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Abstract We study a queueing model with ordered arrivals, which can be called
the Δ(i)/GI/1 queue. Here, customers from a fixed, finite, population independently
sample a time to arrive from some given distribution F , and enter the queue in order
of the sampled arrival times. Thus, the arrival times are order statistics, and the inter-
arrival times are differences of consecutive order statistics. They are served by a
single server with independent and identically distributed service times, with general
service distribution G. The discrete event model is analytically intractable. Thus, we
develop fluid and diffusion limits for the performance metrics of the queue. The fluid
limit of the queue length is observed to be a reflection of a ‘fluid netput’ process,
while the diffusion limit is observed to be a function of a Brownian motion and a
Brownian bridge process or ‘diffusion netput’ process. The diffusion limit can be seen
as being reflected through the directional derivative of the Skorokhod regulator of the
fluid netput process in the direction of the diffusion netput process. We also observe
what may be interpreted as a sample path Little’s Law. Sample path analysis reveals
various operating regimes where the diffusion limit switches between a free diffusion,
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a reflected diffusion process, and the zero process, with possible discontinuities during
regime switches. The weak convergence results are established in the M1 topology.

Keywords Queueing models · Transient queueing systems · Fluid and diffusion
limits · Distributional approximations · Directional derivatives · M1 topology
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1 Introduction

Most of modern queueing theory is concerned with scenarios where arrival and service
processes are stationary and ergodic. Renewal trafficmodels are a standard assumption
in queueing theory. This is mathematically convenient as it allows full use of the tools
that renewal theory and ergodic theoryprovide.However, it is not true in somequeueing
scenarios. For example, in some queueing scenarios, each arriving customer takes an
independent decision of when to arrive. When we assume that every arriving customer
draws an arrival time from the same distribution, this does not lead to a renewal arrival
process. Moreover, such a distribution may only have finite support, meaning that the
system is transient. This scenario does not fit the standard, single server models in
queueing theory such as M/M/1, M/G/1, etc.

There has been an interest in developing a theory for non-stationary queues [1–
6]. However, in almost all of these models, the assumption of a non-homogeneous
Poisson arrival and service process remains ubiquitous. Recent work in [7,8] relaxes
these assumptions. However, all these models assume a queueing system that operates
forever with an infinite population of customers and (possibly) a steady state (when
arrival and service rates are cyclostationary).

In contrast, many queueing systems serve only a finite number of customers, the
queueing system itself may operate only in a finite window of time, or a modeler is
interested only in the transient behavior of the system.Scenarioswhere suchbehavior is
apparent include queueing outside stores before new product launches, DMV or postal
offices, lunch cafeterias etc., some call centers where customers take independent
decisions of when to call and service time is finite (8 a.m.–5 p.m., for example),
and even emergency departments of hospitals, where day-of-week effects strongly
indicate that a manager would want to study the queueing dynamics on a single day.
In communication networks, single file transfers such as a video streaming session and
packet transmissions over a fixed interval of interest are examples of systems where a
modeler may wish to study transient delay distributions.

In this paper, we study a transitory queueing model for such systems. Consider
n customers who arrive into a single server queue. Each customer’s time of arrival
is modeled as an i.i.d. sample from a distribution F (restrictions on F will be stated
later), and customers enter the queue in order of the sampled times. Service times are
i.i.d. with distribution G. If X(i) is the i th order statistic from a sample of size n drawn
from F and �(i) := (X(i) − X(i−1)), then, in Kendall’s notation, this model can be
called the �(i)/GI/1 queueing model.
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The analysis of the discrete event model is quite difficult, in general. For instance,
when the service process is Poisson, the Kolmogorov forward equations for the joint
distribution of the queue length and cumulative arrival processes can be written down,
but there is no easy way to obtain analytical solutions. In this paper, we develop fluid
and diffusion approximations to the queue length process directly as the population
size scales to infinity and the service rate is accelerated appropriately (to be defined).
We also establish a sample path Little’s Law that links the limit queue length and
virtual waiting time processes under both fluid and diffusion limits.

To develop the fluid limits, we use the Glivenko–Cantelli theorem and the func-
tional Strong Law of Large Numbers for renewal processes along with the Skorokhod
reflection mapping theorem. We show that the fluid limit of the queue length process
switches between ‘overloaded,’ ‘underloaded,’ and ‘critically loaded’ regimes as time
progresses. The limiting diffusion for the queue length process is derived using a direc-
tional derivative reflection mapping lemma. The diffusion process approximation is
a reflection of a Brownian bridge process that arises from the invariance principle
related to the Kolmogorov–Smirnov statistic, combined with a Brownian motion that
arises from the functional central limit theorem for renewal processes.

We also note that our diffusion process convergence results are in Skorokhod’s M1
topology on Dlim[0,∞), the space of functions that are right- or left-continuous at
every point, and right-continuous at 0.

The rest of this paper is organized as follows. We start with a brief review of the
existing literature related to this model. Section 2 presents the �(i)/GI/1 queue-
ing model and some basic results about fluid and diffusion approximations to arrival
and service processes. Section 3 develops fluid approximations to the queue length,
busy-time, and virtual waiting time processes. In Sect. 4, we develop diffusion approx-
imations to these processes. Section 5 develops waiting time approximations, as well
as a sample path Little’s law. Section 6 takes a closer look at the sample paths of the
queue length process in various operating regimes. Section 7 presents some exam-
ples and simulations of queue length process. We then conclude in Sect. 8 with some
remarks about potential future directions. In the appendix, we place proofs that are
more technical in nature.

1.1 Related literature

The form of the diffusion and fluid approximations to the �(i)/GI/1 queue paral-
lel that of the well studied Mt/Mt/1 model in the sense that (1) the fluid limit may
switch between overloaded, underloaded, and critically loaded periods, and (2) the
diffusion limit arises using a directional derivative for the Skorokhod reflection map.
Approximations for the latter model were developed in [6], wherein the Poisson arrival
and service processes are approximated sample pathwise by Gaussian processes on an
accelerated time scale, by leveraging strong approximation results for Lévy processes.
We, instead, prove a weak convergence by utilizing the Skorokhod almost sure repre-
sentation theorem to establish the desired results. Another important difference is that
our fluid and diffusion limits depend on empirical process theory (i.e., the Glivenko–
Cantelli and Kolmogorov–Smirnov theorems), whereas such results are not relevant
in [6].
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There have been earlier attempts to understand ‘transitory’ behavior in queueing
systems. In the late 1960s [1] (also [9]), Newell introduced queueing models with
both time-varying arrival and service processes. He studied the Fokker–Planck (or
heat) equation for the Gaussian process approximation to a general arrival process
in various special cases on the arrival rate function. However, these approximations
were not rigorously justified with a weak convergence result. In [10], Gaver et al.
discuss several transitory demand queueing problems and propose a model similar
to a �(i)/M/1 queue. In [11], Louchard considers a similar model to the �(i)/GI/1
queue.The analysis focuses on the local behavior of the queue, similar to the analyses of
Newell [1]. The author only establishes local weak convergence to Gaussian processes
at continuity points of the limit process. Our results, on the other hand, establish a
single “process-level” convergence result over all time and, indeed, this is the main
difficulty in the analysis.

2 Preliminaries

Notations Unless noted otherwise, all intervals of time are subsets of [−T0,∞),
for a given −T0 ≤ 0 (where −T0 represents the time the first instant a user can
arrive; without loss of generality, we assume that service starts at 0). Let Dlim :=
Dlim[−T0,∞) be the space of functions x : [−T0,∞) → R that are right-continuous
at −T0, and are either right- or left-continuous at every point t > −T0. Note that this
differs from the usual definition of the spaceD as the space of functions that are right-
continuous with left limits (cádlág functions). We denote almost sure convergence by
a.s.−→ and weak convergence by⇒. (S,m) represents the metric space and metric of
convergence. Thus, Xn

a.s.−→ X in (Dlim, J1) as n → ∞ indicates that Xn ∈ Dlim
converges to X ∈ Dlim in the (strong) J1 topology almost surely. Similarly, Xn ⇒ X
in (Dlim, J1) as n → ∞ indicates that Xn ∈ Dlim converges weakly to X ∈ Dlim in
the (strong) J1 topology. (Dlim, M1) indicates that the topology of convergence is the
M1 topology. When convergence is joint for a collection of random variables, we will
either be working with strong M1 (SM1) topology or the weak J1 (W J1) topology
on the product space of the sample paths (see [12] for formal definitions of these
spaces). X̄ indicates a fluid-scaled or fluid limit process. X̂ and X̃ are used to indicate
diffusion-scaled and diffusion limit processes. We use ◦ to denote the composition of
functions or processes. The indicator function is denoted by 1{·} and the positive part
operator by (·)+.

2.1 The queueing model

Consider a single server, infinite buffer queue that is non-preemptive, non-idling,
and starts empty. Service follows a first-come-first-served (FCFS) schedule. Let n be
the customer population size. Customers independently sample an arrival time Ti , i =
1, . . . , n, from a common distribution function F assumed to have support [−T0, T ] ⊂
R, where T > 0. For simplicity, we assume that F is absolutely continuous with a
continuous density function. The customer entry times are the order statistics T(1) ≤
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T(2) ≤ . . . ≤ T(n) of the sampled arrival times. The arrival process is the cumulative
number of customers that have arrived by time t :

A(t) :=
n∑

i=1
1{Ti≤t}, (1)

where 1{·} represents an indicator function.
Let {νi , i ≥ 1} be a sequence of independent and identically distributed (i.i.d.)

random variables, where νi represents the service time of the i th customer. Assume
that the mean service time Eνi = 1/μ < ∞ and the variance of the service times
Var(νi ) <∞, and that the associated CDF G has support [0,∞). Finally, also assume
that the sequence is independent of the arrival times Ti , i = 1, . . . , n. Thus, service
starts at time t = 0. Let S be the service process, defined as a renewal counting process,
so that

S(t) :=
{
0 ∀t ∈ [−T0, 0),
sup{m ≥ 1|V (m) ≤ t}, ∀t ≥ 0,

(2)

where

V (m) :=
m∑

i=1
νi

is the cumulative load from m jobs. Let V (t) := ∑�t�
i=1 νi be the offered load process.

