
Queueing Syst (2016) 82:7–28
DOI 10.1007/s11134-015-9444-z

Delay analysis of a queue with re-sequencing buffer
and Markov environment

Rostislav Razumchik1 · Miklós Telek2

Received: 14 November 2014 / Revised: 16 March 2015 / Published online: 20 April 2015
© Springer Science+Business Media New York 2015

Abstract There are simple service disciplines where the system time of a tagged
customer depends only on the customers arriving in the system earlier (for example
first-in-first-out (FIFO)) or later (for example LIFO) than the tagged one. In this
paper we consider a single-server queueing system with two infinite queues in which
the system time of a tagged customer may depend on both the customers arriving
in the system earlier and later than the tagged one. New regular customers arrive
in the system according to Markov arrival process (MAP) flow, occupy one place
in the buffer and receive service in FIFO order. External re-sequencing signals also
arrive at the system according to (different) MAP flow. Each re-sequencing signal
transforms one regular customer into a delayed one by moving it to another queue (re-
sequencing buffer), wherefrom it is served with lower priority than the regular ones.
Service times of customers fromboth queues also haveMAPdistributiondifferent from
those which govern arrivals. Queueing system with memoryless ingredients (arrival,
service, resequencing) has already been a subject of extensive research. In this paper
we investigate how the essential analytical properties of scalar functions, which made
the analysis of thememoryless system feasible, can be extended to the case of aMarkov
environment.

Keywords Delay analysis · Re-sequencing buffer · Matrix analytic methods ·
Kronecker expansion

B Rostislav Razumchik
rrazumchik@gmail.com

Miklós Telek
telek@hit.bme.hu

1 Institute of Informatics Problems, Federal Research Center “Computer Science and Control” of
the Russian Academy of Sciences and Peoples’ Friendship University of Russia, Moscow, Russia

2 MTA-BME Information SystemsResearchGroup andTechnicalUniversity ofBudapest, Budapest,
Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-015-9444-z&domain=pdf

8 Queueing Syst (2016) 82:7–28

Mathematics Subject Classification 68M20 · 60K25

1 Introduction

Since the introduction of the first matrix analytic methods [9] a wide range of Markov
chain-based analysis approaches has been extended to Markov chains with regular
matrix block structures. Currently, popular text books summarize basicmatrix analytic
approaches, for example [3,8,10], which establish the belief that the Markov chain-
based analysis of stochastic models with memoryless components can be extended to
the same models with modulating Markov environment. For example, the analysis of
a queueing systemwith a Poisson arrival process can be extended to the analysis of the
same system with a Markov arrival process (MAP). For simple queuing systems and
straightforward performance measures this extension is more or less standard today.
For important performance measures of complex queuing systems several standard
queueing methodologies are not applicable when the system operates in a Markov
environment [5], and it is still a challenge to find adequatematrix analyticmethodology
to handle these.

In this paper we consider the delay analysis of a rather complex queueing system
operating in a Markov environment with customer re-sequencing. Regular customers
arrive at the system and occupy one place in a buffer of infinite capacity. Re-sequencing
signals arrive at the system and upon arrival each re-sequencing signal moves one
regular customer from the buffer to another queue (re-sequencing buffer) of infinite
capacity and leaves the system. There is one server which serves customers from both
queues. Upon service completion one regular customer from the buffer goes to the
server, or, only if there are no regular customers in the buffer, one customer from the
re-sequencing buffer enters service. No service interruption is allowed. This model
with memoryless components has already been solved in [12]. The basic idea of the
solution method in [12] is rather standard: evaluate the joint stationary distribution of
the number of customers in both queues (whose generating function has a closed form)
and compute the delay distribution of a tagged customer which arrives at the system
in steady state. Due to a geometric dependence of the delay distribution (expressed
in terms of Laplace transform) of an arriving regular customer on the number of
customers in both queues, delay distribution is obtained by appropriate substitution of
Laplace transform functions into the parameters of the generating function describing
the joint stationary distribution.

In the first phase of our research we very much shared the general belief of the
extendibility of the analysis to Markov environments, but it turned out that the com-
monly applied approaches, including the one in [12], are not applicable in case of
a Markov environment due to the presence of non-commuting matrices and matrix
functions. In order to maintain our general belief we looked for an appropriate variant
of the analysis approach which allows evaluation with non-commuting matrices.

One part of the proposed analysis approach is the application of Kronecker algebra
[2,13], which, to some extent, overcomes the limitations imposed by non-commuting
matrices. Since the very beginning, the use of Kronecker algebra is quite common in
matrix analytic methods [8,10]. In this respect the only contribution of the paper is

123

Queueing Syst (2016) 82:7–28 9

a case study which demonstrates that multiple application of Kronecker transforma-
tions allows the analysis of more and more complex expressions with non-commuting
matrices, which otherwise are not computable in closed form [6,7]. The other part
of the proposed analysis approach is the variant of the queue analysis which allows
matrix-based computations. In this respect themajor difference is that ourmatrix-based
analysis cannot be decomposed into stationary analysis of the number of customers
and delay analysis of a tagged customer, but we have to compute both of these “ingre-
dients” at once.

The rest of the paper is structured as follows. Section 2 briefly introduces the
queueing model with re-sequencing and Sect. 3 summarizes the QBD-type analysis
of the Markov chain which describes the joint stationary distribution of the number
of customers in each buffer and states of the Markov environment. The analysis of
the waiting time is presented in Sect. 4 and the most complex part of the analysis is
deferred to Sect. 5. Finally, some results of numerical experiments carried out using
obtained expressions are in Sect. 6.

2 Model description

We consider a queueing system with two buffers: the regular buffer with high-priority
customers and the re-sequencing buffer with low-priority customers. Arriving regular
customers are added to the regular buffer of infinite capacity and wait for service.
External re-sequencing signals also arrive at the system and each signal moves one
customer at the head of the regular buffer (if any) to the re-sequencing buffer of infinite
capacity and itself leaves the system. The service policy of customers in the regular
and re-sequencing buffers is non-preemptive priority with the first-in-first-out (FIFO)
discipline within each buffer, i.e. an arriving customer (also further referred to as
high priority) occupies one place at the end of the regular buffer, and a re-sequenced
customer (also further referred to as low priority) occupies one place at the end of the
re-sequencing buffer. There is one server which serves customers from both buffers
and the service process is the same for both high and low priority customers.

