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Abstract Markov modulation is versatile in generalization for making a simple sto-
chastic model, which is often analytically tractable, more flexible in application. In
this spirit, we modulate a two-dimensional reflecting skip-free random walk in such a
way that its state transitions in the boundary faces and interior of a nonnegative integer
quadrant are controlled by Markov chains. This Markov-modulated model is referred
to as a 2d-QBD process according to Ozawa (Queueing Syst 74:109–149, 2013). We
are interested in the tail asymptotics of its stationary distribution, which have been
well studied when there is no Markov modulation. Ozawa studied this tail asymp-
totics problem, but his answer is not analytically tractable. We think this is because
Markov modulation is so free to change a model even if the state space for Markov
modulation is finite. Thus, some structure, say, extra conditions, would be needed to
make the Markov modulation analytically tractable while minimizing its limitation in
application. The aim of this paper is to investigate such structure for the tail asymptotic
problem. For this, we study the existence of a right-subinvariant positive vector, called
a superharmonic vector, of a nonnegative matrix with QBD block structure, where
each block matrix is finite dimensional. We characterize this existence under a certain
extra assumption. We apply this characterization to the 2d-QBD process and derive
the tail decay rates of its marginal stationary distribution in an arbitrary direction. This
solves the tail decay rate problem for a two-node generalized Jackson network, which
has been open for many years.
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1 Introduction

Our primary interest is in methodology for deriving the tail asymptotics of the sta-
tionary distribution of a Markov-modulated two-dimensional reflecting random walk
for queueing network applications, provided it is stable. This process has two compo-
nents: front and background processes. We assume that the front process is a skip-free
reflecting random walk on a nonnegative quarter plane of the lattice, and the back-
ground process has finitely many states. We are particularly interested in a two-node
generalized Jackson network for its application.

According to Ozawa [36], we assume the following transition structure. The state
space of the front process is composed of the inside of the quarter plane and three
boundary faces: the origin, and the two half coordinate axes. Within each region, state
transitions are homogeneous, that is, subject to a Markov-modulated random walk,
but different regions may have different state transitions. Between pairs of the four
regions, state transitions may also be different. See Fig. 1 in Sect. 3.1 for details. This
Markov-modulated two-dimensional random walk is called a discrete-time 2d-QBD
process, 2d-QBD process for short, in [36]. We adopt the same terminology. This
process is flexible enough to handle many two-node queueing networks in continuous
time through uniformization. The generalized Jackson network is such an example.

For the 2d-QBD process, we assume that it has a stationary distribution, and denote
a random vector subject to it by (L, J ), where L represents a randomwalk component
taking values in R2+ while J represents a background state. For i = 1, 2, we consider
the tail asymptotics by logarithmic ratios of the stationary tail probabilities in the i th
coordinate directions:

1

n
logP(Li > n, L3−i = �, J = k), n → ∞, (1.1)

for each fixed � ≥ 0 and background state k, and those of the marginal stationary
distribution in an arbitrary direction c ≡ (c1, c2):

1

x
logP(c1L1 + c2L2 > x), x → ∞. (1.2)

It will be shown that those ratios converge to constants (Theorems 3.2, 3.3). They are
negative, and their absolute values are called exponential decay rates. We demonstrate
those tail asymptotic results for a two-node generalized Jackson networkwithMarkov-
modulated arrivals and phase-type service time distributions. This solves a problem
which has been open for many years (see Sect. 4.2 for details).
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Ozawa [36] studied the tail asymptotics in the coordinate directions, including (1.1).
He showed that the method for a two-dimensional reflecting random walk studied by
Miyazawa [27] is applicable with help of invariant vectors obtained by Li and Zhao
[23]. We refer to this method as a QBD approach, which is composed of the following
three key steps:

(1) Formulate the 2d-QBD process as a one-dimensional QBD process with infinitely
many background states, where one of the coordinate axes is taken as a level.

(2) Find right- and left-invariant vectors of a nonnegative matrix with QBD block
structure, which will be introduced shortly, and get upper and lower bounds of
the tail decay rates.

(3) Derive the tail decay rates, combining those results in the two directions.

Here, an infinite-dimensional square matrix is said to have QBD block structure if
it is partitioned into blocks in such a way that each block is a square matrix of the
same size except for the first row and first column blocks, the whole matrix is block
tridiagonal, and each row of blocks is repeated and shifted except for the first two rows
(see (2.4) for its definite form). In step (1), the blocks for the one-dimensional QBD
are infinite dimensional, while, in step (2), those for the nonnegative matrix are finite
dimensional.

A hard part of this QBD approach is in step (2). In [36] the invariant vectors are
only obtained by numerically solving certain parametrized equations over a certain
region of parameters. This much degrades applicability of the tail asymptotic results.
For example, it is hard to get useful information from them for the tail asymptotics
in the two-node generalized Jackson network (see, for example, [12,15]). We think
that this analytic intractability cannot be avoided because no structural condition is
assumed for the Markov modulation. In applications, it may have certain structure.
Thus, it is interesting to find conditions for the invariant vectors to be analytically
tractable while minimizing limitations in application.

Another problem in [36] is complicated descriptions. They cannot be avoided
because of the complicated modeling structure, but we easily get lost in computa-
tions. We think here simplification or certain abstraction is needed.

In addition to those two problems, the QBD approach is not so useful for studying
the tail asymptotics in an arbitrary direction. For this, it is known that the stationary
inequalities in terms of moment generating functions are useful in the case where there
is no Markov modulation (for example, see [19,28]). It is interesting to see whether
this moment-generating function approach still works under Markov modulation.

We attack those three problems in this paper. We first consider the description
problem and find a simpler matrix representation for a nonnegative matrix with QBD
block structure. This representation is referred to as a canonical form.We then consider
the problem in step (2).

For this, we relax the problem by considering a right-subinvariant positive vector,
which is said to be superharmonic, instead of a right-invariant positive vector, which
is said to be harmonic. It is known that the existence of a right-subinvariant vector
is equivalent to that of a left-subinvariant nonnegative vector (for example, see [40]).
When a nonnegative matrix is stochastic, a right-subinvariant vector can be viewed as
a superharmonic function. Because of this fact, we use the terminology superharmonic
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vector. In the stochastic case, it obviously exists. When the matrix is substochastic and
does not have the boundary blocks, this problem has been considered in studying a
quasi-stationary distribution for QBD processes (see, for example, [17,22,23]).

In step (2), we do not assume any stochastic or substochastic condition for a non-
negative matrix with QBD block structure, which is crucial in our applications. As we
will see, we can find necessary and sufficient conditions for such a matrix to have a
superharmonic vector (see Theorem 2.1). The sufficiency is essentially due to Li and
Zhao [23] and related to Bean et al. [2] (see Remarks 2.1, 2.2). However, this char-
acterization is not useful in application as we already discussed. So, we will assume
a certain extra condition to make our answer tractable. Under this extra assumption,
we characterize the existence of a superharmonic vector using primitive data on the
block matrices (Theorem 2.2).

This characterization enables us to derive the tail asymptotics of the stationary
distribution in the coordinate directions for the 2d-QBDprocess. For the problemof the
tail asymptotics in an arbitrary direction,we show that themoment-generating function
approach can be extended for the Markov-modulated case. For this, we introduce a
canonical form for the Markov-modulated two-dimensional random walk, which is
similar to that for a nonnegative matrix with QBD block structure.

There has been a lot of work on tail asymptotic problems in queueing networks
(see, for example, [28] and references therein).Most studies focus on two-dimensional
reflecting processes or two-node queueing networks. The 2d-QBD process belongs to
this class of models but allows them to have background processes with finitely many
states. There is a huge gap between finite and infinite numbers of background states,
but we hope that the present results will stimulate the study of higher dimensional tail
asymptotic problems.

This paper is made up of five sections and appendices. Section 2 derives necessary
and sufficient conditions for a nonnegative matrix with QBD block structure to have a
right-subinvariant vector with and without extra assumptions. This result is applied to
the 2d-QBD process, and the tail decay rates of its stationary distribution are derived
in Sect. 3. The tail decay rates of the marginal stationary distribution in an arbitrary
direction are obtained for the generalized Jackson network in Sect. 4. We finally give
some concluding remarks in Sect. 5.

We summarize basic notation which will be used in this paper (Table 1).
For nonnegative squarematrices T, Ti , Ti j with indices i, j ∈ Z such that Ti and Ti j

are nullmatrices except for finitelymany i and j , wewill use the following conventions
(Table 2).

Table 1 Notation for sets of numbers and vectors

Z The set of all integers, Z+ The set of all nonnegative
integers,

R The set of all real numbers, R+ The set of all nonnegative real
numbers,

H {−1, 0, 1}, H+ {0, 1},
〈x, y〉 x1y1 + x2y2 for x, y ∈ R

2, 1 The column vector whose
entries are all units
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Here, the sizes of those matrices must be the same among those with the same
type of indices, but they may be infinite. We also will use those matrices and related
notation when the off-diagonal entries of T, Ti , Ti j are nonnegative.

2 Nonnegative matrices and QBD block structure

Let K be a nonnegative squarematrixwith infinite dimension. Throughout this section,
we assume the following regularity condition:

(2a) K is irreducible, that is, for each entry (i, j) of K , there is some n ≥ 1 such that
the (i, j) entry of Kn is positive.

2.1 Superharmonic vector

In this subsection, we do not assume any assumption other than (2a) and introduce
some basic notions. A positive column vector y satisfying

K y ≤ y (2.1)

is called a superharmonic vector of K , where the inequality of vectors is entry-wise.
The condition (2.1) is equivalent to the existence of a positive row vector x satisfying
xK ≤ x. This x is called a subinvariant vector. Instead of (2.1), if, for u > 0,

uK y ≤ y, (2.2)

then y is called a u-superharmonic vector. We will not consider this vector, but most
of our arguments are parallel to those for a superharmonic vector because y of (2.2)
is superharmonic for uK .

These conditions can be given in terms of the convergence parameter cp(K ) of K
(see Table 2 for its definition). As shown in Chap. 5 of the book of Nummelin [34]

Table 2 Conventions for matrices and their MGF

cp(T ) sup{u ≥ 0; ∑∞
n=0 u

nT n < ∞}: the convergence parameter of T ,

γpf(T ) The Perron–Frobenius eigenvalue of T if T is finite dimensional,

while it equals cp(T )−1 if T is infinite dimensional

T∗(θ)
∑

i∈Z eiθ Ti for θ ∈ R: the matrix MGF of {Ti },
Where MGF is for moment-generating function,

T∗∗(θ)
∑

i, j∈Z e(i, j)θ Ti j for θ ∈ R
2: the matrix MGF of {Ti j },

γ (·)(·) γ (T∗)(θ) = γpf(T∗(θ)), γ (T∗∗)(θ) = γpf(T∗∗(θ)),

(I − T )−1 ∑∞
n=0 T

n (this is infinite if cp(T ) < 1),

�x The diagonal matrix whose i th diagonal entry is xi ,

where xi is the i th entry of vector x
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(see also Chap. 6 of [38]),

cp(K ) = sup{u ≥ 0; uK y ≤ y for some y > 0}, (2.3)

or equivalently cp(K ) = sup{u ≥ 0; uxK ≤ x for some x > 0}. Applying this fact
to K , we have the following lemma. For completeness, we give its proof.

Lemma 2.1 A nonnegative matrix K satisfying (2a) has a superharmonic vector if
and only if cp(K ) ≥ 1.

Proof If K has a superharmonic vector, then we obviously have cp(K ) ≥ 1 by (2.3).
Conversely, suppose cp(K ) ≥ 1. Then, by (2.3), for any u < 1, we can find a positive
vector y(u) such that y0(u) = 1, all entries of y(u) are bounded by 1, and

uK y(u) ≤ y(u).

Taking the limit infimum of both sides of the above inequality, and letting y =
lim infu↑1 y(u), we have (2.1). Thus, K indeed has a superharmonic vector y. �

The importance of Condition (2.1) lies in the fact that �−1
y K� y is substochastic,

that is, K can be essentially considered as a substochastic matrix. This enables us to
use probabilistic arguments for manipulating K in computations.

2.2 QBD block structure and its canonical form

We now assume further structure for K . Let m0 and m be arbitrarily given positive
integers. Let Ai and Bi for i = −1, 0, 1 be nonnegative matrices such that Ai for
i = −1, 0, 1 are m ×m matrices, B−1 is an m0 ×m matrix, B0 is an m0 ×m0 matrix
and B1 is m × m0 matrix. We assume that K has the following form:

K =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B0 B1 0 0 0 · · ·
B−1 A0 A1 0 0 · · ·
0 A−1 A0 A1 0 · · ·
0 0 A−1 A0 A1 · · ·

. . .
. . .

. . .
. . . · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.4)

If K is stochastic, then it is the transition matrix of a discrete-time QBD process.
Thus, we refer to K of (2.4) as a nonnegative matrix with QBD block structure.

As we discussed in Sect. 1, we are primarily interested in tractable conditions for
K to have a superharmonic vector. Denote this vector by y ≡ ( y0, y1, . . .)

t. That is,
y is positive and satisfies the following inequalities:

B0 y0 + B1 y1 ≤ y0, (2.5)

B−1 y0 + A0 y1 + A1 y2 ≤ y1, (2.6)

A−1 yn−1 + A0 yn + A1 yn+1 ≤ yn, n = 2, . . . . (2.7)
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Although the QBD block structure is natural in applications, there are two extra
equations (2.5) and (2.6) which involve the boundary blocks Bi . Let us consider how
to reduce them to one equation. From (2.5), B0 y0 ≤ y0 and B0 y0 �= y0. Hence, if
cp(B0) = 1, then y0 must be the left-invariant vector of B0 (see Theorem 6.2 of [38]),
but this is impossible because y1 > 0. Thus, we must have cp(B0) > 1, and therefore
(I − B0)

−1 is finite (see our convention (Table 2) for this inverse). Let

C0 = B−1(I − B0)
−1B1 + A0. (2.8)

Then (2.5) and (2.6) yield

C0 y1 + A1 y2 ≤ y1. (2.9)

This suggests that we should define a matrix K as

K =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C0 A1 0 0 0 · · ·
A−1 A0 A1 0 0 · · ·
0 A−1 A0 A1 0 · · ·
0 0 A−1 A0 A1 · · ·

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (2.10)

where C0 is defined by (2.8). Denote the principal matrix of K (equivalently, K )
obtained by removing the first row and column blocks by K+. Namely,

K+ =

⎛

⎜
⎜
⎜
⎝

A0 A1 0 0 · · ·
A−1 A0 A1 0 · · ·
0 A−1 A0 A1 · · ·

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎠

. (2.11)

Lemma 2.2 (a) K has a superharmonic vector if and only if K has a superharmonic
vector. (b) max(cp(K ), cp(K )) ≤ cp(K+). (c) If cp(K ) ≥ 1, then cp(K ) ≤ cp(K ) ≤
cp(K+).

Remark 2.1 A similar result for K and K+ is obtained in Bean et al. [2].

Proof Assume that K has a superharmonic vector y ≡ ( y0, y1, . . .)
t. Then, we have

seen that cp(B0) > 1, and therefore (I − B0)
−1 < ∞. Define y ≡ ( y0, y1, . . .)

t by
yn = yn+1 for n ≥ 0, and define C0 by (2.8). Then, from (2.9) , we have

C0 y0 + A1 y1 ≤ y0.