The amount of time a customer arriving at time t has to wait for service is

Z(t) := V (A(t))− B(t)− t1{t≤0}, (3)

where

B(t) :=
( ∫ t

0
1{Q(s)>0} ds

)
1{t≥0}, ∀t ∈ [−T0,∞) (4)

is the busy time process.
Note that this definition of the virtual waiting time varies slightly from the standard

definition due to the fact that an arrival at time t < 0 before service starts has to wait
an extra t units of time for service to start, which accounts for the −t1{t≤0} term.

Let Q represent the queue length process, including both any customer in service
and all waiting customers. This is defined in terms of the arrival and service processes
as

Q(t) := A(t)− S(B(t)), ∀t ∈ [−T0,∞), (5)

where B(t) is the busy time process.
Finally, the idle time process of the server is

I (t) := t1{t≥0} − B(t) =
(∫ t

0
1{Q(s)=0} ds

)
1{t≥0} ∀t ∈ [−T0,∞). (6)
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2.2 Basic results

Wenowpresent known functional strong lawof large numbers (FSLLN) and functional
central limit theorem (FCLT) or diffusion limits, for the arrival and service processes,
as the population size n increases to∞.

Let An := A be the arrival process associated with the system having population
size n. The fluid-scaled arrival process is Ān := An

n . Next, consider an accelerated
service process, where the service times (or, equivalently, the service rate) are scaled
by the population size n, so that

Sn(t) :=
⎧
⎨

⎩

0 ∀t ∈ [−T0, 0),
sup

{
m ≥ 1|∑m

i=1
νi
n ≤ t

}
, ∀t ≥ 0.

The fluid-scaled service process is S̄n := Sn
n . Also, the fluid-scaled offered load

process is

V̄ n(t) :=
{
0 ∀t ∈ [−T0, 0),∑�nt�

i=1 νni , ∀t ∈ [0,∞).
(7)

Note that our assumption that νi , i ≥ 1 is an i.i.d. sequence implies that Sn(t) is equiv-
alent to the time-scaled process S(nt) (where n is an arbitrary parameter that increases
to infinity) used in the conventional heavy-traffic setting. Acceleration, however, pro-
vides a nice interpretation to our scaling that we conjecture can potentially be extended
to non-i.i.d. settings. The following proposition establishes the fluid limits for these
processes.

Proposition 1 As n →∞,

( Ān(t), S̄n(t)1t≥0, V̄ n(t)1t≥0)
a.s.−→ (F(t), μt1{t≥0},

t

μ
1{t≥0}) in (D3

lim,W J1),

(8)

where D3
lim is the three-dimensional product space of sample paths.

Remarks The proof of Proposition 1 follows easily from standard results and we omit
it. The fluid arrival process limit is given by the Glivenko–Cantelli Theorem (see
[13]). The fluid limits of the service process and the offered load process follow from
the functional strong law of large numbers for renewal processes (see [14]). Joint
convergence is a consequence of the independence assumptions between the service
times and arrival times.

Next, looking at the errors of the fluid-scaled arrival process around the fluid limit,
the diffusion-scaled arrival process is

Ân(t) := √n

(
Ān(t)− F(t)

)
∀t ∈ [−T0,∞).
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Similarly, the diffusion-scaled service and offered load processes are

Ŝn(t) := √n

(
S̄n(t)− μt

)
, t ≥ 0

V̂ n(t) := √n

(
V̄ n(t)− 1

μ
t

)
, t ≥ 0.

The following proposition presents the diffusion limits for these processes.

Proposition 2 As n →∞,

( Ân, Ŝn, V̂ n)⇒ (
W 0 ◦ F, σμ3/2W ◦ e,−σμ1/2W ◦ e

μ

)
in (D3

lim,W J1), (9)

where W 0 is the standard Brownian bridge process and W is the standard Brownian
motion process, both are mutually independent, and e : [0,∞) → [0,∞) is the
identity map.

Remarks (1) The proof of this proposition follows easily from standard results: The
FCLT limit for the diffusion-scaled arrival process, also called the empirical
process, is a Brownian bridge by Donsker’s Theorem (see Sects. 13 and 16 in
[15]). Note that this limit also arises in the study of the invariance principle
associated with the Kolmogorov–Smirnov statistic used to compare empirical
distributions with candidate ones (see [12] for more detail). The limits for the
diffusion-scaled service and offered work processes follow from the FCLT for
renewal processes (see Sect. 16 in [15] and Chap. 5 in [14]). Joint convergence
follows from independence.

(2) Our assumption that the support of F is compact is largely for technical reasons;
viz., the Skorokhod topologies restrict weak convergence to compact intervals of
the domain [−T0,∞). Proving a diffusion approximation that holds for distri-
butions with infinite support would require strong approximation results, and is
beyond the scope of the current paper.

3 Fluid approximations

Following (5), the fluid-scaled queue length process is

Qn(t)

n
= 1

n
An(t)− 1

n
Sn(Bn(t)), (10)

where Bn(t) is the fluid-scaled version of the busy time process (4) defined as

Bn(t) :=
( ∫ t

0
1{Qn(s)>0} ds

)
1{t≥0}.
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Next, add and subtract the functions F(t), μt1{t≥0} and μBn(t) to obtain

Qn(t)

n
:=

(
An(t)

n
−F(t)

)
−

(
Sn(Bn(t)

n
−μBn(t)

)
+

(
F(t)−μt1{t≥0}

)
+μI n(t),

where I n(t) = t1{t≥0} − Bn(t) is the fluid-scaled idle time process. Thus, (10) is
equivalently

Q
n
(t) := Qn(t)

n
= X̄n(t)+ μI n(t), ∀t ∈ [−T0,∞), (11)

where X̄n(t) is

X̄n(t) :=
(
An(t)

n
− F(t)

)
−

(
Sn(Bn(t))

n
− μBn(t)

)
+ (F(t)− μt1{t≥0}). (12)

In preparation for the main theorem in this section, recall that the Skorokhod
reflection map is a continuous functional (Φ,Ψ ) : Dlim → Dlim × Dlim defined
as x �→ Ψ (x) := sup−T0≤s≤t (−x(s))+, and x �→ Φ(x) := x + Ψ (x), ∀x ∈ Dlim.
The continuity of the map with respect to the uniform topology on Dlim follows from
Theorem 3.1 in [16].

Theorem 1 (Fluid limit) The pair (Q̄n, μI n) has a unique representation (Φ(X̄n),

Ψ (X̄n)) in terms of X̄n. Furthermore, as n →∞,

(Q̄n, μI n)
a.s.−→ (Φ(X̄), Ψ (X̄)) in (Dlim ×Dlim,W J1),

where X̄(t) = (F(t)− μt1{t≥0}).

Proof First note that Q̄n(t) ≥ 0, ∀t ∈ [−T0,∞). It is also true that I n(−T0) =
0 and d I n(t) ≥ 0, ∀t ∈ [−T0,∞). By definition of I n(t), it follows that∫∞
−T0 Q̄

n(t)d I n(t) = 0. Thus, by the Skorokhod reflection mapping theorem (first

proved in [17]), the joint process (Q̄n(t), μI n(t)) has a unique reflection mapping
representation in terms of X̄n(t) as (Φ(X̄n), Ψ (X̄n)).

Note that by definition of Bn(t) ≤ t and fromProposition 1, it follows that
( Sn◦Bn

n −
μBn

) a.s.−→ 0 in (Dlim, J1). Using this and Proposition 1, it follows that X̄n a.s.−→
X̄ in (Dlim, J1), where X̄ := (F(t) − μt1{t≥0}). Using the limit derived above and
the continuous mapping theorem, it follows that

(Q̄n, μI n) = (Φ(X̄n), Ψ (X̄n))
a.s.−→ (Φ(X̄), Ψ (X̄)) in (Dlim ×Dlim,W J1).

��
Remarks (1) X̄ is the difference between the fluid limits of the arrival and service

processes, and is often referred to as the fluid limit of the netput process.
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Fig. 1 An example of a �(i)/GI/1 queue that will undergo multiple “regime changes.” The fluid queue
length process is positive on [−T0, τ0) and [τ2, τ3), and 0 on [τ0, τ2) and [τ3,∞)

(2) Theorem 1 shows that the fluid limit of the queue length process is

Q̄(t) = (F(t)− μt1{t≥0})+ sup
−T0≤s≤t

(−(F(s)− μs1{s≥0}))+, ∀t ∈ [−T0,∞).

Q̄ can be interpreted as the sum of the fluid netput process and the amount of
fluid service capacity lost from the system. As it will be seen below, the time
instants where the regulator term sup−T0≤s≤t (−(F(s) − μs1{s≥0}))+ increases
are precisely where the queue idles.

(3) Figure 1 depicts an example queue length process in the fluid limit, and its depen-
dence on the arrival distribution F and service rate μ. Note that the process
switches between being positive and zero, during the time the server operates.
We will investigate this behavior in detail in Sect. 6. Without formally defining
the terms, intuitively it should be clear that on [−T0, τ0) and [τ2, τ3), the queue
is ‘overloaded,’ while on the intervals [τ0, τ1) and [τ3∞), it is ‘underloaded.’

Next, consider the busy time process. It is interesting to observe that Bn does not
converge to the identity process, in contrast to the conventional heavy-traffic approx-
imation setting.

Corollary 1 As n →∞,

Bn a.s.−→ B̄ in (Dlim, J1) (13)

where B̄(t) := t1{t≥0} − 1
μ
Ψ (X̄(t)), ∀t ∈ [−T0,∞).

Proof By definition, we have Bn(t) = t1{t≥0} − I n(t). This can be rewritten as
Bn(t) = t1{t≥0} − I n(t). Using Theorem 1, the claim then follows. ��

Note that B̄(t) = 0 for all t ≤ 0, as Ψ (X̄)(t) = 0 on that interval.

