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Abstract We are interested in queues in which customers of different classes arrive
to a service facility, and where performance targets are specified for each class. The
manager of such a queue has the task of implementing a queueing discipline that results
in the performance targets for all classes being met simultaneously. For the case where
the performance targets are specified in terms of ratios of mean waiting times, as long
ago as the 1960s, Kleinrock suggested a queueing discipline to ensure that the targets
are achieved. He proposed that customers accumulate priority as a linear function of
their time in the queue: the higher the urgency of the customer’s class, the greater the
rate at which that customer accumulates priority. When the server becomes free, the
customer (if any) with the highest accumulated priority at that time point is the one
that is selected for service. Kleinrock called such a queue a time-dependent priority
queue, but we shall refer to it as the accumulating priority queue. Recognising that
the performance of many queues, particularly in the healthcare and human services
sectors, is specified in terms of tails of waiting time distributions for customers of
different classes, we revisit the accumulating priority queue to derive its waiting time
distributions, rather than just the mean waiting times. We believe that some elements
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of our analysis, particularly the process that we call the maximum priority process, are
of mathematical interest in their own right.

Keywords Priority queues - Time-dependent priority - Non-preemptive priority -
Accumulating priority

Mathematics Subject Classification 60K25 - 90B22 - 68M20

1 Introduction

Historically, priority queues have been analyzed under the assumptions that classes of
customer have fixed priorities, and that no customer from a given class is admitted to
service while there are customers present from classes of higher priority. In many situ-
ations, this type of priority queueing discipline is appropriate. However, in a situation
where separate service requirements are simultaneously specified for each class, there
is no reason to expect that an absolute priority discipline will yield performance levels
that satisfy the service requirements. For example, high-priority classes might receive
better service than specified, while the service level of low-priority customers might
not be adequate. It is therefore desirable to seek a modification to the classical struc-
ture, which would enable the manager of a queue to fine-tune the customer selection
discipline so that the service requirements of all customer classes are simultaneously
satisfied.

The simplest discipline for achieving such an objective was first proposed in 1964
by Kleinrock in [12]; it is also widely known through its presentation in [11]. He termed
it the time-dependent priority queue, but as this phrase has come to mean many things,
we shall refer to it as the accumulating priority queue. Kleinrock’s objective was to
achieve desired ratios of stationary mean waiting times experienced by customers
from the different classes. He achieved this by stipulating that customers accumulate
priority as a linear function of their time in the queue, with customers from classes for
whom mean waiting times should be shorter accumulating priority at a greater rate.
When the server becomes free, the customer (if any) with the highest accumulated
priority at that time point is the one that is selected for service. Kleinrock’s main result
was a set of recursive formulae for the stationary mean waiting times of the different
classes in such a queue, expressed in terms of the parameters of the arrival and service
distributions involved, and the rates of accumulation. He further showed that, for a
stable queue, it is possible to achieve any set of ratios of stationary mean waiting times
(within a region determined by the values of these ratios in an absolute priority queue)
by suitably tuning the accumulation rates. Of course, the actual values of the mean
waiting times depend on the traffic intensity.

Kleinrock’s primary motivation in [12] was the scheduling of computer jobs as
a function of the queue length. Ours comes from healthcare applications. Patients in
many jurisdictions around the world are classified according to an acuity rating system.
The performance of such systems is assessed typically in terms of compliance with a set
of Key Performance Indicators (KPIs) expressed in terms of distributional tails. These
KPIs specity, for each priority class, both a benchmark time standard, and a proportion
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Table 1 CTAS key

L Category Classification Access Performance level (%)
performance indicators
1 Resuscitation Immediate 98
2 Emergency 15 min 95
3 Urgent 30 min 90
4 Less urgent 60 min 85
5 Not urgent 120 min 80

of patients whose waiting times before accessing treatment should not exceed the
stipulated standard. For example, as is depicted in Table 1, the Canadian Triage and
Acuity Scale (CTAS) [4] formulates five priority classifications for assessment in an
emergency department, each with its own time standard and compliance target for the
proportion of that class’s patients that need to meet that standard. The Australasian
Triage Scale [3], on which CTAS is based, likewise, has five priority classes, but with
different compliance targets. Elective patients awaiting surgery or treatment are also
categorized into priorities with compliance targets; we cite as particular examples
hip and knee replacement priority scoring in Canada [2] and New Zealand [7], and
coronary artery bypass graft surgery in New Zealand [15]. Curtis et al. [6] gave an
overview of prioritisation in Australia, as well as a discussion of the Clinical Priority
Assessment Criteria (CPAC) tools used in New Zealand and the Western Canada
Waiting List Project (WCWL) in Canada.

A variant of the accumulating priority mechanism has been considered previously
by healthcare modellers in a simulation of emergency care. Hay et al. [9] proposed
a mechanism which they term “operating priority” whereby all tasks have an initial
priority score which then increases as a function of time. Both the initial score and the
rate of increase are functions of the patient class. The authors went on to observe that
their mechanism tracks the actual behaviour of an emergency care facility better than
the classical priority mechanism.

In this paper, we extend Kleinrock’s analysis to derive the stationary waiting time
distribution for each class in a single-server accumulating priority queue with Poisson
arrivals and generally distributed service time distributions. Our analysis involves the
introduction and study of a stochastic process, the maximum priority process, that we
believe is of interest in its own right.