This and (2.7) verify that y is superharmonic for K . For the converse assume that K is
well defined and y ≡ ( y0, y1, . . .)

t is superharmonic for K . Obviously, the finiteness
of K implies that B−1(I − B0)

−1B1 is finite. Suppose that cp(B0) ≤ 1. Then some
principal submatrix of (I − B0)

−1 has divergent entries in every row and column of
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this submatrix. Denote a collection of all such principal matrices which are maximal
in their size by P0. Then, for all entries (i, j) of submatrices in P0, we must have, for
all n ≥ 0,

[B−1]ki
[

n∑

s=0

Bs
0

]

i j

[B1] j� = 0, ∀k, � ∈ {1, 2, . . . ,m},

because of the finiteness of B−1(I − B0)
−1B1. This contradicts the irreducibility (2a)

of K . Hence, we have cp(B0) > 1. Define y ≡ ( y0, y1, . . .)
t as

y0 = (I − B0)
−1B1 y0, yn = yn−1, n ≥ 1,

where (I − B0)
−1 < ∞ because of cp(B0) > 1. Then, from (2.8), we have

C0 y1 = C0 y0 = B−1 y0 + A0 y1,

and therefore the fact that C0 y0 + A1 y1 ≤ y0 implies (2.6). Finally, the definition
of y0 implies (2.5) with equality, while the definition of yn for n ≥ 1 implies (2.7).
Hence, y is superharmonic for K . This proves (a). (b) is immediate from (2.3) since
( y1, . . .)

t is superharmonic for K+ if ( y0, y1, . . .)
t is superharmonic for K (or K ).

For (c), recall that the canonical form of uK is denoted by uK for u > 0. If u ≥ 1, we
can see that uK ≤ uK , and therefore cp(K ) ≤ cp(K ). This and (b) conclude (c). �

By this lemma, we can work on K instead of K to find a superharmonic vector. It
is notable that all block matrices of K are m × m square matrices and it has repeated
row and column structure except for the first row and first column blocks. This greatly
simplifies computations. We refer to K as the canonical form of K .

In what follows, we will mainly work on the canonical form K of K . For simplicity,
we will use y ≡ ( y0, y1, . . .)

t for a superharmonic vector of K .

2.3 Existence of a superharmonic vector

Suppose that K of (2.10) has a superharmonic vector y ≡ ( y0, y1, . . .)
t. That is,

C0 y0 + A1 y1 ≤ y0, (2.12)

A−1 yn−1 + A0 yn + A1 yn+1 ≤ yn, n ≥ 1. (2.13)

In this section, we consider conditions for the existence of a superharmonic vector.
Letting C1 = A1, we recall matrix moment-generating functions for {Ai } and {Ci }

(see Table 2):

A∗(θ) = e−θ A−1 + A0 + eθ A1, C∗(θ) = C0 + eθC1, θ ∈ R.

From now on, we always assume a further irreducibility in addition to (2a).
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(2b) A∗(0) is irreducible.

Since A∗(θ) and C∗(θ) are nonnegative and finite-dimensional square matrices,
they have Perron–Frobenius eigenvalues γ (A∗)(θ)(≡ γpf(A∗(θ))) and γ (C∗)(θ)(≡
γpf(C∗(θ))), respectively, and their right eigenvectors h(A∗)(θ) and h(C∗)(θ), respec-
tively. That is,

A∗(θ)h(A∗)(θ) = γ (A∗)(θ)h(A∗)(θ), (2.14)

C∗(θ)h(C∗)(θ) = γ (C∗)(θ)h(C∗)(θ), (2.15)

where C∗(θ) may not be irreducible, so we take a maximal eigenvalue among those
which have positive right-invariant vectors. Thus, h(A∗)(θ) is positive, but h(C∗)(θ) is
nonnegative with possibly zero entries. These eigenvectors are unique up to constant
multipliers.

It is well known that γ (A∗)(θ) and γ (C∗)(θ) are convex functions of θ (see, for
example, Lemma 3.7 of [32]). Furthermore, their reciprocals are the convergence
parameters of A∗(θ) andC∗(θ), respectively. It follows from the convexity of γ (A∗)(θ)

and the fact that some entries of A∗(θ) diverge as |θ | → ∞ that

lim
θ→−∞ γ (A∗)(θ) = lim

θ→+∞ γ (A∗)(θ) = +∞. (2.16)

We introduce the following notation:

�
(1d)
+ = {θ ∈ R; γ (A∗)(θ) ≤ 1}, �

(1d)
0 = {θ ∈ R; γ (C∗)(θ) ≤ 1},

where �
(1d)
0 �= ∅ implies that C0 is finite, that is, cp(B0) > 1. By (2.16), �

(1d)
+ is a

bounded interval or the empty set.
In our arguments, we often change the repeated row of blocks of K and K so that

they are substochastic. For this, we introduce the following notation. For each θ ∈ R

and h(A∗)(θ) determined by (2.14), let

Â(θ)
� = eθ��−1

h(A∗)(θ)
A��h(A∗)(θ)

, � = 0,±1,

where we recall that �a is the diagonal matrix whose diagonal entry is given by the
same dimensional vector a. Let

Â(θ) = Â(θ)
−1 + Â(θ)

0 + Â(θ)
1 .

Note that Â(θ) = �−1
h(A∗)(θ)

A∗(θ)�h(A∗)(θ)
, and therefore Â(θ)1 = γ (A∗)(θ)1.

The following lemma is the first step in characterizing cp(K ) ≥ 1.

Lemma 2.3 (a) cp(K+) ≥ 1 if and only if �
(1d)
+ �= ∅, and therefore cp(K ) ≥ 1

implies �
(1d)
+ �= ∅. (b) cp(K+) = (min{γ A∗(θ); θ ∈ R})−1.
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10 Queueing Syst (2015) 81:1–48

This lemma may be considered to be a straightforward extension of Theorem 2.1
of Kijima [17] from a substochastic to a nonnegative matrix. So, it may be proved
similarly, but we give a different proof in Appendix 1. There are two reasons for this.
First, it makes this paper self-contained. Second, we wish to demonstrate that it is hard
to remove the finiteness of m on block matrices.

We now present necessary and sufficient conditions for K , equivalently K , to have
a superharmonic vector.

Theorem 2.1 (a) If �
(1d)
+ �= ∅, then N ≡ (I − K+)−1 is finite, and therefore G− ≡

N11A−1 is well defined and finite, where N11 is the (1, 1)-entry of N . (b) cp(K ) ≥ 1

holds if and only if �(1d)
+ �= ∅ and

γpf(C0 + A1G−) ≤ 1. (2.17)

If equality holds in (2.17) then cp(K ) = 1.

Remark 2.2 The sufficiency in (b) is essentially obtained inTheorem6of [23],which is
used in Sects. 3.4 and 3.5 of [36], where the eigenvalue γpf(C0 + A1G−) corresponds
to u0(1) in [23]. We do not need the function u0(β) there because we work on a
nonnegative matrix, while substochasticity is assumed in [23].

Proof (a) Assume that θ ∈ �
(1d)
+ �= ∅. Then we can find a θ1 such that θ1 =

argθ min{θ ∈ R; γ A∗(θ) = 1}. For this θ1, let y(θ1) = (h(A∗)(θ1), eθ1h(A∗)(θ1), . . .)t,
and let

K̆ (θ1)+ = �−1
y(θ1)

K+� y(θ1).

It is easy to see that K̆ (θ1)+ is strictly substochastic because the first row of blocks is

defective. Hence, (1− K̆ (θ1)+ )−1 must be finite, and therefore (I −K+)−1 is also finite.
This proves (a).

(b) Assume that cp(K ) ≥ 1. Then �
(1d)
+ �= ∅ by Lemma 2.3. Hence, (I − K+)−1

is finite by (a). Because of cp(K ) ≥ 1, K has a superharmonic vector. We denote this
vector by y = { yn; n = 0, 1, . . .}t. Let z = { yn; n = 1, 2, . . .}t. Then we have

C0 y0 + A1 y1 ≤ y0, (2.18)

(A−1 y0, 0, 0, . . .)
t + K+z ≤ z. (2.19)

It follows from the second equation that [(I − K+)−1]11A−1 y0 ≤ y1. Hence, substi-
tuting this into (2.18), we have

(C0 + A1G−) y0 ≤ y0, (2.20)
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which is equivalent to (2.17). Conversely, assume (2.17) and �
(1d)
+ �= ∅. Then we have

(2.20) for some y0 > 0. Define z as

z = (I − K+)−1(A−1 y0, 0, 0, . . .)
t.

Then we get (2.19) with equality, and (2.20) yields (2.18). Thus, we get the superhar-
monic vector ( y0, z)

t for K . This completes the proof. �

Using the notation in the above proof, let N̆ (θ1) = (1 − K̆ (θ1)+ )−1, and let

Ĝ(θ1)− = N̆ (θ1)
11 Â(θ1)−1 .

Then Ĝ(θ1)− must be stochastic because it is a transition matrix for the background state
when the random walk component hits one level down. Furthermore,

Ĝ(θ1)− = �−1
h(A∗)(θ1)

(e−θ1G−)�h(A∗)(θ1)
.

Hence, for m = 1, e−θ1G− = 1, and therefore (2.17) is equivalent to

γpf
(
C0 + eθ1 A1

) ≤ 1, (2.21)

which agrees with γ (C∗)(θ1) ≤ 1. Hence, we have the following result.

Corollary 2.1 For m = 1, cp(K ) ≥ 1 if and only if �(1d)
+ ∩ �

(1d)
0 �= ∅.

This corollary is essentially the same as Theorem 3.1 of [27], so nothing is new
technically. Here, we have an alternative proof. However, it is notable that K may have
boundary blocks whose size is m0 ≥ 1 while m = 1.

Form ≥ 2, Theorem 2.1 is not so useful in application because it is hard to evaluate
G−, and therefore, it is hard to verify (2.17). Ozawa [36] proposes computing the
corresponding characteristics numerically. However, in its application for the 2d-QBD
process, G− is parametrized, and we need to compute it for some range of parameters.
Thus, even numerical computations are intractable.

One may wonder how to replace (2.17) by a tractable condition. In view of the case
of m = 1, one possible condition is that γ (C∗)(θ) ≤ 1 for some θ ∈ �

(1d)
+ , which is

equivalent to (2.21) for generalm. However, γpf
(
C0 + eθ1 A1

)
, which equals γ (C∗)(θ),

is generally not identical to γpf (C0 + A1G−) (see Appendix 3). So far, we will not
pursue the use of Theorem 2.1.

2.4 A tractable condition for application

We have considered conditions for cp(K ) ≥ 1 or, equivalently, cp(K ) ≥ 1. For this
problem, we here consider a specific superharmonic vector for K . For each θ ∈ R and
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12 Queueing Syst (2015) 81:1–48

h ≥ 0, define y(θ) ≡ ( y0(θ), y1(θ), . . .)t by

yn(θ) = eθnh, n ≥ 0. (2.22)

Then, K y(θ) ≤ y(θ) holds if and only if

A∗(θ)h ≤ h, (2.23)

C∗(θ)h ≤ h. (2.24)

These conditions hold for y(θ) of (2.22), so we only know that they are sufficient but
may not be necessary. To fill this gap, we go back to K and consider its superharmonic
vector, using (2.22) for off-boundary blocks. This suggests that we should replace
(2.24) by the following assumption.

Assumption 2.1 For each θ ∈ �
(1d)
+ , there is an m0-dimensional positive vector

h(0)(θ) and real numbers c0(θ), c1(θ) such that one of c0(θ) or c1(θ) equals one, and

B0h(0)(θ) + eθ B1h(A∗)(θ) = c0(θ)h(0)(θ), (2.25)

e−θ B−1h(0)(θ) + A0h(A∗)(θ) + eθ A1h(A∗)(θ) = c1(θ)h(A∗)(θ). (2.26)

Remark 2.3 If c0(θ) ≤ 1 and c1(θ) ≤ 1, then (2.24) is equivalent to (2.25) and (2.26).
However, it is unclear whether or not c0(θ) = 1 or c1(θ) = 1 implies (2.24). In
particular, c1(θ) = 1 is the case that we need in our application to the generalized
Jackson network. This will be affirmatively answered in Theorem 2.2.

Let

�
(1d)
0+ = {θ ∈ R; ∃h > 0, A∗(θ)h ≤ h,C∗(θ)h ≤ h},

�
(1e)
0+ = {θ ∈ R; ∃h > 0, A∗(θ)h = h,C∗(θ)h ≤ h}.

If �
(1d)
0+ �= ∅, C0 is finite, and therefore cp(B0) > 1. �(1e)

0+ is at most a two-point set.

Note that �(1d)
0+ ⊂ �

(1d)
0 ∩ �

(1d)
+ , but �(1d)

0+ = �
(1d)
0 ∩ �

(1d)
+ may not be true except for

m = 1. We further note the following facts.

Lemma 2.4 If �
(1d)
0+ �= ∅, then �

(1d)
0+ is a bounded convex subset of R, and it can be

written as the closed interval [θ(A,C)
min , θ

(A,C)
max ], respectively, where

θ
(A,C)
min = inf

{
θ ∈ �

(1d)
0+

}
, θ(A,C)

max = sup
{
θ ∈ �

(1d)
0+

}
. (2.27)

We prove this lemma in Appendix 2 because it is just technical. Based on these
observations, we claim the following fact.

Theorem 2.2 For a nonnegative matrix K with QBD block structure, assume Con-
ditions (2a) and (2b). (a) If �

(1d)
0+ �= ∅, then cp(K ) ≥ 1. (b) Under Assumption 2.1,

cp(K ) ≥ 1 if and only if �(1d)
0+ �= ∅, which can be replaced by �

(1e)
0+ �= ∅.
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Proof (a) We already know that y(θ) of (2.22) is a superharmonic vector of K for
θ ∈ �

(1d)
0+ . Thus, Lemma 2.2 implies (a).

(b) The sufficiency of �
(1d)
0+ �= ∅ is already proved in (a). To prove its necessity,

we first note that �
(1e)
+ is not empty by Lemma 2.3. Hence, there is a θ1 such that

θ1 = min{θ ∈ R; γ (A∗)(θ) = 1}. For this θ1, we show that (2.24) holds for h =
h(A∗)(θ1). To facilitate Assumption 2.1, we work on K rather than K . Assume that
a superharmonic y ≡ ( y0, y1, . . .) exists for K . We define the transition probability
matrix P̆(θ1) ≡ {P̆(θ1)

k� ; k, � ≥ 0} by

P̆(θ1)
00 = �−1

c0(θ1)h(0)(θ1)
B0�h(0)(θ1)

, P̆(θ1)
01 = eθ1�−1

c0(θ1)h(0)(θ1)
B1�h(A∗)(θ1)

,

P̆(θ1)
10 = e−θ1�−1

c1(θ1)h(A∗)(θ1)
B−1�h(0)(θ1)

, P̆(θ1)
1� = c1(θ1)

−1 Â(θ1)
�−1, � = 1, 2,

P̆(θ1)
k� = Â(θ1)

�−k, k ≥ 2, |� − k| ≤ 1,

where P̆(θ1)
k� is the null matrix for (k, �) undefined. It is easy to see that P̆(θ1) is a

proper transition matrix with QBD structure by (2.25), (2.26) and γ (A∗)(θ1) = 1.
Furthermore, as shown in Appendix 1, this random walk has the mean drift (6.2) with
θ1 instead of θ0. Since the definition of θ1 implies that (γ (A))′(θ1) = 0, this Markov
chain is null recurrent.