4 Diffusion approximations

In this section, we assume F is absolutely continuous in order to establish the desired
limit result. As noted before, this is mainly for simplicity of the analysis.
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4.1 Queue length process

Define the diffusion-scaled queue length process as

Qn(t)√
n

:= An(t)√
n
− Sn(Bn(t))√

n
, ∀t ∈ [−T0,∞) (14)

Introducing the terms
√
nμt1{t≥0},

√
nF(t), and

√
nμBn(t), we have

Qn(t)√
n
=

(
An(t)√

n
−√nF(t)

)
−

(
Sn(Bn(t))√

n
−√nμBn(t)

)

+√n(F(t)− μt1{t≥0})+√nμ(t1{t≥0} − Bn(t)).

Recalling the definition of the idle time process Qn/
√
n is

Qn

√
n
= X̂n +√n X̄ +√nμI n, (15)

where

X̂n(t) :=
(
An(t)√

n
−√nF(t)

)
−

(
Sn(Bn(t))√

n
−√nμBn(t)

)
(16)

= Ân(t)− Ŝn(Bn(t)), ∀t ∈ [−T0,∞).

Recall from Theorem 1 that X̄(t) = (F(t) − μt1t≥0) is the fluid netput process.
Lemma 1 below proves a diffusion approximation to the diffusion-scale refinement
X̂n(t) as an immediate consequence of Proposition 2.

Lemma 1 As n →∞,

X̂ n ⇒ X̂ := W 0 ◦ F − σμ3/2W ◦ B̄ in (Dlim, J1) (17)

where B̄ is defined in (13), and W 0 and W are independent standard Brownian bridge
and standard Brownian motion, respectively.

Proof First note that Bn(t) ≤ t,∀t ∈ [0,∞), implying that Sn ◦ Bn ∈ Dlim. Using
Proposition 2, Corollary 1 and the random time change theorem (see, for example,
Sect. 17 of [15]), it follows that

√
n
( Sn◦Bn

n − μBn
)⇒ σμ3/2W ◦ B̄. Now, it follows

from Proposition 2 that X̂n ⇒ X̂(t) := W 0 ◦ F − σμ3/2W ◦ B̄, thus concluding the
proof. ��
Remarks Note that using a classical time change (see, for example, [18]), it is possible
to see that the Brownian bridge is equal in distribution to a time-changed Brownian
motion, and X̂ is equal in distribution to a stochastic integral

X̂(t)
d=

{∫ t
−T0

√
g′(s)dW̃s, ∀t ∈ [−T0, T ]

−σμ3/2W (B̄(τ ∗ ∨ T )), ∀t > τ ∗ ∨ T
, (18)
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where g(t) = F(t)(1−F(t))+σ 2μ3 B̄(t), W̃ is a standard Brownian motion process,
τ ∗ := 1

μ
and ∨ is the max operator. Thus, the process X̂ can also be interpreted as

a time-changed Brownian motion on the interval [−T0, T ], and its sample path is a
constant on (T,∞).

In the rest of this section, we will use Skorokhod’s almost sure representation
theorem [17,19], and replace the random processes above that converge in distribution
by those defined on a common probability space that have the same distribution as the
original processes and converge almost surely. The requirements for the almost sure
representation are mild; it is sufficient that the underlying topological space is Polish
(a separable and complete metric space). We note without proof that the spaceDlim, as
defined in this paper, is Polish when endowed with the M1 topology. This conclusion
follows from [12]. The authors in [6] also point out that [20] has a more general proof
of this fact.

We conclude that we can replace the weak convergence in (9) by

( Ân, Ŝn, V̂ n)
a.s.−→

(
W 0 ◦ F, σμ3/2W,−σμ1/2W ◦ h

μ

)
in (Dlim, J1),

where, abusing notation, we use the same letters as our original processes. Thus,
Lemma 1 implies that

X̂n a.s.−→ X̂ in (Dlim, J1), as n →∞.

The FCLT to the queue length process relies on the directional derivative of the
Skorokhod reflection map (Φ,Ψ ), defined as

sup
∇ X̄
t

(−y)(t) = lim
n→∞Ψ (

√
nx + y)(t)−√nΨ (x)(t), (19)

pointwise in Dlim, where x ∈ C and y ∈ C, and ∇x
t = {−T0 ≤ s ≤ t |x(s) =

−Ψ (x)(t)}, is a correspondence of points upto time t where the fluid netput process
achieves an infimum. We can now state and prove our main limit theorem. Let Ỹ n :=√
nμI n −√nΨ (X̄).

Theorem 2 (Diffusion limit) The pair (Q̂n, Ỹ n) has a unique representation in terms
of X̂n and

√
n X̄ given by

(
Φ(X̂n+√n X̄)−√nQ̄, Ψ (X̂n+√n X̄)−√nΨ (X̄)

)
, where

Q̄ = X̄+Ψ (X̄) is the fluid limit of the queue length process. Furthermore, as n →∞

(Q̂n, Ỹ n) ⇒ (X̂ + Ỹ , Ỹ ) in (Dlim ×Dlim, SM1),

where X̂(t) = W 0(F(t)) − σμ3/2W (B̄(t)), and Ỹ (t) = max
s∈∇ X̄

t
(−X̂(s)) ∀t ∈

[−T0,∞), and SM1 is the strong M1 topology on the product space Dlim ×Dlim.

Proof First, using (15), it follows by the Skorokhod reflection mapping theorem that

( Qn

√
n
,
√
nμI n

) = (
Φ(X̂n +√n X̄), Ψ (X̂n +√n X̄)

)
. (20)
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This implies that Q̂n = Qn√
n
− √nQ̄ = Φ(X̂n + √n X̄) − √nQ̄. Using the fact that

Q̄ = X̄ + Ψ (X̄) and Φ(x) = x + Ψ (x) for any x ∈ Dlim, it follows that

Q̂n = X̂n +√n X̄ + Ψ (X̂n +√n X̄)−√n(X̄ + Ψ (X̄)),

= X̂n + Ψ (X̂n +√n X̄)−√nΨ (X̄). (21)

Next, from the expression for
√
nμI n in (20) it follows that Ỹ n = Ψ (X̂n +√n X̄)−√

nΨ (X̄), implying that Q̂n = X̂n + Ỹ n . The limit result now follows by use of
the following directional derivative reflection mapping lemma which is adapted from
Lemma 5.2 in [6], and whose proof can be found in the Appendix. ��
Lemma 2 (Directional derivative reflection mapping lemma) Let x and y be real-
valued continuous functions on [0,∞), and Ψ (z)(t) = sup0≤s≤t (−z(s)), for any

process z ∈ Dlim. Let {yn} ⊂ Dlim be a sequence of functions such that yn
a.s.→ y as

n → ∞. Then, with respect to Skorokhod’s M1 topology, ỹn := Ψ (
√
nx + yn) −√

nΨ (x) −→ ỹ := sups∈∇x
t
(−y(s)) as n → ∞, where ∇x

t = {0 ≤ s ≤ t |x(s) =
−Ψ (x)(t)}.

Observe that Ỹn is exactly in the form of ỹn defined in the lemma above. Lemma 1
and Lemma 2 together imply that Ỹn

a.s.−→ Ỹ := maxs∈∇ X̄·
(−X̂(s)) in (Dlim, M1). It

follows that Q̂n = X̂n + Ỹ n a.s.−→ X̂ +maxs∈∇ X̄·
(−X̂(s)) in (Dlim, M1).

It remains to prove that Q̂n and Ỹ n converge jointly in the strong M1, or SM1,
topology. Notice that the joint process can be written as

(
Q̂n

Ỹ n

)
=

(
X̂n

0

)
+

(
Ψ (X̂n +√n X̄)−√nΨ (X̄)

Ψ (X̂n +√n X̄)−√nΨ (X̄)

)
.

The first term on the right-hand side converges to

X̂ :=
(
X̂
0

)

almost surely in (Dlim ×Dlim, SM1) by Theorem 12.6.1 of [12], as X̂ is continuous.
The second term converges to

Ỹ :=
(
Ỹ
Ỹ

)

almost surely in (Dlim × Dlim, SM1). Now, by definition, X̂ is a continuous process
and does not share any discontinuity points with Ỹ. Therefore, by Corollary 12.7.1 of
[12], the addition operator is continuous, implying that

(
Q̂n

Ỹ n

)
a.s.→

(
X̂ + Ỹ
Ỹ

)
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in (Dlim × Dlim, SM1). Finally, the weak convergence is a direct implication of the
almost sure convergence result, thus concluding the proof.

Remarks (1) Observe that the diffusion limit to the queue length process is a function
of a Brownian bridge and a Brownian motion. This is significantly different from
the usual limits obtained in a heavy-traffic or large population approximation to
a single server queue. For instance, in the G/GI/1 queue, one would expect a
reflected Brownianmotion in the heavy-traffic setting. In [6], it was shown that the
diffusion limit process to theMt/Mt/1 queue is a time-changed Brownianmotion
W (

∫
λ(s)ds + ∫

μ(s) ds), where λ(s) is the time inhomogeneous rate of arrival
process and μ(s) is that of the service process, reflected through the directional
derivative reflection map used in Lemma 2. There are very few examples of
heavy-traffic limits involving a diffusion that is a function of a Brownian bridge
and a Brownian motion process. However, there have been some results in other
queueingmodels where a Brownian bridge arises in the limit. In [21], for instance,
a Brownian bridge limit arises in the study of a many-server queue in the Halfin–
Whitt regime.

(2) We noted in the remarks after Theorem 1 that the fluid limit can change between
being positive and zero in the arrival interval for a completely general F . One can
then expect the diffusion limit to change aswell, and switch between being a ‘free’
diffusion, a reflected diffusion, and a zero process. This is indeed the case. Figure 2
illustrates this for the example in Figure 1. Note that ∀t ∈ [−T0, τ1), Ψ (X̄)(t) =
−X̄(−T0), implying that the set∇ X̄

t is a singleton. On the other hand, at τ1,∇ X̄
t =

{−T0, τ1}. For t ∈ (τ1, τ2], Ψ (X̄)(t) = 0 = X̄(t), implying that ∇ X̄
t = (τ1, t].

