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Abstract We study a network of parallel single-server queues, where the speeds of the
servers are varying over time and governed by a single continuous-time Markov chain.
We obtain heavy-traffic limits for the distributions of the joint workload, waiting-time
and queue length processes. We do so by using a functional central limit theorem
approach, which requires the interchange of steady-state and heavy-traffic limits. The
marginals of these limiting distributions are shown to be exponential with rates that
can be computed by matrix-analytic methods. Moreover, we show how to numerically
compute the joint distributions, by viewing the limit processes as multi-dimensional
semi-martingale reflected Brownian motions in the non-negative orthant.
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1 Introduction

In this paper, we consider a parallel network of N single-server queues. The speeds of
the servers vary over time and are in addition mutually dependent. More specifically,
we assume that these service speeds are governed by a single, irreducible, continuous-
time Markov chain with a finite state space. For this network, we are interested in
both the marginal and the joint workload processes for each of the queues, as well
as the processes describing the virtual waiting time and the queue length. Stationary
distributions for these processes are difficult to obtain, since the workload process
pertaining to one queue as well as the virtual waiting-time and the queue length
processes are correlated with the corresponding processes of the other queues. Our
goal in this paper is to derive the heavy-traffic behaviour of the network by obtaining
the limiting stationary distributions of the aforementioned processes. These results
can serve as simple and accurate approximations when the network is heavily utilised
or can be combined with known light-traffic results to obtain approximations for
arbitrarily loaded systems (see, for example, [14]).

The study of this general network is motivated by the fact that multi-queue perfor-
mance models with time-varying and mutually dependent service speeds find a wide
variety of applications. An example is the field of wireless networks, where multiple
users transmit data packets through a wireless medium at speeds that are typically
varying over time and mutually dependent, for example due to phenomena such as
‘shadow fading’ (cf. [38]). Another such application constitutes an I/O subsystem of an
application server (see, for example, [40]), in which the content of multiple I/O buffers
is transferred to clients at varying and mutually dependent speeds, due to the varying
level of congestion of the application server’s network connection. A final example is
given by the phenomenon of garbage collection in multi-threaded computer systems
(cf. [33]). Typically, when the total memory utilisation in such a system exceeds a
certain threshold, the processing speeds of the threads are temporarily reduced and
are as such mutually dependent.

Queueing models with service speeds that vary over time have received attention
in multiple settings in the literature. In practice, service speeds may be dependent on
factors such as the workload present in the system, which leads to the formulation
of queues with state-dependent service rates; see, for example, [3] for an overview.
Another branch of work on time-varying service speeds is that of service rate control,
where the aim is to minimise waiting and capacity costs (for example [2,16,35,41])
or to optimise a trade-off between service quality and service speed (for example
[20]) based on the state of the system by dynamically varying the service speed. In
our case, the service speeds depend on an external environment that is governed by a
Markov process. Analyses of single-server queueing models with Markov-modulated
service speeds can be found in [17,27,29,30,37]. However, none of these papers
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concern themselves with the derivation of heavy-traffic asymptotics. In this paper, we
focus on a queueing network where the service speeds of all servers in the network
are simultaneously governed by a single continuous-time Markov chain. This allows
us to incorporate mutual dependencies between the service speeds into the model.
Conceptually, there are no additional challenges in obtaining heavy-traffic results
for the queueing network with multiple queues compared to the single-queue case,
although deriving the results for the multi-queue case is more cumbersome at times.

We are mainly interested in the heavy-traffic asymptotics of the network of queues.
The study of queues in heavy traffic was initiated by Kingman with a series of papers
in the 1960s, starting with [24]; see [25] for an overview of these early results. These
papers were largely focused on the use of Laplace transforms. In our case, however,
Laplace transforms for the stationary distribution of the total workload process or even
the workload process for a queue in isolation are hard to obtain. The workload process
of a queue in isolation can in principle be modelled as a reflected Markov additive
process (MAP). For the definition and an overview of the standard theory on MAPs,
see [1, Section XI.2]. However, the stationary distribution of the workload process
is not easily derived from that. For example, standard techniques such as relating
the Laplace transforms of the stationary workload conditional on the states of the
modulator to each other typically lead to a linear system with a number of equations
smaller than the number of unknowns, defying straightforward solutions, as shown
in [21]. Less straightforward computations might involve studying the singularities
of the characterising matrix exponent pertaining to the reflected MAP (cf. [21]). In
the past, stationary distributions for special cases of reflected MAPs have also been
analysed by studying their spectral expansion (for example [28]) or by determining the
boundary probabilities in terms of the solution of a generalised eigenvalue problem
(for example [39]).

As it is not clear that the approach via Laplace transforms will work in our case, we
will use a functional central limit theorem approach mainly developed by Iglehart and
Whitt; see [43] for an overview. This is not always trivial; see for example [10,26].
Heavy-traffic approximations for generalised Jackson networks were studied in [5,15].
However, the model that we consider does not fall in the framework of generalised
Jackson networks. Instead, we tailor more classical arguments for single-node systems
to our setting. An advantage of our approach is that it can be extended to allow for
variations or generalisations of our model. For example, it is assumed that the workload
input processes of the queues are compound Poisson processes. As we will see in
the sequel, however, our heavy-traffic analysis still works through completely under
relaxed assumptions if Lemma 3.2 can be proved for this more general setting.

As we study networks with general service speeds, our model also captures a class of
queues with service interruptions. Heavy-traffic asymptotics for single-server queues
with vacations have been studied in [23]. Related but different problems are networks
with interruptions, of which durations and frequency scale with the traffic intensity,
and have been studied in [6,23] and [43, Section 14.7]. As opposed to these models,
our model allows the durations of consecutive service interruptions, which we assume
to be independent of the traffic intensity, to be interdependent through the Markovian
random environment (see also [8]), and the interruptions are not restricted to a point
in time the queue empties.
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For the network that we study in this paper, we find that the marginal workload, vir-
tual waiting-time and queue length processes pertaining to a queue in isolation exhibit
state-space collapse under heavy-traffic assumptions and have exponential limiting
distributions. Moreover, we show that the limiting distribution of the joint workload
process (as well as that of the virtual waiting-time and the queue length processes) cor-
responds to the stationary distribution of an N -dimensional semi-martingale reflected
Brownian motion (SRBM) with state spaceRN+ (see, for example, [7, Theorem 6.2] for
a definition). The reflection matrix corresponding to this SRBM is an identity matrix,
so that positive conclusions about the existence of a stationary distribution can be
drawn (cf. [18]). However, computing this distribution is challenging. The conditions
needed for the stationary distribution to have a product form do not apply to our model,
and results such as those of [11] seem hard to translate to our setting. In this paper,
we therefore show how to use the numerical methods developed in [9] for steady-
state analysis of multi-dimensional SRBMs to analyse the joint limiting distribution
of the stationary workload process. This allows us to compute quantities such as the
correlation coefficients between the marginal components.

The rest of this paper is organised as follows. Section 2 describes the model in
detail, gives the necessary notation and gives several preliminary results. In Sect. 3,
we derive the heavy-traffic limit for a properly scaled workload process and observe
that the stationary distribution of the marginal workload processes converges to an
exponential distribution. Section 4 extends these results to heavy-traffic limits for the
virtual waiting-time and queue length processes. Finally, in Sect. 5, we study how one
can compute the joint distribution of the limiting processes pertaining to the workloads,
virtual waiting times and the queue lengths, by viewing these as SRBMs. By means
of simulation results, we also show that the obtained heavy-traffic results give rise to
accurate approximations for considerably loaded systems, which mark the usefulness
of the heavy-traffic analysis that we perform from an application perspective.

2 Notation and preliminaries

In this section, we introduce the notation used in this paper, and we present several
preliminary results. In the remainder of this paper, vectors and matrices are printed in
bold face. Furthermore, 0 and 1 represent vectors of appropriate size where each of
the elements are equal to zero and one, respectively.