The remaining sections proceed as follows. Following a description of our model
and preliminary definitions in Sect. 2, we discuss the maximum priority process for
the two-class queue in Sect. 3, and define the concept of an accreditation interval in
Sect. 4. We then recall some useful results concerning the waiting time and busy period
distributions in a standard first-come-first-served M /G /1 queue in Sect. 5 and derive
expressions for the Laplace transforms of the accumulated priority of customers enter-
ing service in a two-class accumulating priority queue in Sect. 6. Section 7 contains
preliminary results for a multiclass system and Sect. 8 the derivation of the waiting time
distribution of customers of all classes. Section 9 contains some comments concerning
an alternative derivation of the waiting time distribution for the lowest priority class
in the general multiclass case. Section 10 shows how to utilise our results to design
an efficient method for simulating an accumulating priority queue, while Sects. 11
and 12 present a numerical example and some comments and suggestions for further
research, respectively.
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2 Our model

We consider a single-server queue with Poisson arrivals and general service times.
Customers of class i, i = 1,2,..., N arrive at the queue as a Poisson process with
rate ;. Upon arrival, a customer of class i starts accumulating priority at rate b;, where
by > by > ... > by. Thus, if a customer of class i arrives at time ¢ and is still in
the system at time ¢/ > ¢, their accumulated priority at time " is b; (¢’ — ¢). When a
customer completes service, the next customer to be served is the one with the greatest
accumulated priority at that instant.

Figure 1 plots the accumulated priorities of customers against time for the sample
path of such a process with two classes and priority factors b1 = 1,5, = 0.5. The
arrival instants are those points (1, 3, 10, 15, 17) where the priority functions are
initiated. The departure instants (14, 21, 23, 26, 31) are marked by vertical lines. The
priority function for the customer that is in service (if any) is highlighted, and we see
that the sequence of services is: class 1, class 2, class 1, class 1, and class 2. In this
plot we see examples of both a class 2 arrival being served before a class 1 customer
that arrived while it was waiting (at time 14), and of a later class 1 arrival overtaking
an earlier class 2 arrival and being served first (at time 23).

Let T = {T,;n = 1, 2, ...} be the process of inter-arrival times at the queue, with
T being the time of the first arrival and 7, = ZZ: 1 T being the time of the n'h
arrival. For each n, let x (n) be the class and X, the service time of the n’" customer,
withy ={x(n);n=1,2,...}and X ={X;;;n=1,2,...}.

Let X be a random variable having the service time distribution of a class i
customer, with mean 1/;, distribution function B, and Laplace-Stieltjes transform
(LST) B® (s) = E(e—X (i)), defined in the right complex half-plane and for at least
some s with N(s) < 0. Under the assumption that the interarrival times and service
processes are independent of one another, and that the queue is stable (that is, p =
SN oo = 3N xi/ui < 1), we wish to find the distribution of the stationary

accumulated priority
[=))
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Fig. 1 Accumulated priorities
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queueing time (that is, waiting time prior to service) for customers of different classes.
Throughout the paper, we shall denote by F the LST of a random variable with
distribution function F.

3 The maximum priority process for the two-class accumulating priority queue

In this section we present a detailed discussion of the two-class accumulating priority
queue, before considering the more general multiclass accumulating priority queue.
We begin with the accumulating priority function for the nth customer, defined by

V() = otherwise.

[bx(n)[t -1, if 1, <t

0

Note that, here we have permitted priority to continue accumulating for a customer
during their service and after their departure. This is simply for ease of notation.

Although arrivals of a given class are served in the order in which they arrived, this
is no longer a FIFO queue. Define n(m) to be the position in the arrival sequence of
the mth customer to be served. So, for instance, if the 10th arrival was actually the 4th
to be served, then n(4) = 10. When the system starts empty, we see that n(1) = 1,
and, more generally, if the kth customer to arrive is the first customer in a busy period
then n(k) = k. Note that if n(m) > m then the mth customer to be served must be of
class 1, whereas if n(m) < m then the mth customer to be served must be of class 2.
If n(m) = m, then the customer can be of either class.

Let C,, be the time at which service commences for the nth arrival (so that the
time at which the m"" service commences is given by Cy,(n)), and D, = C;, + X, be
the departure time of the nth customer to arrive, with C = {C,;n = 1,2, ...} and
D = {D,;n =1, 2,...}. The departure of the mth customer to be served occurs at
time Dy ). If there are no other customers queued at this time, then the busy period
ceases and the next customer to arrive commences service immediately. Otherwise,
the queueing discipline chooses the customer with the highest priority from those that
are yet to be served. So we can write

n(m + 1) = minf{arg maxn¢{n(i):1§i5m}Vn(Dn(m))}~ @))

The minimum here covers those instances where the mth departure instant coincides
with the end of a busy period, at which time the priority function for all unserved
customers is zero. We have C,1y = C; = 11 = 11 and, form > 1, Cyint1) =
max{Dy(m)s Tnm+1)}-

We are now ready to define the maximum priority process for the accumulating
priority queue in the two-class case.

Definition 3.1 The maximum priority process M = {(M1(t), M»(t)),t > 0} for the
accumulating priority queue in the two-class case is defined as follows.

1. If the queue is empty at time ¢, that is if # € [Dy, ), Tau+1)) for some m, then
M (1) = M (1) = 0.
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2. At the sequence of departure times { D), m =0, 1,2, ...},

Ml(Dn(m)) = max Vn(Dn(m))
n¢{n(i):1<i<m}

M2(Dn(m)) = min{Ml (Dn(m))’ MZ(Cn(m)) + bZXn(m)}-

3. For t € [Chom), Dpmy) with MaX{n: D,y >1} Vi (t) > 0 (that is, when there are
customers present in the queue),

M;(t) = Mi(Cpim)) + bi(t — Cpm))- @)

The idea underlying this process is that, for each time ¢ > 0 which is not a departure
time, it gives the least upper bound for the priorities of queued customers from each
class, given only knowledge of the times at which previous customers entered service,
and their accumulated priority at these times. At departure times, M () is determined
by the maximum of the accumulated priorities of customers still in the queue, which
is exactly the accumulated priority of the customer just commencing service.