We next define y̆(θ1) as

y̆(θ1)
0 = �−1

h(0)(θ1)
y0, y̆(θ1)

n = e−θn�−1
h(A∗)(θ1)

yn, n ≥ 1.

Then the 0th row block of P̆(θ1) y̆(θ1) is

P̆(θ1)
00 y̆(θ1)

0 + P̆(θ1)
01 y̆(θ1)

1 = c0(θ1)
−1�−1

h(0)(θ1)
y0 = c0(θ1)

−1 y̆(θ1)
0 ,

and, similarly, the 1st row block is

P̆(θ1)
10 y̆(θ1)

0 + P̆(θ1)
11 y̆(θ1)

1 + P̆(θ1)
12 y̆(θ1)

2 = c1(θ1)
−1 y̆(θ1)

1 .

Hence, K y ≤ y is equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c0(θ1)I0 0 0 0 . . .

0 c1(θ1)I 0 0 . . .

0 0 I 0 . . .

0 0 0 I
. . .

...
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

P̆(θ1) y̆(θ1) ≤ y̆(θ1), (2.28)

where I0 is the m0-dimensional identity matrix. We now prove that c0(θ1) ≤ 1 and
c1(θ1) ≤ 1 using the assumption that either c0(θ1) = 1 or c1(θ1) = 1. First, we assume
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14 Queueing Syst (2015) 81:1–48

that c1(θ1) = 1, and rewrite (2.28) as

⎛

⎜
⎜
⎜
⎜
⎝

c0(θ1)P̆
(θ1)
00 c0(θ1)P̆

(θ1)
01 0 . . .

P̆(θ1)
10 0 0 . . .

0 0 0
. . .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎠

y̆(θ1) ≤

⎛

⎜
⎜
⎜
⎝

I0 0 0 . . .

0
0 I+ − P̆(θ1)+
...

⎞

⎟
⎟
⎟
⎠

y̆(θ1),

where I+ and P̆(θ1)+ are thematrices obtained from I and P̆(θ1), respectively, by deleting

their first row and column blocks. Since P̆(θ1)+ is strictly substochastic, I+ − P̆(θ1)+ is
invertible. We denote its inversion by U . Then

⎛

⎜
⎜
⎜
⎝

I0 0 0 . . .

0
0 U
...

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

c0(θ1)P̆
(θ1)
00 c0(θ1)P̆

(θ1)
01 0 . . .

P̆(θ1)
10 0 0 . . .

0 0 0
. . .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎠

y̆(θ1) ≤ y̆(θ1),

which yields that

c0(θ1)
(
P̆(θ1)
00 + P̆(θ1)

01 U11 P̆
(θ1)
10

)
y̆(θ1)
0 ≤ y̆(θ1)

0 ,

where U11 is the (1, 1) block of U . Since
(
P̆(θ1)
00 + P̆(θ1)

01 U11 P̆
(θ1)
10

)
is a stochastic

matrix by the null recurrence of P̆(θ1), we must have that c0(θ1) ≤ 1. The case for
c0(θ1) = 1 is similarly proved. Thus, the proof is completed in view of Remark 2.3. �

2.5 The convergence parameter and u-invariant measure

We now turn to consider the invariant measure of K , which will be used in our appli-
cation. Li and Zhao [23] have shown the existence of such invariant measures for uK
for u > 0 when K is substochastic. We will show that their results are easily adapted
for a nonnegative matrix. For this, we first classify a nonnegative irreducible matrix
T to be transient, null recurrent, or positive recurrent. T is said to be u-transient if

∞∑

n=0

unT n < ∞,

while it is said to be u-recurrent if this sum diverges. For u-recurrent T , there always
exists a u-invariant measure, and T is said to be u-positive if the u-invariant measure
has a finite total sum. Otherwise, it is said to be u-null. The book of Seneta [38] is a
standard reference for these classifications.

Suppose that cp(K ) ≥ 1. We modify K to be substochastic. For this, recall that
cp(K ) ≥ 1 is equivalent to the existence of a superharmonic vector of K , and that �a
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is the diagonal matrix whose diagonal entry is given by the vector a. Define K̂ for a
superharmonic vector y of K by

K̂ = �−1
y K� y.

Then, K̂1 ≤ 1, that is, K̂ is substochastic. It is also easy to see that, for 0 < u ≤ cp(K ),
x̂ is a u-invariant measure of K̂ if and only if x̂�−1

y is a u-invariant measure of K .
Furthermore, the classifications for K are equivalent to those for K̂ . Thus, the results
of [23] can be stated in the following form.

Lemma 2.5 (Theorem A of Li and Zhao [23]) For a nonnegative irreducible matrix
K with QBD block structure, let t = cp(K ), t+ = cp(K+) and assume that t ≥ 1.
Then, K is classified into either one of the following cases: (a) t-positive if t < t+,
(b) t-null or t-transient if t = t+.

Remark 2.4 The t and t+ correspond to α and α of [23], respectively. In Theorem A
of [23], the case (b) is further classified to t-null and t-transient cases, but it requires
the Perron–Frobenius eigenvalue of t (C0 + R(t)A−1) to be less than 1 for t-transient
and to equal 1 for t-null, where R(t) is the minimal nonnegative solution X of the
matrix equation:

X = t (X2A−1 + X A0 + A1).

In general, this eigenvalue is hard to get in closed form, so we will not use this finer
classification. Similar but slightly different results are obtained in Theorem 16 of [2].

Lemma 2.6 (TheoremsBandCofLi andZhao [23])For K satisfying the assumptions
of Lemma 2.5, there exist u-invariant measures for 0 < u ≤ t ≡ cp(K ). The form
of these invariant measures varies according to three different types: (a1) u = t for
t-recurrent, (a2) u = t for t-transient, and (b) u < t .

Remark 2.5 By Lemma 2.5, K is t-null for (a1) if and only if t = t+.

3 Application to a 2d-QBD process

In this section we show how Theorem 2.2 can be applied to a tail asymptotic problem.
We here consider a 2d-QBD process {Zn} ≡ {(L1n, L2n, Jn)} introduced by Ozawa
[36], where Ln ≡ (L1n, L2n) is a random walk component taking values in Z

2+ and
{Jn} is a background process with finitely many states. It is assumed that {Zn} is a
discrete-time Markov chain. The tail decay rates of the stationary distribution of the
2d-QBD process have been studied in [36], but there remain some crucial problems
unsolved as we argued in Sect. 1 and will detail in the next subsection. Furthermore,
there is some ambiguity in the definition of Ozawa [36]’s 2d-QBD process. Thus, we
first reconsider this definition and show that those problems on the tail asymptotics
can be well studied using Assumption 2.1 and Theorem 2.2.
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16 Queueing Syst (2015) 81:1–48

3.1 Two-dimensional QBD processes

We will largely change the notation of [36] to make clear assumptions. We partition
the state space S of Zn so as to apply Lemma 2.2. Divide the lattice quarter plane Z2+
into four regions.

U0 ≡ {(0, 0)}, U1 ≡ {(�, 0) ∈ Z
2+; � ≥ 1}, U2 ≡ {(0, �) ∈ Z

2+; � ≥ 1},
U+ ≡ {(�, �′) ∈ Z

2+; �, �′ ≥ 1},

where Ui for i = 0, 1, 2 and U+ are said to be a boundary face and the interior,
respectively. Then, the state space S for Zn is given by

S = (U0 × V0) ∪ (U1 × V1) ∪ (U2 × V2) ∪ (U+ × V+),

whereVi are finite sets of numbers such that their cardinality |Vi | is given bym0 = |V0|,
m1 = |V1|, m2 = |V2|, m = |V+|.

To define the transition probabilities of Zn , we further partition the state space as

U�m = {(�,m)}, �,m ∈ H+ ≡ {0, 1},
U+0 = {(n, 0) ∈ Z

2+; n ≥ 2}, U0+ = {(0, n) ∈ Z
2+; n ≥ 2},

U+1 = {(n, 1) ∈ Z
2+; n ≥ 2}, U1+ = {(1, n) ∈ Z

2+; n ≥ 2},
U++ = {(�,m) ∈ Z

2+; �,m ≥ 2}.

On each of those sets, the transition probabilities of Zn are assumed to be homo-
geneous. Namely, for s, s′ ∈ A ≡ {0, 1,+}, their matrices for background state

transitions can be denoted by A(ss′)
i j for the transition from ((�,m), k) ∈ Uss′ to

((� + i,m + j), k′) ∈ S. Furthermore, we assume that

A(10)
i j = A(+0)

i j , A(01)
i j = A(0+)

i j , A(11)
i j = A(++)

i j , i, j ∈ H+, (3.1)

A(+1)
i j = A(++)

i j , i ∈ H, j ∈ H+, A(1+)
i j = A(++)

i j , i ∈ H+, j ∈ H. (3.2)

Throughout the paper, we denote A(++)
i j by Ai j . This greatly simplifies the notation.

See Fig. 1 for those partitions of the quarter plane Z2+ and the transition probability
matrices.

Those assumptions on the transition probabilities are essentially the same as those
introduced by Ozawa [36], while there is someminor flexibility in our assumption that
A(11)
0(−1) (A

(11)
(−1)0) may be different from A(+1)

0(−1) (A
(1+)
(−1)0, respectively), which are iden-

tical in [36]. Another difference is in that we have nine families of transition matrices
while Ozawa [36] expresses them by four families, A(s)

i j for s = 0, 1, 2, and Ai j .
By the homogeneity and independence assumptions, we can define Zn+1 in terms

of Zn and independent increments as
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A(−1)1

A(−1)(−1)

A11

A10

A01

A(−1)0

A0(−1) A1(−1)

A00

A
(+0)
(−1)1

A
(0+)
(−1)0 A

(+1)
(−1)(−1) A

(+1)
1(−1)A

(+1)
0(−1)

A
(1+)
(−1)(−1)

A
(0+)
0(−1)

A
(10)
(−1)0

U+1

U1+

(Grey area)
U++

A
(10)
(−1)1

A
(01)
1(−1)

A
(11)
(−1)(−1)

A
(11)
0(−1)

A11A01

A10

A
(11)
1(−1)

A
(11)
(−1)0

A
(11)
(−1)1

(1, 1)

U+0
A

(+1)
0(−1)A

(+0)
00

A
(+0)
(−1)1A

(+0)
(−1)1

A
(00)
01

A
(00)
00

A
(01)
0(−1)

A
(00)
11A

(00)
10

A
(1+)
(−1)1

A
(1+)
(−1)0

A
(0+)
00

A
(0+)
1(−1)

A
(0+)
01

A
(0+)
11

A
(0+)
10

U0+

Fig. 1 Regions Uss′ and transition probability matrices Ai j and A(ss′)
i j

(Ln+1, Jn+1) =
(
Ln +

∑

s,s′∈A
X(ss′)
n (Jn)1(Ln ∈ Uss′), Jn+1

)
, (3.3)

where X(ss′)
n (k) is the increment at time n when the randomwalk component is on Uss′

and the background state is k. By the modeling assumption, X(ss′)
n (k) is independent

of Z� for � ≤ n − 1 and Ln for given s, s′, and k.
The 2d-QBD process is a natural model for a two-node queueing network in various

situations including a Markovian arrival process and phase-type service time distri-
butions. Its stationary distribution is a key characteristic for performance evaluation,
but is hard to get. This is even the case for a two-dimensional reflecting random walk,
which does not have background states (for example, see [28]). Thus, recent interest
has been directed to the tail asymptotics of the stationary distribution.

3.2 Markov additive kernel and stability

Recall that the 2d-QBD process is denoted by {(L1n, L2n, Jn); n = 0, 1, . . .}. To
define the one-dimensional QBD process, for i = 1, 2, let L(i)

n = Lin and J (i)
n =

(L(3−i)n, Jn), representing level and background state at time n, respectively. Thus,

{(L(i)
n , J (i)

n ); n ≥ 0} is a one-dimensional QBD process for i = 1, 2. Denote its
transition matrix by P(i). For example, P(1) is given by

P(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N (1)
0 N (1)

1 0 . . . . . . . . .

N (1)
−1 Q(1)

0 Q(1)
1 0 0 . . .

0 Q(1)
−1 Q(1)

0 Q(1)
1 0

. . .

0 0 Q(1)
−1 Q(1)

0 Q(1)
1

. . .

...
...

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where, using (− j)+ = max(0,− j),

N (1)
j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A((− j)+0)
j0 A((− j)+0)

j1 0 0 · · ·
A((− j)+1)
j (−1) A((− j)++)

j0 A((− j)++)
j1 0 · · ·

0 A((− j)++)

j (−1) A((− j)++)
j0 A((− j)++)

j1
. . .

...
...

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Q(1)
j =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A(+0)
j0 A(+0)

j1 0 0 · · ·
A(+1)
j (−1) A j0 A j1 0 · · ·
0 A j (−1) A j0 A j1

. . .

...
...

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, j = 0, 1,−1.

We next introduce the Markov additive process by removing the boundary at level
0 of the one-dimensional QBD process generated by P(1) and denote its transition
probability matrix by P(1). That is,

P(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . Q(1)
−1 Q(1)

0 Q(1)
1 0 0 · · ·

· · · 0 Q(1)
−1 Q(1)

0 Q(1)
1 0

. . .

· · · 0 0 Q(1)
−1 Q(1)

0 Q(1)
1

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

P(2) and Q(2)
i ’s are similarly defined, exchanging the coordinates. For i = 1, 2, let

Q(i) = Q(i)
−1 + Q(i)

0 + Q(i)
1 .

Then Q(i) is stochastic. Let ν(i) ≡
{
ν

(i)
� ; � = 0, 1, . . .

}
be the left-invariant positive

vector of Q(i) when it exists, where ν
(i)
� is anm0- andm-dimensional vector for � = 0

and � ≥ 1, respectively. Define

Q(i)∗ (θ) = e−θ Q(i)
−1 + Q(i)

0 + eθ Q(i)
1 , i = 1, 2.

In order to discuss the stability of the 2d-QBD process, we define the mean drifts
μ

(i)
i for each i = 1, 2 as

μ
(i)
i = ν(i) d

dθ
Q(i)∗ (θ)|θ=01,
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as long as Q(i) is positive recurrent, where the derivative of a matrix function is taken
entry-wise. Let A = ∑

j,k∈H A jk . Since A is stochastic and finite dimensional, it has

a stationary distribution. We denote it by the row vector ν(+). Define the mean drifts
μ1 and μ2 as

μ1 = ν(+)
∑

k∈H
(−A(−1)k + A1k)1, μ2 = ν(+)

∑

j∈H
(−A j (−1) + A j1)1.

Note that if μi < 0, then Q(i) is positive recurrent because μi is the mean drift at
off-boundary states of the QBD process generated by Q(i).We refer to the recent result
due to Ozawa [36].

Lemma 3.1 (Theorem 5.1, Remark 5.1 of Ozawa [35]) The 2d-QBD process {Zn} is
positive recurrent if any one of the following three conditions holds:

(i) If μ1 < 0 and μ2 < 0, then μ
(1)
1 < 0 and μ

(2)
2 < 0.

(ii) If μ1 ≥ 0 and μ2 < 0, then μ
(1)
1 < 0.

(iii) If μ1 < 0 and μ2 ≥ 0, then μ
(2)
2 < 0.

On the other hand, ifμ1 > 0 andμ2 > 0, then the 2d-QBDprocess is transient. Hence,
if (μ1, μ2) �= 0, then {Zn} is positive recurrent if and only if one of the conditions
(i)–(iii) holds.