2.1 Arrival processes

We study the heavy-traffic asymptotics of a network consisting of N parallel single-
server queues Q1, . . . , QN , each with its own dedicated arrival stream. Type-i cus-
tomers arrive at Qi according to a Poisson process with rate λi and have a service
requirement distributed according to a random variable Bi with finite first two moments
E[Bi ] and E[B2

i ]. In particular, we represent by Bi, j the service requirement of the
j-th arriving type-i customer. We assume the service requirements of all customers
to be mutually independent. Further, we denote by {Ni (t), t > 0} a unit-rate Poisson
process. Then, the cumulative workload that enters Qi during the time interval [0, t)
is given by
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Vi (λi t) =
Ni (λi t)∑

j=1

Bi, j ,

where the arrival rate is left as part of the argument, as this will prove to be useful for
heavy-traffic scaling purposes in the sequel. In the remainder of this paper, we will
refer to {Vi (t), t ≥ 0} as the arrival process of Qi . The mean corresponding to this
arrival process is given by mV,i = E[Vi (1)] = E[Bi ]. Similarly, the variance is given
by σ 2

V,i = Var[Vi (1)] = E[Ni (1)]Var[Bi ]+Var[Ni (1)]E[Bi ]2 = Var[Bi ]+E[Bi ]2 =
E[B2

i ]. Note that the arrival process has stationary and independent increments, so that
t−1

E[Vi (t)] = mV,i and t−1Var[Vi (t)] = σ 2
V,i for any t > 0.

2.2 Cumulative service processes

The service speeds of the N servers serving Q1, . . . , QN may vary over time and are
mutually dependent. More specifically, the joint process of these service speeds is mod-
ulated by a single irreducible, stationary, continuous-time Markov chain {Φ(t), t ≥ 0}
with finite state space S and invariant probability measure π = (πi )i∈S. When this
Markov chain resides in the state ω ∈ S, the server of Qi drains its queue at service
rate φi (ω). We have as a consequence that the workload that the server of Qi has been
capable of processing during the time interval [0, t) is represented by

Ci (t) =
∫ t

0
φi (Φ(s))ds.

We will also refer to the process {Ci (t), t ≥ 0} as the cumulative service process of
Qi . Note that, as the Markov process {Φ(t), t ≥ 0} is in stationarity, the increments of
the process {Ci (t), t ≥ 0} are also stationary. The mean corresponding to the process
{Ci (t), t ≥ 0} is given by

mC,i = E[Ci (1)] =
∫ 1

0

∑

ω∈S
φi (ω)P (Φ(s) = ω) ds =

∑

ω∈S
φi (ω)πω.

Since the Ci -process has stationary increments, it holds that t−1
E[Ci (t)] = mC,i for

any t > 0. We denote the asymptotic variance limt→∞ t−1Var[Ci (t)] by σ 2
C,i . Simi-

larly, the long-run time-averaged covariance between the cumulative service processes
of the servers at Qi and Q j is represented by γ C

i, j = limt→∞ 1
t Cov[Ci (t), C j (t)].

Computing expressions for σ 2
C,i and γ C

i, j is not trivial. We focus on this problem in
Sect. 5.2.

2.3 Scaling

A queue Qi is said to be ‘stable’ if the expected amount of arriving work λi E[Bi ]
per time unit is smaller than the average workload mC,i that its server is capable of
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processing per time unit. Equivalently, Qi is stable if its load, defined as ρi = λi E[Bi ]
mC,i

,
is less than one. We are interested in the performance of the network of queues in
heavy traffic; i.e. the case for which the arrival rates λ1, . . . , λN are scaled so that
(ρ1, . . . , ρN ) → 1. For this purpose, it is convenient to introduce the index r . In the
r -th system, each arrival rate λi is taken so that βi (1 − ρi )

−1 = r , where the βi -
parameters control the rate at which the arrival rates are scaled by r , while the series
of service requirements Bi,1, Bi,2, . . . and the Ci -processes are not scaled by r . The
heavy-traffic limit for any performance measure of the system corresponds to the limit
r → ∞. We denote by λi,r the arrival rate of type-i customers corresponding to the
r -th system, so that λi,r → mC,i

E[Bi ] when r → ∞. For notational convenience, we write
for two functions f (r) and g(r) that f (r) = o(g(r)) if limr→∞ f (r)/g(r) = 0.

2.4 Functional central limit theorems for primitive processes

For purposes that will become clear in the sequel, we now state heavy-traffic limits for
the primitive processes that are scaled in time by a factor r2. First, for the scaled arrival
processes, we observe that E[Vi (λi,r r2t)] = λi,r r2

E[Bi ]t . As the arrival processes
constitute independent renewal reward processes, the functional central limit theorem
for renewal reward processes (see, for example, [43, Theorem 7.4.1]) implies that

{( V1(λ1,r r2t) − λ1,r r2
E[B1]t√

λ1,r r
, . . . ,

VN (λN ,r r2t) − λN ,r r2
E[BN ]t√

λN ,r r

)
,

t ≥ 0
}

d→ {ZV (t), t ≥ 0} (1)

as r → ∞, where {ZV (t), t ≥ 0} is an N -dimensional Brownian motion with zero
drift and covariance matrix �V = diag(σ 2

V,1, . . . , σ
2
V,N ).

Similarly, after observing that E[Ci (r2t)] = mC,i r2t , it follows from results in [42]
that the time-scaled cumulative service processes satisfy

{(C1(r2t) − mC,1r2t

r
, . . . ,

Cn(r2t) − mC,N r2t

r

)
, t ≥ 0

}
d→ {ZC (t), t ≥ 0} (2)

as r → ∞, where {ZC (t), t ≥ 0} is an N -dimensional Brownian motion with zero drift
and covariance matrix �C with elements �C

i, j = γ C
i, j . Alternatively, this result follows

from the functional central limit theorem for MAPs obtained in [34, Theorem 3.4].
Using the results of [34], we will show how to obtain expressions for γ C

i, j in Sect. 5.2.
A heavy-traffic limit for the joint scaled net-input process now follows by combining

(1) and (2) with the observation that λi,r r2
E[Bi ]t−mC,i r2t

r = βi mC,i t . In particular, this
leads to

{( V1(λ1,r r2t) − C1(r2t)

r
, . . . ,

VN (λN ,r r2t) − CN (r2t)

r

)
, t ≥ 0

}
d→ {Z(t), t ≥ 0}

(3)
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as r → ∞, where {Z(t) = (Z1(t), . . . , Z N (t)), t ≥ 0} is an N -dimensional Brownian
motion with drift vector μ = (−β1mC,1, . . . ,−βN mC,N ) and covariance matrix

� = diag

(
mC,1

E[B1]σ
2
V,1, . . . ,

mC,N

E[BN ]σ
2
V,N

)
+ �C . (4)

2.5 Representations

Let {W r (t) = (W1,r (t), . . . , WN ,r (t)), t ≥ 0} be the process that describes the work-
load in each queue of the r -th system at time t and let W r = (W1,r , . . . , WN ,r ) =
W r (∞) denote the workload in the system in steady state. The processes {Dr (t), t ≥
0} and {Lr (t), t ≥ 0} as well as Dr and Lr are similarly defined for the virtual waiting
time (the delay faced by an imaginary customer arriving at time t) and the queue length
(excluding the customer in service), respectively.

The workload Wi,r (t) present in Qi at time t can be represented by the one-sided
reflection of the net-input process {Vi (λi,r t) − Ci (t), t ≥ 0}, under the assumption
that Wi,r (0) = 0:

Wi,r (t) = Vi (λi,r t) − Ci (t) − inf
s∈[0,t]

{
Vi (λi,r s) − Ci (s)

}

= sup
s∈[0,t]

{
Vi (λi,r t) − Vi (λi,r s) − (Ci (t) − Ci (s))

}
. (5)

As the joint cumulative service process {(C1(t), . . . , CN (t)), t ≥ 0} has sta-

tionary increments, it holds that
(

C1(t) − C1(s), . . . , CN (t) − CN (s)
)

d=
(

C1(t −
s), . . . , CN (t − s)

)
, where

d= means equality in distribution. Furthermore, since

the arrival processes are independent, and compound Poisson processes have time-

reversible increments, we also have that
(

V1(λ1,r t) − V1(λ1,r s), . . . , VN (λN ,r t) −
VN (λN ,r s)

)
d=

(
V1(λ1,r (t − s)), . . . , VN (λN ,r (t − s))

)
. Due to this, we have by (5)

that W r (t) satisfies

W r (t)
d=

(
sup

s∈[0,t]
{

V1(λ1,r (t − s)) − C1(t − s)
}
, . . . , sup

s∈[0,t]
{

VN (λN ,r (t − s))

− CN (t − s)}
)

=
(

sup
s∈[0,t]

{
V1(λ1,r (s)) − C1(s)

}
, . . . , sup

s∈[0,t]
{

VN (λN ,r (s)) − CN (s)
} )

.

