflection
of a function x(t) upwards at the
lower barrier function
α(t) = sin t . The free process is
of the form x(t) = c − t sin(ωt)
for some c > 0 and ω > 1. The
reflected process is denoted by
z(t). See Eq. (2)

(t)α

z(t)

x(t)

Fig. 2 The figure shows the
simulation (done in Maple™and
labeled in Gimp™) of a
Brownian motion with drift,
X (t) = B2

t + λt , and a
Brownian motion started from
an exponential random variable,
β(t) = Z

λ + B2
t . The process

D(λ)
t is obtained by reflecting

X (t) downwards at β(t) and is a
standard Brownian motion

Z
λ
+B1

t

B2
t + λ t

(λ)
Dt

However, let us look at the limiting cases λ → 0 and λ → ∞. When λ tends to
0, the boundary process β(t) tends to +∞ (so the effect of the reflection vanishes),
whereas x(t) tends to B2

t . Hence, the process D
(λ)
t tends to B2

t .When λ tends to∞, the
boundary process β(t) tends to B1

t , whereas x(t) assumes arbitrarily large drift. The
effect of reflection in this case forces the process to get stuck at the boundary process,
that is, D(λ)

t tends to B1
t . Thus, intuitively, in either of the limiting cases, λ → 0 or

λ → ∞, D(λ)
t is a Brownian motion.

The goal of this paper is to summarize existing results. First of all, there is Burke’s
theorem, first presented in [2] for an M/M/1 queue. Second, there is the analog of this
theorem for a Brownian queue. This appeared, in a more general context, in Harrison
and Williams [6] and was expanded by O’Connell and Yor [10]. Instead of proving
Theorem 1, we shall prove its more general version: see Corollary 1. We first review
Burke’s theorem (Sect. 2), then construct the Brownian queue (Sect. 3) and finally
prove the Brownian version of Burke’s theorem (Sect. 4) by reviewing the standard
heavy traffic limit theorem in Theorem 3.

2 Burke’s theorem

Consider a single-server queue Q(t), t ≥ 0, that is, define Q via the equation

Q(t) = Q(0) + A(t) − S

(∫ t

0
1Q(u)>0 du

)
, (5)
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where A, S are increasing counting functions with A(0) = S(0) = 0. (By a counting
function F we mean an increasing function with values in the set Z+ of nonnegative
integers such that�F(t) : = F(t+)−F(t−) ∈ {0, 1} for all t .) By convention, we let
A and S be right-continuous. That the solution of (5) is unique follows easily from the
fact that A and S are piecewise constant. Physically, (5) conveys the followingmeaning:
customers arrive at the times of jumps of the function A. Assume that Q(0) > 0. Then
on some interval [0, τ ], the function Q satisfies Q(t) = Q(0)+A(t)−S(t), 0 ≤ t ≤ τ .
The time τ can be taken to be the first time at which Q becomes 0. At this time, the
argument of S freezes at value τ until the first time after τ at which A has a new
jump (a new customer arrives at an empty queue). Therefore, (5) is a mathematical
expression of what we usually understand as a single-server queue. A G/M/1 queue is
obtained when we let S be a Poisson process independent of A, both independent of
Q(0). In such a case, Q is equal in distribution [3] to the process

Q(t) = Q(0) + A(t) −
∫ t

0
1Q(u−)>0S(du). (6)

Abusing notation, we use the same symbol, Q, for both the original process (5) and
its version (6). Pathwise, Eq. (6) does not describe a queue in the usual sense but
a so-called gated queue. That is, customers arrive according to A and queue up in
front of a gate. At the jump times of S the gate opens instantaneously, a customer is
released, and then the gate closes again immediately. Obviously, (5) and (6) describe
different physical phenomena. They happen to be equal in distribution when S is an
independent Poisson process. Rewriting (6) as

Q(t) = Q(0) + A(t) − S(t) +
∫ t

0
1Q(u−)=0 S(du), (7)

we see that

L(t) : =
∫ t

0
1Q(u−)=0 S(du) (8)

satisfies the following: L(0) = 0, L is increasing, and
∫ ∞
0 Q(t−)L(dt) = 0. By a

version of Skorokhod’s lemma (see [4, Lemma 8.1] for the case of one-sided reflection
of a continuous function and see [1, Sect. 4] for the more general cases of a two-sided
reflection for a function with discontinuities of the first kind), it follows that