Customers arrive according to aMAPwith generator matrices (A0, A1), the service
process is a MAP with (S0, S1) and re-sequencing signals arrive according to a MAP
with (H0, H1). Let AJ = A0 + A1, SJ = S0 + S1 and HJ = H0 + H1, denote
the phase processes of the associated MAPs (see, for example, [8] for details). The
block structure of theMarkov chain representing the number of high- and low-priority
customers in the system is depicted in Fig. 1. The block represents the set of states
with the same number of high- and low-priority customers and with different phases
of the MAPs. The letters on the figures describe

– arrival of a customer: A = A1 ⊗ I ⊗ I ,
– service of a customer: S = I ⊗ S1 ⊗ I ,
– re-sequencing of a customer: H = I ⊗ I ⊗ H1,
– phase change when re-sequencing is possible: L = A0 ⊕ S0 ⊕ H0,
– phase change when re-sequencing is not possible: L′ = A0 ⊕ S0 ⊕ HJ,
– phase changewhen re-sequencing is not possible and the service process is stopped:
L0 = A0 ⊗ I ⊕ HJ = A0 ⊗ I ⊗ I + I ⊗ I ⊗ HJ,

123

10 Queueing Syst (2016) 82:7–28

Fig. 1 Block structure of the
Markov chain representing the
number of regular (high priority)
and re-sequenced (low priority)
customers

0L L
A

S

S S S

SS

SS

S

A A

A

A

L

L L

L L

HH

HH

L’

L’

L’

A

A

Fig. 2 Block structure of the
censored Markov chain
representing the number of
regular (high priority) and
re-sequenced (low priority)
customers

L
A

S

S S

SS

SS

S

A

AA

A A

L

L L

L LL’

HH

HH
L"

L’

where I denotes the identity matrix of appropriate size. One has to note that the phase
of the service process does not change when the system is empty and is equal to that
phase in which the next service starts. The main goal of the analysis is to evaluate the
stationary waiting time distribution of a regular customer arriving in the system.

3 Joint stationary distribution

Before deriving expressions for the stationary waiting time distribution, one has to
obtain expressions for the joint stationary distribution of the number of customers
in the regular buffer and the re-sequencing buffer, and the states of the regular and
resequencing arrivals and service processes.

3.1 Censored process

To simplify the analysis and obtain a Markov chain with a regular structure we censor
the Markov chain in Fig. 1 for the cases when the server is busy. The structure of the
censored Markov chain is depicted in Fig. 2. The transitions of the upper left block of
the censored chain are obtained as

L′′ = L′ −SL−1
0 A = (A0 ⊕ S0 ⊕ HJ)− (I ⊗ S1 ⊗ I)(A0 ⊗ I ⊕ HJ)

−1(A1 ⊗ I ⊗ I).

123

Queueing Syst (2016) 82:7–28 11

3.2 QBD representation of the censored process

Following, for example, the discussion of Section 13.1 in [8], we can represent the
censored Markov chain as a QBD process where the levels are composed of the set of
stateswhere the number of regular customers is the same (these states form the columns
of blocks in Fig. 2). The generator Q of the censored process can be represented in
hyper-block tridiagonal form, where the hyper-block refers to the set of (infinitely
many) states on the same level.

Q =

⎛
⎜⎜⎜⎜⎜⎝

L′ F 0 0 0 · · ·
B L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

.

Due to the fact that the number of states within each level is infinite, matrices
L′,L,B,F have infinite rows and columns which are associated with the blocks in
Fig. 2.

L
′ =

⎛
⎜⎜⎜⎝

L′′ 0 0 · · ·
S L′ 0 · · ·
0 S L′ · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎠, L =

⎛
⎜⎜⎜⎝

L 0 0 · · ·
0 L 0 · · ·
0 0 L · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎠, F =

⎛
⎜⎜⎜⎝

A 0 0 · · ·
0 A 0 · · ·
0 0 A · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎠,

B =

⎛
⎜⎜⎜⎝

S H 0 0 · · ·
0 S H 0 · · ·
0 0 S H · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎞
⎟⎟⎟⎠ .

3.3 Condition for stability

The number of customers increases in the system due to arrivals, whose average rate
is λ, and decreases due to service, whose average rate is μ. Since the considered
system is work conserving and the re-sequencing signal does not change the number
of customer in the system, the condition for stability is μ > λ. Here λ is computed
from (A0, A1) as λ = πAA11, where πA is the solution of πAAJ = 0, πA1 = 1 and 1
is the column vector of ones of the appropriate size. The value of μ can be computed
similarly from (S0, S1). Throughout the paper it is assumed that the queue is stable.

3.4 QBD analysis of the process

In the censored Markov chain we denote the stationary probability vector of the set
of states with i regular and j delayed customers by πi j (i, j ≥ 0) and compose the
following row vectors

123

12 Queueing Syst (2016) 82:7–28

pi = (πi,0, πi,1, πi,2, πi,3, . . .), i ≥ 0,

p = (p0, p1, p2, p3, . . .).

Considering the hyper-block structure of Q, the linear infinite system of equations
pQ = 0, p 1 = 1 have the following hyper-block structure

p0L
′ + p1B = 0, (1)

pi−1F + piL + pi+1B = 0, ∀i ≥ 1, (2)
∞∑
k=0

pk1 = 1. (3)

The solution of Eqs. (1–3) has a matrix geometric structure pi = pi−1R, i ≥ 1, where
the matrix R is the minimal non-negative solution of the equation

F + RL + R2B = 0, (4)

where 0 denotes the zero matrix [8]. Due to the level-independent behaviour of the Q
matrix, R has the following upper-diagonal block-Toeplitz form

R =

⎛
⎜⎜⎜⎜⎜⎝

R0 R1 R2 R3 R4 . . .

0 R0 R1 R2 R3 . . .

0 0 R0 R1 R2 . . .

0 0 0 R0 R1 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠
.