By letting t → ∞, this results in

W r
d=

(
sup
s≥0

{
V1(λ1,r s) − C1(s)

}
, . . . , sup

s≥0

{
VN (λN ,r s) − CN (s)

} )
. (6)
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In this study, we are particularly interested in the distribution of the scaled workload
W̃ r = Wr

r (as well as the similarly defined scaled virtual waiting time D̃r and scaled
queue length L̃r ) in heavy traffic, i.e. as r → ∞. It is easily seen from (6) that the
scaled workload can be written in terms of the similarly scaled net-input process. That
is, after scaling time by a factor r2, we have

W̃ r
d=

(
sup
t≥0

{ V1(λ1,r r2t) − C1(r2t)

r

}
, . . . , sup

t≥0

{ VN (λN ,r r2t) − CN (r2t)

r

})
. (7)

3 Heavy-traffic asymptotics of the workload

In this section, we derive the following heavy-traffic asymptotic result for the scaled
workload W̃ r .

Theorem 3.1 For the scaled workload vector W̃ r , we have

W̃ r
d→ Z,

as r → ∞, where Z = (Z1, . . . , Z N ), Z i = supt≥0{Zi (t)}, and Zi (t) is as introduced
in Sect. 2.

In order to prove this theorem, observe that, as opposed to the infinite-domain case,
the supremum of càdlàg functions on a finite domain [0, M), M ∈ R+, is a continuous
functional; see, for example, [43]. The proof uses this fact in combination with an addi-
tional result stated in Lemma 3.4. To prove Lemma 3.4, we first establish upper bounds
of the tail probabilities of the suprema of the processes {Vi (λi,r t)−E[Vi (λi,r )]t, t ≥ 0}
and {E[Ci (1)]t − Ci (t), t ≥ 0} in Lemmas 3.2 and 3.3, respectively.

Lemma 3.2 For the arrival process {Vi (λi,r ), t ≥ 0} of Qi , we have that

P

(
sup

t∈[0,T )

{Vi (λi,r t) − E[Vi (λi,r )]t} ≥ x

)
≤ λi,r E[B2

i ]T
x2

for any r, x, T ∈ R+.

Proof As {Vi (λi,r t) − E[Vi (λi,r )]t, t ≥ 0} is a right-continuous martingale, we
have by Doob’s inequality (cf. [31, Theorem II.1.7]) that P(supt∈[0,T ){Vi (λi,r t) −
E[Vi (λi,r )]t} ≥ x) ≤ x−2 supt∈[0,T ){Var[Vi (λi,r t)]}. Since Var[Vi (λi,r t)] =
λi,rσ

2
V,i t is strictly increasing in t , the lemma follows. ��

Lemma 3.3 For the cumulative service process {Ci (t), t ≥ 0} pertaining to the server
of Qi , there exist for every x, T ∈ R+ a set of positive real constants c1, c2, c3 and
c4 such that

P

(
sup

t∈[0,T )

{E[Ci (1)]t − Ci (t)} ≥ x

)
≤ c1T

x2 + c2

T
+ c3T

ec4
√

x
.
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Proof The lemma is a consequence of Proposition 1 in [22]. Define h = maxω∈S
{φi (ω)} and H(t) = ht−Ci (t). The process {H(t), t ≥ 0} represents increments of the
regenerative process {h −φi (Φ(t)), t ≥ 0} and regenerates for example every time the
Markov process {Φ(t), t ≥ 0} enters the reference state ω = Φ(0). We denote the n-th
of such regeneration times by Tn . Furthermore, we define γ ∗

n = supTn−1≤t≤Tn
{H(t)−

H(Tn−1)} and νn = Tn − Tn−1. Note that ν1, ν2, . . . can be seen as i.i.d. samples
from a random variable Y , and represent return times of state ω in the Markov chain
{Φ(t), t ≥ 0}. Proposition 1 in [22] now implies that, for all x, T ∈ R+, there exist
positive real constants d1, d2, d3 and d4 such that

P

(
sup

t∈[0,T )

{E[Ci (1)]t − Ci (t)} > x

)
≤ d1

(
e−d2

x2
T + e−d3T + T e−d4

√
x
)

, (8)

if E[e
√

sup0≤t≤Y {H(t)}] < ∞ and E[e
√

γ ∗
n ] < ∞ for any n ∈ N+. This statement

follows by substituting the variables Bt , b and Q(x) in [22, Proposition 1] by H(t),
h − E[Ci (1)] and

√
x , respectively. To show that the necessary conditions hold in

our case, observe that H(t) is non-decreasing in t and takes values from [0, ht]. By
combining this with the fact that

√
x < εx + 1

ε
for any x ≥ 0 and ε > 0, we have

that E[e
√

sup0≤t≤Y {H(t)}] = E[e
√

H(Y )] ≤ E[e
√

hY ] < E[eεhY+ε−1] = eε−1
E[eεhY ] for

any ε > 0. As γ ∗
n ≤ hνn for any n > 0, similar computations yield that E[e

√
γ ∗

n ] <

eε−1
E[eεhY ] for all n ∈ N and any ε > 0. Subsequently, note that the regeneration

time Y , which constitutes the return time of state ω in the Markov chain {Φ(t), t ≥ 0},
can be decomposed into a period of time Y1 until the transition away from ω, and the
following period Y2 until re-entry into state ω. The former period Y1 is exponentially
distributed with a certain rate α, so that E[eεhY1] = α

α−εh for ε < h−1α. The latter
period Y2 is easily seen to be stochastically smaller than a geometrically distributed
random variable with the positive success parameter q = minω′∈S\{ω}{P(Φ(1) = ω |
Φ(0) = ω′)}. Hence, E[eεhY2 ] ≤ qeεh

1−(1−q)eεh for ε < −h−1 log(1 − q). As Y1 and

Y2 are mutually independent, we thus have for 0 < ε < h−1 min{α,− log(1 − q)}
that eε−1

E[eεhY ] ≤ eε−1 α
α−εh

qeεh

1−(1−q)eεh < ∞, so that the necessary conditions are

satisfied. The lemma now follows from (8) by noting that e−T < T −1 for all T > 0
and taking c1 = d1d−1

2 , c2 = d1d−1
3 , c3 = d1 and c4 = d4. ��

Based on the results obtained in Lemmas 3.2 and 3.3, we now establish the final aux-
iliary result needed to prove Theorem 3.1. This result is summarised in the following
lemma.

Lemma 3.4 The scaled net-input process { Vi (λi,r r2t)−Ci (r2t)
r , t > 0} corresponding to

Qi satisfies

lim
M→∞ lim

r→∞ P

(
sup
t≥M

{ Vi (λi,r r2t) − Ci (r2t)

r

}
≥ x

)
= 0

for all x, M ∈ R+.
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Proof The first part of the proof is inspired by the proof of (20) in [32]. For any
r , let bi,r = E[Vi (λi,r )]+E[Ci (1)]

2 , so that bi,r − E[Vi (λi,r )] = E[Ci (1)] − bi,r =
mC,i −λi,r E[Bi ]

2 = 1
2βi mC,i r−1. Due to the subadditivity property of the supremum

operator, we have for any M > 0 that

P

(
sup
t≥M

{ Vi (λi,r r2t) − Ci (r2t)

r

}
≥ x

)

≤ P

(
sup
t≥M

{ Vi (λi,r r2t) − bi,r r2t

r

}
+ sup

t≥M

{bi,r r2t − Ci (r2t)

r

}
≥ x

)

≤ P

(
sup
t≥M

{Vi (λi,r r2t) − bi,r r2t} ≥ 0

)
+ P

(
sup
t≥M

{bi,r r2t − Ci (r
2t)} ≥ 0

)

≤
∞∑

j=0

P

(
sup

t∈[2 j M,2 j+1 M)

{Vi (λi,r r2t) − bi,r r2t} ≥ 0

)

+
∞∑

j=0

P

(
sup

t∈[2 j M,2 j+1 M)

{bi,r r2t − Ci (r
2t)} ≥ 0

)

=
∞∑

j=0

P

(
sup

t∈[2 j r2 M,2 j+1r2 M)

{Vi (λi,r t) − E[Vi (λi,r )]t − 1

2
βi mC,i r

−1t} ≥ 0

)

+
∞∑

j=0

P

(
sup

t∈[2 j r2 M,2 j+1r2 M)

{E[Ci (1)]t − Ci (t) − 1

2
βi mC,i r

−1t} ≥ 0

)

≤
∞∑

j=0

P

(
sup

t∈[0,2 j+1r2 M)

{Vi (λi,r t) − E[Vi (λi,r )]t} ≥ 2 j−1βi mC,i r M

)

+
∞∑

j=0

P

(
sup

t∈[0,2 j+1r2 M)