L(t) = − inf
0≤u≤t

(Q(0) + A(u) − S(u)) ∧ 0 (9)

and so Q(t) is the reflection of Q(0) + A(t) − S(t) upwards at 0; see Eq. (2). By (9)
and (8), Eq. (7) is equivalently written as

Q(t) = sup
0≤u≤t

(A(t) − A(u) − S(t) + S(u)) ∨ (Q(0) + A(t) − S(t)) .
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Further manipulation of this formula shows that, for 0 ≤ s ≤ t ,

Q(t) = sup
s≤u≤t

(A(t) − A(u) − S(t) + S(u))

∨ (Q(s) + A(t) − A(s) − S(t) + S(s)) . (10)

Let Fs,t be the (random) mapping taking Q(s) into Q(t) [that is, Fs,t (x) is obtained
by letting Q(s) = x in (10)]. Then the family {Fs,t : 0 ≤ s ≤ t} satisfies the state
transition property Ft1,t3 = Ft2,t3◦Ft1,t2 , for t1 ≤ t2 ≤ t3. Moreover, the law of Fs,t
depends on s, t only through t − s. Since A and S have independent increments, we
obtain that Q has the Markov property. Indeed, Q is a Markov chain with transition
rates

q(n, n + 1) = λ, q(n + 1, n) = μ, n ∈ Z+, (11)

whereasq(i, j) = 0 if i = j and |i− j | > 1, andq(i, i) = −λ−μ. To “put Q in steady-
state” we have two options: either do it in law or do it explicitly on some probability
space. We choose the latter. To construct the probability space, extend A and S on the
whole ofR. That is, take A, S be two independent stationary Poisson processes on the
whole real line and ask whether there is a stationary process (Q(t), t ∈ R) satisfying
Q(t) = Fs,t (Q(s)) for all s ≤ t .The answer is the usual one: such a process exists if
and only if λ < μ and is given by

Q(t) = sup
−∞<u≤t

(A(t) − A(u) − S(t) + S(u)) . (12)

The ergodic theorem, together with the assumption that λ < μ, implies that Q(t) is
an a.s. finite random variable. The fact that A, S have stationary increments implies
that Q is a stationary process. A little algebra shows that formula (12) satisfies (10).
Hence, (12) is a stationary version of the M/M/1 queue. Put otherwise, (12) is a
pathwise representation of a stationary birth and death process on the integers with
transition rates (11). In fact, we also have uniqueness, i.e., Q is the unique stationary
process on the probability space defined by A and S that satisfies the given dynamics.
What we have done here is, of course, an application of the standard Loynes’ scheme.
For this process we also have that

Q(t) = Q(s) + A(t) − A(s) −
∫ t

s
1Q(u−)>0 S(du), −∞ < s < t < ∞.

The point process having points at the jump times of A is the arrival process (and will
still be denoted by A), whereas the point process having points at the times t such that
Q(t−) > 0 and t is a jump time of S is the departure process and will be denoted by
D.

Burke’s theorem can now be stated as follows.

Theorem 2 (Burke) For the stationary M/M/1 queue Q, the following three random
objects:
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Q(0), A|(0,∞), D|(−∞,0)

are independent. Moreover, D is a Poisson process with rate λ.

Proof It is based on the observation that Q is time-reversible. That is, (Q(t), t ∈
R) has the same finite-dimensional distributions as (Q(−t), t ∈ R). (By making
the latter right-continuous we can also ensure that they have the same law.) Indeed,
time-reversing a stationary process possessing the Markov property gives a stationary
process also possessing the Markov property with the same marginal distributions. It
is more than well-known that the marginal distribution of Q(t) is geometric:

P(Q(t) = i) = (λ/μ)i (1 − λ/μ) =: π(i), i ∈ Z+.

To check this, note that

π(i)q(i, j) = π( j)q( j, i), i = j, i, j ∈ Z+,

and this implies that
∑

i∈Z+ π(i)q(i, j) = 0, for all j ∈ Z+. It remains to check that
the transition probabilities of the time-reversed process are the same as those of Q.
Since transition probabilities are determined by the transition rates (we are in the best
possible situation of all worlds here, since the rate matrix is bounded), we only have
to check that the transition rates are the same for both processes. Fix i, j ∈ Z+, i = j .
Then the transition rate for the reversed process is

q−(i, j) = π( j)q( j, i)/π(i) = q(i, j).