Based on the block structure of R, the hyper-block level equation pi = pi−1R can be
written as

πi j =
j∑

k=0

πi−1,kR j−k, i ≥ 1, j ≥ 0. (5)

The explicit computation of the R j matrices is possible, in general, utilizing the
structure ofmatricesL,B,F andR, andwe canwrite equations for the (i, j)th block of
matrix F+RL+R2B. It can be verified by direct calculation that Eq. (4) is equivalent
to the following system of equations:

A + R0L + R2
0S = 0, (6)

R1L + R2
0H +

1∑
i=0

RiR1−iS = 0, (7)

R jL +
j−1∑
i=0

RiR j−i−1H +
j∑

i=0

RiR j−iS = 0, j ≥ 2. (8)

123

Queueing Syst (2016) 82:7–28 13

The elements of the main diagonal of the matrix F + RL + R2B are equal to the left
part of (6), and the elements of the first upper diagonal are equal to the left part of (7).
Finally, the j-th upper diagonals contain elements which are equal to the left part of
(8) for the corresponding value of j .

Let us introduce the matrix generating function

R(z) =
∞∑
i=0

ziRi , |z| < 1.

Multiplying the left-hand and right-hand sides of (6) by z0, (7) by z1, and (8) by z j ,
and summing up over all values of j ≥ 0, we obtain

A + R0L + R2
0S +

∞∑
j=1

z j

⎛
⎝R jL +

j−1∑
i=0

RiR j−i−1H +
j∑

i=0

RiR j−iS
⎞
⎠ = 0.

Therefore R(z) is the minimal non-negative solution of the quadratic matrix equation

A + R(z)L + R
2
(z) (zH + S) = 0. (9)

Throughout the paper we rely on the assumption that efficient numerical methods are
available for the solution of quadratic matrix equations [1,4] and consequently we
consider the matrices defined by quadratic matrix equations to be known. From (5),
for π̂i (z) = ∑∞

j=0 πi j z j , i ≥ 1, we have

π̂i (z) =
∞∑
j=0

πi j z
j =

∞∑
j=0

z j
j∑

k=0

πi−1,kR j−k = π̂i−1(z)R(z). (10)

Similarly to the definition of R, we can define the matrix G of the hyper-block QBD
process, which is the minimal non-negative solution of B + LG + FG2 = 0. The
level independent block structure of the hyper-block QBD process ensures an upper-
diagonal block-Toeplitz form for the matrix G as well.

G =

⎛
⎜⎜⎜⎜⎜⎝

G0 G1 G2 G3 G4 . . .

0 G0 G1 G2 G3 . . .

0 0 G0 G1 G2 . . .

0 0 0 G0 G1 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

.

The equation for the (i, j)th block of the matrix B + LG + FG2 gives

S + LG0 + AG2
0 = 0, (11)

H + LG1 + A
1∑

i=0

GiG1−i = 0, (12)

123

14 Queueing Syst (2016) 82:7–28

LG j + A
j∑

i=0

GiG j−i = 0, j ≥ 2. (13)

Introducing the matrix generating function

G(z) =
∞∑
i=0

ziGi , |z| < 1,

multiplying the j-th equation of (11–13) with z j and summing up over all values of j
leads to

(S + zH) + LG(z) + AG
2
(z) = 0. (14)

3.5 Censored process on level 0

From the hyper-block level description we can obtain the generator of the censored
process on level 0 as L′ + FG, which has the following M/G/1-type block level struc-
ture

L′ + FG =

⎛
⎜⎜⎜⎜⎜⎝

L′′ + AG0 AG1 AG2 AG3 AG4 . . .

S L′ + AG0 AG1 AG2 AG3 . . .

0 S L′ + AG0 AG1 AG2 . . .

0 0 S L′ + AG0 AG1 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

.

The fundamental matrix of this M/G/1-type Markov chain, Ǧ, is the minimal non-
negative solution of the matrix equation

S + L′Ǧ + A
∞∑
i=0

Gi Ǧi+1 = 0, (15)

for which efficient numerical analysis is available [1] as well.

3.6 Obtaining π00

Based on the fundamental matrix of the censored process on level 0 we can compute
the generator matrix of the censored process on level 0 and block 0:

Q00 = L′′ + A
∞∑
i=0

Gi Ǧi = L′ −SL−1
0 A︸ ︷︷ ︸ +A

∞∑
i=0

Gi Ǧi , (16)

and π00 is the properly normalized solution of π00Q00 = 0. We note that the under-
braced term comes from censoring out the block with an idle server. To compute π00
we need to get back to the original non-censored Markov chain in Fig. 1.

123

Queueing Syst (2016) 82:7–28 15

Let πidle be the stationary distribution of the block of states representing an idle
server (the left most block in Fig. 1). The stationary utilization of the system is ρ =
λ/μ, from which πidle1 = 1 − ρ.

We compute the stationary distribution of πidle in two steps. First we consider the
non-censored Markov chain in Fig. 1 and analyse the behaviour of this Markov chain
restricted to the block of states representing an idle server (the left most block in Fig. 1)
and to the block of states representing a busy server and idle queues (the block next
to the left most one in Fig. 1). According to the state transitions between these two
blocks in Fig. 1 and (16), the generator of the process restricted to these two blocks is

Qnq =
(L0 A
S L′ + A∑∞

i=0 Gi Ǧi

)
=

(L0 A
S T0

)
,

where we introduced the notation T0 = L′ + A∑∞
i=0 Gi Ǧi . Further censoring this

process to the idle block we have

Qidle = L0 − AT−1
0 S,

and πidle is obtained as the solution of the linear system of equations

πidleQidle = 0 and πidle1 = 1 − ρ.

Finally, π00 is obtained from

π00 = −πidleAT−1
0 .

3.7 Computing π̂0(z)

The components of the vector p0 = (π0,0, π0,1, π0,2, π0,3, . . .), can be computed from
Ramaswami’s recursive formula (see, for example, [8]). Specifically,

π0,m = −
(m−1∑

i=0

π0,iTm−i

)
T−1
0 , m ≥ 1, (17)

where T0 is defined above and

Tm = A
∞∑

k=m

GkǦk−m, m ≥ 1.

Though Ramaswami’s formula gives a way to compute p0, we are interested in an
expression for its components π0,m,m ≥ 0, in terms of the generating function

π̂0(z) =
∞∑

m=0

π0,mz
m, 0 < z < 1.