Remark 3.1 The stability conditions of this lemma are exactly the same as those of
the two-dimensional reflecting randomwalk on the lattice quarter plane of [10], which
is called a double QBD process in [27] (see also [19]). This is not surprising because
the stability is generally determined by the mean drifts of so-called induced Markov
chains, which are generated by removing one of the boundary faces. However, its proof
requires careful mathematical arguments, which have been done by Ozawa [36].

Throughout the paper, we assume that the 2d-QBD process has a stationary distri-
bution, which is denoted by the row vector π ≡ {π(z, k); (z, k) ∈ S}. Lemma 3.1 can
be used to verify this stability assumption. However, it is not so useful in application
because the signs of μ

(1)
1 and μ

(2)
2 are hard to get. Thus, we will not use Lemma 3.1

in our arguments. We will return to this issue later.

3.3 Tail asymptotics for the stationary distribution

Ozawa [36] studies the tail asymptotics of the stationary distribution of the 2d-QBD
process in coordinate directions, assuming stability and some additional assumptions.
His arguments are based on the sufficiency part of Theorem 2.1. As discussed at the
end of Sect. 2.3, this is intractable for applications. We will consider the problem in a
different way. In the first part of this section we derive upper and lower bounds for the
tail decay rates using relatively easy conditions. We then assume an extra condition
similar to Assumption 2.1, and derive the tail decay rate of the marginal stationary
distribution in an arbitrary direction.
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To describe the modeling primitives, we will use the following matrix moment-
generating functions.

A∗∗(θ) =
∑

j,k∈H
e−( jθ1+kθ2)A jk,

A∗k(θ1) = e−θ1 A(−1)k + A0k + eθ1 A1k, A+k(θ1) = A0k + eθ1 A1k, k ∈ H,

A(+1)
∗(−1)(θ1) = e−θ1 A(+1)

(−1)(−1) + A(+1)
0(−1) + eθ1 A(+1)

1(−1),

A(+1)
+k (θ1) = A+k(θ1), k ∈ H+,

A(+0)
∗k (θ1) = e−θ1 A(+0)

(−1)k + A(+0)
0k + eθ1 A(+0)

1k ,

A(+0)
+k (θ1) = A(+0)

0k + eθ1 A(+0)
1k , k ∈ H+.

Similarly, A j∗(θ2), A j+(θ2), A
(1+)
(−1)∗(θ2), A

(1+)
j+ (θ2), A

(0+)
j∗ (θ2), and A(0+)

j+ (θ2) are
defined. Thus, we have many matrix moment-generating functions, but they are gen-
erated by the simple rule that subscripts ∗ and + indicate taking the sums for indices
in H ≡ {0,±1} and {0, 1}, respectively.

Similar to C0 of (2.15), we define the m × m matrix generating functions:

C (1)∗∗ (θ) = A∗+(θ) + A(+1)
∗(−1)(θ1)(I − A(+0)

∗0 (θ1))
−1A(+0)

∗1 (θ1), (3.4)

C (2)∗∗ (θ) = A+∗(θ) + A(1+)
(−1)∗(θ2)(I − A(0+)

0∗ (θ2))
−1A(0+)

1∗ (θ2), (3.5)

where, for i = 1, 2, cp(A
(i)
∗0 (θi )) > 1 is assumed as long as C (i)∗∗ (θ) is used.

Similar to �
(1d)
0+ and θ

(A,C)
max of (2.27), let, for i = 1, 2,

�
(2d)
i+ = {θ ∈ R

2; ∃h > 0, A∗∗(θ)h ≤ h,C (i)∗∗ (θ)h ≤ h}.

We further need the following notation:

�
(2d)
+ = {θ ∈ R

2; ∃h > 0, A∗∗(θ)h ≤ h}, �(2d)
max = {θ ∈ R

2; ∃θ ′ > θ , θ ′ ∈ �
(2d)
+ }.

Recall that the Perron–Frobenius eigenvalue of A∗∗(θ) is denoted by γ (A∗∗)(θ), which
is finite because A∗∗(θ) is a finite-dimensional matrix. Obviously, we have

�
(2d)
+ = {θ ∈ R

2; γ (A∗∗)(θ) ≤ 1}. (3.6)

We now define key points for i = 1, 2.

θ (i,�) = argθ∈R2 sup{θi ≥ 0; θ ∈ �
(2d)
i+ }, θ (i,max) = argθ∈R2 sup{θi ; θ ∈ �

(2d)
+ }.
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Using these points, we define the vector τ by

τ1 = sup{θ1 ∈ R; θ ∈ �
(2d)
1+ ; θ2 < θ

(2,�)
2 }, τ2=sup{θ2 ∈ R; θ ∈ �

(2d)
2+ ; θ1 < θ

(1,�)
1 }.
(3.7)

Note that τi is finite because �
(2d)
i+ is a bounded set. It is notable that, in the definitions

(3.7), the condition that A∗∗(θ)h ≤ h canbe replacedby A∗∗(θ)h = h or, equivalently,
γ A∗∗(θ) = 1.

For i = 1, 2, define the function ξ
(i)

(θ3−i ) for θ = (θ1, θ2) as

ξ
(i)

(θ3−i ) = sup{θi ∈ R; θ ∈ �
(2d)
i+ } for θ3−i ∈ [0, θ(i,�)

i ].

Obviously, ξ
(i)

(x) is a convex function because �
(2d)
i+ is a bounded set.

As in [18,19], it is convenient to introduce the following classifications for τ ≡
(τ1, τ2).

(Category I) θ
(1,�)
2 < θ

(2,�)
2 and θ

(2,�)
1 < θ

(1,�)
1 , for which τ =

(
θ

(1,�)
1 , θ

(2,�)
2

)
.

(Category II-1) θ
(1,�)
2 ≥θ

(2,�)
2 and θ

(2,�)
1 <θ

(1,�)
1 , forwhichτ =

(
ξ

(1)
(θ

(2,�)
2 ), θ

(2,�)
2

)
.

(Category II-2) θ
(1,�)
2 <θ

(2,�)
2 and θ

(2,�)
1 ≥θ

(1,�)
1 , forwhichτ =

(
θ

(1,�)
1 , ξ

(2)
(θ

(1,�)
1 )

)
.

Since it is impossible that θ
(1,�)
2 ≥ θ

(2,�)
2 and θ

(2,�)
1 ≥ θ

(1,�)
1 , these three categories

completely cover all cases (for example, see Sect. 4 of [27]). These categories are
crucial in our arguments as we shall see in Theorem 3.2 below.

We first derive upper bounds. Let ϕ be the moment-generating function of L.
Namely, ϕ(θ) = E(e〈L,θ〉). Define its convergence domain as

D = {θ ∈ R
2; ∃θ ′ > θ, ϕ(θ ′) < ∞}.

We prove the following lemma in Appendix 4.

Lemma 3.2 Under the stability assumption,

�(2d)
τ ≡ {θ ∈ �(2d)

max ; θ < τ } ⊂ D. (3.8)

Using this lemma, the following upper bound is obtained.

Theorem 3.1 Under the stability condition, we have, for each nonzero vector c ≥ 0,

lim
x→∞

1

x
logP(〈L, c〉 > x) ≤ − sup{u ≥ 0; uc ∈ �(2d)

τ }. (3.9)

This theorem is proved in Appendix 4. We next derive lower bounds. We first con-
sider lower bounds concerning the random walk component in an arbitrary direction.
For this, we consider the two-dimensional randomwalkmodulated by {A jk; j, k ∈ H},
which is denoted by {(Yn, Jn); n ≥ 1}. Similar to Lemma 7 of [19], we have the fol-
lowing fact, which is proved in Appendix 5.
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Lemma 3.3 For each nonzero vector c ≥ 0,

lim inf
x→∞

1

x
logP(L > xc) ≥ − sup

{
〈θ , c〉; θ ∈ �

(2d)
+

}
, (3.10)

and therefore ϕ(θ) is infinite for θ /∈ �
(2d)

max , where �
(2d)

max is the closure of �(2d)
max .

Note that the upper bound in (3.9) is generally larger than the lower bound in (3.10).
To get tighter lower bounds, we use the one-dimensional QBD formulation. For this,
we require assumptions similar to Assumption 2.1.

Assumption 3.1 For each θ ∈ R
2 satisfying γ (A∗∗)(θ) = 1, for each i = 1, 2, there

is an m0-dimensional positive vector h(0i)(θ) and functions c(i)
0 (θ) and c(i)

1 (θ) such

that one of c(i)
1 (θ) or c(i)

2 (θ) equals one, and

A(i)
∗(i0)(θi )h

(0i)(θ) + eθ2 A(i)
∗(i1)(θi )h

(A∗∗)(θ)

= c(i)
0 (θ)h(0i)(θ), (3.11)

e−θ2 A(i)
∗(i(−1))(θi )h

(0i)(θ) + A∗(i0)(θi )h(A∗∗)(θ)

+ eθ2 A∗(i1)(θi )h(A∗∗)(θ) = c(i)
1 (θ)h(A∗∗)(θ), (3.12)

where ∗(ik) = ∗k for i = 1 and ∗(ik) = k∗ for i = 2. We recall that h(A∗∗)(θ) is the
Perron–Frobenius eigenvector of A∗∗(θ).

Theorem 3.2 Assume that the 2d-QBD process has a stationary distribution and
Assumption 3.1. Then, we have the following facts for each i = 1, 2. For each � ≥ 0
and either k ∈ V1 for � = 0 or k ∈ V+ for � ≥ 1,

lim
n→∞

1

n
logP(Li > n, L3−i = �, J = k) = −τi . (3.13)

In particular, for Category I satisfying τi < θ
(i,max)
i , there is a positive constant c(i)

�k
such that

lim
n→∞ eτi nP(Li > n, L3−i = �, J = k) = c(i)

�k . (3.14)

Otherwise, for Category II-1 satisfying τi < θ
(i,�)
i , there are positive constants d(i)

�k

and d
(i)
�k such that

lim inf
n→∞ eτi nP(Li > n, L3−i = �, J = k) ≥ d(i)

�k , (3.15)

lim sup
n→∞

eτi nP(Li > n, L3−i = �, J = k) ≤ d
(i)
�k . (3.16)
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This theoremwill be proved in Appendix 6. Similar results without Assumption 3.1
are obtained as Theorem 4.1 in [36]. However, the method assumes other assumptions
such as Assumption 3.1 of [36]. Furthermore, it requires a large amount of numerical
work to compute τi .

Combining Theorems 3.1 and 3.2 and Lemma 3.3, we have the following tail
asymptotics.

Theorem 3.3 Under the assumptions of Theorem 3.2, we have

D = �(2d)
τ ≡ {θ ∈ �(2d)

max ; θ < τ }. (3.17)

and, for each nonzero vector c ≥ 0,

lim
x→∞

1

x
logP(〈L, c〉 > x) = − sup{u ≥ 0; uc ∈ D}. (3.18)

Proof By Theorem 3.1, we already have the upper bound of the tail probability for
(3.18). To consider the lower bound, let

uc = sup{u ≥ 0; uc ∈ D}, θ(c) = ucc.

Note that θ(c) ≤ τ by Theorem 3.1. We first assume that θ c < τ . Then, by Theo-
rem 3.1, θ(c) ∈ ∂�

(2d)
+ , and therefore Lemma 3.3 leads to

lim inf
x→∞

1

x
logP(〈L, c〉 > x, J = k) ≥ − uc = − sup{u ≥ 0; uc ∈ D}. (3.19)

Assume θ c = τ . In this case, by Theorem 3.1, we have that [θ(c)]1 = τ1 or [θ(c)]2 =
τ2; equivalently, c1uc = τ1 or c2uc = τ2. Since these two cases are symmetric, we
only consider the case c1uc = τ1. By Theorem 3.2 we have, for each fixed � and k,

lim inf
n→∞

1

n
logP(c1L1 > n, L2 = �, J = k) ≥ −τ1

c1
= − uc.

Since c1L1 + c2L2 > n for L2 = � implies that c1L1 > n − c2�, this yields

lim inf
n→∞

1

n
logP(〈L, c〉 > x, J = k) ≥ − uc = − sup{u ≥ 0; uc ∈ D}.

Thus, the limit supremum and the limit infimum are identical, and we get (3.18). �

4 Two-node generalized Jackson network

In this section we consider a continuous-time Markov chain {(L(t), J (t))} whose
embedded transitions under uniformization constitute a discrete-time 2d-QBD
process. We refer to it as a continuous-time 2d-QBD process. This process is con-
venient in queueing applications because they are often of continuous time. Since
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the stationary distribution is unchanged under uniformization, its tail asymptotics are
also unchanged. Thus, it is routine to convert the asymptotic results obtained for the
discrete-time 2d-QBD process to those for {(L(t), J (t))}. We summarize them for
convenience of application.

4.1 Continuous-time formulation of a 2d-QBD process

As discussed above, we define a continuous-time 2d-QBD process {(L(t), J (t))} by
changing P(1) (or P(2)) to a transition rate matrix. Denote it by P̃(1) (or P̃(2)). That is,
P̃(i) has the same block structure as that of P(i) while P̃(i)1 = 0 and all its diagonal
entries are not positive. In what follows, continuous-time characteristics are indicated
by tilde except for those concerning the stationary distribution, because the stationary
distribution is unchanged. Among them, it is notable that I − A(i)

00 and I − A00 are

replaced by− Ã(i)
00 and− Ã00, respectively, while A

(i)
i j and Ai j are replaced by Ã(i)

i j and

Ãi j for (i, j) �= (0, 0). Similarly, A(i)
jk , A∗∗(θ) and C (i)∗∗ (θ) are defined. For example,

I − A(1)
∗0 (θ1) is replaced by − Ã(1)

∗0 (θ1), and therefore

C̃ (1)∗∗ (θ) = Ã∗+(θ) + Ã(1)
∗(−1)(θ1)(− Ã(1)

∗0 (θ1))
−1 Ã(1)

∗1 (θ1),

as long as (− Ã(1)
∗0 (θ1))

−1 exists and is nonnegative. C̃ (2)∗∗ (θ) is similarly defined.
Suppose that we start with the continuous-time 2d-QBD process with primitive data

Ã(i)
jk . These data must satisfy

Ã∗∗(0)1 = 0, C̃ (i)∗∗ (0)1 = 0, i = 1, 2,

because of the continuous-time setting. Since the condition for the existence of a
superharmonic vector h for A∗∗(θ) is changed to Ã∗∗(θ)h ≤ 0, we define the following
sets.

�̃
(2d)
+ = {θ ∈ R

2; ∃h > 0, Ã∗∗(θ)h ≤ 0}, (4.1)

�̃(2d)
max = {θ ∈ R

2; ∃θ ′ > θ , θ ′ ∈ �̃
(2d)
1 ( Ã∗∗)}, (4.2)

�̃
(2d)
i+ = {θ ∈ R

2; ∃h > 0, Ã∗∗(θ)h ≤ 0, C̃ (i)∗∗ (θ)h ≤ 0}, i = 1, 2. (4.3)

The following auxiliary notation will be convenient:

�̃
(2e)
i+ = {θ ∈ R

2; ∃h > 0, Ã∗∗(θ)h = 0, C̃ (i)∗∗ (θ)h ≤ 0}, i = 1, 2. (4.4)

Using this notation, we define

θ̃
(i,�) = argθ∈R2 sup{θi ≥ 0; θ ∈ �̃

(2d)
i+ }, θ̃

(i,max) = argθ∈R2 sup{θi ; θ ∈ �̃
(2d)
+ },
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and define the vector τ̃ by

τ̃1=sup{θ1 ∈ R; θ ∈ �̃
(2d)
1+ ; θ2<θ̃

(2,�)
2 }, τ̃2 = sup{θ2 ∈ R; θ ∈ �̃

(2d)
2+ ; θ1 < θ̃

(1,�)
1 }.