{E[Ci (1)]t − Ci (t)} ≥ 2 j−1βi mC,i r M

)

≤
∞∑

j=0

λi,r E[B2
i ]2 j+1r2 M

22 j−2β2
i m2

C,i r
2 M2

+
∞∑

j=0

( c12 j+1r2 M

22 j−2β2
i m2

C,i r
2 M2

+ c2

2 j+1mC,i r2 M

+ c32 j+1r2 M

ec4
√

2 j−1βi mC,i r M

)
(9)

for certain positive constants c1, c2, c3 and c4. The second-to-last inequality fol-
lows by observing that the maximum value of − 1

2βi mC,i r−1t in the domain t ∈
[2 j r2 M, 2 j+1r2 M] equals −2 j−1βi mC,i r M and by enlarging the intervals of the
suprema to also include [0, 2 j r2 M). The last inequality follows from Lemmas 3.2
and 3.3. Simplifying (9) leads to
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P

(
sup
t≥M

{ Vi (λi,r r2t) − Ci (r2t)

r

}
≥ x

)

≤ 16(λi,r E[B2
i ] + c1)

β2
i m2

C,i M
+ c2

mC,i r2 M
+

∞∑

j=0

fi, j (r, M), (10)

where fi, j (r, M) = c32 j+1r2 Me−c4
√

2 j−1βi mC,i r M . The lemma now follows from
(10) by taking the limit r → ∞ and subsequently the limit M → ∞, if
limr→∞

∑∞
j=0 fi, j (r, M) = 0. To show that this condition holds, observe that the

derivative of fi, j with respect to r reads ∂
∂r fi, j (r, M) = c32 j r Me−hi, j (M)

√
r (4 −

hi, j (M)
√

r), where hi, j (M) := c4
√

2 j−1βi mC,i M . As a result, ∂
∂r fi, j (r, M) < 0 if

and only if 4−hi, j (M)
√

r < 0. Due to the monotonicity of hi, j (M) and
√

r in j and r ,
respectively, there thus exist positive constants j0 and r0, so that ∂

∂r fi, j (r, M) < 0 for
any j ≥ j0 and r ≥ r0. This results in the fact that supr≥r∗ fi, j (r, M) = fi, j (r∗, M)

for every r∗ ≥ r0. Hence, an upper bound for
∑∞

j=0 fi, j (r, M) when r ≥ r∗ ≥ r0 is
given by

∞∑

j=0

fi, j (r, M)=
j0−1∑

j=0

fi, j (r, M)+
∞∑

j= j0

fi, j (r, M) ≤
j0−1∑

j=0

fi, j (r, M)+
∞∑

j= j0

fi, j (r∗, M).

(11)
When r → ∞, we can use (11) with r∗ taken arbitrarily large so that

lim
r→∞

∞∑

j=0

fi, j (r, M) ≤ lim
r→∞

j0−1∑

j=0

fi, j (r, M) +
∞∑

j= j0

lim
r∗→∞ fi, j (r∗, M).

By observing that limr→∞ fi, j (r, M) = 0, this inequality reduces to limr→∞
∑∞

j=0

fi, j (r, M) ≤ 0. Since fi, j (r, M) ≥ 0, it thus must hold that limr→∞
∑∞

j=0
fi, j (r, M) = 0, which concludes the proof. ��

Using these auxiliary results, we can now prove Theorem 3.1.

Proof of Theorem 3.1 By (7), it is enough to show that

lim
r→∞ P

(
N⋂

i=1

{
sup
t≥0

{ Vi (λi,r r2t) − Ci (r2t)

r

}
≥ xi

})
= P

(
N⋂

i=1

{
sup
t≥0

{Zi (t)} ≥ xi

})

(12)
for all x1, . . . , xN ≥ 0. We first obtain a lower bound for the left-hand side of (12):

lim
r→∞ P

(
N⋂

i=1

{
sup
t≥0

{ Vi (λi,r r2t) − Ci (r2t)

r

}
≥ xi

})

≥ lim
r→∞ P

(
N⋂

i=1

{
sup

t∈[0,M)

{ Vi (λi,r r2t) − Ci (r2t)

r

}
≥ xi

})
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= P

(
N⋂

i=1

{
sup

t∈[0,M)

{Zi (t)} ≥ xi

})
(13)

for all M ∈ R+, where the equality follows from (3) together with a combination
of the continuous mapping theorem and the continuity property of the supremum
operator applied to càdlàg-functions on the finite domain [0, M). Next, to derive an
upper bound for the left-hand side of (12), denote by EM,i the event that

sup
t∈[0,M)

{ Vi (λi,r r2t) − Ci (r2t)

r

}
= sup

t≥0

{ Vi (λi,r r2t) − Ci (r2t)

r

}
,

and let Ec
M,i be its complementary event. It is trivial to see that P(

⋂N
i=1{supt∈[0,M)

{Zi (t)} ≥ xi }) is an upper bound for limr→∞ P(
⋂N

i=1{supt≥0{ Vi (λi,r r2t)−Ci (r2t)
r } ≥

xi ; EM,i }) for all M ∈ R+. Furthermore, we have that
∑N

i=1 P(supt≥M

{ Vi (λi,r r2t)−Ci (r2t)
r } ≥ xi ) is an upper bound for P(

⋂N
i=1{supt≥0{ Vi (λi,r r2t)−Ci (r2t)

r } ≥
xi };⋃N

i=1 Ec
M,i ). Therefore, we obtain by using De Morgan’s law that

lim
r→∞ P

(
N⋂

i=1

{
sup
t≥0

{ Vi (λi,r r2t) − Ci (r2t)

r

}
≥ xi

})

≤ P

(
N⋂

i=1

{
sup

t∈[0,M)

{Zi (t)} ≥ xi

})

+ lim
r→∞

N∑

i=1

P

(
sup
t≥M

{ Vi (λi,r r2t) − Ci (r2t)

r

}
≥ xi

)
. (14)

When M → ∞, the lower bound established in (13) converges to
P(

⋂N
i=1{supt∈[0,∞){Zi (t)} ≥ xi }). The upper bound found in (14) also converges

to this expression, as the second term in the right-hand side of (14) vanishes due to
Lemma 3.4. From this, (12) immediately follows, which proves the theorem. ��
Remark 3.1 The joint distribution of Z is not straightforward to derive explicitly.
However, explicit expressions for the marginal distribution of Zi are not hard to
obtain. Note that Zi = supt≥0 Zi (t) is the all-time supremum of a one-dimensional
Brownian motion with negative drift −βi mC,i and variance mC,i

E[Bi ]σ
2
V,i + σ 2

C,i . It is
well known that the all-time supremum of a Brownian motion with negative drift
−a and variance b is exponentially ( 2a

b ) distributed. Therefore, the distribution of the
steady-state scaled workload W̃i,r present in Qi converges to an exponential distri-

bution with rate 2βi

(
σ 2

V,i
E[Bi ] + σ 2

C,i
mC,i

)−1

as r → ∞. In the next section, we will see

that the limiting distributions of D̃i,r and L̃i,r only differ from the limiting distrib-
ution of W̃i,r by a multiplicative factor m−1

C,i and E[Bi ]−1, respectively. As a result,
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the distributions of the steady-state delay D̃i,r and the steady-state queue length L̃i,r

also converge to exponential distributions with rates 2βi mC,i

(
σ 2

V,i
E[Bi ] + σ 2

C,i
mC,i

)−1

and

2βi E[Bi ]
(

σ 2
V,i

E[Bi ] + σ 2
C,i

mC,i

)−1

, respectively. We will study the derivation of the complete

distribution of Z in Sect. 5.3.

4 Extension to virtual waiting times and queue lengths

In Sect. 3, we derived a heavy-traffic limit theorem for the scaled workload vector
W̃ r . In this section, we extend this result to heavy-traffic limits for the distributions
of the virtual waiting-time vector D̃r and the queue length vector L̃r by considering
the joint distribution of D̃r and W̃ r as well as that of L̃r and W̃ r in Sects. 4.1 and 4.2,
respectively. It turns out that, when r → ∞, the distributions of both D̃r and L̃r are
elementwise equal to the distribution of W̃ r up to a multiplicative constant.

4.1 Heavy-traffic asymptotics of the virtual waiting time

We now study the distribution of the scaled virtual waiting time in heavy traffic. First,
we obtain the tail probability of the joint distribution of D̃r and W̃ r as r → ∞ in
Proposition 4.1. Based on this, we obtain an extension of Theorem 3.1 for the scaled
virtual waiting time in Corollary 4.2.