On (τ2, τ3), Ψ (X̄)(t) = 0, but X̄(t) > 0, so that ∇ X̄
t = (τ1, τ2]. Finally, the

fluid queue length becomes zero when the fluid service process exceeds the fluid
arrival process in [τ3,∞), implying that Ψ (X̄)(t) = −(F(t) − μt) > 0. It can
be seen that ∇ X̄

t = {t} in this case.
Recall from Corollary 1 that Bn converges to a continuous process B̄ as n →∞.

Define the diffusion-scaled busy time process as

B̂n := √
n(B̄ − Bn). (22)

Note that from the definitions of Bn(t) and B̄(t), it follows that B̂n(t) = 0, ∀t < 0.
The diffusion limit for this process is given as follows.

Corollary 2 The diffusion-scaled busy time weakly converges to a regulated diffusion
process: B̂n ⇒ B̂ := 1

μ
maxs∈∇ X̄·

(−X̂(s)), in (Dlim, M1) as n →∞.

Proof Recall that Bn(t) = t1{t≥0} − I n(t). Substituting this and B̄ from (13) in the
definition of B̂n , and rearranging the expression, we obtain B̂n = 1

μ
Ỹ n . A simple

application of Theorem 2 then provides the necessary conclusion. ��
Observe that Bn(t) is approximated in distribution by B̂ as Bn(t)

d≈ B̄(t)− 1√
n
B̂(t),

where Y
d≈ X is defined to be P(Y ≤ x) ≈ P(X ≤ x), and the approximation is

rigorously supported by an appropriate weak convergence result.
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Fig. 2 An example of a Δ(i)/GI/1 queue that will undergo multiple “regime changes.” The diffusion
limit switches between a free Brownian motion (BM), a reflected Brownian motion (RBM), and the zero
process

The case of uniform F on [−T0, T ] is instructive, and it can be seen that on [−T0, τ ),
the queue length in the fluid limit is positive. However, as the server starts at time 0,
the only interesting sub-interval of [−T0, τ ) is [0, τ ). Using the appropriate defini-
tions, note that B̄(t) = t and B̂(t) = 0 for all t ∈ [0, τ ), implying that Bn(t) = t
approximately, though in the non-asymptotic regime Bn(t) may be strictly smaller
than t . On the other hand, the fluid queue length is zero in (τ,∞) and it follows from
definition of Ψ (X̄) that B̄(t) = t − 1

μ
(−X̄(t)) = 1

μ
F(t) for t ∈ (τ,∞). Substituting

this expression together with that of B̂, and expanding X̂ , we see that

Bn(t)
d≈ t + 1

μ
(X̄(t)+ 1√

n
X̂(t))

d= 1

μ

(
F(t)+ 1√

n
W 0(F(t))− σμW (F(t))

)
,

where the second
d= is due to the fact that we used the Brownian motion scaling

property. Note that this depends on the arrival distribution F alone. In the fluid limit
of the busy time process, we see that B̄(t) = F(t)/μ which is the fraction of time
from the interval [0, t] that the queue has spent serving.
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5 Waiting time and the sample path Little’s Law

Little’s Law is a fundamental tenet of queueing theory that provides immediate insight
into the operation of a queue. While the standard Little’s Law relates averages, in this
section, we prove a large population asymptotic functional relationship that holds on
sample paths of the queue length and workload approximations. One may also view
this ’sample path Little’s Law’ as parallel to a snapshot principle in the conventional
heavy-traffic setting.

First, the accelerated or fluid-scaled virtual waiting time process is Zn(t) =
V n

(
n
( An(t)

n

))− Bn(t)− t1{t≤0}, ∀t ∈ [−T0,∞).

Proposition 3 (FluidLittle’s Law) The fluid-scaleworkload process is asymptotically
related to the queue length fluid limit as n →∞: Zn a.s.−→ Z̄ := Q̄/μ−e in (Dlim, J1),
where e : R→ [0,∞) is defined as e(t) := t1{t≤0} ∀t ∈ R .

Proof First note that Zn(t) can be rewritten as Zn(t) = V n
(
n
( An(t)

n

)) − 1
μ

An(t)
n +

( 1
μ

An(t)
n − t1{t≤0} − Bn(t)

)
. Proposition 1 implies that V̄ n(t)

a.s.−→ t/μ in (Dlim, J1).
Now, using the random time change theorem (Theorem 5.3 in [14]) and setting h =
An/n it follows that, as n → ∞,

(
V n ◦ An − 1

μ
An

n

) a.s.−→ 0 in (Dlim, J1). Using

Proposition 1 andCorollary 1, substituting for B̄(t),we have Z̄(t) = 1
μ
Q̄(t)−t1{t≤0}.��

Remarks The term e(t) = t1{t≤0} accounts for the fact that an arrival at time t < 0
would require −t time units for service to start. Now, consider the diffusion-scale
virtual waiting time process given by Ẑ n(t) = √

n(Zn(t)− Z̄(t)) ∀t ∈ [−T0,∞).
Proposition 4 below proves a diffusion approximation to Ẑ n and relates the sample
paths of the limit process to that of Q̂.

Proposition 4 (Diffusion Little’s Law) The diffusion-scaled virtual waiting time
process satisfies an FCLT in the limit as n →∞: Ẑ n ⇒ Ẑ := 1

μ
Q̂ + σμ1/2W ◦ B̄ −

σμ1/2W ◦ F in (Dlim, M1).

Proof Expanding the definition of Ẑ n(t) and introducing the term 1
μ

An(t)
n , we obtain

Ẑ n(t) = √n
(
V n(An(t))− 1

μ
An(t)
n + 1

μ
An(t)
n − F(t)

μ
+ B̄(t)−Bn(t)

)
. Using the random

time change theorem (Sect. 17 of [15]), Proposition 1 and Proposition 2

√
n

(
V n ◦ An − 1

μ

An

n

)
⇒ −σμ1/2W ◦ F

μ
in (Dlim, J1). (23)

Finally, using this fact, Proposition 2 and Corollary 2, it follows that Ẑ n ⇒ Ẑ =
σμ1/2W ◦ F

μ
+ 1

μ
W 0 ◦ F + B̂ in (Dlim, M1).

Note thatW andW 0 are independent processes. Adding and subtracting the process
σμ1/2W ◦ B̄, where W is the Brownian motion in (23), we obtain Ẑ = 1

μ
Q̂ +

(
σμ1/2W ◦ B̄ − σμ1/2W ◦ F

μ

)
. ��
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Remarks (1) The limit process in Proposition 4 is equal to

Ẑ(t) = 1

μ
Q̂(t)− σμ1/2W

( Q̄(t)

μ

)
. (24)

Interestingly, the extra diffusion term is non-zero only when the fluid limit of the
queue length process is positive, indicating that it arises from temporal variations
in the operating regimes of the queue. To see this, note that the variance of the
diffusion term isσ 2μE

∣∣W (B̄(t))−W
( F(t)

μ

)∣∣2 = σ 2μ
(
B̄(t)+ F(t)

μ
−2B̄(t)∧ F(t)

μ

)
,

where x ∧ y := min(x, y). Clearly, the expression on the right-hand side changes
depending upon the ratio of the number of users arrived to the number served in
the fluid regime at time t . It follows that

σ 2μ E

∣∣∣∣W (B̄(t))−W

(
F(t)

μ

)∣∣∣∣
2

=

⎧
⎪⎪⎨

⎪⎪⎩

σ 2μ

(
F(t)
μ
− B̄(t)

)
,

F(t)
μB̄(t)

> 1

σ 2μ

(
B̄(t)− F(t)

μ

)
,

F(t)
μB̄(t)

≤ 1.

It is easy to see that thefirst condition above, F(t)/(μB̄(t)) > 1, implies Q̄(t)/μ >

0.The second condition, F(t)/(μB̄(t)) ≤ 1, implies Q̄(t) = 0.This in turn implies
(F(t) − μt1{t≥0}) + Ψ (F(t) − μt1{t≥0}) = 0. Rearranging this expression, it
follows that F(t) = μt1{t≥0} − Ψ (F(t)− μt1{t≥0}).
Now, using the definition of B̄ from (13) we have F(t)/(μB̄(t)) = 1. It follows that

the diffusion term is equal in distribution to the following (time-changed) Brownian
Motion

σμ1/2
(
W (B̄(t))−W

(
F(t)

μ

))

d=

⎧
⎪⎪⎨

⎪⎪⎩

σμ1/2W

(
F(t)
μ
− B̄(t)

)
= σμ1/2W

(
Q̄(t)
μ

)
, Q̄(t) > 0

σμ1/2W

(
B̄(t)− F(t)

μ

)
= 0, Q̄(t) = 0.

This leads to expression (24).

(2) We note that Ẑ can be interpreted as a sample path Little’s Law in the diffusion
limit. This result is useful because it provides a sample path relationship between
the workload and current queue state. Note that the FCLT of the workload process
in a G/GI/1 queue (see Chap. 6 of [14] for details) with arrival rate λ and
service rate μ has the form Z̃(t) = 1

μ
Q̂(t) + σμ1/2(W ((ρ ∧ 1)t) − W (ρt)),

where ρ = λ/μ is the traffic intensity function for the G/GI/1 queue, and this
is similar to Ẑ . The extra diffusion term in (24) captures the variation of the
workload, as the (fluid) queue transitions between various operating states (see
Sect. 6 for more details on these states).

(3) Another interpretation of the term σμ1/2W (Q̄(t)/μ) is that it is in fact the diffu-
sion limit to the service backlog at time t , and the variation in the backlog at each
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point in time is captured in the term Q̂/μ. Suppose that f (t) < μ then the fluid
queue length process is zero and the server will idle, and the zero state is recurrent
for the queue length process. The workload in the system (for most of the time
when f (t) < μ) should be 0. On the other hand, if F(t) = μt , so that the fluid
queue length is zero but the server does not idle, it is reasonable to expect that the
virtual waiting time is zero for an arrival at time t . However, there is a non-zero
probability of the queue being backlogged at time t , and this fact is captured in
the term Q̂/μ.