(4.5)

Remark 4.1 In the definition (4.5), we can replace �̃
(2d)
i+ by �̃

(2e)
i+ because �̃

(2d)
+ and

{θ ∈ R
2; C̃ (i)∗∗ (θ)h ≤ 0} are closed convex sets.

We also need

�̃τ̃ = {θ ∈ �̃(2d)
max ( Ã); θ < τ̃ }. (4.6)

Let γ̃ Ã∗∗(θ) be the Perron–Frobenius eigenvalue of Ã∗∗(θ). A continuous-time version
of Assumption 3.1 is given by

Assumption 4.1 For each θ ∈ R
2 satisfying γ ( Ã∗∗)(θ) = 1, for each i = 1, 2, there

is an m0-dimensional positive vector h̃
(i0)

(θ) and functions c̃(i)
0 (θ) and c̃(i)

1 (θ) such

that one of c̃(i)
0 (θ) or c̃(i)

1 (θ) vanishes, and, for i = 1,

Ã(+0)
∗0 (θ1)h̃

(10)
(θ) + eθ2 Ã(+0)

∗1 (θ1)h̃
(A∗∗)

(θ) = c̃(1)
0 (θ)h̃

(10)
(θ), (4.7)

e−θ2 Ã(+1)
∗(−1)(θ1)h̃

(10)
(θ) + Ã∗+(θ1)h̃

( Ã∗∗)
(θ) = c̃(1)

1 (θ)h̃
( Ã∗∗)

(θ), (4.8)

and, for i = 2,

Ã(0+)
0∗ (θ2)h̃

(20)
(θ) + eθ1 Ã(0+)

1∗ (θ2)h̃
(A∗∗)

(θ) = c̃(2)
0 (θ)h̃

(20)
(θ), (4.9)

e−θ1 Ã(1+)
(−1)∗(θ2)h̃

(20)
(θ) + Ã+∗(θ2)h̃

( Ã∗∗)
(θ) = c̃(2)

1 (θ)h̃
( Ã∗∗)

(θ). (4.10)

We recall that h̃
( Ã∗∗)

(θ) is the Perron–Frobenius eigenvector of Ã∗∗(θ).

Define the domain for the stationary distribution of L as

D = the interior of {θ ∈ R
2;E(e〈θ ,L〉) < ∞}, (4.11)

where L is a random vector subject to the stationary distribution of L(t). It is easy
to see that Theorems 3.1 and 3.3 can be combined and converted into the following
continuous version.

Theorem 4.1 For a continuous-time 2d-QBD process satisfying the irreducibility and
stability conditions, �̃τ̃ ⊂ D and we have

lim
x→∞

1

x
logP(〈L, c〉 > x) ≤ − sup{u ≥ 0; uc ∈ �̃τ̃ }, (4.12)

and this inequality becomes equality with D = �̃τ̃ if Assumption 4.1 is satisfied.
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4.2 Two-node generalized Jackson network with MAP arrivals and PH-service
time distributions

As an example of the 2d-QBD process, we consider a two-node generalized Jackson
network with a MAP arrival process and phase-type service time distributions. Obvi-
ously, this model can be formulated as a 2d-QBD process.We are interested to see how
exogenous arrival processes and service time distributions influence the decay rates.
This question has been partially answered for the tail decay rates of themarginal distri-
butions of tandem queues with stationary or renewal inputs (for example, see [3,14]).
They basically use the technique for sample path large deviations, and no joint distrib-
utions have been studied for queue lengths at multiple nodes. For Markov-modulated
arrivals and more general network topologies, there is seminal work by Takahashi and
his colleagues [11,12,15,16]. They started with numerical examinations and finally
arrived at upper bounds for the stationary tail probabilities for the present generalized
Jackson network in [16]. The author [26] conjectured the tail decay rates of the sta-
tionary distribution for a d-node generalized Jackson network with d ≥ 2 and renewal
arrivals.

Thus, the question has not yet been satisfactorily answeredparticularly for a network
with feedback routes. This motivates us to study the present decay rate problem. As
we will see, the answer is relatively simple and naturally generalizes the tandem queue
case. However, first we have to introduce yet more notation to describe the generalized
Jackson network. This network has two nodes, which are numbered as 1 and 2. We
make the following modeling assumptions.

(4a) A customer which completes service at node i goes to node j with probability
ri j or leaves the network with probability 1 − ri j for (i, j) = (1, 2) or (2, 1),
where r12 + r21 > 0 and r12r21 < 1, which exclude obvious cases. This routing
of customers is assumed to be independent of everything else.

(4b) Exogenous customers arrive at node i subject to the Markovian arrival process
with generator Ti + Ui , where Ui generates arrivals. Here, Ti and Ui are finite
square matrices of the same size for each i = 1, 2.

(4c) Node i has a single server, whose service times are independently and identically
distributed subject to a phase-type distribution with (β i , Si ), where β i is the row
vector representing the initial phase distribution and Si is a transition rate matrix
for internal state transitions. Here, Si is a finite square matrix, and β i has the
same dimension as that of Si for each i = 1, 2.

Let Di = (−Si1)β i . Then Si + Di is a generator for a continuous-time Markov
chain which generates completion of service times with rate Di . Since the service
time distribution at node i has the phase-type distribution with (β i , Si ), its moment-
generating function gi is given by

gi (θ) = 〈β i , (−θ Ii+2 − Si )
−1(−Si1)〉, i = 1, 2, (4.13)

as long as θ Ii+2 + Si is nonsingular (for example, see [21] in which the Laplace trans-
form is used instead of the moment-generating function). Clearly, gi (θ) is a increasing
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function of θ from (−∞, θ0i ) to (0,∞), where −θ0i is the Perron–Frobenius eigen-
value of Si .

Let Li (t), Jia(t), and Jib(t) be the number of customers at node i , the back-
ground state for arrivals, and the phase of service in progress, respectively, at time
t , where Jib(t) is undefined if there is no customer in node i at time t . Then, it
is not hard to see that {(L(t), J(t)); t ≥ 0} is a continuous-time Markov chain
and considered as a 2d-QBD process, where L(t) = (L1(t), L2(t)) and J(t) =
(J1a(t), J2a(t), J1b(t), J2b(t)), where Jib(t) is removed from the components of J(t)
if it is undefined.

We first note the stability condition for this 2d-QBD process. Since, for node i , the
mean exogenous arrival rate λi and the mean service rate μi are given by

λi = 〈νi ,Ui1i 〉 μi = 〈β i , (−Si )
−11i 〉,

where νi is the stationary distribution of the Markov chain with generator Ti +Ui , it
is well known that the stability condition is given by

ρi ≡ λi + λ3−i r(3−i)i

(1 − r12r21)μi
< 1, i = 1, 2. (4.14)

We assume this condition throughout in Sect. 4.2.
We next introduce point processes to count arriving and departing customers from

each node. By N (a)
i (t), we denote the number of exogenous arriving customers at node

i during the time interval [0, t]. Then, it follows from (4b) (also the comment above
(4.14)) that

E(eθN (a)
i (t)1(J (t) = k)|J (0) = j) = [

exp(t (Ti + eθUi ))
]
jk .

We define a time-average cumulant moment-generating function γ (ia) as

γ (ia)(θ) = lim
t→∞

1

t
logE(eθN (a)

i (t)), i = 1, 2. (4.15)

It is not hard to see that γ (ia)(θ) is the Perron–Frobenius eigenvalue of Ti + eθUi .
By N (d)

i (t), we denote the number of departing customers from node i during the
time interval [0, t] when the server at node i is always busy in this time interval. Let
�i (n) be the number of customers who are routed to node 3 − i among n customers
departing from node i . Obviously, it follows from (4a) that �i (n) is independent of
N (d)
i (t), and has the Bernoulli distribution with parameter (n, ri(3−i)). Then,

E(e−θi N
(d)
i (t)+θ3−i�i (N

(d)
i (t))1(J (t) = k)|J (0) = j)

= [
exp(t (Si + e−θi (ri0 + eθ3−i ri(3−i))Di ))

]
jk ,

where ri0 = 1− ri(3−i). Similar to γ (ia), we define a time-average cumulant moment-
generating function γ (id) by
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γ (id)(θ) = lim
t→∞

1

t
logE(e−θi N

(d)
i (t) + θ3−i�i (N

(d)
i (t))), θ = (θ1, θ2), i = 1, 2.

One can see that γ (id)(θ) is the Perron–Frobenius eigenvalue of Si + e−θi (ri0 +
eθ3−i ri(3−i))Di .

One may expect that the decay rates for the generalized Jackson network are com-
pletely determined by the cumulants γ (1a), γ (2a), γ (1d), γ (2d) since their conjugates
are known to be rate functions for the Cramér type of large deviations. We will show
that this is indeed the case. Let

γ (+)(θ) = γ (1a)(θ1) + γ (2a)(θ2) + γ (1d)(θ) + γ (2d)(θ),

γ (i)(θ) = γ (1a)(θ1) + γ (2a)(θ2) + γ (id)(θ), i = 1, 2.

We then have the following result.

Theorem 4.2 For the generalized Jackson network satisfying conditions (4a), (4b)
and (4c), if the stability condition (4.14) holds then Assumption 4.1 is satisfied, and
we have

�̃2d+ = {θ ∈ R
2; γ (+)(θ) ≤ 0}, (4.16)

�̃2e
i+ = {θ ∈ R

2; γ (+)(θ) = 0, γ (i)(θ) ≤ 0}, i = 1, 2. (4.17)

Define τ̃ and �̃τ̃ by (4.5) and (4.6). Then the domain D for L is given by �̃τ̃ and, for
a nonzero vector c ≥ 0,

lim
x→∞

1

x
logP(〈L, c〉 > x) = − sup{u ≥ 0; uc ∈ �̃τ̃ }, (4.18)

where L is a random vector subject to the stationary distribution of L(t).

Remark 4.2 As we will show at the end of Sect. 4.4, the condition that γ (i)(θ) ≤ 0 in
(4.17) can be replaced by e−θ3−i (r(3−i)0 + eθi r(3−i)i ) ≥ 1.

Remark 4.3 For c = (1, 0), (0, 1), Katou et al. [15] obtained the right-hand side of
(4.18) as an upper bound for its left-hand side (see Theorem 4.1 there). Namely, they
derived the inequality (4.12), which is conjectured to be tight in [26]. Theorem 4.2
shows that those upper bounds are indeed tight. Based on the results in [15], Katou et
al. [16] derived upper bounds for the decay rate of the probability P(L = nc+ d) for
positive vectors c, d with integer entries as n → ∞ and numerically examined their
tightness. This asymptotic is different from that in (4.18), so we cannot confirm its
tightness by (4.18), but conjecture it to be true since similar asymptotics are known
for a two-dimensional semimartingale reflecting Brownian motion (see [1,9]).

See Fig. 2 to see what the domain looks like.
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0 θ1

θ2

τ1

τ2 (τ1, τ2)
θ(2,max)

θ(1,max)

θ(2,Γ)

eθ2 = r20 + eθ1r21

eθ1 = r10 + eθ2r12

D

θ(1,Γ)

γ(+)(θ) = 0

γ(2)(θ) = 0

γ(1)(θ) = 0

0 θ1

θ2

θ(2,max)

θ(1,max)

τ1

τ2

eθ1 = r10 + eθ2r12

eθ2 = r20 + eθ1r21

(τ1, τ2)

D

θ(2,Γ) = θ(1,Γ)

γ(+)(θ) = 0

γ(2)(θ) = 0

γ(1)(θ) = 0

Fig. 2 The domain D for the two-node generalized Jackson network

4.3 Primitive data and matrix moment generation functions

In this section we describe transition rate matrices and their moment-generating func-
tions in terms of the primitive data, Ti ,Ui , Si ,β i , of the generalized Jackson network,
and prove (4.16) and (4.17). They will be used to prove Theorem 4.2 in the next
subsection.

To specify those matrices for the generalized Jackson network, we will use the
Kronecker product⊗ and sum⊕, respectively, where⊕ is defined for square matrices
A and B as

A ⊕ B = A ⊗ I2 + I1 ⊗ B,

where I1 and I2 are the identity matrices with the same sizes as A and B, respectively.
From this definition, it is easy to see that if A and B have right eigenvectors hA and
hA with eigenvalues γA and γB , respectively, then

(A ⊕ B)(hA ⊗ hB) = (γA + γB)(hA ⊗ hB). (4.19)

We also will use this computation.
For transitions around the origin, we let

Ã(0)
00 = T1 ⊕ T2, Ã(0)

10 = U1 ⊗ I2 ⊗ β1, Ã(0)
01 = I1 ⊗U2 ⊗ β2,

Ã(0)
(−1)0 = I1 ⊗ I2 ⊗ D11, Ã(0)

0(−1) = I1 ⊗ I2 ⊗ D21,

where other Ã(0)
i j ’s not specified above are all null matrices. This convention for null

matrices is used for all transitionmatrices.Around U+0∪U+1, that is, the 1st coordinate
half axis except for the origin,

Ã(1)
(−1)0 = I1 ⊗ I2 ⊗ (r10D1) Ã(1)

00 = T1 ⊕ T2 ⊕ S1, Ã(1)
10 = U1 ⊗ I2 ⊗ I3,
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Ã(1)
(−1)1 = I1 ⊗ I2 ⊗ (r12D1) ⊗ β2 Ã(1)

01 = I1 ⊗U2 ⊗ I3 ⊗ β2,

Ã(1)
0(−1) = I1 ⊗ I2 ⊗ I3 ⊗ (r20D21), Ã(1)

1(−1) = I1 ⊗ I2 ⊗ I3 ⊗ (r21D21).

Similarly, around U0+ ∪U1+, that is, the 2nd coordinate half axis except for the origin,

Ã(2)
0(−1) = I1 ⊗ I2 ⊗ (r20D2), Ã(2)

00 = T1 ⊕ T2 ⊕ S2, Ã(2)
01 = I1 ⊗U2 ⊗ I4,

Ã(2)
1(−1) = I1 ⊗ I2 ⊗ β1 ⊗ (r21D2), Ã(2)

10 = U1 ⊗ I2 ⊗ β1 ⊗ I4,

Ã(2)
(−1)0 = I1 ⊗ I2 ⊗ (r10D11) ⊗ I, Ã(2)

(−1)1 = I1 ⊗ I2 ⊗ (r12D11) ⊗ I4.

For transitions within U+, that is, the interior,

Ã00 = T1 ⊕ T2 ⊕ S1 ⊕ S2, Ã10 = U1 ⊗ I2 ⊗ I2 ⊗ I3, Ã01 = I1 ⊗U2 ⊗ I3 ⊗ I4,

Ã(−1)0 = I1 ⊗ I2 ⊗ (r10D1) ⊗ I4, Ã(−1)1 = I1 ⊗ I2 ⊗ (r12D1) ⊗ I4,

Ã0(−1) = I1 ⊗ I2 ⊗ I3 ⊗ (r20D2), Ã1(−1) = I1 ⊗ I2 ⊗ I3 ⊗ (r21D2).