Figure 2 plots M| (t) and M>(¢) (in bold) against ¢ for the sample path of Fig. 1,
superimposed on the priority functions V,,(z).

It is obvious that the M (¢) bounds the accumulated priorities of class 1 customers,
since it bounds the accumulated priorities for all customers in the queue. Note that
t— M, (t)/by is also alower bound on the possible arrival times of the class 1 customers
who are still in the queue.

To see that M»(¢) bounds the accumulated priorities of class 2 customers, we con-
sider the sample path behaviour in more detail. Assume that the queue starts empty,
and that the first busy period commences at time t1 with M;(71) = M(t;) = 0. At
any time ¢ during the first service time, any queued customers of class 2, which must
necessarily have an arrival time later than 71, must have accumulated priority less than
by (t — 11).

accumulated priority

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
time
— Class 1, b1 =1

— Class 2,02 =b=0.5

Fig. 2 Maximum priorities
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accumulated priority

( a) time (b) time

Fig. 3 The process M, (t) at departure times

Now consider the first departure time, D, (1) = D1 = 11 + X;. Denoting the largest
priority of all the customers in the queue by V, one of the following three conditions
must hold:

1. The queue is empty, and we set M (t) = M>(t) = O until the next arrival.

2. V. = M>(Dy)—) as depicted in Fig. 3a. In this case, since M>(D,1)—) is an
upper bound on the priority of class 2 customers, the customer with priority V
must necessarily be of class 1. At any time ¢ during the next service, the least upper
bound on the priority of class 1 customers is V + by (t — D, (1)), while the priority
of the class 2 customers is bounded by M> (D 1)—) + ba(t — Dy(1y) = ba(t — 11).

3. V < M>(Dy1)—) as depicted in Fig. 3b. In this case, the customer with priority V
can be of either class. At any time ¢ during the next service, the least upper bound
on the priority of class 1 customers is V + b (t — D,,(1y), and the priority of the
class 2 customers is bounded by V + by (t — Dy (1)).

At later departure times within the first busy period there are again three possible
outcomes as above, and the argument follows in a very similar fashion, except that
the expressions for M (t) and M;(t) may be more complex as given in Definition 3.1
above. In each case we can infer bounds on the earliest possible arrival times of either
class 1 or class 2 customers from the accumulated priority of the customer that enters
service.

The expressions that we have given above for various quantities hold regardless
of distributional assumptions for the queue. However, the assumption that the arrival
process is Poisson leads to a result that we can exploit to show that the distributional
properties of the maximum priority process are preserved if we do not keep track of the
accumulated priority of the waiting customers, but instead sample the maximum such
priority at each departure point. To express this, let M(t) = o {(M|(u), M2(u)), u €
[0, t]} be the filtration generated by the maximum priority process up to time 7.

Theorem 3.2 Lett € [0, 00).

1. Conditional on M(t), the accumulated priorities {Vki (t),k =1,2...} of the cus-
tomers still waiting from class i; i = 1,2 are distributed as independent Poisson
processes with rate A; /b; on the intervals [0, M;(t)).
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2. Conditional on M(t), the accumulated priorities {Vi(t),k = 1,2,...} of all
customers still present in the queue are distributed as a Poisson process with
piecewise constant rates zero on the interval [M1(t), 00), L1/b1 on the interval
[M3(t), M1(t)) and M1 /by + A2/b> on the interval [0, M>(t)).

3. A waiting customer with priority V. € [0, Ma(t)) is of class 1 with probability
Mb2/(A1by 4 Moby) independently of the class of all other customers present in
the queue.

4. The statements 1-3 above also hold at any random time T that is a stopping time
with respect to M(t).

Proof 1f there is no customer in service at time #, the statements of the theorem hold
vacuously.

1. Otherwise, let T < ¢ be the time at which the current service commenced. Since

(M (1), M> (1)) are deterministic functions of (M (1), M>(t)), M(t) contains the
same information as M (7). Furthermore, the maximal priority of any class i cus-
tomer queued at time T was M;(t), which means that such customers must have
arrived after time t — M;(t)/b;.
The arrival times {C,i, k=1,2,...}of classi customers in the queue at time ¢ (who
either had priority less than M;(t) at time 7 or arrived in the queue in the interval
(t, t]) occur as a Poisson process with rate A; on the interval (r — M;(t)/b;, t],
independently of any random variable that is measurable with respect to M (7).
The priorities of these customers at time ¢ are such that Vk" ) =bit—-C ,’;), and so
these occur as a Poisson process with parameter A; /b; on the interval [0, M;(T) +
bi(t — 1)) =0, M; (2)).

2. The process of accumulated priorities {Vi (), k = 1,2, ...} of all customers still
present in the queue at time ¢ is the superposition of the processes of accumulated
priorities {Vk" (t),k = 1,2...} of the customers of class i still present in the queue
at time 7. These processes are independent, since the arrival processes of class 1
and 2 customers are independent Poisson processes, and the result follows from
the well-known property that a superposition of independent Poisson processes is
Poisson with rate equal to the sum of the individual rates (see, for example, [10,
Exercise 2.1]).

3. This also follows from the well-known property that the individual processes in a
superposition of independent Poisson processes have the same law as independent
thinnings of the overall process [10, Exercise 2.2].