123

16 Queueing Syst (2016) 82:7–28

In order to obtain an equation for π̂0(z) one has to write the equation p0(L
′ +FG) = 0

in block form:

π0,0(L′′ + AG0) + π0,1S = 0, (18)

π0,0AG1 + π0,1(L′ + AG0) + π0,2S = 0, (19)
j∑

k=0

π0,kAG j−k + π0, jL′ + π0, j+1S = 0, j ≥ 2. (20)

By multiplying the k-th equation with zk and summing up over all values of k one
obtains

0 = π̂0(z)

(
AG(z) + L′ + 1

z
S

)
+ π0,0

(
L′′ − L′ − 1

z
S

)
(21)

and

π̂0(z) = π0,0

(
L′ − L′′ + 1

z
S

) (
AG(z) + L′ + 1

z
S

)−1

. (22)

We note that the function π̂0(z) is undefined at z = 1, and π̂0(1), whenever used,
should be read as limz→1 π̂0(z).

3.8 Distribution immediately after customer arrival

As MAP arrival do not see time averages (that is, the PASTA property does not hold)
one has to calculate stationary probabilities π̃i j that after a customer arrival there are
i (i ≥ 1) customers in the regular buffer and j (j ≥ 0) in the re-sequencing buffer.
Following the same argument as in [11], we can write

π̃i j = 1

λ
πi−1, jA, i ≥ 1, j ≥ 0, and π̃00 = 1

λ
πidleA.

3.9 Analysis with Kronecker expansion

In the sequel we need to evaluate various infinite summations of matrix expressions
with non-commuting matrices. The analysis of those expressions is based on the
technique whichwe refer to as Kronecker expansion [2,13] and is based on the identity
vec(ABC) = (CT ⊗A)vec(B). In this identity vec denotes the column stacking vector
operator which transforms a matrix of size n × m into a vector of size nm × 1. We
are going to utilize the property of the vec operator that vec(A) = A for a matrix A
of size n × 1. We note that the above identity has several seemingly different forms,
for example vec(AB) = (I T ⊗ A)vec(B) = (BT ⊗ A)vec(I) = (BT ⊗ I)vec(A).

Indeed, depending on the complexity of the obtained matrix expressions, we need
to apply the Kronecker expansion multiple times, which generates larger and lager
matrix expressions. This is a price we need to pay for generalizing the memoryless
models to a Markov-modulated environment.

123

Queueing Syst (2016) 82:7–28 17

4 Stationary waiting time distribution

We analyse the stationary waiting time (W), starting from the instant when a regular
customer arrives at the system up to the instant when it enters service. Its distribution
will be evaluated in terms of the Laplace transform ω(s) = E(e−sW). A regular
customer may arrive at the server from the regular buffer or from the re-sequencing
buffer, and thus the stationary waiting time distribution can be computed as

ω(s) = E(e−sW) = ωH(s) + ωL(s)

= E(e−sW I{served from regular buffer})

+ E
(
e−sW I{served from re-sequencing buffer}

)
,

where I{a} is the indicator of event a.

4.1 Stationary waiting time distribution of customer that receives service from
regular buffer

When a customer is served from the regular buffer the waiting time is

ωH(s) = E(e−sW I{served from regular buffer})

=
∞∑
i=1

∞∑
j=0

π̃i j

(
(s I − LA)−1(S + H)

)i−1
(s I − LA)−1S1

= 1

λ

∞∑
i=1

∞∑
j=0

πi−1, j

︸ ︷︷ ︸
π̂i−1(1)

A((s I − LA)−1(S + H)︸ ︷︷ ︸
U(s)

)i−1 (s I − LA)−1S1︸ ︷︷ ︸
v(s)

= 1

λ

∞∑
i=0

π̂i (1)AU(s)iv(s) = 1

λ
(v(s)T ⊗ 1)

∞∑
i=0

(
U(s)i

T ⊗ π̂i (1)
)

︸ ︷︷ ︸
K(s)

vec(A),

where LA = AJ ⊕ S0 ⊕ H0, vec is the column stacking vector operator and we used
the identity vec(ABC) = (CT ⊗ A)vec(B). For K(s) we have

K(s) =
∞∑
i=0

(
U(s)i

T ⊗ π̂i (1)
)

= (
I ⊗ π̂0(1)

) +
∞∑
i=1

(
U(s)i

T ⊗ π̂i (1)
)

= (
I ⊗ π̂0(1)

) +
∞∑
i=1

(
U(s)i−1T U(s)T ⊗ π̂i−1(1)R(1)

)

= (
I ⊗ π̂0(1)

) + K(s)
(

U(s)T ⊗ R(1)
)

123

18 Queueing Syst (2016) 82:7–28

and

K(s) = (
I ⊗ π̂0(1)

) (
I − U(s)T ⊗ R(1)

)−1
. (23)

In this final expression for K(s) the values of R(1) and π̂0(1) are obtained from
(9) and (22), respectively. Note that without the Kronecker expansion the expression
for ωH(s) could not be obtained in closed form because of non-commutativity of the
matricesA andU(s). In the scalar case these matrices are reduced to scalars andωH(s)
is computed at once in terms of the generating function. In the Markov environment
considered one had to search a representation in the form K(s) = K1(s)+K(s)K2(s).
Here K1(s) is the 0-th element of the infinite sum. The second term K(s)K2(s) is, on
one hand, the sum from 1 to ∞ and, on the other hand, it is the product of the original
infinite sum from 0 to ∞ with some matrix K2(s).

4.2 Stationary waiting time distribution of the customer that receives service
from re-sequencing buffer

For j ≤ i , let F(t, i, j, k) be the matrix (according to the initial and final phases of the
MAPs (A0, A1), (S0, S1) and (H0, H1)) of the probabilities that k customers arrive,
i− j customers are served and j are moved to the re-sequencing buffer in time t , when
the initial number of customers in the regular buffer is larger than i . For the Laplace
transform F̃(s, i, j, k) = ∫

t e
−stF(t, i, j, k)dt we have

F̃(s, 0, 0, 0) = (s I − L)−1 = L(s), (24)

and otherwise

F̃(s, i, j, k) = I{i> j}L(s)SF̃(s, i − 1, j, k) (25)

+ I{ j>0}L(s)HF̃(s, i − 1, j − 1, k)

+ I{k>0}L(s)AF̃(s, i, j, k − 1),

where L(s) is defined in (24). The case that the tagged customer moves to the re-
sequencing buffer is described by F̃(s, i, j, k)H.

After getting to the re-sequencing buffer, the customer needs to wait for the service
of the high-priority customers (in the regular buffer) and the low-priority customers
which were in the re-sequencing buffer. The Markov chain representing the waiting
time in the re-sequencing buffer is depicted in Fig. 3.