Thus, we have

Ã∗∗(θ) = (T1 + eθ1U1) ⊕ (T2 + eθ2U2)

⊕ (S1 + (e−θ1r10 + e−θ1+θ2r12)D1) ⊕ (S2 + (e−θ2r20 + eθ1−θ2r21)D2).

Recall that γ (ia)(θi ) is the Perron–Frobenius eigenvalue of Ti + eθi Ui . We denote
its eigenvector by h(ia)(θi ). Similarly, we denote the Perron–Frobenius eigenvalues
and vectors of S1 + (e−θ1r10 + e−θ1+θ2r12)D1 and S2 + (e−θ2r20 + eθ1−θ2r21)D2 by
γ (1d)(θ) and γ (2d)(θ), and h(1d)(θ) and h(1d)(θ), respectively. That is, they satisfy

(T1 + eθ1U1)h(1a)(θ1) = γ (1a)(θ1)h(1a)(θ1), (4.20)

(T2 + eθ2U2)h(2a)(θ2) = γ (2a)(θ2)h(2a)(θ2), (4.21)

(S1 + (e−θ1r10 + e−θ1+ θ2r12)D1)h(1d)(θ) = γ (1d)(θ)h(1d)(θ), (4.22)

(S2 + (e−θ2r20 + eθ1− θ2r21)D2)h(2d)(θ) = γ (2d)(θ)h(2d)(θ). (4.23)

Thus, recalling γ (+)(θ) and letting

h(+)(θ) = h(1a)(θ1) ⊗ h(2a)(θ2) ⊗ h(1d)(θ) ⊗ h(2d)(θ),

we have, by repeatedly applying (4.19),

Ã∗∗(θ)h(+)(θ) = γ (+)(θ)h(+)(θ).

Hence, recalling the definition (4.1) of �̃(2d), we have (4.16).
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We next note that γ (id) can also be obtained from the moment-generating function
gi of the service time distribution at node i . For i = 1, 2, let

ti (θ) = e−θi ri0 + e−θi+θ3−i ri(3−i).

Then it follows from (4.22) and (4.23) that

ti (θ)〈β i , h
(id)(θ)〉(−Si1) = (γ (id)(θ)I − Si )h(id)(θ),

since Dih(id)(θ) = 〈β i , h
(id)(θ)〉(−Si1). Hence, premultiplying (γ (id)(θ)I − Si )−1,

we have

h(id)(θ) = ti (θ)〈β i , h
(id)(θ)〉(γ (id)(θ)I − Si )

−1(−Si )1.

Let us normalize h(id)(θ) in such a way that

〈β i , h
(id)(θ)〉 = ti (θ)−1. (4.24)

Then we have the following facts since gi is nondecreasing.

Lemma 4.1 For i = 1, 2, (a) under the normalization (4.24),

h(id)(θ) = (γ (id)(θ)I − Si )
−1(−Si )1, (4.25)

and therefore gi (−γ (id)(θ)) = ti (θ)−1, which yields γ (id)(θ) = −g−1
i (ti (θ)−1), (b)

γ (id)(θ) ≥ 0 if and only if ti (θ) ≥ 1, which is equivalent to

ri0 + eθ3−i ri(3−i) ≥ eθi . (4.26)

(c) If Ui = (−Ti1)αi for probability vectors αi , that is, the arrival process at node
i is the renewal process with interarrival distribution determined by the moment-
generating function:

fi (θi ) = 〈αi , (−θi I − Ti )
−1(−Ti1)〉,

then γ (ia)(θi ) = − f −1
i (e−θi ).

Remark 4.4 (a) and (c) are known (see, for example, Proposition 2 of [39] and Lemma
4.1 of [12]).

4.4 Proof of Theorem 4.2

We first verify Assumption 4.1 for i = 1 and c̃(1)
1 (θ) = 0, Namely, for θ ∈ R

2

satisfying γ (+)(θ) = 0, that is,

γ (1a)(θ1) + γ (2a)(θ2) + γ (1d)(θ) + γ (2d)(θ) = 0, (4.27)
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we show that there are some c̃(1)
0 (θ) and h(01)(θ) > 0 such that

Ã(1)
∗0 (θ1)h(01)(θ) + eθ2 Ã(1)

∗1 (θ1)h(+)(θ) = c̃(1)
0 (θ)h(01)(θ), (4.28)

e−θ2 Ã(1)
∗(−1)(θ1)h

(01)(θ) + Ã∗0(θ1)h(+)(θ) + eθ2 Ã∗1(θ1)h(+)(θ) = 0, (4.29)

where

Ã∗+(θ) = (T1+eθ1U1) ⊕ (T2+eθ2U2) ⊕ (S1 + (e−θ1r10+e−θ1+θ2r12)D1) ⊕ S2,

Ã∗(−1)(θ1) = I1 ⊗ I2 ⊗ I3 ⊗ ((r20 + r21e
θ1)D2),

Ã(1)
∗(−1)(θ1) = I1 ⊗ I2 ⊗ I3 ⊗ ((r20 + r21e

θ1)D21),

Ã(1)
∗0 (θ1) = (T1 + eθ1U1) ⊕ T2 ⊕ (S1 + r10e

−θ1D1),

Ã(1)
∗1 (θ1) = I1 ⊗ (U2 ⊕ (r12e

−θ1D1)) ⊗ β2.

We further require the nonsingularity condition:

Ã(1)
∗0 (θ1)h(01)(θ) < 0. (4.30)

From (4.28), this holds if c̃(1)
0 (θ) ≤ 0.

Since Ã∗∗(θ)h(+)(θ) = 0 by (4.27), (4.29) is equivalent to

Ã(1)
∗(−1)(θ1)h

(01)(θ) − Ã∗(−1)(θ1)h(+)(θ) = 0. (4.31)

Note that Ã∗(−1)(θ1) and Ã(1)
∗(−1)(θ1) have a similar form, so we let

h(1)(θ) = h(1a)(θ1) ⊗ h(2a)(θ2) ⊗ h(1d)(θ),

and guess that, for some scalar a(θ),

h(01)(θ) = a(θ)h(1)(θ).

We first verify (4.28). Since

Ã(1)
∗0 (θ1)h(01)(θ) = a(θ)

(
γ (1a)(θ1)h(1)(θ) + h(1a)(θ1) ⊗ (T2h(2a)) ⊗ h(1d)(θ)

+ h(1a)(θ1) ⊗ h(2a)(θ2) ⊗ (S1 + r10e
−θ1D1)h(1d)(θ)

)
,

eθ2 Ã(1)
∗1 (θ1)h(+)(θ) = h(1a)(θ1) ⊗

(
eθ2U2h(2a)(θ2) ⊗ h(1d)(θ)

+ h(2a)(θ2) ⊗ (r12e
−θ1+θ2D1h(1d)(θ))

)
〈β2, h

(2d)(θ)〉,

we choose a(θ) = 〈β2, h
(2d)(θ)〉, which is t2(θ)−1 by (4.24). Then

Ã(1)
∗0 (θ1)h(01)(θ) + eθ2 Ã(1)

∗1 (θ1)h(+)(θ)=(
γ (1a)(θ1) + γ (2a)(θ2) + γ (1d)(θ)

)
h(01)(θ).
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Hence, we have (4.28) with

c̃(1)
0 (θ) = γ (1a)(θ1) + γ (2a)(θ2) + γ (1d)(θ)(≡ γ (1)(θ)).

We next consider (4.31). Recall that D2 = (−S21)β2. Since

e−θ2 Ã(1)
∗(−1)(θ1)h

(01)(θ) = h(01)(θ) ⊗ ((r20e
−θ2 + r21e

θ1−θ2)〈β2, h
(2d)(θ)〉D21),

e−θ2 Ã∗(−1)(θ1)h(+)(θ) = h(01)(θ) ⊗ ((r20e
−θ2 + r21e

θ1−θ2)D2h(2d)(θ)),

D2h(2d)(θ) = (−S21)〈β2, h
(2d)(θ)〉 = 〈β2, h

(2d)(θ)〉(−S21)

= 〈β2, h
(2d)(θ)〉D21,

we have (4.31). Thus, we have verified Assumption 4.1, and therefore θ ∈ �̃
(2e)
1+ is

equivalent to γ (+)(θ) = 0 and γ (1)(θ) ≤ 0. Because arguments are symmetric for
nodes 1 and 2, we can get similar results for node 2. Thus, Theorem 4.2 follows from
Theorem 4.1 because of Remark 4.1.

We finally note that, for θ ∈ R
2 satisfying γ (+)(θ) = 0, γ (3−i)(θ) ≤ 0 is equivalent

to γ (id)(θ) ≥ 0,which further is equivalent to (4.26).Hence,we have verified the claim
in Remark 4.2.

5 Concluding remarks

We have studied the existence of a superharmonic vector for a nonnegative matrix
with QBD block structure. We saw how this existence is useful for studying the tail
asymptotics of the stationary distribution of a Markov-modulated two-dimensional
reflecting random walk, called the 2d-QBD process. We have assumed that all blocks
of the nonnegative matrix are finite dimensional. This is a crucial assumption, but
we need to remove it for studying a higher dimensional reflecting random walk. This
is a challenging problem. Probably, further structure is needed for the background
process. For example, we may assume that each block matrix has again QBD block
structure, which is satisfied by a reflecting random walk in any number of dimensions
with Markov modulation. We think research in this direction would be useful.

Another issue is about the tail asymptotics for a generalized Jackson network. We
have considered the two-node case. In this case, the tail decay rates are determined by
time-average cumulant moment generating functions, γ (a)

i and γ
(d)
i by Theorem 4.2.

This suggests that more general arrival processes and more general routing mecha-
nisms may lead to the decay rates in the same way. Some related issues have been
recently considered for a single server queue in Sect. 2.4 of [30], but the network case
has not yet been studied. So, it is also an open problem.

In a similar fashion, we may be able to consider a generalized Jackson network
with more than two nodes. To make the problem specific, let us consider the k node
cases for k ≥ 2. Let K = {1, 2, . . . , k}, and let
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γ (+)(θ) =
k∑

j=1

(γ ( ja)(θ j ) + γ ( jd)(θ)).

Then, the sets similar to �̃2e
i+ for k = 2 may be indexed by a nonempty subset A of K ,

and given by

�̃ke
A+ =

{
θ ∈ R

k; γ (+)(θ) = 0, γ (i)(θ) ≥ 0,∀i ∈ K \ A
}

.

These together with �̃kd+ = {
θ ∈ R

k; γ (+)(θ) ≤ 0
}
would play the same role as in

the two-dimensional case. That is, they would characterize the tail decay rates of the
stationary distribution. We may generate those sets from

�̃ke
i+ =

{
θ ∈ R

k; γ (+)(θ) = 0, γ (i)(θ) ≥ 0
}

, i ∈ K .

Thus, the characterization may be much simpler than that for a general k-dimensional
random walk with Markov modulation. However, we do not know how to derive the
decay rates from them for k ≥ 3 except for tandem type models in some simple
situations (for example, see [3,7]). This remains a very challenging problem (for
example, see Sect. 6 of [28]).

We finally remark on the continuity of the decay rate for a sequence of the two-node
generalized Jackson networks which weakly converges to the two-dimensional SRBM
in heavy traffic. Under suitable scaling and appropriate conditions, such convergence
is known not only for their processes but for their stationary distributions (see, for
example, [6,13]). Since the tail decay rates are known for this SRBM (see [8]), we
can check whether the decay rate also converges to that of the SRBM. This topic is
considered in [30].

Acknowledgments The author is grateful to an anonymous referee for helpful suggestions to improve
exposition. Thiswork is supported by JapanSociety for the Promotion of Science underGrantNo. 24310115.
A part of this work was presented at a workshop of Sigmetrics 2014 (see its Abstract [29]).

Appendix 1: Proof of Lemma 2.3

(a) For sufficiency, we assume that �
(1d)
+ �= ∅, that is, there is a θ ∈ �

(1d)
+ . For this

θ , let y = ( y1, y2, . . .)
t for yn = eθnhA∗(θ). Then it is easy to see that K+ y ≤ y,

and therefore cp(K+) ≥ 1. For necessity, we use the same idea as in the proof of

Theorem 3.1 of [20]. Assume the contrary; that �
(1d)
+ = ∅, which is equivalent to

minθ γ (A∗)(θ) > 1 when cp(K+) ≥ 1 holds, and leads to a contradiction. By this
supposition and the convexity of γ (A∗)(θ), there is a θ0 such that γ (A∗)(θ0) > 1 and
(γ (A∗))′(θ0) = 0.
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We next define the stochastic matrix P̂(θ0) whose (k, �) block matrix is given by

P̂(θ0)
k� =

⎧
⎨

⎩

[γ (A∗)(θ0)]−1 Â(θ0)
k−�, k ≥ 1, � ≥ 0, |k − �| ≤ 1,

I, k = � = 0,
0, otherwise.

(6.1)

Since γ (A∗)(θ0) > 1 > 0, this stochastic matrix P̂(θ0) is well-defined. The Markov
chain with this transition matrix is a Markov-modulated random walk on Z+ with
an absorbing state at block 0, where [γ (A∗)(θ0)]−1 Â(θ0) is the transition probability
matrix of the background process as long as the random walk part is away from the
origin. Denote its stationary distribution by π̂ (θ0). That is,

π̂ (θ0) Â(θ0) = γ (A∗)(θ0)π̂
(θ0),

which is equivalent to

π̂ (θ0)�−1
h(A∗)(θ0)

A∗(θ0) = γ (A∗)(θ0)π̂
(θ0)�−1

h(A∗)(θ0)
.

Taking the derivatives of A∗(θ)h(A∗)(θ) = γ (A∗)(θ)h(A∗)(θ) at θ = θ0, we have

A′∗(θ0)h(A∗)(θ0) + A∗(θ0)(h(A∗))′(θ0)
= γ (A∗)(θ0)(h(A∗))′(θ0) + (γ (A∗))′(θ0)h(A∗)(θ0).

Multiplying by π̂ (θ0)�−1
h(A∗)(θ0)

from the left, we have

π̂ (θ0)�−1
h(A∗)(θ0)

(−e−θ0 A−1 + eθ0 A1)�h(A∗)(θ0)
1 = (γ (A∗))′(θ0). (6.2)

The left side of this equation is the mean drift of the Markov-modulated random walk.
Since (γ A∗)′(θ0) = 0, this drift vanishes, and therefore, the random walk hits one
level below with probability one.