Proposition 4.1 The tail probability of the limiting joint distribution of D̃r and W̃ r

satisfies

lim
r→∞P

(
N⋂

i=1

{
D̃i,r ≥ si ; W̃i,r ≥ ti

})
= P

(
N⋂

i=1

{
Zi ≥ max{mC,i si , ti }

})

with Z1, . . . , Z N as defined in Theorem 3.1.

Proof Observe that since the waiting time faced by an imaginary type-i customer
arriving at time u is longer than si time units, the workload present in Qi just before u
is larger than Ci (u +si )−Ci (u). This is evident, since the latter number represents the
amount of work that the server of Qi is able to process in the si time units following
time u. In other words, the event {Di,r (u) > si } is tantamount to the event {Wi,r (u) >

Ci (u + si ) − Ci (u)} for i = 1, . . . , N , so that in steady state (i.e. u → ∞) we have

P

(
N⋂

i=1

{
Di,r > si ; Wi,r > ti

})
= P

(
N⋂

i=1

{
Wi,r > max{Ci (si ), ti }

})
. (15)

Based on this, we obtain an expression for the tail probability of the joint distribution
of D̃r and W̃ r :
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P

(
N⋂

i=1

{
D̃i,r ≥ si ; W̃i,r ≥ ti

})
= P

(
N⋂

i=1

{
Wi,r ≥ max{Ci (rsi ), r ti }

})

= P

(
N⋂

i=1

{
W̃i,r ≥ max

{Ci (rsi )

r
, ti

}})
, (16)

where we used (15) in the first equality. We now focus on showing that

lim
r→∞ P

(
N⋂

i=1

{
W̃i,r ≥ max

{Ci (rsi )

r
, ti

}})
= P

(
N⋂

i=1

{
Zi ≥ max{mC,i si , ti }

})
,

(17)

which, combined with (16), directly implies the result to be proved. To this end, we
observe that, since {Ci (t), t ≥ 0} is a renewal reward process, r−1Ci (rsi ) → mC,i si

almost surely as r → ∞ due to standard results in renewal theory. Denote by Fε
i,r

for any ε > 0 the event that r−1Ci (rsi ) ∈ [mC,i si − ε, mC,i si + ε] and let Fε,c
i,r be

its complementary event. Thus, limr→∞ P(Fε
i,r ) = 1. As a result, we have, due to De

Morgan’s law, that

P

(
N⋂

i=1

{
W̃i,r ≥ max

{Ci (rsi )

r
, t1

}})

= P

(
N⋂

i=1

{
W̃i,r ≥ max

{Ci (rsi )

r
, ti

}
; Fε

i,r

})
+ o(1).

Letting r → ∞ in this expression, using the definition of the event Fε
i,r and applying

Theorem 3.1, we obtain the following lower bound for the left-hand side of (17):

lim
r→∞ P

(
N⋂

i=1

{
W̃i,r ≥ max

{Ci (rsi )

r
, ti

}})
≥ P

(
N⋂

i=1

{
Zi ≥ max{mC,i si +ε, ti }

})
.

(18)

Similarly, an upper bound for the left-hand side of (17) is given by

lim
r→∞ P

(
N⋂

i=1

{
W̃i,r ≥ max

{Ci (rsi )

r
, ti

}})
≤ P

(
N⋂

i=1

{
Zi ≥ max{mC,i si −ε, ti }

})
.

(19)

In Remark 3.1, we found that Zi is exponentially distributed for i = 1, . . . N , so that
the joint distribution of Z has no discontinuity in the point (mC,1s1, . . . , mC,N sN ). As
a consequence, by taking the limit ε → 0 in the right-hand sides of (18) and (19), we
obtain (17), which, as explained above, proves the proposition. ��
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From Proposition 4.1, the heavy-traffic limit for the virtual waiting time follows in
the following corollary.

Corollary 4.2 For the scaled virtual waiting-time vector D̃r , it holds that

D̃r
d→

( 1

mC,1
, . . . ,

1

mC,N

)
Z,

as r → ∞, with Z defined in Theorem 3.1.

Proof This is an immediate result from Proposition 4.1 by taking t1 = . . . = tN

= 0. ��

4.2 The joint queue-length distribution

In this section, we obtain an extension of Theorem 3.1 for the scaled steady-state
queue length L̃r in heavy traffic. Let B R

i,r be the remaining service requirement of a
type-i customer in service in the r -th system if Li,r > 0, and zero otherwise. It is then
trivially seen that

W r =
(

B R
1,r , . . . , B R

N ,r

)
+

⎛

⎝
L1,r∑

j=1

B̂1, j , . . . ,

L N ,r∑

j=1

B̂N , j

⎞

⎠ (20)

for all i > 0, where B̂i, j represents the service requirement of the waiting customer
in the j-th waiting position of Qi and is distributed according to Bi . These service
requirements are mutually independent as well as independent from W r and Lr . Note
that B̂i, j is defined differently from Bi, j , which we defined in Sect. 2 to be the service
requirement of the j-th arriving type-i customer since the start of the queueing process.
The scaled version of (20) is given by

W̃ r =
(

B̃ R
1,r , . . . , B̃ R

N ,r

)
+ 1

r

⎛

⎝
r L̃1,r∑

j=1

B̂1, j , . . . ,

r L̃ N ,r∑

j=1

B̂N , j

⎞

⎠ , (21)

where B̃ R
i,r = 1

r B R
i,r for i = 1, . . . , N . It is intuitively tempting to conclude that

(B̃ R
1,r , . . . , B̃ R

N ,r ) → 0 as r → ∞, and based on that, conclude that W̃ r and L̃r are
equal elementwise up to a multiplicative constant. However, this is not straightforward,
since, for example, L̃r and (B̃ R

1,r , . . . , B̃ R
N ,r ) are not independent. We make these

results rigorous in this section. Inspired by [44, Proposition 1], we first obtain another
representation for the joint distribution of L̃i,r and W̃i,r for a single queue Qi in Lemma
4.3. Based on this result, we derive the heavy-traffic asymptotics for (L̃i,r , W̃i,r , B̃ R

i,r )

in Lemma 4.4, which imply that B̃ R
i,r → 0 as r → ∞. We subsequently conclude

that (B̃ R
1,r , . . . , B̃ R

N ,r ) → 0 as r → ∞ and derive the joint distribution of L̃r and W̃ r
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as r → ∞ in Proposition 4.5. From this, an extension of Theorem 3.1 for the scaled
queue length L̃r follows in Corollary 4.6.

In order to construct an additional representation for the joint distribution of L̃i,r

and W̃i,r , we need to introduce some additional notation. Denote by W r
i,n and Lr

i,n the
workload present in Qi and the queue length of Qi , respectively in the r -th system,
just before the n-th arrival of a type-i customer. Furthermore, Ar

i, j refers to the time
between the j-th and the ( j + 1)-st arriving type-i customer in the r -th system, so
that S A,r

i,n = ∑n
j=1 Ar

i, j and SB
i,n = ∑n

j=1 Bi, j represent the cumulative series of
interarrival times and service requirements of type-i customers. By construction of

the heavy-traffic scaling, Ar
i, j

d→ Ai, j and E[Ar
i, j ] → E[Ai, j ] as r → ∞, where Ai, j

are i.i.d. samples from an exponential
(
mC,i/E[Bi ]

)
distribution. Finally, we define

Sr
i,n = SB

i,n − Ci (S A,r
i,n ). The required representation is now given in the following

lemma.

Lemma 4.3 For any x, y > 0 and i = 1, . . . , N, the joint distribution of L̃i,r and
W̃i,r satisfies

P
(
L̃i,r ≥ x; W̃i,r ≥ y

) = P

(
Wi,r + Bi ≥ Ci (S A,r

i,�r x);

r−1 max
{

Wi,r + Sr
i,�r x, max

j∈{1,...,�r x}{Sr
i,�r x − Sr

i, j }
}
≥ y

)
.