By the Markov property, we have that A|(0,∞) and D|(−∞,0) are independent con-
ditional on Q(0). By the reversibility, we have that the law of (Q(0), D|(−∞,0)) is
the same as the law of (Q(0), A|(0,∞)). Hence, in particular, D|(−∞,0) has the law
of A|(0,∞), and so it is a Poisson point process with rate λ. By the fact that A has
independent increments, it follows that Q(0) is independent of A|(0,∞). Therefore,
D|(−∞,0), Q(0) and A|(0,∞) are independent. Since we can replace 0 by any point
of time t , it follows that D|(−∞,t) is a Poisson process with rate λ and so D itself is
Poisson with the same rate. ��

Usually, Burke’s theorem is stated as saying that the departure process in a sta-
tionary M/M/1 queue is Poisson with the same rate as the arrival process. However,
the actual theorem says more: that past departures, future arrivals and current state
are independent. This property is known as quasi-reversibility [7] and, in this case,
follows from reversibility.

3 The Brownian queue

Since (12) was obtained under very minimal assumptions, we can replace the incre-
ments A(t) − A(u) and S(t) − S(u) by increments of very general processes X and
Y , as long as we have some kinds of joint stationarity and ergodicity. For example, we
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can let Xa = (Xa
t , t ∈ R), Yb = (Yb

t , t ∈ R) be two independent Brownian motions
with drifts a and b, respectively. As long as a < b, the random variable

qt : = sup
−∞<u≤t

(
Xa
t − Xa

u − Yb
t + Yb

u

)
, t ∈ R, (13)

is a.s. finite, and the process (qt , t ∈ R) is stationary (by the stationarity of the
increments of Xa and Yb) and Markovian; the latter follows by observing that [just as
we did in (10)]

qt = sup
s≤u≤t

(
Xa
t − Xa

u − Yb
t + Yb

u

)
∨

(
qs + Xa

t − Xa
s − Yb

t + Yb
s

)
, t ∈ R,

(14)

together with the fact that the processes Xa and Yb have independent increments.
(In fact, if we replace them by any processes with independent increments, we can
still have the Markovian property for q, under the right stability condition, i.e., the
analog of a < b.) We call qt , t ≥ 0, a Brownian queue with “arrival” process Xa

and “service” process Yb. The physical meaning has been lost because (except in
trivial cases) neither Xa nor Yb is increasing. However, it will be regained in the next
section. The point I wish to make here is this: unlike in a real queue, like the one
of (5), observing the path of q cannot determine the arrival and departure processes.
Indeed, if we write Xa

t = σ1B1
t + at , Yb

t = σ2B2
t + bt , where B1 and B2 are two

independent standard Brownian motions, then Xa
t − Yb

t
(d)=

√
σ 2
1 + σ 2

2 Bt + (a − b)t ,
where B is a standard Brownian motion, so q can, for example, be thought of having

arrival process
√

σ 2
1 + σ 2

2 Bt and service process (a − b)t .
However, when we want to talk about the “departure” process from a Brownian

queue, it is important to fix the arrival process. That is, of all possibilities that result
in the same q, we must pick one and call it the arrival process. For instance, let us say
that Xa is the arrival process. Having made our choice, we manipulate (14) further:

qt = sup
s≤u≤t

(
Xa
t − Xa

u − Yb
t + Yb

u

) ∨ (
qs + Xa

t − Xa
s − Yb

t + Yb
s

)

= qs + Xa
t − Xa

s − Yb
t + Yb

s − inf
s≤u≤t

(
qs + Xa

u − Xa
s − Yb

u + Yb
s

) ∧ 0.

We now define Lt , t ∈ R, by letting L0 = 0 and

Lt − Ls : = − inf
s≤u≤t

(
qs + Xa

u − Xa
s − Yb

u + Yb
s

)
.

Therefore,

qt = qs + (
Xa
t − Xa

s

) − (
Yb
t − Yb

s

) + (Lt − Ls), −∞ < s ≤ t < ∞.
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We now define the departure process by letting D0 = 0 and

Dt − Ds : = (
Yb
t − Lt

) − (
Yb
s − Ls

)
, −∞ < s ≤ t < ∞.

Setting s = 0 in the last expression, we have

Dt = Yb
t − Lt = Yb

t + inf
0≤u≤t

(
q0 + Xa

u − Yb
u

) ∧ 0, t ≥ 0.

In other words, Dt is obtained by reflecting Yb
t downwards at q0 + Xa

t ; see Eq. (3). If
t ∈ R, positive or negative, then

qt = q0 + Xa
t − Dt , t ∈ R, (15)

and so, having defined (qt , t ∈ R) through (13), the latter gives a formula for Dt valid
for all t ∈ R, and D0 = 0.