The matrix Laplace transform of the time to reduce the number of high-priority
customers by one, G̃(s), is the solution of

sG̃(s) = (S + H) + LG̃(s) + AG̃(s)2,

123

Queueing Syst (2016) 82:7–28 19

Fig. 3 Block structure of the
Markov chain representing the
waiting time in the
re-sequencing buffer S

S

L L

L LL’

S+H S+H

S+H S+H
AA

A A
L’

and the Laplace transform of the time to reduce the number of low-priority customers
(in the re-sequencing buffer) by one is the solution of

sĜ(s) = S + L′Ĝ(s) + AG̃(s)Ĝ(s).

Hence, if the number of customers in the regular buffer is j ≥ 0 and in the re-
sequencing buffer is k ≥ 0 at the arrival of the tagged customer in the re-sequencing
buffer, then the subsequent waiting time is G̃(s) j Ĝ(s)k+1.

Based on the previously computed matrix Laplace transforms, the waiting time of
the customer which enters service from the re-sequencing buffer can be computed as

ωL(s) = E
(
e−sW I{served from re-sequencing buffer}

)

=
∞∑
i=1

∞∑
j=0

π̃i j

i−1∑
�=0

∞∑
k=0

F̃(s, i − 1, �, k)HG̃(s)kĜ(s) j+�+11

= 1

λ

∞∑
i=0

∞∑
j=0

πi, jA
i∑

�=0

∞∑
k=0

F̃(s, i, �, k)HG̃(s)kĜ(s) j+�+11. (26)

The main part of the analysis of ωL(s) is deferred to the next section. But in the
course of the subsequent derivations we will make use of several quantities which are
better introduced if one firstly considers terms of ωL(s)with i = 0. Thus we represent
ωL(s) as

ωL(s) = ωi>0
L (s) + ωi=0

L (s)

= 1

λ

∞∑
i=1

∞∑
j=0

πi, jA
i∑

�=0

∞∑
k=0

F̃(s, i, �, k)HG̃(s)kĜ(s) j+�+11

+ 1

λ

∞∑
j=0

π0, jA
∞∑
k=0

F̃(s, 0, 0, k)︸ ︷︷ ︸
(L(s)A)kL(s)

HG̃(s)kĜ(s) j+11 (27)

and in the next subsection derive expression for ωi=0
L (s).

123

20 Queueing Syst (2016) 82:7–28

4.3 Computation of ωi=0
L (s)

Applying the identity vec(ABC) = (CT ⊗ A)vec(B), to ωi=0
L (s) one obtains

ωi=0
L (s) = 1

λ

∞∑
j=0

∞∑
k=0

π0, jA(L(s)A)kL(s)HG̃(s)kĜ(s) j+11

= 1

λ

∞∑
j=0

∞∑
k=0

(
1T Ĝ(s) j+1T G̃(s)k

T ⊗ π0, jA(L(s)A)k
)

vec(L(s)H)

= 1

λ

(
1T Ĝ(s)T ⊗ 1

)

×
∞∑
j=0

(
Ĝ(s) j

T ⊗ π0, j

)

︸ ︷︷ ︸
�(s)

(I ⊗ A)

∞∑
k=0

(
G̃(s)k

T ⊗ (L(s)A)k
)

︸ ︷︷ ︸
(I−G̃(s)T ⊗L(s)A)−1

vec(L(s)H)

= 1

λ

(
1T Ĝ(s)T ⊗ 1

)
�(s) (I ⊗ A)

(
I − G̃(s)T ⊗ L(s)A

)−1
vec(L(s)H).

The only unknown in this expression is�(s). In order to compute it we revisit (18–20).

Kronecker multiply the j-th equation with Ĝ(s) j+1T from the left and sum up over
all values of j . This gives

0 =
(

Ĝ(s)T ⊗ π0,0(L′′ − L′)
)

+
∞∑
j=0

(
Ĝ(s) j

T ⊗ π0, j

)

︸ ︷︷ ︸
�(s)

(
Ĝ(s)T ⊗ L′)

+
∞∑
j=0

(
Ĝ(s) j+1T ⊗ π0, j+1

)

︸ ︷︷ ︸
�(s)−(I⊗π0,0)

(I ⊗ S) +
∞∑
j=0

⎛
⎝Ĝ(s) j+1T ⊗

j∑
k=0

π0,kAG j−k

⎞
⎠ .

The last term can be rewritten as

∞∑
j=0

⎛
⎝Ĝ(s) j+1T ⊗

j∑
k=0

π0,kAG j−k

⎞
⎠

=
∞∑
k=0

(
Ĝ(s)k

T ⊗ π0,k

)

︸ ︷︷ ︸
�(s)

(
Ĝ(s)

T ⊗ A
) ∞∑

j=k

(
Ĝ(s) j−kT ⊗ G j−k

)

︸ ︷︷ ︸
�(s)=∑∞

j=0

(
Ĝ(s) j

T ⊗G j

)

.

123

Queueing Syst (2016) 82:7–28 21

Putting this altogether, one obtains the equation for �(s) in the form

0 =
(

Ĝ(s)T ⊗ π0,0(L′′ − L′)
)

− (
I ⊗ π0,0S

)

+ �(s)
[(

Ĝ(s)T ⊗ L′) + (I ⊗ S) +
(

Ĝ(s)
T ⊗ A

)
�(s)

]
, (28)

where the only unknown is�(s). The computation of�(s) follows the same pattern as

that of �(s). Revisit (11–13) and Kronecker multiply the j-th equation with Ĝ(s) j
T

from the left and sum up over all values of j . This leads to the equation

0 = (I ⊗ S) +
(

Ĝ(s)T ⊗ H
)

+ (I ⊗ L)

∞∑
j=0

(
Ĝ(s) j

T ⊗ G j

)

+ (I ⊗ A)

∞∑
j=0

⎛
⎝Ĝ(s) j

T ⊗
j∑

i=0

GiG j−i

⎞
⎠

= (I ⊗ S) +
(

Ĝ(s)T ⊗ H
)

+ (I ⊗ L) �(s) + (I ⊗ A) �(s)2,

which is a quadratic matrix equation for �(s).