Proof The proof is inspired by [44, Proposition 1]. Observe that, for any k ≥ 1 and
n ≥ 1, the event {Lr

i,n+k ≥ k} coincides with the event that the workload the server at
Qi was capable of processing between the arrival of the n-th and (n + k)-th customer,
Ci (S A,r

i,n+k−1) − Ci (S A,r
i,n−1), does not exceed the amount W r

i,n + Bi,n of work present
in Qi just after the arrival of the n-th customer. Hence, we have that

{Lr
i,n+k ≥ k} = {W r

i,n + Bi,n ≥ Ci (S A,r
i,n+k−1) − Ci (S A,r

i,n−1)}. (22)

Moreover, due to Lindley’s recursion, which is given by W r
i,n+1 = max{W r

i,n + Sr
i,n −

Sr
i,n−1, 0} or W r

i,n+k = max{W r
i,n + Sr

i,n+k−1 − Sr
i,n−1, max j∈{0,...,k−1}{Si,n+k−1 −

Si,n+ j }}, we have for any y ≥ 0 that

{W r
n+k ≥ y} =

{
max

{
W r

i,n+Sr
i,n+k−1−Sr

i,n−1, max
j∈{0,...,k−1}{Sr

i,n+k−1−Sr
i,n+ j }

}
≥ y

}
.

(23)
By combining (22) and (23), taking the probabilities of these events, letting n → ∞
and observing that the vector (Lr

i,n, W r
i,n) weakly converges to (Li,r , Wi,r ), we obtain

P
(
Li,r ≥ k; Wi,r ≥ y

)

= P

(
Wi,r + Bi ≥ Ci (S A,r

i,k ); max
{

Wi,r + Sr
i,k, max

j∈{1,...,k}{Sr
i,k − Sr

i, j }
}

≥ y

)
,

for any k ≥ 1, y ≥ 0. By noting that P(L̃i,r ≥ x, W̃i,r ≥ y) = P(Li,r ≥ �r x, r−1

Wi,r ≥ y), the desired statement follows immediately. ��
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Based on Lemma 4.3, we derive the heavy-traffic asymptotics of (L̃i,r , W̃i,r , B̃ R
i,r )

in the following lemma. This lemma directly implies that B̃ R
i,r → 0 as r → ∞.

Lemma 4.4 For any queue, the scaled steady-state queue length, workload and
remaining service requirement exhibit state-space collapse under heavy-traffic
assumptions. In particular, we have that

(L̃i,r , W̃i,r , B̃ R
i,r )

d→
(

1

E[Bi ] , 1, 0

)
Zi

as r → ∞ for any i ∈ {1, . . . , N }, with Zi defined in Sect. 2.

Proof Again, the proof is inspired by [44, Proposition 1]. We first focus on the joint
distribution of L̃i,r and W̃i,r . Due to the strong law of large numbers, r−1S A,r

i,�r x →
E[Ai, j ]x = E[Bi ]x

mC,i
almost surely as r → ∞. Moreover, t−1Ci (t) → mC,i almost

surely as t → ∞, so that

Ci (S A,r
i,�r x)
r

= Ci (S A,r
i,�r x)

S A,r
i,�r x

S A,r
i,�r x
r

→ E[Bi ]x (24)

in probability as r → ∞. We further have, due to the weak law of large numbers,
that r−1SB

i,�r x → E[Bi ]x , so that r−1Sr
i,�r x → 0 and r−1 max j∈{1,...,�r x}{Sr

i,�r x −
Sr

i, j } → 0 as r → ∞. Let, for any ε > 0, Gε
i,r denote the event

{r−1Ci (S A,r
i,�r x)∈[E[Bi ]x − ε, E[Bi ]x + ε]; r−1SB

i,�r x ∈ [E[Bi ]x − ε, E[Bi ]x + ε];
r−1Sr

i,�r x ∈ [−ε, ε]; r−1 max
j∈{1,...,�r x}{Sr

i,�r x − Sr
i, j } ∈ [0, ε]}.

Due to the convergence results above, limr→∞ P(Gε
i,r ) = 1 so that P(L̃i,r ≥ x; W̃i,r ≥

y) = P(L̃i,r ≥ x; W̃i,r ≥ y; Gε
i,r ) + o(1). After combining this with Lemma 4.3 and

consequently taking the limit r → ∞, we obtain

lim
r→∞ P

(
W̃i,r ≥ max{E[Bi ]x + ε, y + ε})

≤ lim
r→∞ P

(
L̃i,r ≥ x; W̃i,r ≥ y

) ≤ lim
r→∞ P

(
W̃i,r ≥ max{E[Bi ]x − ε, y − ε}),

since B̃i → 0 as r → ∞. By first applying Theorem 3.1 on the left-hand side and the
right-hand side, next noting that the distribution of Zi has no discontinuity points (cf.
Remark 3.1), and finally letting ε → 0, we obtain

lim
r→∞ P

(
L̃i,r ≥ x; W̃i,r ≥ y

) = P
(
Zi ≥ max{E[Bi ]x, y}). (25)

It remains to consider the convergence of B̃ R
i,r . We show that limr→∞ P(B̃ R

i,r >

δ) = 0 for all δ > 0, which finalises the proof of the desired statement. Note that due
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to representation (21), we have that P(B̃ R
i,r > δ) = P(W̃i,r > 1

r

∑r L̃i,r
j=1 B̂i, j + δ). Let

H ε
i,r denote the event { 1

n

∑n
j=1 B̂i, j ∈ (E[Bi ] − ε, E[Bi ] + ε) for all n ≥ √

r}. By
using the law of total probability and noting that limr→∞ P(H ε

i,r ) = 1 due to the weak
law of large numbers, we thus have, similar to earlier calculations, that

P

(
B̃ R

i,r > δ
)

= P

⎛

⎝W̃i,r >
1

r

r L̃i,r∑

j=1

B̂i, j + δ; H ε
i,r

⎞

⎠ + o(1)

= P

⎛

⎝W̃i,r > L̃i,r
1

r L̃i,r

r L̃i,r∑

j=1

B̂i, j + δ; H ε
i,r

⎞

⎠ + o(1).

By taking the limit r → ∞ and using the established convergence of L̃i,r , we obtain

lim
r→∞ P

(
W̃i,r > L̃i,r (E[Bi ] + ε) + δ

) ≤ lim
r→∞ P

(
B̃ R

i,r > δ
)

≤ lim
r→∞ P

(
W̃i,r > L̃i,r (E[Bi ] − ε) + δ

)
.

By letting ε → 0 and noting, as before, that the limiting distribution of W̃i,r has
no discontinuity points, this leads to limr→∞ P(B̃ R

i,r > δ) = limr→∞ P(W̃i,r >

L̃i,r E[Bi ] + δ) for any δ > 0. Observe that (25) implies that limr→∞ P(W̃i,r >

L̃i,r E[Bi ] + δ) = 0 for any δ > 0, which completes the proof. ��
Based on the previous results, we now obtain the limiting joint distribution of L̃r

and W̃ r in the following proposition.

Proposition 4.5 The tail probability of the limiting joint distribution of L̃r and W̃ r

satisfies

lim
r→∞ P

(
N⋂

i=1

{
L̃i,r ≥ si ; W̃i,r ≥ ti

})
= P

(
N⋂

i=1

{
Zi ≥ min{E[Bi ]si , ti }

})
(26)

with Z1, . . . , Z N defined in Sect. 2.

Proof Equation (21) implies that the event {L̃i,r ≥ si } coincides with the event {W̃i,r ≥
B̃ R

i,r + 1
r

∑rsi
j=1 B̂i, j }, as the B̂i, j can only take non-negative values. Thus, we have

P

(
N⋂

i=1

{
L̃i,r ≥ si ; W̃i,r ≥ ti

})
= P

⎛

⎝
N⋂

i=1

{
W̃i,r ≥ max{B̃ R

i,r + 1

r

rsi∑

j=1

B̂i, j , ti }
}
⎞

⎠.

Let H ε
i,r be defined as before and recall that limr→∞ P(

⋂N
i=1 H ε

i,r ) = 1, so that, due
to the law of total probability,
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P

(
N⋂

i=1

{
L̃i,r ≥ si ; W̃i,r ≥ ti

})

= P

⎛

⎝
N⋂

i=1

{
W̃i,r ≥ max{B̃ R

i,r + si
1

rsi

rsi∑

j=1

B̂i, j , ti }; H ε
i,r

}
⎞

⎠ + o(1).

Note that, according to Lemma 4.4, B̃ R
i,r → 0 as r → ∞ for i = 1, . . . , N , so that

also (B̃ R
1,r , . . . , B̃ R

N ,r ) → 0 as r → ∞. We thus obtain

lim
r→∞ P

(
N⋂

i=1

{
W̃i,r ≥ max{E[Bi ] + ε, ti }

})
≤ lim

r→∞ P

(
N⋂

i=1

{
L̃i,r ≥ si ; W̃i,r ≥ ti

})

≤ lim
r→∞ P

(
N⋂

i=1

{
W̃i,r ≥ max{E[Bi ] − ε, ti }

})
.