4. The extension to random times that are stopping times follows from the strong
Markov property of the Poisson process. O

We conclude this section by recording formal expressions for M;(¢) and M>(¢) in
terms of the arrival and service processes. Let
J
Ns(u) =min{j : D Xpgm) > u}. 3)

m=1

This can be interpreted as the maximum number of customers who would have com-
menced service by time u under the permutation n if the system had not experienced

@ Springer



Queueing Syst (2014) 77:297-330 305

any idle time. Let L(¢),t > 0 be the cumulative idle time experienced by the server
up to time ¢ given by

I Nsu—L(u))

L(t):/][ > T =uldu. )
0

k=1

We define K(t) = Ngs(t — L(t)) to identify the index of the current service, if one
is under way. That is, if the server is busy at time ¢ then the current service is the
K (t)th, whereas if the server is idle at time 7, then exactly K (¢) — 1 services have been
completed and the next, at the beginning of the next busy period, will be the K (¢)th.
Then, for t > 7,k (1)),

M1(t) = byk o) Cnk 1)) — Takap] + b1lt — Cuk 1)) ©)
Mo (1) = min {by (k1) [Cnik (1)) — Tnk )]s M2(Dnck (19—-1)) }
+ bt — Cuk 1] (6)

with M (t) = Ma(t) = 0if t < T,k (1))

4 Accredited customers and accreditation intervals

We shall refer to those class 1 customers in the queue with accumulated priority at
time ¢ that lies in the interval [M;(t), M (t)) as accredited (at level 1), which we shall
abbreviate to just accredited when there is no chance of confusion. Customers with
priority in the interval [0, M5(t)) are unaccredited or non-accredited.

Once a class 1 customer becomes accredited, they remain accredited until they
enter service, since their priority is increasing at rate b1, whereas M (¢) is increasing
at rate by < by. Thus, since M (¢) bounds the accumulated priority for class 2 cus-
tomers, accredited class 1 customers are guaranteed service before any waiting class
2 customer.

A customer who enters service without being accredited can be of either class 1
or class 2. The service of such a customer will be followed by a sequence (possibly
of length zero) of service times for accredited class 1 customers, before the next
non-accredited customer is served, or the busy period ends. We shall refer to such an
interval, consisting of the service time of a non-accredited customer followed by a
sequence of service times of accredited class 1 customers as an accreditation interval
(at level 1). A busy period for the queue can be broken into a sequence of accreditation
intervals, and it is these intervals that we will study in greater detail in this section.

We begin with some observations about the process M»(¢) and accreditation inter-
vals.

Remark 4.1 1. The periods where M>(¢) = 0 correspond to idle periods of the queue.
Thus, the durations of these periods are independent and exponentially distributed
with parameter A1 4 A;. Furthermore, the stationary probability that M>(¢) = Ois

1—p.
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2. Consider a customer with priority v € [0, M»(¢)) at time ¢. Such a customer can
be either a customer of class 2, in which case its waiting time has been v/b;, or an
unaccredited customer of class 1, in which case its waiting time has been v/b.

3. Theorem 3.2(2) tells us that, at time ¢ during a busy period, the priorities of cus-
tomers lying in the interval [0, M>(¢)) are distributed according to a Poisson process
with rate A1/b1 + A2 /b>. These priorities are generated by a mixture of class 1 cus-
tomers that have been arriving at rate A1 over the time interval (t — M»(t) /by, t]
and accumulating priority at rate b1, and class 2 customers that have been arriv-
ing at rate A, over the time interval (f — M5(t)/ba, t] and accumulating prior-
ity at rate b>. Nonetheless, the distribution of the priorities at time ¢ is the same
as if customers had arrived in a Poisson process with rate Ay + A1by/b; over
the whole interval (t — M3(t)/b3, t] and had all been accumulating priority at
rate bs.

4. The customer who initiates a busy period, and thus the first accreditation interval in
abusy period, is of class 1 with probability A1 /(A1 +X2), and their accumulated pri-
ority at this time is 0. By Theorem 3.2(3), the first customer in all other accreditation
intervals during the busy period is of class 1 with probability A1b>/(A1b2 + A2b1),
and their accumulated priority v at this time is, almost surely, strictly greater than
Zero.

The maximum priority process during an accreditation interval has the form
depicted in Fig. 4, which can be described as follows.

Fig. 4 An accreditation interval
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e Attime f¢, the accreditation interval commences when an initiating, non-accredited
customer of class 1 or 2 with accumulated priority Vit moves into service. Note
that M1 (t9) = M2(t0) = Vinit-

e If a customer completes service at time ¢, the accreditation interval continues as
long as there is at least one remaining customer that has become accredited, which
is of necessity of class 1 with priority greater than Viyi 4+ b2 (¢t — t9). This customer
moves into service, with service time distribution B,

If there are no accredited customers, the accreditation interval finishes. If there are
non-accredited customers present in the queue with priority less than Viyi + b2 (f —
to), the one with the highest accumulated priority will start a new accreditation
interval.

Otherwise an idle period starts, and the next accreditation interval will start when
a customer arrives to the empty queue.

e The overall service time distribution of the customer initiating the accreditation

interval depends on whether the customer is also initiating a busy period of the
queue. The customer who initiates the first accreditation interval in a busy period
is of class 1 with probability A1/(A1 + A2). The first service in this interval thus
has distribution B(()z) = mBD + AzB(Z))/(M 4+ A2). The first customer in all
other accreditation intervals is of class 1 with probability A1b>/(A1b2 + A2b1), so
its service time distribution is Béz) = (Mby B + 2301 BP)/(h1by + Aaby).
The superscript (2) in the above notation reminds us that we are dealing with the
two-class case. We associate the subscript 0 with services occurring at the beginning
of a busy period, and our use of the subscript 2 is consistent with our later treatment
of the multiclass case. The logic behind it is that an unaccredited customer that
initiates an accreditation interval with its priority lying in the interval [0, M>(¢))
can be considered to be commencing its service ‘at accreditation level 2’.