4 The Brownian Burke’s theorem

Consider now a sequence of stationary M/M/1 queues such that the n-th queue has
Poisson service process S with rate μ = 1 and Poisson arrival process An with rate
λn : = 1 − λ/

√
n. We shall remind the reader how a limit is obtained. Let Qn(t),

t ∈ R, be the queue length process. By (12)

Qn(t) = sup
−∞≤u≤t

(
An(t) − An(u) − S(t) + S(u)

)
.

Let Dn(t), t ∈ R, be the departure process. That is, for all −∞ < s ≤ t < ∞,

Dn(t) − Dn(s) = S(t) − S(s) − [Ln(t) − Ln(s)] ,

Ln(t) − Ln(s) = − inf
s≤u≤t

(
Qn(s) + An(u) − An(s) − S(u) + S(s)

) ∧ 0.

Define

Q̃n(t) : = Qn(nt)√
n

, Ãn(t) := An(nt) − λnnt√
n

, D̃n(t) := Dn(nt) − λnnt√
n

, t ∈ R.

Theorem 3 (Heavy traffic limit)The sequence ( Ãn, Q̃n, D̃n) converges in distribution
to (B1, q, D(λ)) where B1 is a standard Brownian motion, qt is a Brownian queue
with arrival process B1 and service process B2

t + λt (with B2 being an independent
standardBrownianmotion), and D(λ) the departure process from this Brownian queue.

Proof Bystationarity, it suffices to show that the convergence happenswhenwe restrict
all processes to any interval of the form [s,∞) and, without loss of generality, we take
s = 0. SinceP(Qn(0) ≥ k) = (λn/μ)k , we haveEQn(0) = λn/(μ−λn) = √

n/λ−1.
(Recall μ = 1.) Since EQn(0)/

√
n → 1/λ, it follows that Qn(0) converges in
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distribution to the law of Z/λ, where Z is a rate-1 exponential random variable: For
x ≥ 0, P(Qn(0)/

√
n > x) → e−λx , as n → ∞. On the other hand, by a simple

modification of Donsker’s theorem, we have that

(
S(nt) − nt√

n
,
An(nt) − nλnt√

n

)
t≥0

(d)−→ (
B1, B2),

with B1, B2 being two standard Brownian motions. Let

Xn(t) : = Qn(0) + An(t) − S(t).

Then

Xn(nt) = Qn(0) + [An(nt) − nλnt] − [S(nt) − nt] − λt
√
n.

Therefore,

(
Xn(nt)√

n

)
t≥0

(d)−→
(
Z

λ
+ B1

t − B2
t − λt

)
t≥0

.

However, [see (7), (8), (9)]

Qn(nt)√
n

= Xn(nt)√
n

− inf
0≤u≤t

Xn(nu)√
n

∧ 0,

and, since the mapping ϕ : x �→ (inf0≤u≤t x(u) ∧ 0)t≥0 satisfies ‖ϕ(x) − ϕ(y)‖T ≤
‖x − y‖T , where ‖ f ‖T = sup0≤s≤t | f (s)|, it follows that

Qn(nt)√
n

(d)−→
(
Z

λ
+ B1

t − B2
t − λt

)
− inf

0≤u≤t

(
Z

λ
+ B1

u − B2
u − λu

)
∧ 0

= sup
0≤u≤t

(
B1
t − B1

u − (
B2
t − B2

u

) − λ(t − u)
)

∨
(
Z

λ
+ B1

t − B2
t − λt

)
,

where
(d)−→ means convergence in distribution when both sides are interpreted as

processes. Now let qt be defined by

qt = sup
0≤u≤t

(
Xt − Xu − Yt + Yu

) ∨ (
q0 + Xt − Xs − Yt + Ys

)
,

with Xt = B1
t and Yt = B2

t + λt ; see (14), and q0 = Z/λ. Since each of the M/M/1
queues is stationary, it follows that qt is stationary (its law is invariant under forward
shifts). This means that the unique extension of qt , t ≥ 0, to qt , t ∈ R, is the stationary
process defined by

qt = sup
−∞<u≤t

(
Xt − Xu − Yt + Yu

)
.
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10 Queueing Syst (2016) 83:1–12