By taking the limit ε → 0, an application of Theorem 3.1 and the notion that the
distribution of Z has no discontinuity points yield the desired result. ��
Corollary 4.6 For the scaled queue length vector L̃r , it holds that

L̃r
d→

( 1

E[B1] , . . . ,
1

E[BN ]
)

Z,

as r → ∞, with Z defined in Sect. 2.

Proof The desired statement follows immediately from Proposition 4.5 by taking
t1 = . . . = tN = 0. ��

5 Application to a two-layered network

In this section, we apply the results obtained so far in this paper to a network that is
inspired by a manufacturing application and fits the class of so-called layered queueing
networks (see e.g. [12–14]). We will also refer to this network as the two-layered
network. We first describe the network in more detail in Sect. 5.1 and show that this
particular model fits naturally in the general framework described in Sect. 2. Then,
in Sect. 5.2, we study the question of how to compute the covariance matrix � of
the N -dimensional Brownian motion Z based on this example. More specifically, we
obtain expressions for the covariance terms γ C

i, j , by using results from the literature

on MAPs. We also compute the limiting distributions of W̃ r , D̃r and L̃r . Doing so in
an exact fashion turns out to be hard. Therefore, we study how to numerically obtain
the limiting distributions, by viewing Z as an N -dimensional SRBM in Sect. 5.3.
Finally, in Sect. 5.4, we conclude by means of simulation that the distribution of
W̃ r converges quickly to the distribution of Z as r → ∞, and therefore, that the
heavy-traffic asymptotics constitute useful approximations for stable systems with a
considerable load.
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R

M

Layer 1 Layer 2 

1

M2

Q1

2Q

Fig. 1 The two-layered model under consideration

5.1 Description of the two-layered network

The two-layered network that we consider in this section is an extension of the
machine-repair model (cf. [36, Chapter 5]) and consists of N machines M1, . . . , MN

as well as a single repairman R, see Fig. 1. The second layer of this network
constitutes the classical machine-repair model, where each machine breaks down
after a stochastic lifetime, and the repairman repairs the machines in the order of
breakdown. In the event of a breakdown, the machine moves to the repair buffer,
where it will wait if the repairman is busy repairing, otherwise repair will start
instantly. Contrary to the classical machine-repair model, we assume that each
machine Mi also processes its own queue Qi of products at a service speed of
one when it is operational, which forms the first layer of the two-layered net-
work.

When lifetimes and repair times follow a phase-type distribution, this networks
fits the general model given in Sect. 2, as the availability of the Markov chains
can then be modelled by a continuous-time Markov chain {Φ(t), t ≥ 0}. For the
sake of brevity, we will assume in the remainder of Sect. 5 that N = 2 and
that the lifetime and repair-time distributions of Mi are exponentially distributed
with rate σi and νi , respectively. Then, {Φ(t), t ≥ 0} operates on the state space
S = {(U, U ), (U, R), (R, U ), (W, R), (R, W )}. A state ω = (ω1, ω2) ∈ S repre-
sents for each machine Mi its condition of being up (ωi = U ), in repair (ωi = R),
or waiting in the repair buffer for repair (ωi = W ) at time t . The generator matrix
Q with elements qi, j , i, j ∈ S, that corresponds to this Markov chain is given by
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Q =

⎛

⎜⎜⎜⎜⎝

−σ1 − σ2 σ2 σ1 0 0
ν2 −ν2 − σ1 0 σ1 0
ν1 0 −ν1 − σ2 0 σ2
0 0 ν2 −ν2 0
0 ν1 0 0 −ν1

⎞

⎟⎟⎟⎟⎠
,

and we let qi = −qi,i be the sum of the outgoing rates of state i . The continuous-
time Markov chain {Φ(t), t ≥ 0} is irreducible and aperiodic, so that its invariant
probability measure π = (π j ) j∈S is uniquely determined by the equations π Q = 0
and π1 = 1 and can be obtained explicitly in terms of the model parameters σ1, σ2, ν1
and ν2. Since the machines drain their queues of products at service rate one if they are
operational (and zero otherwise), the connection with the general framework in Sect. 2
is completed by choosing the state-dependent service speeds as φi (ω) = 1{ωi =U },
where 1{A} denotes the indicator function on the event A.

5.2 Derivation of the covariance matrix

Now that the two-layered network is cast as a special instance of the general model
given in Sect. 2, we show how to compute expressions for the covariance matrix �

of the N -dimensional Brownian motion Z completely in terms of the model para-
meters. We do this based on the example of the two-layered network described in
Sect. 5.1. However, the following methods can also be used to find the covariance
matrix � for any instance of the model given in Sect. 2 without any conceptual
complications. By (4), it remains to compute expressions for the covariance terms
γ C

i, j = limt→∞ 1
t Cov[Ci (t), C j (t)] for all i, j ∈ {1, . . . , N }. In order to compute

these, observe that the increments of {Ci (t), t ≥ 0} and {C j (t), t ≥ 0} are condition-
ally independent given {Φ(t), t ≥ 0}. Therefore, we can view {(Φ(t), Ci (t)), t ≥ 0},
{(Φ(t), C j (t)), t ≥ 0} and {(Φ(t), Ci (t) + C j (t)), t ≥ 0} as MAPs. As a conse-
quence, a functional central limit theorem for MAPs obtained in [34] can be applied
to compute γ C

i, j for all i, j ∈ {1, . . . , N }. Let ωref ∈ S be an arbitrary reference state
and let Tk be the k-th time after t = 0 that the Markov chain {Φ(t), t ≥ 0} enters this
state. Then, the results of [34] imply the following lemma.

Lemma 5.1 Suppose that {Y (t), t ≥ 0} is a Markov-modulated drift process, of which
the drift equals dk when the Markov chain {Φ(t), t ≥ 0} is in state k ∈ S. Furthermore,
suppose that |dk | < ∞ for each k ∈ S and that

∑
k∈S πkdk = 0. Then, { 1√

s
Y (st), t ≥

0} converges in distribution, as s → ∞, to a driftless Brownian motion starting at 0
with variance parameter

σ 2
Y = 2

∑

k∈S
πk

⎛

⎜⎝
d2

k

qk
+

∑

l∈S\{{k}∪{ωref}}

qk,ldk fl
qk

⎞

⎟⎠, (27)

where the fl -parameters are the unique solution to the set of linear equations

fm = dm

qm
+

∑

n∈S\{{m}∪{ωref}}

qm,n

qm
fn .
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In particular, we have that limt→∞ 1
t Var[Y (t)] = σ 2

Y .

Proof The convergence in distribution immediately follows from [34, Theorem 3.4]
by taking X (t) = Φ(t) and Di, j = Vi, j = υi = 0 for all i, j in the notation of
that paper. To show the result for the asymptotic variance of the modulated process
Y , observe that M(t) = maxk:Tk≤t {k} counts the number of times the Markov chain
returned to the reference state until time t , so that {M(t), t ≥ 0} can be interpreted as
a (delayed) renewal process. As a consequence,

lim
t→∞

Var[Y (t)]
t

= lim
t→∞

Var[Y (
∑M(t)

i=1 (Ti+1 − Ti ))] + o(t)

t

= lim
t→∞

E[M(t)]Var[Y (T2 − T1)] + Var[M(t)]E[Y (T2 − T1)]2

t

= Var[Y (T2 − T1)] lim
t→∞

E[M(t)]
t

= Var[Y (T2 − T1)]
E[T2 − T1] .

Section 3 in [34] shows that Var[Y (T2 − T1)] = E[(Y (T2 − T1))
2] = σ 2

Y E[T2 − T1],
which concludes the proof. ��

We now apply this lemma to obtain the covariance matrix for the two-layered model
with N = 2. In particular, to compute σ 2

C,1, we study the process Y (t) = C1(t) −
E[C1(t)] = C1(t)−(π(U,U )+π(U,R))t with conditional drift dk = 1{k∈{(U,U ),(U,R)}}−
(π(U,U )+π(U,R)) when the modulator Φ resides in state k. As Var[Y (t)] = Var[C1(t)]
for any t ≥ 0, an expression for σ 2

C,1 is then readily given in Lemma 5.1 by (27).