5 Computation of ωL(s)

In the following we split the expression (26) for ωL(s) into the following two terms:

ωL(s) = ωk=0
L (s) + ωk>0

L (s),

where ωk=0
L (s) includes only terms of (26) with k = 0 and ωk>0

L (s) all other terms,
and further obtain expressions for each of them individually.

5.1 Analysis of ωk=0
L (s)

In order to compute ωk=0
L (s) we perform Kronecker expansion, applying the relation

vec(ABC) = (CT ⊗ A)vec(B) two times. We have

ωk=0
L (s) = 1

λ

∞∑
i=0

∞∑
j=0

πi, jA
i∑

�=0

F̃(s, i, �, 0)HĜ(s)�

︸ ︷︷ ︸
F̂k=0(s,i)

Ĝ(s) j+11

= 1

λ

∞∑
i=0

∞∑
j=0

πi, jAF̂k=0(s, i)Ĝ(s) j+11

= 1

λ

∞∑
i=0

∞∑
j=0

(
1T Ĝ(s) j+1T ⊗ πi, jA

)
vec(F̂k=0(s, i))

123

22 Queueing Syst (2016) 82:7–28

= 1

λ

(
1T Ĝ(s)

T ⊗ 1

) ∞∑
i=0

∞∑
j=0

(
Ĝ(s) j

T ⊗ πi, j

)(
I ⊗ A

)
vec(F̂k=0(s, i))

= 1

λ

(
1T Ĝ(s)

T ⊗ 1

) ∞∑
i=0

∞∑
j=0

[
vec(F̂k=0(s, i))

T ⊗
(

Ĝ(s) j
T ⊗ πi, j

)]

︸ ︷︷ ︸
M(s)

vec

(
I ⊗ A

)
.

Now we focus on the analysis of M(s). Just as in the case of K(s) in Sect. 4.1,
we will show that the unknown matrix M(s) can be expressed in the form M(s) =
M1(s) + M(s)M2(s). Extracting the term with i = 0 from the sum one can write

M(s) =
[
vec(F̂k=0(s, 0)︸ ︷︷ ︸

L(s)H
)T ⊗

∞∑
j=0

(
Ĝ(s) j

T ⊗ π0, j

)

︸ ︷︷ ︸
�(s)

]

+
∞∑
i=1

[
vec(F̂k=0(s, i))

T ⊗
∞∑
j=0

(
Ĝ(s) j

T ⊗ πi, j

)]
. (29)

Here the only two unknown quantities are inside the sum over i . Firstly we obtain an
expression for vec(F̂k=0(s, i))T . Revisiting the definition of F̂k=0(s, i) and applying
(25) when i > 0, we obtain

F̂k=0(s, i) =
i∑

�=0

F̃(s, i, �, 0)HĜ(s)�

=
i−1∑
�=1

F̃(s, i, �, 0)HĜ(s)� + F̃(s, i, 0, 0)H + F̃(s, i, i, 0)HĜ(s)i

=
i−1∑
�=1

L(s)SF̃(s, i−1, �, 0)HĜ(s)�

+
i−1∑
�=1

L(s)HF̃(s, i−1, � − 1, 0)HĜ(s)�

+L(s)SF̃(s, i−1, 0, 0)H + L(s)HF̃(s, i−1, i−1, 0)HĜ(s)i

= L(s)S
i−1∑
�=0

F̃(s, i−1, �, 0)HĜ(s)�

+L(s)H
i−1∑
�=0

F̃(s, i−1, �, 0)HĜ(s)�Ĝ(s),

or, equivalently, in terms of F̂k=0(s, i):

F̂k=0(s, i) = L(s)SF̂k=0(s, i − 1) + L(s)HF̂k=0(s, i − 1)Ĝ(s), i ≥ 1. (30)

123

Queueing Syst (2016) 82:7–28 23

By applying the vec operator to (30), one finds the following expression for
vec(F̂k=0(s, i))T , i ≥ 1:

vec(F̂k=0(s, i))
T =vec(F̂k=0(s, i − 1))T

[(
I ⊗ L(s)S

)
+

(
Ĝ(s)T ⊗ L(s)H

)]T

.

(31)

Now we obtain an expression for the second unknown quantity in (29) which is in the
sum over i on the right-hand side of the first Kronecker product. With respect to (5) it
can be rewritten in the form

∞∑
j=0

(
Ĝ(s) j

T ⊗ πi, j

)
=

∞∑
j=0

j∑
m=0

(
Ĝ(s) j

T ⊗ πi−1,mR j−m

)
(32)

=
∞∑
j=0

(
Ĝ(s) j

T ⊗ πi−1, j

) ∞∑
n=0

(
Ĝ(s)n

T ⊗ Rn

)

︸ ︷︷ ︸
�(s)

=
∞∑
j=0

(
Ĝ(s) j

T ⊗ πi−1, j

)
�(s),

where we redefined the running indexes in the second step. Substitution of (31) and
(32) into (29) yields the sought-for expression for M(s):

M(s) =
[
vec(L(s)H)T ⊗ �(s)

]

+
∞∑
i=1

[
vec(F̂k=0(s, i − 1))T ⊗

∞∑
j=0

(
Ĝ(s) j

T ⊗ πi−1, j

)]

×
{[(

I ⊗ L(s)S
)

+
(

Ĝ(s) ⊗ L(s)H
)]T

⊗ �(s)

}

=
[
vec(L(s)H)T ⊗ �(s)

]

+ M(s)

{[(
I ⊗ L(s)S

)
+

(
Ĝ(s)T ⊗ L(s)H

)]T

⊗ �(s)

}
.

The expression for �(s) can be obtained from (6) to (8) completely in the same way
as is it done for �(s), and thus is omitted.

5.2 Analysis of ωk>0
L (s)

In this subsection we tackle the most complex case with the highest number of infinite
summations and non-commuting matrices. For ωk>0

L (s) one has to apply Kronecker
expansion multiple times. Firstly we recall that the definition of ωk>0

L (s) is

123

24 Queueing Syst (2016) 82:7–28

ωk>0
L (s) = 1

λ

∞∑
i=0

∞∑
j=0

πi, jA
i∑

�=0

∞∑
k=1

F̃(s, i, �, k)HG̃(s)kĜ(s)�

︸ ︷︷ ︸
F(s,i)

Ĝ(s) j+11

and now consider term F(s, i). Applying the vec operator to F(s, i) according to the
following Kronecker expansion

vec(ABCD) = (DT ⊗ A)vec(BC) = (vec(BC)T ⊗ (DT ⊗ A))vec(I)

= (vec(I)T ⊗ I ⊗ I)(C ⊗ BT ⊗ DT ⊗ A)vec(I),

one gets

vec(F(s, i))

= (vec(I)T ⊗ I ⊗ I)
i∑

�=0

∞∑
k=1

(
G̃(s)k ⊗ HT ⊗ Ĝ(s)�

T ⊗ F̃(s, i, �, k)

)

︸ ︷︷ ︸
F⊗(s,i)

vec(I)

= (vec(I)T ⊗ I ⊗ I)F⊗(s, i)vec(I).