The following lemma will prove useful in our study of the duration of accreditation
intervals.

Lemma 4.2 During an accreditation interval, the time points sy at which customers
become accredited occur according to a Poisson process with rate A (1 — by /by).

Proof Consider an accreditation interval, such as that illustrated in Fig. 4, initiated
at time #( by a non-accredited customer with priority Vin;; whose service time is Tp.
Class 1 customers who become accredited during this accreditation interval are either
present at time g, as is the customer who becomes accredited at time s in Fig. 4, or
arrive subsequently, as does the customer who becomes accredited at time s, in Fig. 4.

By Theorem 3.2(1), the priorities vy of those class 1 customers still in the queue at
time f¢ are distributed according to a Poisson process with rate A1/b; on the interval
[0, Vinit). These priorities increase at rate by, so that at time ¢ they are equal to vy +
by (t — tg), while M (t) = Vinit + ba(t — 1), at least during the service time of this
first customer. So a waiting customer whose priority at time #y was v; will become
accredited during the service time of the initiating customer at time s = #o 4+ (Vinit —
vr) /(b1 — by), provided that this time is less than 79 4+ Tp. The times s thus occur
according to a Poisson process on the interval [#y, min(zy + Vinic/ (b1 — b2), to + Tp)),
with parameter A1 (1 — by /by), and this Poisson process is independent of Tj.
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On the other hand, the arrival times ¢ of class 1 customers who arrive subsequent to
time #( occur according to a Poisson process with parameter A1 on (g, 00). A customer
arriving at time ¢ will become accredited at time sy = (Vinit +b1cx —bato) /(b1 — b2).
If this is less than #o + Tp, then the customer will become accredited during the service
time of the first customer. The set of such times s thus occurs according to a Poisson
process on the interval [7g + Vinit /(b1 — b2), to + Tp), (if, indeed, this interval is non-
empty) with parameter A1 (1 — b>/b1), and this Poisson process is again independent
of Ty.

Now, let S be the sum of the service times of all customers who become accred-
ited in the interval [z, typ + Tp). If there are no such customers, then S| = 0 and
the accreditation interval finishes at time #y + Tp. Otherwise, it will continue as the
accredited customer with the highest priority moves into service. Via similar argu-
ments to those given above, we see that customers become accredited during the inter-
val [to+ To, to+ To+ S1) according to a Poisson process with parameter A1 (1 —b,/by)
that is independent of Tj and Sj.

For j > 2, let §; be the sum of the service times of all customers who become
accredited in the interval [#o + Zl] ;02 Si, to+ Zl] ;(; S;). Our assumption that the queue
is stable leads to the fact that, with probability one, there will be an integer 1 < J < oo
for which S;_; > 0 and S; = 0, at which time the accreditation interval finishes. For
all j < J, the above argument can be repeated to establish that customers become
accredited during the interval [f9 + le;()l Si, to + Z{:o S;) according to a Poisson
process with parameter A1 (1 — by /b1) that is independent of {S;},i < j.

We thus conclude that the process of customers becoming accredited is a Poisson
process with parameter A1 (1 — by /by) on the interval [tg, ty + Zijz_ol Si). O

Lemma 4.3 The durations of the accreditation intervals are independent random
variables whose distributions depend on Vipi only via I (Vipix > 0).

Proof It was observed in the proof of Lemma 4.2 that the duration of an accreditation
interval depends only on the service time of the initiating customer and the arrival
and service processes of the accredited customers who arrive during the interval. The
distribution of the initiating service time depends on whether Vipj = 0, in which case
the initiating service time has distribution B(()z), or whether V¢ > 0, which ensures

that the initiating service time has distribution B;z).

Observe that all the random elements that affect the length of an accreditation
interval are independent of the lengths of previous accreditation intervals, and so the
lengths of successive accreditation intervals are independent of each other. O

We would like to find the distributions of the lengths of the two types of accredita-
tion interval: those that initiate a busy period and those that do not. From the discussion
above, and Lemma 4.2, we see that these distributions will be the same as those of
the busy period of an M /G /1 queue with arrival rate A1 (1 — by/b;) and service time
distribution B for all customers apart from the initiating customer, but with the
initial service time in the accreditation interval having distribution B(gz) if the accred-
itation interval is the first in a busy period and Béz) if it is the second or subsequent
accreditation interval in a busy period.
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We shall recall some relevant results concerning busy period and waiting time
distributions for M /G /1 queues in the next section.

5 Waiting times and busy periods in the M /G /1 queue

In this section we consider an M/G/1 queue with arrivals occurring as a Poisson
process with rate A, service times having mean 1/ < oo with A < pw and LST B(s).
We shall connect the ideas of the maximum waiting time process and accumulating
priority in a setting without distinct classes, before returning to discussion of the
two-class queue in the next section.

The standard way of deriving the distribution of the busy period or waiting times
ina M/G/1 queue is to analyse the virtual workload process U = {U (t); t > 0} that
measures the amount of work remaining in the queue at any time #; see, for example,
Kleinrock [10, page 206]. In terms of the arrival and service processes, this process
can be defined as

Na (1) Na(s)
U(t) = an—t ~ min an—s (7
n=1 - n=1
where
J
N4 (t) = max j:Zkat (8)
k=1

is the number of arrivals that have occurred by time ¢.

On the other hand, we can analyse waiting times via a single class analogue W (t)
of the two-class maximum priority process that we defined in Sect. 3. Putting the
accumulation rate b = 1, this process is zero at time ¢ if the system is empty, and
otherwise is equal to the maximum possible waiting time of any customer still present
in the queue at time ¢, given the history of the process up to the time that the current
customer started service.