6 Queue regimes and states

As noted in Sect. 4, the diffusion limit for the queue length process is piece-
wise continuous, with discontinuity points determined by the fluid limit. Indeed,
the discontinuity points are precisely where the fluid limit switches between being
‘overloaded’ and either ‘underloaded’ and/or ‘critically loaded.’ We now provide
formal definitions of these notions, in terms of the fluid limit arrival and service
processes.

We also characterize the sample path of the queue length limit process, and the
points at which it has discontinuities. Developments in this section follow the study
of the directional derivative limit process in [6]. However, the limit processes and
the setting of our model are different, as our limit process is a function of a tied
down Gaussian process, while in [6] the limit process is a function of a standard
Brownianmotion. Thus, where necessary, we prove some of the facts about the sample
paths.

6.1 Regimes of Q̄

It is useful to characterize the state of a queue in terms of a “traffic intensity” measure.
For instance, in the case of a G/G/1 queue, the traffic intensity is well defined as
the ratio of the arrival rate to the service rate. This definition is inappropriate for the
�(i)/GI/1 queue, as these systems can be time varying. In [2], a traffic intensity func-
tion for the Mt/Mt/1 queue with arrival rate λ(·) and service rate μ(·)was introduced
as the continuous function

ρ∗(t) := sup
0≤r≤t

∫ t
r λ(u)du

∫ t
r μ(u)du

, t > 0.

Note that ρ∗ follows from the pre-limit model describing the arrival and service
processes in the Mt/Mt/1 queue.

For the Δ(i)/GI/1 queue, we define the traffic intensity in terms of the fluid limit:

ρ(t) :=
⎧
⎨

⎩

∞, ∀t ∈ [−T0, 0]
sup0≤r≤t

F(t)−F(r)
μ(t−r) , ∀t ∈ [0, T̃ ]

0, ∀t > T̃ ,

(25)
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where T̃ := inf{t > 0|F(t) = 1 and Q̄(t) = 0}. Note that we define the traffic
intensity to be∞ in the interval [−T0, 0] as there is no service, but there can be fluid
arrivals.

For example, with F uniform over [−T0, T ], ρ can be shown to be

ρ(t) = t ∧ T

t

1

μ(T + T0)
, ∀t ∈ [0, T̃ ].

Note that ρ is continuous in time. Now, consider the following obvious definitions of
the operating regimes of the fluid �(i)/GI/1 queue.

Definition 1 (Operating regimes) The �(i)/GI/1 queue is (at time t)

(1) overloaded if ρ(t) > 1.
(2) critically loaded if ρ(t) = 1.
(3) underloaded if ρ(t) < 1.

The operating regimes can also be referenced in terms of the process Q̄, which in
many instances is more intuitive. The following lemma presents this equivalence.

Lemma 3 The �(i)/GI/1 queue is

(1) Overloaded at time t if Q̄(t) > 0.
(2) Critically loaded at time t if Q̄(t) = 0, X̄(t) = Ψ (X̄)(t), and there exists an

r < t such that Ψ (X̄)(t) = Ψ (X̄)(s) for all s ∈ [r, t].
(3) Underloaded at time t if Q̄ = 0, X̄(t) = Ψ (X̄)(t), and there exists an r < t such

that Ψ (X̄)(t) > Ψ (X̄)(s) for all s ∈ (r, t).

The proof of the lemma is in the appendix. Figure 3 shows an example of the various
operating regimes with the displayed arrival time distribution F and service rate μ >

1/T . Here, BB refers to a Brownian Bridge process and BM refers to a Brownian
motion process. Theorem 2 proved a diffusion limit to the standardized queue length
process, and we have shown that

Qn d≈ Ln Q̄ +
√
Ln Q̂.

As noted in the remarks after Theorem 2, the queue length process switches between
being a ‘free’ diffusion BB+BM (when the fluid limit model is overloaded), to a
‘reflected’ diffusion R(BB+BM) (when the fluid limit model is critically loaded) and
to a ‘zero’ process 0 (when the fluid limit model is underloaded).

Notice that these regimes correspond to those of a time homogeneous G/G/1
queue. However, since the queue length fluid limit in the �(i)/GI/1 queue can also
varywith time, we also identify the following “finer” operating states; this is analogous
to the Mt/Mt/1 queue, as demonstrated in [6]. In particular, these states are useful in
studying the approximation to the distribution of the queue length process on local time
scales. We also note that Louchard [11] identified some of these operating regimes in
his analysis. The definitions below formalize the intuitive presentation in [11].

123



Queueing Syst (2015) 80:71–103 89

Fig. 3 An illustration of the various operating regimes of a transitory queueing model. Here, we consider
the i.i.d. sampling �(i) model

Definition 2 (Operating states) A transitory queue is at

(i) End of overloading at time t if ρ(t) = 1 and there exists an open interval (a, t)
or (t, a) such that ρ(r) > 1 for all r in that interval.

(ii) Onset of critical loading at time t if ρ(t) = 1 and there exists a sequence λn ↑ t
such that ρ(λn) < 1 for all n.

(iii) End of critical loading at time t if ρ(t) = 1, and there exists a sequence λn ↑ t
such that ρ(λn) = 1 for all n and a sequence γn ↓ t such that ρ(γn) < 1 for all
n.

(iv) Middle of critical loading at time t if ρ(t) = 1, and t is in an open interval
(a, b), such that supt∈(a,b) ρ(t) ≥ 1 and there exists a sequence λn ↑ t such that
ρ(λn) = 1 for all n.

We illustrate how the limit process can be used to approximate the queue length
distribution of the exact (pre-limit) model. Our goal is to study this distributional
approximation as Q̄ and Q̂ vary through the various operating regimes and states as
defined above.

Theorem 3 (Distributional approximations) The queue length can be approximated
in the various operating regimes as follows.

(i) Overloaded state. Let t ∈ (t∗, τ ) be a time instant of overloading in the over-
loaded interval, where t∗ := sup∇ X̄

t and τ := inf{s > t∗|ρ(s) = 1}. Then
Qn(t)√

n
−√n(F(t)− F(t∗)− μ(t − t∗))⇒ X̂(t)+ X∗, as n →∞

where X∗ := sup
s∈∇ X̄

t∗
(−X̂(s)). Further, Z̃ n

t :=
√
n(F(t) − F(t∗) − μ(t −

t∗)) + X̂(t) + X∗ is the strong solution to the stochastic differential equation
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d Z̃n
t =

√
n( f (t) − μ)dt + √

g′(t)dWt ∀t ∈ (t∗, τ ) with initial condition
Z̃t∗ = X̂(t∗)− X∗, where g(t) = F(t)(1− F(t))+ σ 2μ3 B̄(t).

(ii) Underloaded state. If t is a point of underloading, i.e., if ρ(t) < 1, then Qn(t)√
n
⇒

0, as n →∞.
(iii) Middle and End of critically loaded state. An open set of the domain (t∗, τ ) is

a critically loaded interval, where t∗ is a point in the onset of critically loaded
state and τ a point at the end of critically loaded state, as defined in Definition 2.
For any t ∈ (t∗, τ ), let u = t − t∗ and we have, as n →∞,

Qn(t)√
n
⇒ (X̂(t)+ sup

0≤s≤u
(−X̂(s))),

where X̂(u)
d= X̂(t)− X̂(t∗), and X̂(t)

d= ∫ t
−T0

√
g′(s)dWs.

(iv) End of overloading state. Let t be a point of end of overloading. Then, for all
τ > 0

Qn(t − τ√
n
)

√
n

⇒
⎛

⎝X̂(t)+
⎛

⎝ sup
s∈∇ X̄

t \{t}
(−X̂(s))

⎞

⎠− ( f (t)− μ)τ

⎞

⎠

+
, as n →∞,

where f (t) is the density function associated with the fluid limit F.

The proof is relegated to the appendix.

Remarks (1) Overloaded regime (i) In this case the approximate distribution is
Gaussian with mean F(t) − μt . However, the variance is affected by the fact
that the queue may have idled in the past. Recall that the variance is g(t) =
F(t)(1− F(t))+ σ 2μ3 B̄(t), where from Corollary 1

B̄(t) = 1{t≥0} − 1

μ
Ψ (X̄)(t).

(ii) We note that this result is analogous to case 5 of Sect. 4 in [11]. However,
in [11], the author notes that no reflection needs be applied in an overloaded
sub-interval, and proceeds to derive the limit process (in this interval alone) as
W 0 ◦ F(t)− σμ3/2W (t). This is not entirely accurate as the starting state of the
process in each new interval of overloading must be factored into the approxima-
tion. That is, while ∇ X̄

t is fixed for all t in an overloaded sub-interval, the value
sup

s∈∇ X̄
t
(−X̂(s)) provides the starting state for the diffusion in such an interval.

(2) Critically loaded regime The queue length process in the critically loaded regime
is approximated by a driftless reflected process, with continuous sample paths,
with starting state X̂(t∗). By the definition of a critically loaded state ρ(t) = 1 at
all such points and ∇ X̄

t “accumulates” the points of critical loading, as t evolves

through the critically loaded interval. It follows that the set ∇ X̄
t is the interval

(t∗, t].

123



Queueing Syst (2015) 80:71–103 91

(3) End of overloading regime As noted in the definition, a point t is one of end of
overloading if the traffic intensity is 1 at t , and is strictly greater than 1 at all
points to the left of it. Here, we are primarily interested in the rate at which the
queue empties out asymptotically as overloading ends. Consider a sequence of τn
defined as a sequence of times at which the queue in the nth system first empties
out, and define v := t − τn√

n
. Then, from Theorem 3

τn = √n(t − v)⇒
X̂(t)+ sup

s∈∇ X̄
t \{t}(−X̂(s))

f (t)− μ

Thus, it can be seen that the time at which the queue empties out converges to a
Gaussian random variable. A similar conclusion was drawn in [11] and in [6] for
the Mt/Mt/1 queue.