Considering the expression for F(s, i) and using (25), when i > 0 and k > 0, we get

F(s, i) =
i∑

�=0

∞∑
k=1

F̃(s, i, �, k)HG̃(s)kĜ(s)�

=
i−1∑
�=0

∞∑
k=1

L(s)SF̃(s, i−1, �, k)HG̃(s)kĜ(s)�

+
i−1∑
�=0

∞∑
k=1

L(s)HF̃(s, i−1, �, k)HG̃(s)kĜ(s)�+1

+
i∑

�=0

∞∑
k=0

L(s)AF̃(s, i, �, k)HG̃(s)k+1Ĝ(s)�. (33)

Having such an expression for F(s, i) we can now write out a relation for the term
F⊗(s, i) in the form

F⊗(s, i) =
[(

I ⊗ I ⊗ I ⊗ L(s)S
)

+
(
I ⊗ I ⊗ Ĝ(s)

T ⊗ L(s)H
)]

︸ ︷︷ ︸
L(s)

F⊗(s, i−1)

+
(

G̃(s) ⊗ I ⊗ I ⊗ L(s)A
)

︸ ︷︷ ︸
K(s)

(
F⊗(s, i) + F̂⊗

k=0(s, i)

)

= [I − K(s)]−1[L(s)F⊗(s, i−1) + K(s)F̂⊗
k=0(s, i)], (34)

123

Queueing Syst (2016) 82:7–28 25

where we introduced the notation

F̂⊗
k=0(s, i) =

i∑
�=0

(
I ⊗ HT ⊗ Ĝ(s)�

T ⊗ F̃(s, i, �, 0)

)
, i ≥ 0.

From (25) it follows that

F⊗(s, 0) =
∞∑
k=1

(
G̃(s)k ⊗ HT ⊗ I ⊗ (L(s)A)kL(s)

)

=
[
I −

(
G̃(s) ⊗ I ⊗ I ⊗ L(s)A

)]−1(
G̃(s) ⊗ HT ⊗ I ⊗ L(s)AL(s)

)

and F̂⊗
k=0(s, 0) = I ⊗ HT ⊗ I ⊗ L(s). For i ≥ 1, from (30) we have

F̂⊗
k=0(s, i) = L(s) F⊗

k=0(s, i − 1), i ≥ 1.

Nowwe go back toωk>0
L (s) and apply the vec operator multiple times in the following

way:

ωk>0
L (s) = 1

λ

∞∑
i=0

∞∑
j=0

πi, jAF(s, i)Ĝ(s) j+11

= 1

λ

∞∑
i=0

∞∑
j=0

(
1T Ĝ(s) j+1T ⊗ πi, jA

)
vec

(
F(s, i)

)

= 1

λ

(
1T Ĝ(s)

T ⊗ 1

) ∞∑
i=0

∞∑
j=0

(
Ĝ(s) j

T ⊗ πi, j

)(
I ⊗ A

)
vec

(
F(s, i)

)

= 1

λ

(
1T Ĝ(s)

T ⊗ 1

) ∞∑
i=0

∞∑
j=0

[
vec

(
F(s, i)

)T

⊗
(

Ĝ(s) j
T ⊗ πi, j

)]
vec

(
I ⊗ A

)

= 1

λ

(
1T Ĝ(s)

T ⊗ 1

) ∞∑
i=0

∞∑
j=0

[
vec(I)TF⊗(s, i)T (vec(I) ⊗ I ⊗ I)

⊗
(

Ĝ(s) j
T ⊗ πi, j

)]
vec

(
I ⊗ A

)

= 1

λ

(
1T Ĝ(s)

T ⊗ 1

)[
vec(I)T ⊗ I

] ∞∑
i=0

∞∑
j=0

[
F⊗(s, i)T ⊗

(
Ĝ(s) j

T ⊗ πi, j

)]

︸ ︷︷ ︸
N(s)

×
[
(vec(I) ⊗ I ⊗ I) ⊗ I

]
vec

(
I ⊗ A

)
.

123

26 Queueing Syst (2016) 82:7–28

The only unknown quantity in the expression for ωk>0
L (s) is N(s). Its form can be

found from (32) and (34). We have

N(s) =
[
F⊗(s, 0)T ⊗

∞∑
j=0

(
Ĝ(s) j

T ⊗ π0, j

)

︸ ︷︷ ︸
�(s)

]

+
∞∑
i=1

∞∑
j=0

[
F⊗(s, i)T ⊗

(
Ĝ(s) j

T ⊗ πi, j

)]

=
[
F⊗(s, 0)T ⊗ �(s)

]

+
∞∑
i=1

∞∑
j=0

[
F̂⊗
k=0(s, i)

T ⊗
(

Ĝ(s) j
T ⊗ πi, j

)]

︸ ︷︷ ︸
Z(s)

(
K(s)T [I − K(s)]−1T ⊗ I

)

+
∞∑
i=1

∞∑
j=0

[
F⊗(s, i−1)T L(s)T [I − K(s)]−1T ⊗

(
Ĝ(s) j

T ⊗ πi−1, j

)
�(s)

]

︸ ︷︷ ︸
N(s)

(
L(s)T [I−K(s)]−1T ⊗�(s)

)

,

and for Z(s), using properties of Kronecker product, one obtains the relation

Z(s) =
∞∑
i=1

∞∑
j=0

[
F̂⊗
k=0(s, i − 1)T L(s)T ⊗

(
Ĝ(s) j

T ⊗ πi−1, j

)
�(s)

]

=
∞∑
i=0

∞∑
j=0

[
F̂⊗
k=0(s, i)

T ⊗
(

Ĝ(s) j
T ⊗ πi, j

)](
L(s)T ⊗ �(s)

)

=
[(

F̂⊗
k=0(s, 0)

T ⊗
∞∑
j=0

(
Ĝ(s) j

T ⊗ π0, j

))
+ Z(s)

](
L(s)T ⊗ �(s)

)

=
[((

I ⊗ HT ⊗ I ⊗ L(s)

)T

⊗ �(s)
)

+ Z(s)

](
L(s)T ⊗ �(s)

)
.