In the single-class FCFS M /G /1 context, this is just the time in the system of the
customer currently in service. Via reasoning similar to that used in Sect. 3, this process
can be expressed as

K(1) +

Wy =|t=> T| =lt—1pl ©)
k=1

where K (t) is as defined previously, with the permutation n set to be the identity,
n(m) = m.

The connection between the virtual workload process and the maximum waiting
time process is illustrated in Fig. 5. The waiting time W,, of the nth customer is the
left limit of the virtual workload process at the time t,. It is also the value of the
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Virtual
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Maximum T2 T3
waiting

time

Fig. 5 The virtual workload and maximum waiting time processes for an M/G/1 queue

maximum waiting time process at the time that the nth customer goes into service,
which could either be a point where the nth customer arrives to an empty queue or a
point where the nth customer is already present when the (n — 1) customer departs.
This allows us to use known results about waiting times, obtained by analysing the
virtual workload process, to analyse random variables associated with the maximum
waiting time process at the points where customers go into service.

The first such known result is the expression for the LST G (s) of the distribution
of the length of a busy period, obtained by solving the functional equation

G(s)=G(s; A, B) = B(s + A(1 — G(5))) (10)

(see Conway, Maxwell and Miller [5, page 150, Eq. (7)] or Kleinrock [10, equation
(5.137)]). A related expression that we shall make heavy use of is the LST~(~}0(S) of
the duration of a busy period initiated by a service whose LST is given by By(s) with
subsequent services having LST B (s). This is shown in [5, page 151, equation (9)] to
be given by

Go(s) = Go(s; &, B, By) = Bo(s + 1(1 = G(5)) (1D
where C~}(s) is the solution to (10).
The second known result gives the LST of the waiting time distribution before

a customer enters service in the stationary regime; see for instance Kleinrock
[10, equation (5.105)], which is
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s(1—p)

W(S) = W(S; A, B) = m

12)

From Eq. (12), it follows in a straightforward manner that the LST of the stationary
waiting time, conditional on it being positive, is

(1 — p)A(l — B(s))

Wils) =Wi(s:ih, B) = o(s — (1 — B(s)))

(13)

Now consider the situation where b can be any real number in the interval (0, co)
and let M (¢) be the maximum accumulated priority at time ¢. Then
K@) +
M(t)= |bt =D bTi | =[bt — k)] =bW(Q), (14)
k=1

and we see immediately that the priority that customer n has accumulated when it
goes into service is bW,,, where the sequence {W, } gives successive waiting times for
the M/G/1 queue. It follows from Eq. (12) that in equilibrium the Laplace-Stieltjes
transform of the accumulated priority at such a point of discontinuity is given by

bs(1 — p) B s(1—p)
bs —A(1 — B(bs)) s — (A/b)(1 — B(bs))’
(15)

M(s) = M(s; b, 1, B) = W(bs) =

This last expression can also be interpreted as the LST of the waiting time in a time-
dilated M/G/1 queue (Eq. 12) with arrival rate A/b and service times multiplied by
a factor b relative to the original queue.

The LST of the accumulated priority, conditional on it being positive, is

(1 — p)A(l — B(bs))

Mpi(s) = Mpy(s; A, B) = o(bs — A(1 — §(bs)))

(16)

6 The LST of accumulated priority in the two-class queue

We return now to discussion of the two-class queue, and to determining the LST of the
stationary accumulated priorities at the time points that customers move into service.
Once we have the LST for the stationary accumulated priority, we immediately also
have the LST for the stationary waiting time, by a simple rescaling of the argument,
since a customer of class i with accumulated priority v upon entry to service has waited
for time v/b; in the queue.

First consider the case where service times have the same distribution for the two
classes, with B = B®® = B and common mean 1/u = 1/p1 = 1/u>. By Lemma
4.2, customers become accredited as a Poisson process with rate A1(1 — by /by), so
the duration of an accreditation interval has the same distribution as the busy period
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of an M /G /1 queue with arrivals at rate A1 (1 — b2/b1) and service time distribution
B. It then follows from expression (10) that the duration of an accreditation interval
has a LST that satisfies the functional equation

T(s) =B (s +r1(1 —ba/by) (1 = T(s)). (17)

We shall employ this solution of Eq. (17) in a variety of contexts, and so we write
its solution in terms of its parameters as F(s; b1, by, A1, B). Following Eq. (10), an
alternative notation for this is é(s; M (1 —=by/by), B).

If the distribution B of the initial service time in the accreditation interval is
different from the succeeding service times, which still have distribution B, then for
T'(s) satisfying (17), the length of the accreditation interval has LST given by

To(s) = To(s; b1, ba, A1, B, Bo) = By (s + A1(1 — ba/b1) (1 = T'(s))) . (18)

Following Eq. (11), an alternative notation for this is 50(s; A (1 — by/by), B, By).
Taking derivatives and putting s = 0, or referring to Conway, Maxwell and Miller [5,
page 151, Egs. (7a), (9a)], we see that the mean duration of an accreditation interval
of the form described by (17) is

1
w— i (1 —by/by)

19)

and the mean duration of an accreditation interval of the form described by (18) is

m
wo [ — A1 (1 = by /b))’

(20)

where !'is the mean of By. R

We would like to derive the distribution of the value V of the accumulated priority of
a customer at the point that it enters service during an accreditation interval. Suppose
the accreditation interval commences at time fg. Let Vinie = M1 (tg) = M>(tp) denote
the initial priority level in the accreditation interval. If the accreditation interval initiates
a busy period for the queue, then Vi, = 0. However, if the accreditation interval does
not initiate a busy period then Viyj¢ > 0 with probability one. Then the random variable
V can be written as V = Vinit + V where V is any additional priority that the customer
accumulates during the accreditation interval, after having accumulated priority Vipit.
To calculate the distribution of V, we modify the delay cycle approach of Conway,
Maxwell and Miller [5, p. 151] to obtain the following theorem.