6.2 Sample paths

We now characterize a typical sample path of the limit process Q̂.

Proposition 5 The process Q̂ is upper-semicontinuous almost surely.

The following proposition summarizes where discontinuities occur in Q̂. We note
that this is also part of Theorem 3.1 of [6]. Since the proof follows that in [6], we omit
it.

Proposition 6 Q̂ is discontinuous at time t, with a non-zero probability, if and only if
t is the end-point of overloading or critical loading. The set of such points is nowhere
dense.

Remarks (1) We note that the queue length limit sample paths for the Mt/Mt/1
model are also upper-semicontinuous as shown in Theorem 3.1 of [6]. There the
sequence of converging processes was shown to be monotone, which easily leads
to upper-semicontinuity by Dini’s Theorem. As this monotonicity property does
not hold for the corresponding processes in the �(i)/GI/1 model, we argue that
the sample path is upper-semicontinuous directly from the characterization of the
points of continuity and discontinuity in the domain of the sample path.

(2) The intuition for the regime switching behavior proved in is easy to see in the
case of a uniform arrival distribution with early-bird arrivals, such that the service
rate is greater than the value of the density function. Here, the (fluid) queue is
overloaded on the interval [−T0, τ ) with the singleton set ∇ X̄

t = {−T0}, and
underloaded on the interval (τ,∞) with the singleton set ∇ X̄

t = {t}. At τ itself,

there are two points in the set ∇ X̄
t = {−T0, τ }. Thus, there is a discontinuity due

to the fact that the set∇ X̄
t changes from being a singleton on the interval [−T0, τ )

to {−T0, τ } at τ .
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7 Examples and simulations

We illustrate the queue length process approximations with uniform and exponential
arrival time distributions. The former is interesting, as the uniformdistribution emerges
as the mean field equilibrium arrival profile when arriving users are strategic about
when they enter the queue in order to minimize their delay through the queue; see
[22,23]. The exponential distribution case serves to illustrate the fact that many of
the conclusions of our theorems can be carried over to infinite support arrival time
distributions, though the limit results remain to be fully justified.

7.1 Uniform arrival distribution

The uniform arrival case is particularly simple and illustrates the discontinuities in the
limit processes. Recall that ∇ X̄

t is a correspondence that maps each time t to the set
of points (up to t) at which the fluid netput process is equal to its infimum at t .

Corollary 3 Let F be the uniform distribution on [−T0, T ], where −T0 < 0. Then,

Q̂(t)=

⎧
⎪⎨

⎪⎩

W 0(F(t))−σμ
3
2W (t) ∀t ∈ [−T0, τ )

(W 0(F(τ ))− σμ
3
2W (τ ))+(−(W 0(F(τ ))−σμ

3
2W (τ )))+ t=τ

0, ∀t ∈ (τ,∞),

where τ = {−T0 ≤ t <∞| F(t) = μt}.
Proof Recall from Theorem 2 that Q̂ = X̂ + sups∈∇ X̄·

(−X̂) where X̂ = W 0 ◦ F −
σμ

3
2W ◦ B̄, and B̄ is the fluid busy time process. Now, using the definition of ∇ X̄

t , it
is easy to deduce that in this case, we have

∇ X̄
t =

⎧
⎨

⎩

{−T0} ∀t ∈ [−T0, τ ),

{−T0, τ } t = τ,

{t} ∀t ∈ (τ,∞).

Further, Corollary 1 yields

B̄(t) =
{
t ∀t ∈ [−T0, τ ],
0 ∀t ∈ (τ,∞).

Using these facts, the conclusion follows by substitution. ��
The time τ can be interpreted as the first time that the fluid service process catches

up with the fluid arrival process. For a uniform F , there is at most one such point, but
in general, there can be many such points.

Remarks (1) A useful way to interpret the discontinuity at τ in Corollary 3 is to
consider the process on the two sub-intervals separately and try to “patch” them
together. If Q̂(τ−) = X̂(τ ) = Q̂(τ ) > 0, we should expect a free diffusion path
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Fig. 4 Typical sample paths, mean and variance envelopes of the queue length process for F uniform over
[−20, 40], and exponentially distributed service times with rate μ = 0.03. a Sample queue length process
mean for n = 10, 25, 100, 1000, averaged over 10,000 simulation runs. b Sample queue length process
variance for n = 10, 25, 100, 1000, averaged over 10,000 simulation runs

on the interval [−T0, τ ], and a reflected process such that the path is 0 on (τ,∞).
Furthermore, Q̂(τ ) becomes the “starting state” for the process on the interval
(τ,∞), and the reflection operator is applied an instant after τ . On the other
hand, if Q̂(τ−) = X̂(τ−) ≤ 0, we have a free diffusion on [−T0, τ ) and the zero
process on [τ,∞), i.e., the process drops to zero at τ . Thus, Q̂(τ−) provides the
starting conditions for the new “regime” of the diffusion, as the process transitions
from [−T0, τ ) to (τ,∞).

(2) We note that in [11], a diffusion approximation to the queue length process
is derived independently for different operating regimes, and as such does not
involve the directional derivative reflection map. These limit results have not
been “patched” together to obtain a “process-level” convergence result, which is
precisely where the mathematical challenges lie.

Note that the nature of the discontinuity at Q̂(τ ) depends on the the sign of X̂(τ ).
Following [6], it can be shown t is a point of right-discontinuity for a function x ∈ Dlim
if x is left-continuous at t , and x(t−) > x(t+). On the other hand, t is a point of left-
discontinuity if x is right-continuous at t , and x(t+) > x(t−).

Corollary 4 Let F be the uniform distribution over [−T0, T ], where T0 > 0, and
τ = {−T0 ≤ t < ∞|F(t) = μt1{t≥0}}. Then, for the process Q̂ in Corollary 3, we
have

(i) [−T0, τ ) ∪ (τ,∞) are points of continuity.
(ii) τ is a point of right-discontinuity, when X̂(τ ) ≥ 0.
(iii) τ is point of left-discontinuity, when X̂(τ ) < 0.

The proof is available in the Appendix.
Simulations can provide insight into the accuracy of the approximations for various

population sizes. Consider a uniform arrival distribution over the interval [−20, 40],
with service times i.i.d. and exponentially distributed with parameter μ = 0.03. Fig-
ures 4a, b show the sample mean and the sample variance of the (scaled) queue length
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process for n = 10, 25, 100, 1000 over 10,000 sample runs. Note that as n increases,
the sample mean approaches the fluid limit, and the sample variance approaches the
theoretical variance of the queue length process. For the given F , the latter quantity
is

σ 2(t) =
⎧
⎨

⎩

F(t)(1− F(t)) ∀t ∈ [−T0, 0]
F(t)(1− F(t))+ σ 2μ3t ∀t ∈ (0, τ )

0 ∀t > τ.

Observe from Fig. 4a that even for small n, the sample mean is quite close to the
fluid limit for t < 0. However, once queueing dynamics come into play, the fluid limit
is a good approximation only for n = 100 or larger. A similar effect is manifest for
the diffusion limit as well: once service starts, and queueing dynamics come into play,
the diffusion limit becomes a reasonably good approximation only for n = 1000 or
larger.

7.2 Exponential arrival distribution

Assume F is an exponential distribution function with parameter λ > 0, so that
F(t) = 1 − e−λt and −T0 = 0. Keep in mind that this is unlike the M/GI/1 queue
where the exponential distribution models the inter-arrival times. Recall that the limit
results in Theorems 1 and 2 are proved on compact sets of the domain [−T0,∞).
Therefore, the limit does not hold simultaneously at all points in the support of F ,
and proving the FSLLN and FCLT for infinite support distributions is beyond the
scope of the current paper. However, observe that the queue length fluid model can be
conjectured to be

(i) If μ ≥ λ, then Q̄(t) = 0 ∀t ∈ [0,∞).
(ii) If μ < λ, then

Q̄(t) =
{

(1− e−λt − μt) ∀t ∈ [0, τ )

0 ∀t ≥ τ,

where τ := inf{t ≥ 0|F(t) = μt} is the last instant and the fluid queue length
is positive (also known as the makespan). To see this, recall the definition of Q̄(t)
and notice that if μ ≥ λ then λe−λt ≤ μ, ∀t > 0. This implies that the queue
is underloaded, as defined in Sect. 6.1. On the other hand, if μ < λ, the system
shifts from overload to underload, per our definition in Sect. 6.1. It can be shown that

τ = 1
λ
W

(
− λ

μ
e−

λ
μ

)
+ 1

μ
, whereW (·) is theLambertW function. To see this, recall that

it is the first (strictly positive) solution to e−λt = 1−μt . Substituting in−x = −λt+ λ
μ
,

we have xex = − λ
μ
e−

λ
μ . It is well known that this is the defining equation for the

Lambert W functionW , implying that x = W
(
− λ

μ
e−

λ
μ

)
. Substituting back for t , we

obtain the expression for τ .
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Fig. 5 Typical sample paths, mean and variance envelopes of the queue length process for F exponential
with parameter λ = 0.1 and exponentially distributed service times with mean rate μ = 0.05. a Sample
mean queue length for n = 10, 25, 100, 1000, averaged over 30 simulation runs. b Sample variance for
n = 10, 25, 100, 1000, averaged over 30 simulation runs

The fluid model allows us to conjecture the corresponding diffusion refinement.
Let Q̂ be the queue length diffusion model. Then,

(i) If μ ≥ λ, then Q̂(t) = 0 ∀t ∈ [0,∞).
(ii) If μ < λ, then

Q̂(t) =

⎧
⎪⎨

⎪⎩

W 0(F(t))− σμ
3
2W (t) ∀t ∈ [0, τ )

(W 0(F(t))− σμ
3
2W (t))+ (−W 0(F(t))+σμ

3
2W (t))+ t=τ

0 ∀t ∈ (τ,∞).

The “proof” of this is straightforward. Part (i) follows from the fact that the fluidmodel
is underloaded under the same condition. Part (ii) follows from the reasoning in the
proof of Corollary 3. A little algebra shows that the variance curve of the diffusion
approximation Q̂ when μ < λ is given by

σ 2(t) =
{
F(t)(1− F(t))+ σ 2μ3t ∀t ∈ [0, τ ),

0 ∀t > τ.