The latter relation allows computation of Z(s) and subsequently N(s) and ωk>0
L (s).

6 Numerical example

In this section we present a simple numerical example, where only the service time
depends on the Markov environment. Regular customers and re-sequencing signals
arrive according to Poisson processes with rates λ and γ , respectively. The service
process has a phase-type distribution with the following representation (β, B):

123

Queueing Syst (2016) 82:7–28 27

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9 10
γ

ρ=0.48
ρ=0.72

ρ=0.88

Fig. 4 Behaviour of variance of customer’s waiting time as a function of re-sequencing intensity γ for
different values of load

β = (
0.5 0.5

)
, B =

(−4 2
1 −4

)
.

The service rate is μ = −1/βB−11 = 2.5. Using the notation introduced in Sect. 2,
one has

A0 = (−λ), A1 = (λ), H0 = (−γ), H1 = (γ), S0 = B, S1 = −B1β.

Substituting this into the expression forω(s), one can computemoments of thewaiting
time by differentiation. As themeanwaiting time of an arbitrary customer can be easily
computed from Little’s law, one is mainly interested in higher moments, for example
variance. Even for the simple case considered the expression for the variance is very
cumbersome and thus we just state numerical results without providing the expression
itself. Figure 4 plots variance of the waiting time as a function of the re-sequencing
rate, γ , for three values of load ρ = λ/μ = 0.48, ρ = 0.72 and ρ = 0.88.

It is worth noticing that in each case considered there exists a point with maximal
variance inside the plotted range, which is in line with intuitive expectations. If the
re-sequencing rate, γ , is low then a very small number of customers are re-sequenced
and the variance of the waiting time is close to the variance of the waiting time in
the ordinary M/PH/1 queue (with the same arrival and service process). If the re-
sequencing rate is large, almost every arriving customer is re-sequenced and thus again
the variance of the waiting time almost coincides with the variance in the M/PH/1
queue. In between these extreme cases some customers get re-sequenced, some do not
and thus the variance of the waiting time increases.

123

28 Queueing Syst (2016) 82:7–28

7 Conclusion

The paper considers a queueing model with a re-sequencing buffer. The delay analysis
of this model with memoryless arrival and service processes is provided in [12] with
the use of generating functions. We extended the delay analysis to Markov-modulated
arrival and service processes. This extension required the introduction of a completely
newmethodology due to the presence of non-commuting matrices. Themain elements
of the proposed new methodology are the replacement of the generating functions
by utilizing the space inhomogeneity of the model (based on the relation of infinite
summations from 0 to infinity with infinite summations from 1 to infinity), and the use
of the Kronecker expansion. The price to pay for the use of the Kronecker expansion is
the multiplicative increase of the matrix dimensions, which might result in inhibitive
computational complexity for “large” models.

Acknowledgments R. Razumchik thanks the support of Russian Foundation for Basic Research (Grant
13-07-00223). M. Telek thanks the support of OTKA Grant K101150.

References

1. Bini, D.A., Latouche, G., Meini, B.: Numerical Methods for Structured Markov Chains. Oxford Uni-
versity Press, New York, NY (2005)

2. Graham, A.: Kronecker Products and Matrix Calculus: With Applications. Wiley, New York, NY
(1982)

3. He, Q.-M.: Fundamentals of Matrix-Analytic Methods. Springer, New York (2013)
4. Higham, N.J., Kim, H.-M.: Numerical analysis of a quadratic matrix equation. IMA J. Numer. Anal.

20(4), 499–519 (2000)
5. Horváth, G.: Efficient analysis of the queue length moments of the MMAP/MAP/1 preemptive priority

queue. Perform. Eval. 69(12), 684–700 (2012)
6. Horváth, G., Van Houdt, B.: Departure process analysis of the multi-type MMAP[K]/PH[K]/1 FCFS

queue. Perform. Eval. 70(6), 423–439 (2013)
7. Horváth, G., Van Houdt, B., Telek, M.: Commuting matrices in the queue length and sojourn time

analysis of MAP/MAP/1 queues. Stoch. Models 30(4), 554–575 (2014)
8. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling.

Society for Industrial and Applied Mathematics, Philadelphia (1999)
9. Neuts, M.F.: Matrix Geometric Solutions in Stochastic Models. Johns Hopkins University Press, Bal-

timore (1981)
10. Neuts, M.F.: Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker,

New York (1989)
11. Ozawa, T.: Sojourn time distributions in the queue defined by a general QBD process. Queueing Syst.

Theory Appl. 53(4), 203–211 (2006)
12. Pechinkin, A.V., Razumchik, R.V.: On temporal characteristics in an exponential queueing systemwith

negative claims and a bunker for ousted claims. Autom. Remote Control 72(12), 2492–2504 (2011)
13. Steeb, W.H., Hardy, Y.: Matrix Calculus and Kronecker Product: A Practical Approach to Linear and

Multilinear Algebra. World Scientific, River Edge, NJ (2011)

123

	Delay analysis of a queue with re-sequencing buffer and Markov environment
	Abstract
	1 Introduction
	2 Model description
	3 Joint stationary distribution
	3.1 Censored process
	3.2 QBD representation of the censored process
	3.3 Condition for stability
	3.4 QBD analysis of the process
	3.5 Censored process on level 0
	3.6 Obtaining π00
	3.7 Computing 0(z)
	3.8 Distribution immediately after customer arrival
	3.9 Analysis with Kronecker expansion

	4 Stationary waiting time distribution
	4.1 Stationary waiting time distribution of customer that receives service from regular buffer
	4.2 Stationary waiting time distribution of the customer that receives service from re-sequencing buffer
	4.3 Computation of ωLi=0(s)

	5 Computation of ωL(s)
	5.1 Analysis of ωLk=0(s)
	5.2 Analysis of ωLk>0(s)

	6 Numerical example
	7 Conclusion
	Acknowledgments
	References