An expression for σ 2
C,2 can be found similarly to the computations above or sim-

ply by interchanging the indices in the expression of σ 2
C,1. Observe that an expres-

sion for limt→∞ 1
t Var[C1(t) + C2(t)] can also be found using the same technique,

but now considering the process Y (t) = C1(t) + C2(t) − (E[C1(t) + C2(t)]) =
C1(t) + C2(t) − (2π(U,U ) + π(U,R) + π(R,U ))t instead with dk = 1{k∈{(U,U ),(U,R)}}+
1{k∈{(U,U ),(R,U )}} − (2π(U,U ) + π(U,R) + π(R,U )). Again, it then holds that an expres-
sion for limt→∞ 1

t Var[C1(t) + C2(t)] is given in (27). After these computations, the
covariance matrix � can be expressed explicitly in terms of the model parameters.
The covariance parameters γ C

1,1 and γ C
2,2 are by definition equal to σ 2

C,1 and σ 2
C,2, for

which we have already derived explicit expressions. As for the remaining parameters,
we have that both γ C

1,2 and γ C
2,1 are equal to

lim
t→∞

1

t
Cov[C1(t), C2(t)]

= 1

2

(
lim

t→∞
1

t
Var[C1(t) + C2(t)] − lim

t→∞
1

t
Var[C1(t)] − lim

t→∞
1

t
Var[C2(t)]

)
,

where all of the terms between the brackets in the right-hand side are now known. As
the rest of the terms appearing in (4) were already expressed in terms of the model
parameters, the covariance matrix � is now explicitly known.
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5.3 Numerical evaluation of the limiting distribution of Z

Now that � can be computed explicitly, we investigate in this section the joint distri-
bution of Z, i.e. the limiting distribution of the scaled workload W̃ r , in stationarity.
Since the limiting distributions of D̃r or L̃r equal the distribution of Z up to a scalar
as observed in Corollaries 4.2 and 4.6, the results also directly relate to the limiting
distributions of the scaled virtual waiting time and the scaled queue length.

To study the joint distribution of Z as defined in Theorem 3.1, we first observe
that this distribution equals the stationary distribution of an N -dimensional SRBM. In
particular, by the definitions of Z(t) and Zi (t) in Sect. 2 and Theorem 3.1, respectively,
we have that the process Z(t) = {Z1(t), . . . , Z N (t)} satisfies

Z(t) =
(

sup
s∈[0,t]

{Z1(s)}, . . . , sup
s∈[0,t]

{Z N (s)}
)

d=
(

sup
s∈[0,t]

{Z1(t) − Z1(t − s)}, . . . , sup
s∈[0,t]

{Z N (t) − Z N (t − s)}
)

=
(

Z1(t) − inf
s∈[0,t]{Z1(s)}, . . . , Z N (t) − inf

s∈[0,t]{Z N (s)}
)

= Z(t) + RY(t),

where the equality in distribution follows since multi-dimensional Brownian motions
are time-reversible [4, Lemma II.2]. In this representation, R is the N × N iden-
tity matrix, and Y(t) = (Y1(t), . . . , YN (t)) = (− infs∈[0,t] {Z1(s)}, . . . ,− infs∈[0,t]
{Z N (s)}). Observe that {Y(t), t ≥ 0} is a continuous, non-decreasing process starting
in 0, of which the elements Yi can only increase at times t when Zi (t) = 0. A process
with such a representation is known to be an SRBM on the state space RN+ (see, for
example, [7, Section 7.4]). By letting t → ∞, it is now clear that the joint distribution
of Z coincides with the stationary distribution of an SRBM on the non-negative orthant
with drift vector μ, covariance matrix � and reflection matrix R.

Computing the stationary distribution of a multi-dimensional SRBM is in general
a challenging problem. Although the SRBM corresponding to our model satisfies the
conditions derived in [18] for a unique stationary distribution to exist, it does not
necessarily satisfy the necessary requirements found in [19] for this distribution to
have a product form. A numerical approach obtained in [9] to compute the stationary
distribution is, however, applicable to our setting.

We now apply this numerical algorithm to the two-layered network and observe
several parameter effects. Note that for the two-layered network, R resolves to a
2×2 identity matrix, and the underlying Brownian motion {Z(t), t ≥ 0} has a drift
vector μ = (−β1(π(U,U ) + π(U,R)),−β2(π(U,U ) + π(R,U ))

)
and a covariance matrix

� = diag

(
E[B2

1 ]
E[B1] (π(U,U ) + π(U,R)),

E[B2
2 ]

E[B2] (π(U,U ) + π(R,U ))

)
+ �C , where �C is a

2×2 matrix consisting of the elements γ C
i, j computed in Sect. 5.2. For a number of

instances of the two-layered network, we have computed several characteristics of the
stationary distribution, such as the first two moments and the cross-moment of Z1
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Table 1 Numerical results for several instances of the two-layered network

Instance
no.

β1 β2 E[B1] E[B2
1 ] E[B2] E[B2

2 ] σ1 σ2 ν1 ν2 E[Z1] E[Z2] Corr
[Z1, Z2]

1 1 1 1 2 1 2 1
10

1
10

1
10

1
10 4.33 4.33 0.274

2 1
2 1 1 2 1 2 1

10
1

10
1

10
1

10 8.67 4.33 0.228

3 1 1 1 5 1 5 1
10

1
10

1
10

1
10 5.83 5.83 0.195

4 1 1 1
2

1
2 2 8 1

5
1

20
1
5

1
20 3.84 7.18 0.446

5 1 1 1 2 1 2 1 1 1 1 1.33 1.33 0.080

6 1 1 1 2 1 2 1
20

1
20

1
5

1
5 2.06 2.06 0.124

and Z2. The results are summarised in Table 1, where for each of the instances the
calculated values for E[Z1], E[Z2] and the correlation coefficient Corr[Z1, Z2] =

E[Z1 Z2]−E[Z1]E[Z2]√
E[Z

2
1]−E[Z1]2

√
E[Z

2
2]−E[Z2]2

are given. Recall that the marginal distribution of Zi is

exponential, so that E[Z
2
i ] = 2E[Zi ]2. Observe also that the limiting distributions of

D̃r and L̃r are equal to the distribution of Z up to a scalar, so that Corr[Z1, Z2] does not
only represent the correlation coefficient pertaining to the limiting distribution of the
scaled workload W̃ r , but also to that of the scaled virtual waiting time and the scaled
queue length. It follows from Table 1 that the competition between the machines of the
repair facilities can be of such a level, that the correlation coefficient pertaining to the
queue lengths is significant. Moreover, by taking the first instance as a reference, we
observe that the correlation coefficient is highly influenced by the relative convergence
speed of the arrival rates (instance no. 2), the variability of the service times (instance
no. 3), the level of asymmetry in the model parameters (instance no. 4), the frequency
of machine breakdowns and speed of machine repairs with respect to the arrivals and
services of products (instance no. 5), and the duration of the machine lifetimes with
respect to that of their repairs (instance no. 6).

5.4 Comparison with simulation results

We end this section with an assessment of the quality of the distribution of Z as
an approximation for the joint workload distribution in systems with a considerable
load. In Table 2, simulation results for the scaled workload W̃ r corresponding to the
values r = 5, 10, 20 are given for each of the instances given in Table 1. Recall that
ρi = 1 − βi

r , so that r = 5, 10, 20 corresponds to ρi = 0.8, 0.9, 0.95 if βi = 1. Thus,
the values r = 5, 10, 20 represent systems that operate under a high load, as is often
the case in practice.

As expected, Tables 1 and 2 suggest that the distribution of Z generally approx-
imates the distribution of W̃ r well in terms of marginal means and the correlation
coefficient. In particular, the tables confirm that E[W̃i,r ] converges to E[Zi ] from
below as r → ∞ at a fast rate, so that E[Zi ] is a provably useful upper bound close to
the actual value of E[W̃i,r ] for large r (i.e. significantly loaded systems). Surprisingly,
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the rate at which E[W̃i,r ] converges to E[Zi ] does not seem to differ much between
the model instances. The slowest convergence occurs in the third model instance due
to the high variability of the service times, but it does not deviate much from the other
instances. The only outlying rate of convergence can be found in the expected scaled
waiting time of the first queue in the second model instance, where convergence is a
lot faster. However, this is obvious by the nature of our scaling, since β1 = 1/2 for
that model instance instead of β1 = 1. Furthermore, the values of Corr[Z1, Z2] turn
out to be accurate approximations of the values Corr[W̃1,r , W̃2,r ], r = 5, 10, 20, for
almost all of the model instances. Thus, the limiting distribution seems to capture the
correlation structure between the queue lengths in the stable case rather well. One can
argue that the fifth model instance is an exception to this. However, due to the high
frequency of machine breakdowns and repairs, there hardly is any correlation between
the queues, making correlation coefficients hard to approximate accurately.
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