Let us consider a specific example, where λ = 0.1 and μ = 0.05, in which case it
can be verified that τ = 15.9362. Figure 5a shows that for even low values of n, the
fluid limit is a very good approximation to the observed mean queue length. Similarly,
Figure 5b shows that the variance of the diffusion limit is a reasonable approximation
to the variance of the queue length in the (accelerated) discrete event system.

We also note a very interesting connection between random graph theory and the
Δ(i)/GI/1 queue, brought to our notice by J.S.H. van Leeuwaarden in a personal
communication. Specifically, he has shown that the excursions of the queue length
process in the discrete event system, observed at the departure times of jobs, also
measure the size of the connected components of a random graph with n vertices. [24]
shows that in the “large graph” limit (i.e., as n →∞), the connected components in a
(nearly) critical Erdös-Rényi random graph (see [25] for details on these terms) can be

123



96 Queueing Syst (2015) 80:71–103

related to the excursions of a Brownian motion on a parabola by a weak convergence
limit result linking the two. This type of result is also intimately connected with the
question of the final size of an epidemic in a critical random graph, see [26,27] where
the distribution of the final size in a critical susceptible–infected–recovered (SIR)
epidemic model is studied. Using a Taylor series expansion on the fluid limit of the
queue length, it can be shown that for small t and ignoring terms of order 3 and higher,
the diffusion approximation is a Brownian excursion on a parabola. This connection
with the �(i)/GI/1 queue might provide a new framework to study the final size
distribution of other epidemic models in the critical regime.

8 Conclusions and future work

In this paper, we introduce a bespoke single-server queueing model, which we call the
�(i)/GI/1 queue, to model systems that are purely transient in nature, and thus serve
a finite population of customers. We develop pathwise asymptotic fluid and diffusion
approximations to the system performance metrics as the population size is increased
to infinity. These approximations are unlike the conventional heavy-traffic limits, but
are closer in spirit to the uniform acceleration approximations to the Mt/Mt/1 queue.

Our original motivation for introducing the �(i)/GI/1 model came from the ‘con-
cert arrival game,’ a game of arrival timing introduced in [22]. Customers choose to
arrive at a queue to minimize a linear cost functional that depends on the waiting time
and the number of people who have already arrived. In the fluid limit, the Nash equi-
librium arrival profile was shown to be a uniform distribution function. An important
question of interest is whether the equilibrium derived from the fluid model approxi-
mates in any way the equilibrium of the finite population ‘concert arrival game.’

Our next step is to take the diffusion approximations for the �(i)/GI/1 queue
model, and revisit the ‘concert arrival game’ problem. In [22], the assumption is that
the queue lengths are unobservable. Our diffusion approximations can now allow us
to study other situations where the queue length is fully or partially observable. In the
spirit of mean field game theory, this could be understood to be a ‘diffusion field game
theory.’

An important direction to take this research would be to study transitory queueing
models with non-stationary service processes. For instance, customers arriving closer
to the end of day may experience shorter service times. We conjecture that the limit
results will be interesting but non-trivial to establish.

Finally, it would be interesting to test empirically for how to fit the distribution F,
that characterizes the arrival pattern, to data. Then, it would be possible to use the wait
time predictions suggested by the �(i)/GI/1 model to make capacity sizing recom-
mendations. This would also allow us to compare the performance of the �(i)/GI/1
to the more common GI/GI/1 model in various application contexts.
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Appendix

Proof of Lemma 2

Rewrite ỹn as ỹn = (Ψ (
√
nx + yn) − Ψ (

√
nx + y)) − (Ψ (

√
nx + y) − √nΨ (x)).

Now, using the fact that the Skorokhod reflectionmap is Lipschitz continuous under the
uniform metric (see Lemma 13.4.1 and Theorem 13.4.1 of [12]), we have (Ψ (

√
nx +

yn) − Ψ (
√
nx + y)) ≤ ‖yn − y‖, where ‖ · ‖ is the uniform metric. It follows that

ỹn ≤ ‖yn − y‖ + (Ψ (
√
nx + y) − √nΨ (x)). Now, by Theorem 9.5.1 of [19], we

know that as n →∞

(Ψ (
√
nx + y)−√nΨ (x))

a.s.→ ỹ, in (Dlim, M1).

Using this result, and the fact that by hypothesis yn converges to y in (Dlim, J1), we
have ỹn

a.s.→ ỹ, in (Dlim, M1). ��

Proof of Lemma 3

First, suppose Q̄(t) > 0. It follows that F̄(t) − μt > inf−T0≤s≤t (F̄(s) − μs) = w,
where the latter equality follows because the queue starts empty at time 0, and the fluid
netput is positive before time 0 (Note that we ignore the positive part operator in the
definition of Ψ , as the systems starts empty at time −T0). Now, let t∗ = sup{0 ≤ s ≤
t |(F̄(s)−μs) = inf0≤s≤t (F̄(s)−μs)} be the point at which the infimum is achieved,
on the right- hand side. It follows that F̄(t)− μt > F̄(t∗)− μt∗, in turn yielding

ρ(t) = sup
0≤s≤t

F̄(t)− F̄(s)

μ(t − s)
> 1.

Next, suppose Q̄(t) = 0, X̄(t) = Ψ (X̄)(t) and there exists an r < t
such that Ψ (X̄)(t) = Ψ (X̄)(s) for all s ∈ [r, t]. It follows that F̄(t) − μt =
− sup−T0≤s≤t (−(F̄(s) − μs)), implying there exists a point r∗ ∈ [0, t] such that
F̄(t)− μt = F̄(r∗)− μr∗. This, in turn, implies that

sup
0≤s≤t

F̄(t)− F̄(s)

μ(t − r)
≥ F̄(t)− F̄(r∗)

μ(t − r∗)
= 1.

However, a simple contradiction argument shows that

sup
0≤s≤t

F̄(t)− F̄(s)

μ(t − r)
> 1

is impossible, implying that

sup
0≤s≤t

F̄(t)− F̄(s)

μ(t − r)
= 1.
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Finally, consider case (iii). We have ∀r < t ,

−(F̄(t)− μt) = sup
−T0≤s≤t

(−(F̄(s)− μs)) > sup
−T0≤s≤r

(−(F̄(s)− μs)).

It follows that −(F̄(t)− μt) > −(F̄(r)− μr),
implying

1 >
F̄(t)− F̄(r)

μ(t − r)
∀r ∈ [0, t).

��

Proof of Theorem 3

(i) Overloaded regime

Proof First, note that τ is the first instant of an end of overloading phase, and the
current overloaded phase ends at τ . In the overloaded state Q̄(t) > 0, implying that
Ψ (X̄)(t) is a constant. Using the definition of∇ X̄

t , it follows thatΨ (X̄)(t) = −X̄(t∗),
and Q̄(t) = X̄(t)− X̄(t∗) = (F̄(t)− F̄(t∗)− μ(t − t∗)). Next, from Theorem 2, it

is obvious that Qn(t)√
n

d≈ Z̃ n
t .

Next, from Remark 1 after Lemma 1, X̂(t) − X̂(t∗) = ∫ t
t∗

√
g′(s) dWs , which

can be seen to be a diffusion process that starts from 0 at t∗. Noting that ∇ X̄
t does not

change on the interval (t∗, τ ), it follows that X∗ = sup
s∈∇ X̄

t∗
{−X̂(s)) is a fixed random

variable, and Z̃ n
t has an initial condition Z̃ n

t∗ = X̂(t∗)− X∗. It is straightforward to see
that Z̃ ·n is the strong solution to the mentioned SDE, since it is adapted to the filtration
generated by W . ��
(ii) Underloaded regime

This result is immediate from the definition of the limit processes.

(iii) Middle and end of critically loaded state

Proof For any t ∈ (t∗, τ ) we have Q̄(t) = 0. From the weak convergence result

in Theorem 2, we have Qn(t)
d≈ nQ̄(t) + √nQ̂(t), and expanding the definition

of Q̂, it follows that Qn(t)
d≈ √

n(X̂(s) + sup
s∈∇ X̄

t
(−X̂(s))). Using the fact that

Ψ (X̄)(t) = w = −X̄(t) ∀ t ∈ (t∗, τ ) in a critically loaded regime, it follows that

∇ X̄
t = (t∗, t] for t ∈ (t∗, τ ). Thus, we have Qn(t)

d≈ √n(X̂(s)+ supt∗<s≤t (−X̂(s))).

Let u = t − t∗. Then, after a change of variables, we obtain Qn(u+ t∗)
d≈ √n(X̂(u+

t∗)+ sup0≤s<u(−X̂(s))).
Since W 0 is a Brownian Bridge process, the strong Markov property of Brownian

motion ([18]) implies that X̂(u + t∗) − X̂(t∗) = X̂(u). Substituting this into the
expression above we see that we have Qn(u + t∗) = Qn(u) + X̂(t∗), where X̂(t∗)
is the starting state of the process in the middle-of-critically loaded state. A simple
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change of variables will provide the desired result. A similar argument will hold for
the end of critical loading state as well. ��
(iv) End of overloading state

Proof By definition for any τ > 0, t − τ√
n
is a point of overloading. Therefore,

Qn
(
t − τ√

n

)

√
n

= X̂n
(
t − τ√

n

)
+√n

(
F(t)− τ√

n

)
− μ

(
t − τ√

n

)

+Ψ (X̂n +√n X̄)
(
t − τ√

n

)
−√nΨ (X̄)

(
t − τ√

n

)
.

Without loss of generality, we assume that service started when the queue was in the

overloaded state, so that Ψ (X̄)
(
t − τ√

n

)
= 0. Now, using the fact the derivative f

exists, the mean value theorem implies the existence of a point t̃ ∈
[
t − τ√

n
, t

]
such

that F
(
t − τ√

n

)
= F(t) − f (t̃) τ√

n
. Adding and subtracting the term f (t)τ/

√
n to

the expression above, we have

F
(
t − τ√

n

)
= F(t)− f (t)

τ√
n
+ f (t)

τ√
n
− f (t̃)

τ√
n
.