Theorem 6.1 For an accreditation interval with parameters by, ba, L1 and B, that
starts at time to with initial priority level Vinit, let V.= Vini+V denote the accumulated
priority of customers at the point that their service starts.

1. The distribution of V, conditional on Visit = v, has LST

(=2 (1= 2)(T (bas) — B(bis))

V*(s; b1, by, A1, B) = B
(s; b1, b2, A1, B) (I—Z—f)(bls_)“l(l_B(bls)))

2n
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where F(s) = F(s; b1, by, A1, B) is the solution of the functional Eq. (17).
2. The random variable V is independent of Viit.

Proof Let Sy denote the service time of the customer who initiates the accreditation
interval and, for j =0, 1,2.. ., recursively define S to be the time taken to serve
customers who become accredited during the interval (1o +6; -1, fp +J;] where §; =

{:0 S; and §_1 is equal to zero. Note that these customers must have attained priority
level v during the interval (fo+ (1 —5b)8;_1, o+ (1 —b) ], where b = by /by. We shall
denote the length of this interval by A ;. Fgrj =0,1,2,...,definea; = (1-5b)§;, H;
to be the distribution function of §; and H;(s) = E{e™* 5i}. By Lemma 4.2, customers
become accredited according to a Poisson process with parameter A1 (1 — ), and we
readily obtain the fact that

Hj(s) = Hj-1 (0, (1 = b)(1 — B(s)). (22)

In a similar fashion to Conway, Maxwell, and Miller [5, pp. 152—-155], consider a
marked customer that attains priority level v in the interval (fo + a1, + o]
(so becomes accredited during the interval (fo + 81, fo + d;]), and condition upon
S;, the residual duration Y of (fp + «;_1,% + «;] at the time that the customer
has priority level v, and the number N of customers who attained priority v during
(to + aj—1, o + « ] prior to the marked customer, with the region of feasibility for
(Y,Sj)beingS ={(y,0):0<y<(1—-0>)t, 0=t < oo}

Given that Y = y, the additional waiting time V /b of the marked customer is
equal to y, plus the N = n service times of the customers who attain priority v ahead
of it in the interval (fo + «j_1, to + «;], plus the difference between the time instant
at the end of the interval, 7o + o, and the time instant 7y + §;. Thus

E{e—sV/bl |SJ =t,Y=y,N=n}= e—syE(s)nE{e—s(tsj‘fl+t—[aj71+(1—b)t])}
= eV B(s)" eV E{e P01}, (23)

Removal of the conditioning on N yields
E{67SV/17] |S] =tY = y} — efxyef)\] ((lfb)tfy)(l7§(s))efsth{efsb6j,1 } (24)

To remove the conditioning on §; = ¢, Y = y, we apply the direct analogue to
the last expression in [5, page 153], and integrate over the region S against the joint
density dydH;(t)/[(1 — b)E(S)]. Denoting by E; the event that the tagged arrival
occurs in the interval S; and paralleling the steps in Conway, Maxwell and Miller [5],
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we see that
EfeV/b1E;) (25)
E{e—sij_l } f[ozoo e—sbte—)\l(l—b)(l—B(s))t fy(i—ob)l e—sye)hly(l—B(S))ddej (t)

(I =Db)E(S))
E{e—sba,-,l}ﬁozoo e—sbze—xl(1—b)(1—§(s))t(1 _ e—(l—b)t(s—xl+M§(s)))de(t)

E(Aj)(s — M (1 — B(s)))

(26)
Evaluation of the final integral yields

E{efs(Sj.;.] +b5.,~)} _ E{efs(Sj+b8j_1)}

Efe™sV/g;) = _
E(Aj)(s — A1 (1 — B(s)))

27

Letting A = > 72 A; and S = >_° S;, and multiplying the conditional transform
(27) by the probability P(j) = E(A;)/E(A) = E(S;)/E(S) that the marked arrival
attains priority v during (fo + a1, fp + «;] and summing over j, the intermediate
terms cancel, yielding

E{e—sbS} _ E{e—sSo}
E(A)(s — (1 — B(s)))

E{e™V/P) = (28)

Since S is just the total length of the accreditation interval, we can substitute the
solution of the functional equation (17), evaluated at sb, for E{e~*S}, and also use
(19) to observe that E(A) = (1 — b)/(u — A1(1 — b)). Finally, remembering that Sy
is the initial service time and multiplying the argument of the LST by b1, because that
is the rate of priority accumulation, we obtain expression (21). O

In most circumstances below, the service time distribution for the customer that
initiates an accreditation interval will differ from that of the customers who continue
it. The result for this slight variant of (21) is given in the next theorem.

Theorem 6.2 If the initial service time distribution By differs from the service time
distribution of the subsequent customers within the accreditation interval, the LST of
the priority accumulated during the interval is

po(1 =2 (1 = 2)/w)(To(bas) — Bo(bis))
(1= 2)(b1s — 11 (1 — B(b1s)))

V(s: by, b, A1, B, Bp) = . (29)

where fo(s) = fo(s; by, by, M1, B, By) in (18).

If B £ B® then accreditation intervals are all periods of the kind considered in
Eq. (18) and Theorem 6.2, with B = B, An accreditation interval starting a busy
period at time #o with M1 (f9) = M>(tp) = v = Ohas By = B(()z). On the other hand, an
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accreditation interval starting in the middle of a busy period with M (ty) = M»(ty) =
v > 0 has By = Béz). We will denote the LSTs of the distributions of the lengths of
these accreditation intervals by, respectively, (:jél)(s) = Fo(s; by, by, A1, B, B(()z))
and @(”(s) = Fo(s; by, by, A, B, Béz)), both interpreted as in Eq. (18).