Consider now the departure process of the n-th queueing system. We have

D̃n(t) = Dn(nt) − nλnt√
n

= S(nt) − nt√
n

+ λt + inf
0≤u≤t

Xn(nu)√
n

(d)−→ B2
t + λt + inf

0≤u≤t

(
Z

λ
+ B1

u − B2
u − λu

)
=: D(λ)

t ,

where D(λ)
t is the departure process from the Brownian queue. We have proved that

each entry of the triple ( Ãn, Q̃n, D̃n) converges in distribution to the corresponding
entry of the triple (B1, q, D(λ)). However, going back to the arguments, we have
actually shown that the triple converges jointly. Moreover, by stationarity, we have
shown that the convergence is actually on the whole of R. ��
Corollary 1 (Brownian Burke’s theorem) Let qt be the stationary Brownian queue
with arrival process B1

t and service process B2
t + λt , for some λ > 0. That is,

qt = sup
−∞<u≤t

(
B1
t − B1

u − (
B2
t − B2

u

) − λ(t − u)
)

, t ∈ R.

Let (D(λ)
t , t ∈ R) be its departure process. That is,

D(λ)
t − D(λ)

s = B2
t − B2

s + λ(t − s) + inf
s≤u≤t

(
qs + B1

u − B1
s

−(
B2
u − B2

s

) − λ(u − s)
) ∧ 0.

Then

q0,
(
B1
t , t ≥ 0

)
,

(
D(λ)
t , t < 0

)

are independent. Moreover, q0 is exponential with rate λ and (D(λ)
t , t ∈ R) is a

standard two-sided Brownian motion.

Proof Consider the n-th M/M/1 queue defined earlier. By Burke’s theorem (Theo-
rem 2) n−1/2Qn(0), ( Ãn(t), t ≥ 0), (D̃n(t), t ≤ 0) are independent. By Theorem 3,
the triple converges in distribution to Z/λ, (B1

t , t ≥ 0), (D(λ)
t , t < 0). Since inde-

pendence is preserved in the limit, it follows that the Z/λ, (B1
t , t ≥ 0), (D(λ)

t , t ≤ 0)
are independent. By the last assertion of Burke’s theorem, Dn is a stationary Poisson
process with rate λn = 1 − λ/

√
n. By Donsker’s theorem, D̃n converges in distribu-

tion to a standard two-sided Brownian motion. By Theorem 3 again, D̃n converges in
distribution to D(λ). Therefore, D(λ) is a standard two-sided Brownian motion. ��

We have actually proved Theorem 1 as well. Namely, the process (1) is a standard
Brownian motion regardless of the value λ, including the cases λ = 0 and λ = +∞.

Caveat By scaling, we can replace B1, B2 by zero-mean independent Brownian
motions with the same variance. However, we may not pick different variances. That
is,
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w(t) : = inf
0≤s≤t

{
1

λ
Z + σ1B

1
s + σ2B

2
t − σ2B

2
s + λ(t − s)

}
∧

(
σ2B

2
t + λt

)
, t ≥ 0,

is not a Brownianmotion if σ1 = σ2. For some intuition, suppose σ 2
2 � σ 2

1 . Recall that
w(t) is the reflection of x(t) = σ2B2

t +λt downwards atβ(t) : = (1/Z)+σ1B1
t .When

w(t) is close to β(t), the increments will tend to have smaller variance than when it is
far away, thus violating the fact that a standard Brownian motion has homoscedastic
increments.

Note The formula

D(λ)
t = B2

t + λt + inf−∞<u≤t

(
B1
u − B2

u − λu
) − inf−∞<u≤0

(
B1
u − B2

u − λu
)
, t ∈ R,

also holds and is a two-sided standard Brownian motion for any λ ≥ 0. To see this,
use (15) and (13).

5 Further comments

The idea of quasireversibility, explored in the classic work by Kelly [7], tells us how
to “connect” stable Markovian quasireversible queues (or, more generally, positive
recurrent quasireversible Markov chains) in order to obtain a bigger system that has
a simple stationary distribution. This was a topic of intense research in the past. (See
Walrand [11].) Appropriately connecting quasireversible Brownian queues leads to a
network with product form distribution. One possible way to do this is by connecting
the queues in tandem. That the stationary distribution is product form here is a simple
consequence of Corollary 1. In fact, López [9] shows the following: Assume that the
input to the overall system is a fairly arbitrary stochastic process and that all service
processes are independent Brownian motions with the same positive drift. Then the
output from n queues converges in distribution to a Brownian motion, as n → ∞.
For a necessary and sufficient condition so that the stationary distribution of a general
network of Brownian queues is of product form, see [5]. For failure of product form
when Brownian motions are replaced by Lévy processes, see [8]. However, neither
of the last two papers actually uses quasireversibility in order to prove their results.
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