Substituting this into the expression for Qn above, and introducing the term X̂n(t),
we obtain

Qn
(
t − τ√

n

)

√
n

= X̂n
(
t − τ√

n

)
− X̂n(t)+ X̂n(t)+√n(F(t)− μt)− ( f (t)− μ)τ

+Ψ (X̂n +√n X̄)
(
t − τ√

n

)
+ ( f (t)− f (t̃))

τ√
n
.

Now, using Lemma 1 and the continuity of the limit process we see that X̂n

(t − τ√
n
) − X̂n(t) ⇒ 0. Further, since f is bounded by virtue of being defined

on a finite interval, we have τ( f (t)− f (t̃))/
√
n →∞ as n →∞. Next, consider the

term Ẑ(t) := X̂n(t)+√n(F(t)− μt)+ Ψ (X̂n +√n X̄)
(
t − t√

n

)
.

Let δ > 0 be sufficiently small, so that the following decomposition of the expres-
sion above holds:

Ẑ n(t) = sup
−T0≤s<t−δ

(X̂n(t)+√n(F(t)− μt)− X̂n(s)−√n X̄(s))

∨ sup
t−δ≤s≤t− τ√

n

(X̂n(t)+√n(F(t)− μt)− X̂n(s)−√n X̄(s)).

Let t∗ = sup{∇ X̄
t \{t}}. Consider the first term on the RHS above, and call it Ẑ n

1 (t).
Since the queue is overloaded before t no points are “added” to the correspondence
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∇ X̄
t ; it follows from the definition of an end of overloading point that (F(t)− μt) =
−Ψ (X̄)(t) ≡ −Ψ (X̄)(t∗ + δ). This, in turn, provides Ẑ n

1 (t) = X̂n(t) + Ψ (X̂ +√
n X̄)(t∗ + δ)−√nΨ (X̄)(t∗ + δ). Using Lemma 2, it follows that Ẑ n

1 (t)⇒ X̂(t)+
sup

s∈∇ X̄
t \{t}(−X̂(s)) as n →∞, followed by letting δ → 0. Next, consider the second

term

Ẑ n
2 (t) = sup

t−δ≤s≤t− τ√
n

(X̂n(t)+√n(F(t)− μt)− X̂n(s)−√n X̄(s))

≤ sup
t−δ≤s≤t− τ√

n

(X̂n(t)− X̂n(s))+ sup
t−δ≤s≤t− τ√

n

√
n(X̄(t)− X̄(s))

≤ sup
t−δ≤s≤t

(X̂n(t)− X̂n(s))+ sup
t−δ≤s≤t− τ√

n

√
n(X̄(t)− X̄(s)).

For large n, as the queue is overloaded at t − τ√
n
, it follows that

Ẑ n
2 (t) ≤ sup

t−δ≤s≤t
(X̂(t)− X̂(s))+√n

(
X̄(t)− X̄

(
t − τ√

n

))
.

Again, by the mean value theorem,

√
n
(
X̄(t)− X̄

(
t − τ√

n

))
= √n

(
F(t)− F

(
t − τ√

n

)
− μ

τ√
n

)

= √n( f (t)− μ)
τ√
n
+ ( f (t)− f (t̃))τ,

where t̃ ∈ [t − τ√
n
, t]. Since, t̃ → t as n → ∞, by the (right) continuity of f ,

it follows that f (t) − f (t̃) → 0 as n → ∞. Then it follows by an application of
Lemma 1 (and using Skorokhod’s almost sure representation) that limn→∞ Ẑ n

2 (t) ≤
X̂(t)+supt−δ≤s≤t (−X̂(s))+( f (t)−μ)τ . On the other hand, for a lower bound, using

the mean value theorem again, we have Ẑ n
2 (t) ≥ X̂n(t)− X̂n(t− τ√

n
)+( f (t)−μ)τ+

( f (t)− f (t̃))τ . Once again, using the continuity of f , the almost sure representation
theorem and Lemma 1, and noting the continuity of the limit process X̂ , we have

limn→∞ Ẑ n
2 (t) ≥ ( f (t)− μ)τ a.s.

Now, using the limits derived for Ẑ n
1 and Ẑ n

2 , it follows that

Qn(t − τ√
n
)

√
n

�⇒ −( f (t)− μ)τ + sup
s∈∇ X̄

t \{t}
(X̂(t)− X̂(s)) ∨ ( f (t)− μ)τ

=
⎛

⎝X̂(t)+ sup
s∈∇ X̄

t \{t}
(−X̂(s))− ( f (t)− μ)τ

⎞

⎠

+
.

��
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Proof of Proposition 5

The proof is a consequence of the following lemma, which consolidates Lemmas 6.5,
6.6, and 6.7 in [6]. The lemma characterizes the points of discontinuity (and continuity)
of the process Ỹ (t) = sup

s∈∇ X̄
t
(−X̂(s)) in relation to the correspondence ∇ X̄

t . We do

not prove these conditions, but direct the interested reader to [6].

Lemma 4 A point t ∈ [−T0,∞) is characterized as follows.

(i) Continuity Conditions. The following are equivalent:
(1) t is a continuity point.
(2) t ∈ ∇ X̄

t = {t}, or t �∈ ∇ X̄
t , or t ∈ ∇ X̄

t �= {t}, and t is not isolated in ∇ X̄
t and

∇ X̄
t ⊆ ∇ X̄

u f or some u > t .
(ii) Right-discontinuity Conditions. The following are equivalent:
(1) t is a point of right-discontinuity.
(2) t ∈ ∇ X̄

t �= {t} and ∇ X̄
u ⊆ (t, u] ∀ u > r .

(3) Ỹ (t) = Ỹ (t−) > Ỹ (t+) = −X̂(t).
(iii) Left-discontinuity Conditions. The following are equivalent:

(1) t is a point of left-discontinuity.
(2) t ∈ ∇ X̄

t �= {t} and t is isolated in ∇ X̄
t .

(3) Ỹ (t) = Ỹ (t+) = −X̂(t) > Ỹ (t−).

A point of right-discontinuity can be seen to be left-continuous, coupled with an
ordering on the right and left limits, such that Ỹ (t−) > Ỹ (t+). Similarly, a point of left-
discontinuity is right-continuous, and the limits are ordered such that Ỹ (t+) > Ỹ (t−).
Using these definitions, we proceed to prove the upper-semicontinuity of the limit
process.

Proof (Proposition 5) By definition, X̂ is continuous, and it suffices to check that a
sample path of the component Ỹ (t) = sup

s∈∇ X̄
t
(−X̂(s)) is upper-semicontinuous. To

see this, consider the pullback of the level set Ỹ−1[a,∞) = {t ∈ [−T0,∞)|Ỹ (t) ≥ a}.
It suffices to check that this is a closed set; see [28]. Let {τn} ⊆ {t ∈ [−T0,∞)|Ỹ (t) ≥
a} be a sequence of points such that τn → τ as n → ∞, where τ ∈ [−T0,∞) is
an arbitrary point in the domain of Ỹ . Thus, if ε > 0, then there exists an n0 ∈ N

such that ∀ n ≥ n0, ε ≥ τ − τn ≥ −ε. If τ is a continuity point, then the conclusion
is obvious. On the other hand, suppose that τ is a left-discontinuity point. By part
(iii) of Lemma 4, it follows that Ỹ (τ−) < Ỹ (τ+) = Ỹ (τ ). By the definition of a
left-discontinuity, there exits an interval [t∗, τ ), where t∗ = sup∇ X̄

τ \{τ }, on which
Ỹ is (locally) continuous. Fix δ > 0, then there exists an η > 0 such that if ≥ −η,
then δ ≥ Ỹ (τ−) − Ỹ (t) ≥ −δ. If ε is small enough, then there exists n0 such that
∀ n ≥ n0, τ −τn > −η. It follows that δ ≥ Ỹ (τn)−Ỹ (τ−) ≥ a−Ỹ (τ−), implying that
Ỹ (τ−) ≥ a − δ. Since δ is arbitrary, it follows that Ỹ (τ−) ≥ a, in turn implying that
Ỹ (τ ) ≥ 0. Thus, τ ∈ Ỹ−1[a,∞). Next, suppose that τ is a right-discontinuity point.
Then, from part (ii) of Lemma 4, we have Ỹ (τ ) = Ỹ (τ−) < Ỹ (τ+). Furthermore, for
any u > τ , we have ∇ X̄

u ⊆ (τ, u] implying that these are continuity points (by part (i)
of Lemma 4). Using an argument similar to that for a left-discontinuity, on points to
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the right of τ , it follows that Ỹ (τ ) ≥ a. This implies that the pullback set Ỹ−1[a,∞)

is closed. As {τn} is an arbitrary sequence in Ỹ−1[a,∞) it is necessarily true that Ỹ is
upper-semicontinuous. ��

Proof of Corollary 4

The proof of the corollary depends on Lemma 4 above.

Proof (Corollary 4) Recall that Q̂ = X̂ + Ỹ , where Ỹ (t) = sup
s∈∇ X̄

t
(−X̂(s)). The

proof of (i) follows directly from part (i) of Lemma 4. Next, recall from the proof of
Corollary 3 that ∇ X̄

τ = {−T0, τ }. Thus, τ is isolated in the set and it follows that part

(iii) of Lemma 4 is satisfied. On the other hand, recall that∇ X̄
t = {t} ⊂ (τ, t], ∀t > τ ,

and τ can also be a point of right-discontinuity, by part (ii) of Lemma 4. Thus, τ is one
or the other depending on the path of X̂ . If X̂(τ ) < 0 then Ỹ (τ+) = Ỹ (τ ) > Ỹ (τ−)

and τ is a point of left-discontinuity. Otherwise, if X̂(τ ) ≥ 0, then sỸ (τ ) = Ỹ (τ−) =
0 > Ỹ (τ+) and τ is a point of right-discontinuity. ��
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