Since we have assumed that cp(K+) ≥ 1, K+ has a superharmonic y+. Let y+ =
( y+

0 , y+
1 , . . .)t be a superharmonic vector of K+, and let

ŷ(θ0)
n = e−θ0n�−1

h(A∗)(θ0)
y+
n , n ≥ 0. (6.3)

We then rewrite (2.7) as

γ (A∗)(θ0)
∑

�=0,±1

P(θ0)
n(n+�) ŷ

(θ0)
n+� ≤ ŷ(θ0)

n , n ≥ 1. (6.4)

Let f (�)
(n,i)0(θ0) be the probability that the Markov chain with transition matrix P̂(θ0) is

absorbed at block 0 at time � given that it starts at state (n, i), and denote the vector
whose i th entry is f (�)

(n,i)0(θ0) by f (�)
n0 . Define its generating function as
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f (∗)
n0 (v, θ0) =

∞∑

�=1

v� f (�)
n0 (θ0). (6.5)

Assume that ŷ1(θ0) ≥ 1, which is equivalent to

y+
1 ≥ h(A∗)(θ0). (6.6)

We can always take h(A∗)(θ0) satisfying this condition because the vectors are finite-
dimensional and constant multiplication does not change the eigenvalue. Since ŷ(θ0)

is γ (θ0)-superharmonic by (6.4), it follows from the right-invariant version of Lemma
4.1 of Vere-Jones [40] that

ŷ(θ0)
n ≥ f (∗)

n0 (γ (A∗)(θ0), θ0), n ≥ 1. (6.7)

However, the random walk is null recurrent. Hence, f ∗
n0(1; θ0) = 1. This implies

that f ∗
n0(γ

(A∗)(θ0); θ0) = ∞ because ( f (∗)
n0 )′(1, θ0) = ∞ and γ (A∗)(θ0) > 1, which

implies that ŷ(θ0)
n = ∞. This and (6.6) conclude that y+ = ∞, which contradicts the

fact that y+ is superharmonic for K+. Thus, we must have that minθ γ (A∗)(θ) ≤ 1.
(b) It follows from (a) that cp(uK+) ≥ 1 if and only if uγ A∗(θ) ≤ 1 for some

θ ∈ R. By (2.3), cp(K+) ≥ u if and only if cp(uK+) ≥ 1. Hence,

cp(K+) = sup{u ≥ 0; ∃θ ∈ R, uγ A∗(θ) ≤ 1} = (min
θ

γ (A∗)(θ))−1.

This proves (b). We remark that the finiteness of m is crucial for (6.6) to hold.

Appendix 2: Proof of Lemma 2.4

Since �
(1d)
0+ is a subset of �

(1d)
+ ∩ �

(1d)
0 , it is bounded. For the convexity, we apply

the same method that was used to prove Lemma 3.7 of [32]. For θ1, θ2 ∈ �
(1d)
0+ , there

exist positive vectors h(1)(θ) and h(2)(θ) such that, for i = 1, 2,

A∗(θi )h(i)(θ) ≤ h(i)(θ), C∗(θi )h(i)(θ) ≤ h(i)(θ).

Choose an arbitrary number λ ∈ (0, 1). Let g be the vector whose j th entry g j is
given by

g j = (h(1)
j )λ(h(2)

j )1−λ, j = 1, 2, . . . ,m.

Then, using Hölder’s inequality similarly to the proof of Lemma 3.7 of [32], we can
show that

A∗(λθ1 + (1 − λ)θ2)g ≤ g, C∗(λθ1 + (1 − λ)θ2)g ≤ g.
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This proves that λθ1 + (1 − λ)θ2 ∈ �
(1d)
0+ . Thus, �(1d)

0+ is a convex set, and therefore,
it is a finite interval.

It remains to prove that �
(1d)
0+ is a closed set. To see this, let θn be an increasing

sequence converging to θmax. Then, we can find hn for each θn such that (2.23) and
(2.24) hold for h = hn and θ = θn and it is normalized so that ht

n1 = 1, where 1 is
the column vector whose entries are all units. Since hn is normalized, we can further
find a subsequence of {hn} which converges to some finite h∞ ≥ 0 as n → ∞. Since
θn converges to θmax as n → ∞, we have (2.23) and (2.24) for h∞ and θmax, which in
turn imply that h∞ > 0 by the irreducibility of A∗(θ). Hence, θmax ∈ �

(1d)
0+ . Similarly,

we can prove θmin ∈ �
(1d)
0+ . Thus, �(1d)

0+ = [θmin, θmax].

Appendix 3: A counter example

We produce an example such that A1G− �= eθ A1 for any θ �= 0 for m = 2. For
p, q, r, s > 0 such that p+q+r < 1, 2p+q < 1 and s < 1, define two-dimensional
matrices Ai as

A−1 =
(
r 0
s 0

)

, A0 =
(
0 1 − (p + q + r)
s 1 − s

)

, A1 =
(
p q
0 0

)

.

Since A ≡ A−1 + A0 + A1 has the stationary measure (s, 1 − (p + r)), the Markov
additive process with kernel {Ai ; i = 0,±1} has a negative drift by the condition that
2p + q < 1. Hence G− must be stochastic. Furthermore, the background state must
be 1 after the level is one down because the second column of A−1 vanishes. Hence,

G− =
(
1 0
1 0

)

,

and therefore

A1G− =
(
p + q 0
0 0

)

�=
(
eθ p eθq
0 0

)

= eθ A1.

Appendix 4: Proofs for the upper bounds

In this section, we prove Lemma 3.2 and Theorem 3.1. To this end, we formulate the
2d-QBD process {Zn} as a Markov-modulated reflecting random walk on the quarter
lattice plane and consider the stationary equation for this random walk using moment-
generating functions. Similarly to the one-dimensional QBD processes in Sect. 2,
we first derive a canonical form for the stationary equations. This canonical form
simplifies transitions around the boundary similar to the QBD case.
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The stationary equation and inequality in canonical form

Assume that {Zn} has the stationary distribution π . Let

ϕ
(w)
k (θ) = E(e〈θ ,L〉; L ∈ Uw, J = k), k ∈ V+, w = +,++,

ϕ
(w)
k (θ1) = E(eθ1L(1); L ∈ Uw, J = k), k ∈ V1, w = 1,+0,+1,

ϕ
(w)
k (θ2) = E(eθ2L(2); L ∈ Uw, J = k), k ∈ V2, w = 2, 0+, 1+,

where Z ≡ (L, J ) is a random vector subject to π . We denote the vectors whose
kth entry is ϕ

(w)
k (θ) and ϕ

(w)
k (θ�), respectively, by ϕ(w)(θ) and ϕ(w)(θ�). Similarly,

π(i, j) denotes the vectors for the stationary probabilities π(i, j, k).

Lemma 6.1 If ϕ(θ) is finite, then

ϕ(++)(θ)(I − A∗∗(θ))

+ eθ2ϕ(+1)(θ1)
(
I − C (1)∗∗ (θ)

) + eθ1ϕ(1+)(θ2)
(
I − C (2)∗∗ (θ)

) + ψ (0)(θ) = 0, (6.8)

where

ψ (0)(θ) = eθ1+θ2π(1, 1)(I − A(0)
++(θ))

− eθ1+θ2
(
π(1, 0)A(1)

+1(θ1) + eθ2π(0, 1)A(2)
1+(θ2) + π(0)A(0)

11

)

− eθ2ψ (1)(θ1)(I − A(1)
∗0 (θ1))

−1A(1)
∗1 (θ1)

− eθ1ψ (2)(θ2)(I − A(2)
0∗ (θ2))

−1A(2)
1∗ (θ2),

in which ψ (1)(θ1) and ψ (2)(θ2) are defined as

ψ (1)(θ1) = eθ1
(
π(1, 1)A(1)

+(−1)(θ1) + π(1, 0)(A(1)
+0(θ1) − I )

+ π(0, 1)A(0)
1(−1) + π(0)A(0)

10

)
,

ψ (2)(θ2) = eθ2
(
π(1, 1)A(2)

(−1)+(θ2) + π(0, 1)(A(2)
0+(θ2) − I )

+ π(1, 0)A(0)
(−1)1 + π(0)A(0)

01

)
.

Remark 6.1 (6.8) reduces the stationary equations to those for the 2d-QBD whose
random walk component is on U+. Obviously, all the complexities are pushed into
C (i)∗∗ (θ) and ψ (0)(θ).

Proof Assume that Z0 has the stationary distribution π , then Zn+1 ≡ (Ln+1, Jn+1)
and Zn ≡ (Ln, Jn) have the same distribution π . Hence, recalling thatH = {0, 1,−1}
and taking the moment-generating functions of (3.3) for Jn = k ∈ V+, we have
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ϕ
(+)
k (θ) =

∑

k′∈V+

( ∑

i, j∈H
eiθ1+ jθ2ϕ

(++)

k′ (θ)[Ai j ]k′k +
∑

i, j∈H+
eiθ1+ jθ2eθ1+θ2π(1, 1, k′)[Ai j ]k′k

+
∑

i∈H, j∈H+
eiθ1+ jθ2eθ2ϕ

(+1)
k′ (eθ1 )[Ai j ]k′k +

∑

i∈H+, j∈H
eiθ1+ jθ2eθ1ϕ

(1+)

k′ (eθ2 )[Ai j ]k′k
)

+
∑

k′∈V1

( ∑

i∈H
eiθ1+θ2ϕ

(+0)
k′ (θ1)[A(1)

i1 ]k′k +
∑

i∈H+
eiθ1+θ2eθ1π(1, 0, k′)[A(1)

i1 ]k′k
)

+
∑

k′∈V2

( ∑

j∈H
eθ1+ jθ2ϕ

(0+)

k′ (eθ2 )[A(2)
1 j ]k′k +

∑

j∈H+
eθ1+ jθ2eθ2π(0, 1, k′)[A(2)

1 j ]k′k
)

+
∑

k′∈V0

eθ1+θ2π(0, 0, k′)[A(0)
11 ]k′k , (6.9)

as long as ϕ
(+)
k (θ) and ϕ

(w)
k (θ) for w = 1, 2 exist and are finite for all k. Similarly, it

follows from (3.3) that, for k ∈ V1,

ϕ
(+0)
k (θ1) + eθ1π(1, 0, k)

=
∑

k′∈V+

(∑

i∈H
eiθ1−θ2eθ2ϕ

(+1)
k′ (θ1)[A(1)

∗(i(−1))]k′k

+
∑

i∈H+

eiθ1−θ2eθ1+θ2π(1, 1, k′)[A(1)
∗(i(−1))]k′k

)

+
∑

k′∈V1

( ∑

i∈H
eiθ1ϕ(+0)

k′ (θ1)[A(1)
i0 ]k′k +

∑

i∈H+

eθi eθ1π(1, 0, k′)[A(1)
i0 ]k′k

)

+
∑

k′∈V0

(
eθ1−θ2eθ2π(0, 1, k′)[A(0)

1(−1)]k′k + eθ1π(0, 0, k′)[A(0)
10 ]k′k

)
, (6.10)

and ϕ
(0+)
k (θ2) for k ∈ V2 is symmetric to ϕ

(+0)
k (θ1) for k ∈ V1.

Recalling the matrix notation, A+ j (θ1), Ai+(θ2), A
(1)
+ j (θ1), A

(2)
i+ (θ2) and the vector

notation ϕ(w)(θ) for w = +,++ and ϕ(w′)(θ�) for w′ = 1,+0,+1 and � = 1, and
for w′ = 2, 0+, 1+ and � = 2, the stationary Eq. (6.9) can be written as

ϕ(+)(θ) = ϕ(++)(θ)A∗∗(θ) + eθ1+θ2π(1, 1)A++(θ)

+ eθ2(ϕ(+1)(θ1)A∗+(θ) + ϕ(+0)(θ1)A
(1)
∗1 (θ1))

+ eθ1(ϕ(1+)(θ2)A+∗(θ) + ϕ(0+)(θ2)A
(2)
1∗ (θ2))

+ eθ1π(1, 0)A(1)
+1(θ1) + eθ2π(0, 1)A(2)

1+(θ2) + eθ1+θ2π(0)A(0)
11 ,(6.11)

as long as ϕ(θ) is finite, where ϕ(θ) is the V+-dimensional vector whose kth entry is
ϕk(θ). Similarly, (6.10) yields

ϕ(+0)(θ1) + eθ1π(1, 0)

= ϕ(+1)(θ1)A
(1)
∗(−1)(θ1) + ϕ(+0)(θ1)A

(1)
∗0 (θ1) + eθ1π(1, 1)A(1)

+(−1)(θ1)
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+eθ1
(
π(1, 0)A(1)

+0(θ1) + π(0, 1)A(0)
1(−1) + π(0)A(0)

10

)
, (6.12)

and by symmetry,

ϕ(0+)(θ2) + eθ2π(0, 1)

= ϕ(1+)(θ2)A
(2)
(−1)∗(θ2) + ϕ(0+)(θ)A(2)

0∗ (θ2) + eθ2π(1, 1)A(2)
(−1)+(θ2)

+ eθ2
(
π(0, 1)A(2)

0+(θ2) + π(1, 0)A(0)
(−1)1 + π(0)A(0)

01

)
, (6.13)

and

π(0) = π(0)A(0)
00 + π(0, 1)A(0)

0(−1) + π(1, 0)A(0)
(−1)0 + π(1, 1)A(0)

(−1)(−1). (6.14)

Obviously, the Eqs. (6.11)–(6.14) constitute the full set of the stationary equations,
and therefore they uniquely determine the stationary distribution π because of the
irreducibility.

Assume that I − A(1)
∗0 (θ1) and I − A(2)

0∗ (θ2) are invertible and recall the definitions
of ψ (1)(θ1) and ψ (2)(θ2). Then we can get, from (6.12) and (6.13),

ϕ(+0)(θ1) = (
ϕ(+1)(θ1)A

(1)
∗(−1)(θ1) + ψ (1)(θ1)

)
(I − A(1)

∗0 (θ1))
−1, (6.15)

ϕ(0+)(θ2) = (
ϕ(1+)(θ2)A

(2)
(−1)∗(θ2) + ψ (2)(θ2)

)
(I − A(2)

0∗ (θ2))
−1. (6.16)

Substituting these ϕ(+0)(θ1) and ϕ(0+)(θ2) into (6.11) and using the vector version
of (6.9):

ϕ(+)(θ) = ϕ(++)(θ) + eθ2ϕ(+1)(θ1) + eθ1ϕ(1+)(θ2) + eθ1+θ2π(1, 1),

we have

ϕ(++)(θ)(I − A∗∗(θ))

+ eθ2ϕ(+1)(θ1)
(
I − (A∗+(θ) + A(1)

∗(−1)(θ1)(I − A(1)
∗0 (θ1))

−1A(1)
∗1 (θ1))

)

+ eθ1ϕ(1+)(θ2)
(
I − (A+∗(θ) + A(1)

(−1)∗(θ2)(I − A(2)
0∗ (θ2))

−1A(2)
1∗ (θ2))

)

+ ψ (0)(θ) = 0.

Recalling the definitions of C̃ (i)(θ), this yields (6.8). �

Proof of Lemma 3.2

In Lemma 6.1, we have assumed that the moment-generating functions for the sta-
tionary distribution are finite. We cannot use this finiteness to prove Lemma 3.2.
Nevertheless, Lemma 6.1 is useful in the proof of Lemma 3.2. This is because we will
use its inequality version under some extra conditions in a similar way to Lemma 4 of
Kobayashi and Miyazawa [19]. A key idea is the following lemma.
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Lemma 6.2 Assume that θ ∈ R
2 satisfies one of the following conditions:

(a) θ ∈ �
(2d)
+ and |ϕw(θ)| < ∞ for w = +1, 1+,

(b) θ ∈ �
(2d)
1+ and |ϕ(1+)(θ2)| < ∞,

(c) θ ∈ �
(2d)
2+ and |ϕ(+1)(θ1)| < ∞,

where |a| = ∑
i |ai | for the vector a whose i th entry is ai . Then,

ϕ(++)(θ)(I − A∗∗(θ))

+ eθ2ϕ(+1)(θ1)
(
I − C (1)∗∗ (θ)

) + eθ1ϕ(1+)(θ2)
(
I − C (2)∗∗ (θ)

) + ψ (0)(θ) ≤ 0, (6.17)

and therefore θ ∈ D.

This lemma is slightly different from Lemma 4 of [19] because we here have
background states. However, we can apply exactly the same arguments to derive (6.17)
from the one-step transition relation (3.3) for each fixed background state under the
stationary distribution. Hence, A∗∗(θ)h < h (C (i)∗∗ (θ)h < h) and

ϕ(++)(θ)(I − A∗∗(θ))h < ∞, (ϕ(w(i))(θ)(I − C (i)∗∗ (θ))h < ∞),

wherew(1) = +1 andw(2) = 1+, which implies that |ϕ(++)(θ)| < ∞ (|ϕ(i+)(θ)| <

∞, respectively). This completes the proof of Lemma 6.2.
Similar to the proof of Theorem 1 of [19] (see Sect. 4.3 there), it is not hard to see

that Lemma 6.2 yields Lemma 3.2.

The proof of Theorem 3.1

For each u, x > 0, we have, for uc ∈ �
(2d)
τ ,

euxP(〈L, c〉 > x) ≤ E(e〈L,uc〉1(〈L, c〉 > x)) ≤ ϕ(uc).

Taking the logarithm of both sides of this inequality, we get

u + 1

x
logP(〈L, c〉 > x) ≤ 1

x
logϕ(uc).

This yields

lim sup
x→∞

1

x
logP(〈L, c〉 > x) ≤ −u

as long as uc ∈ �
(2d)
τ , and therefore

lim sup
x→∞

1

x
logP(〈L, c〉 > x, J = k)

≤ lim sup
x→∞

1

x
logP(〈L, c〉 > x) ≤ − sup{u ≥ 0; uc ∈ �(2d)

τ }.
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Appendix 5: The proof of Lemma 3.3

Similar to Lemma 4.2 of [19], we can apply the permutation arguments in Lemma
5.6 of [5] twice. For this, we use a Markov-modulated two-dimensional random walk
{(Yn, Jn)}, whose increments Xn+1 ≡ Yn+1 − Yn have the following conditional
distribution:

P(Xn+1 = u, Jn+1 = j |Jn = i) = [Au]i j , u ∈ H
2, i, j ∈ V+.

We here recall that H = {0,±1}. For each n ≥ 1, we permute the Markov-
modulated random walk {(Y �, J�), � = 0, 1, . . . , n} starting with Y0 = 0, and define
{(Y (m)

� , J (m)
� ); � = 0, 1, . . . , n} for m = 1, 2, . . . , n as

Y (m)
0 = 0,Y (m)

1 =Xm+1,Y
(m)
2 =Xm+1+Xm+2, . . . ,Y

(m)
n−m = Xm+1+· · · + Xn,

Y (m)
n−m+1 = Xm+1 + · · · + Xn + X1,

. . .

Y (m)
n = Xm+1 + · · · + Xn + X1 + X2 + · · · + Xm,

J (m)
� =

{
Jm+�, � = 0, 1, . . . , n − m,

J�−(n−m), � = n − m + 1, . . . , n.

Obviously, {(Y (m)
� , J (m)

� ); � = 0, 1, . . . , n} and J (m)
0 = Jm = J (m)

n for m =
1, 2, . . . , n have the same joint distribution for all m under the probability measure in
which {Jn} is stationary. We denote this probability measure by Pν+ , where ν+ is the
stationary distribution of the background process {Jn}. We next consider the following
event for n ≥ 1, 1 ≤ m ≤ n, x > 0, j ∈ V+ and B ∈ B(R2+).

E+(n,m, B) =
{

min
1≤�≤n

Y (m)
�1 > 0, min

1≤�≤n
Y (m)

�2 > 0,Y (m)
n ∈ B, J0 = Jn

}

,

E2(n,m, B) =
{

min
1≤�≤n

Y (m)
�2 > 0,Y (m)

n ∈ B, J0 = Jn

}

.

Then, we have

∪n
m=1 E+(n,m, B) ⊃ E2(n, M, B), for some M ∈ {1, 2, . . . , n},

∪n
m′=1 E2(n,m′, B) ⊃ {Yn ∈ B, J0 = Jn},

where M may be chosen so that Y (m)
�1 for m = 0, 1, . . . , n attains the minimum at

m = M .
Since E+(n,m, B) has the same probability for anym under Pν+ , and similarly for

E2(n,m′, B), we have
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Pν+

(

min
1≤�≤n

Y�1 > 0, min
1≤�≤n

Y�2 > 0,Yn ∈ B, Jn = J0

)

≥ 1

n
Pν+

(

min
1≤�≤n

Y�2 > 0,Yn ∈ B, Jn = J0

)

≥ 1

n2
Pν+ (Yn ∈ B, Jn = J0,Y0 = 0) . (6.18)

We next note theMarkov-modulated version of the well-knownCramér’s theorem (see
Theorem 1 of [33]). For this, define the Fenchel-Legendre transform of log γ (A∗∗)(θ)

as

�∗(x) = sup
θ∈R2

{〈θ , x〉 − log γ (A∗∗)(θ)}.

Then we have, for any open set G in R2,

lim inf
n→∞

1

n
logP(Yn ∈ nG, Jn = j |J0 = i) ≥ −�∗(z), i, j ∈ V+, z ∈ G. (6.19)

Let S++ = U++ × V+, and let σ0 = inf{� ≥ 1; L� ∈ S \ S++}. Since the random
walk {(Y �, J�)} is stochastically identical to {(L�, J�)} as long as they are in S++, we
have, for y ∈ Z

2+ and G such that G + z ⊂ G for each z ∈ Z
2+,

Pν+(Ln ∈ nG, σ0 > n, Jn = J0|L0 = y)

= Pν+(Yn ∈ nG − y, σ0 > n, Jn = J0)

≥ 1

n2
Pν+(Yn ∈ nG, Jn = J0). (6.20)

Recall that ν ≡ {ν(z, j); (z, i) ∈ S} denotes the stationary distribution. For z0 =
(2, 2), let

d = min
i∈V+

ν(z0, i).

Then d > 0 since {(L�, J�)} is irreducible andV+ is a finite set. Denote the normalized
distribution of π restricted to S \ S++ by π0, and denote the probability measure for
{(L�, J�)} with the initial distribution π0 by Pπ0 . Let

G = {θ ∈ R
2; θ > c},

which satisfies the requirement of (6.20). Then, it follows from the occupationmeasure
representation of the stationary distribution and (6.18) with B = G that, for any
m, n ≥ 1, j ∈ V+ and z0 ≡ (2, 2) ∈ S++,

P(L ∈ nG) = 1

Eπ (σ0)

∞∑

�=1

Pπ0(L� ∈ nG, σ0 > �)

≥ 1

Eπ (σ0)
Pπ0(Lm ∈ nG, Jm = J0, σ0 > m, L0 = z0)
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≥ 1

Eπ (σ0)

∑

i∈V+
Pν+(Lm − L0 ∈ nG, Jm = J0,

σ0 > m|L0 = z0, J0 = i)π0(z0, i)

≥ d

Eπ (σ0)

∑

i∈V+
Pν+(Lm − L0 ∈ nG, Jm = J0, σ0>m, J0 = i |L0 = z0)

≥ d

Eπ (σ0)
Pν+(Lm ∈ nG, Jm = J0, σ0 > m|L0 = z0)

= d

Eπ (σ0)
Pν+(Ym ∈ nG, Jm = J0, σ0 > m)

≥ d

m2Eπ (σ0)
Pν+(Ym ∈ nG, Jm = J0)

≥ d

m2E(σ0)
P(Ym ∈ nG, Jm = j |J0 = j)ν+( j),

where we have used the facts that the distribution of {(L�, J�)} is unchanged under
the conditional probability measures Pπ0 and Pν+ given (L0, J0), and similarly {Y �}
is unchanged for Pν0 and P given J0.

Since x ∈ nG is equivalent to x > c, taking logarithms of both sides of the above
inequality and letting m, n → ∞ in such a way that n/m → t for each fixed t > 0,
(6.19) yields

lim inf
n→∞

1

n
logP(L > nc) ≥ lim

n→∞
m

n

1

m
logP

(
Ym > m

n

m
c, Jm = j

∣
∣
∣ J0 = j

)

≥ − 1

t
�∗(tc).

Since t > 0 can be arbitrary, this implies that

lim inf
x→∞

1

x
logP(L > xc) ≥ − inf

t>0

1

t
�(tc) = − sup{〈θ , c〉; θ ∈ �

(2d)
+ },

where the last equality is obtained from Theorem 1 of [4] (see also Theorem 13.5 of
[37]).

It remains to prove that θ /∈ �max implies ϕ(θ) = ∞, but its proof is exactly the
same as that of Lemma 4.2 of [19] except for a minor modification. So, we omit it.

Appendix 6: One-dimensional QBD and lower bounds

In this section we prove Theorem 3.2. For this, we apply theMarkov additive approach
given in Sect. 5.5 of [28]. This approach is also taken by Ozawa [36], which is essen-
tially the same as that of Miyazawa [27]. We first formulate the 2d-QBD process as
a one-dimensional QBD process with infinitely many background states, taking one
of the half coordinate axes of the lattice quarter plane as level. There are two such
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QBD processes. Since they are symmetric, we mainly consider the case that the first
coordinate is taken as level. Our arguments are parallel to those of Ozawa [36], but
answers are more tractable because of Theorem 2.2.

Convergence parameter of the rate matrix

We first consider the convergence parameters of the so called rate matrix R(s) of the
one-dimensional QBD process {(L(s)

n , J (s)
n )} for s = 1, 2. This R(s) is defined as the

minimal nonnegative solution of the matrix quadratic equation

R(s) = (R(s))2Q−1 + R(s)Q0 + Q1.

Since arguments are symmetric for s = 1 and s = 2, we will mainly consider the case
s = 1. As is well known, the stationary distribution of P(1) is given by

π (1)
n = π

(1)
1 (R(1))n−1, n ≥ 1, (6.21)

where π
(1)
n = {π(1)(n, j, k); k ∈ V1 for j = 0, k ∈ V+ for j ≥ 1}. Then, we can see

that the reciprocal of the convergence parameter cp(R(1)) gives a lower bound for the
decay rate of π(1)(n, j, k) for each fixed j, k (for example, see [28] for details).

As shown in [28], this convergence parameter problem can be reduced to finding the
right- (or left-) subinvariant vector of the matrix moment-generating function Q(1)∗ (θ1)

by the Wiener–Hopf factorization for the Markov additive process with transition
matrix P(1).

Recall that

Q(1)∗ (θ1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A(1)
∗0 (θ1) A(1)

∗1 (θ1) 0 0 0 · · ·
A(1)

∗(−1)(θ1) A∗0(θ1) A∗1(θ1) 0 0 · · ·
0 A∗(−1)(θ1) A∗0(θ1) A∗1(θ1) 0 · · ·
0 0 A∗(−1)(θ1) A∗0(θ1) A∗1(θ1) · · ·
...

...
. . .

. . .
. . . · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let

C (1)
∗0 (θ1) = A(1)

∗(−1)(θ1)(I − A(1)
∗0 (θ1))

−1A(1)
∗1 (θ1) + A∗0(θ1), (6.22)

and define the canonical form of Q(1)∗ (θ1) as

Q
(1)
∗ (θ1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C (1)
∗0 (θ1) A∗1(θ1) 0 0 0 · · ·

A∗(−1)(θ1) A∗0(θ1) A∗1(θ1) 0 0 · · ·
0 A∗(−1)(θ1) A∗0(θ1) A∗1(θ1) 0 · · ·
0 0 A∗(−1)(θ1) A∗0(θ1) A∗1(θ1) · · ·
...

...
. . .

. . .
. . . · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

123



46 Queueing Syst (2015) 81:1–48

Similarly, Q
(2)
∗ (θ2) is defined. It is easy to see that Q

(s)
∗ (0) is stochastic for s = 1, 2.

Thus, Q
(s)
∗ (θs) is a nonnegative matrix with QBD block structure, and therefore we

can apply Theorem 2.2. For this, we note the following fact.

Lemma 6.3 For s = 1, 2, �(2d)
s+ is a nonempty and bounded convex subset of R2.

This lemma is proved similarly to Lemma 2.4 using the fact that 0 ∈ �
(2d)
s+ for

s = 1, 2. The following result is immediate from Theorem 2.2.

Lemma 6.4 Under the assumptions of Theorem 3.2, Q(1)∗ (θ1) or, equivalently,

Q
(1)
∗ (θ1), has a superharmonic vector for each θ1 ∈ R if and only if the following two

conditions hold:

(i) cp(A
(1)
∗0 (θ1)) > 1.

(ii) There exists a θ2 ∈ R such that θ ≡ (θ1, θ2) ∈ �
(2d)
1+ or, equivalently, θ ∈ �

(2d)
1e .

By symmetry, a similar characterization holds for Q(2)∗ (θ2).

It follows from this lemma and the Wiener–Hopf factorization that, for s = 1, 2,

log cp(R
(s)) = sup{θs ≥ 0; cp(Q(s)∗ (θs)) ≥ 1} = θ(s,�)

s , (6.23)

as long as cp(A
(s)
∗0 (θ

(s,�)
s )) > 1. We are now ready to accomplish our main task.

The proof of Theorem 3.2

From (6.21), (6.23) and the Cauchy–Hadamard inequality (for example, see Theorem
14.8 of volume I of [25]), we have the following lower bound:

lim inf
n→∞

1

n
logP(Ls > n, L3−s = �, J = k) ≥ − θ(s,�)

s , s = 1, 2. (6.24)

By Lemma 3.3, this lower bound is tight if θ
(s,�)
s = θ

(s,max)
s because θ (s,max) ∈ �

(2d)

+ .

Thus, it remains to consider the case that θ
(s,�)
s < θ

(s,max)
s . In this case, it follows

from Theorem 2.2 and Lemma 2.5 that Q(s)(θ
(s,�)
s ) is 1-positive, which is equivalent

to the fact that eθ
(s,�)
s R(s) is 1-positive by the Wiener–Hopf factorization. We consider

Categories (I) and (II-1), separately, for s = 1. This is sufficient for the proof because
Category (II-2) is symmetric to Category (II-1).

Assume that the 2d-QBD process is in Category (I) and that θ
(1,�)
1 < θ

(1,max)
1 . In

this case τs = θ
(s,�)
s for s = 1, 2. Hence, (6.24) implies (3.13). To prove (3.14), we

apply Theorem 4.1 of [31] (see also Theorem 2.1 of [24] or Proposition 3.1 of [27]).
For this, we consider the left and right nonnegative invariant vectors of Q(1)∗ (θ

(1,�
1 ),

which is a nonnegative matrix with QBD structure and unit convergence parameter.
Since ϕ(τ1 − ε, 0) < ∞ for any ε > 0, we have, similarly to the proof of Theo-

rem 3.1,

lim sup
n→∞

1

n
logP(L1 > n) ≤ − τ1 = θ

(1,�)
1 .
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We now consider the matrix geometric form of the stationary distribution:

π (1)
n u = π

(1)
1 (R(1))n−1u

=
∑

k,i

∑

�, j

π
(1)
1 (k, i)

xki
xki (R

(1))n−1
(ki)(�j)u�j

= e−α(n−1)
∑

k,i

∑

�, j

π
(1)
1 (k, i)

xki
xki (e

αR(1))n−1
(ki)(�j)

1

x�j
x�j u�j

= e−α(n−1)
∑

�, j

x�j u�j

∑

k,i

(G̃(1+,α))n−1
(�j)(ki)

π
(1)
1 (k, i)

xki
.
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