The LST of the overall busy period distribution follows from the observation in
Remark 4.1 that it can be considered as an accreditation interval with Vi, = 0, arrival
rate Ao + A1b2 /by, priority rates by and O (rather than by and by respectively), and
service time distributions ©®" and ®(()1) (rather than B and By, respectively).

Thus, we can write the LST of the distribution of the length of this busy period
as To(s; b2, 0, A2 + Aiba /b1, ©D, Of) as defined in Eq. (18). It is readily shown,
after straightforward algebra and substitutions, that the implicit equation for this busy
period LST yields an expression that is identical to that for an FCFS M/G/1 queue
with both classes of customers, as one would expect.

The LST of the stationary accumulated priority of the non-accredited customers at
the time that they enter service, conditional on it being positive, also follows from the
above observation. It is given by the accumulated priority distribution with parameters
b2,0, %2 + bari /by, ©D and ©. That is,

V@ (s) = V(s; b2, 0, ko + by /b1, 1, ©F) (30)

in the sense of Eq. (29). Class 2 customers must, of necessity, be non-accredited when
they enter service and, by Remark 4.1, the class of such a customer is independent of
its priority. Also by Remark 4.1, class 2 customers who start service with priority v
have been in the system for time v/b;. Thus the LST of the stationary waiting time for
class 2 customers is given by the weighted sum of the LSTs of zero and V® (s/b),

W (s) = (1—p)+pVP(s/br). 31)

A class 1 customer experiences one of the following outcomes:

1. It arrives to an empty queue.

2. Ttarrives to a non-empty queue, and is not accredited when it enters service. Since,
by Theorem 3.2(3), the class of a non-accredited customer is independent of its
priority, in this case the LST of its stationary accumulated priority on entering
service is V@ (s), given by equation (30).

3. It enters service during the first accreditation interval of the busy period, in which
case its stationary priority has LST

VA0 (s) = V(s; b1, ba, 1, B, BSP) (32)

in the sense of Eq. (29).

4. Itenters service during an accreditation interval which is started by an unaccredited
customer of either class, with priority Viy;; > 0, in which case the extra priority
that the arriving customer accumulates above Vi, before it enters service has LST
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VD () = V(s; by, by, 21, BV, B?) (33)

again in the sense of Eq. (29). Furthermore, this extra priority is independent
of Vinit, which is distributed according to a random variable with LST V@ (s),
because Vit is the priority of the non-accredited customer entering service at the
beginning of the accreditation interval.

By Lemma 4.2, class 1 customers become accredited at rate A (1 — by/b1) when the
queue is non-empty, while they arrive at rate A, so the probability that an individual
class 1 customer, arriving during a busy period, becomes accredited is (1 — b1/b»),
while the probability that it enters service while unaccredited is by /bj. Using the
fact that class 1 customers arrive according to a Poisson process and so observe time
averages, we derive the fact the stationary probability that a customer finds the queue
empty is 1 — p, the probability that it begins its service as an unaccredited customer
is pby/b1. The probability that a customer is accredited is p(b1 — b2)/b1. To derive
the probabilities of the third and fourth cases, that is whether a customer is accredited
during the first accreditation interval of a busy period or a subsequent one, we need
to calculate the ratio of the mean length of the first accreditation interval to the mean
length of the whole busy period. By (19) and (20), this is (1 — p)/(1 — o1) where
o1 = p1(b1 — by)/b1. So the probabilities of the third and fourth categories are

p(1—p)(by — b2)
bi(1 —o1)

(34)

and

p(p —o1)(by — b2)
bi(1—o1)

; (35)

respectively. So we finally arrive at the conclusion that the LST of the distribution
of the priority of a class 1 customer when it enters service, conditional on this being
positive, is

~ by ~ (I —=p)(b1 —b2) 5
VD(s) = 2V (5) 4+ — L1 2 g0y
by bi(1 —oy)
— o) (b1 — b2) =3,
(p —o1)(by 2) V(z)(S)V(l’l)(S), (36)
bi(1 —o1)
and the LST of the waiting time is
W () = (1= p)+ pV P (s/by). 37

7 The multiclass accumulating priority queue

In this section, we give multiclass versions of the results developed in Sects. 3, 4, and
6, that we will be using in later sections. These results will also form the basis for an
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efficient method for simulating an accumulating priority queue, which we will present
in Sect. 10 below.

We first define the maximum priority process M = {(M(t), M>(t), ..., My(t)}
for the multiclass queue.

Definition 7.1 The maximum priority process for the multiclass queue is defined as
follows.

1. Forallk =1,..., N, Mi(¢t) = O for all times r when the queue is empty.
2. At the sequence of successive departure times Dy, (),

M, (Dn(m)) = max Vn(Dn(m))v (38)

n¢{n(i):1<i<m}

and, forl <k <N,
My (Dymy) = min{M1(Dym)), Mi(Crimy) + b Xnom)}- (39)
3. Fort € [Cyrm), Dpm)) With MaXy: D, >t Vi (1) > 0,
M;(t) = M;(Cpom)) +bi(t — Cpym)), 1 <i < N. (40)

By convention, we shall also define by4; = 0 and hence My4+1(r) = 0 for all
t > 0. Observe that if at the departure point Dy, (), Mk (D i(m))) = M1(D(nom))), then
M (Dwmny)) = Mi1(Dueny) forall j < k.

A generalized version of Theorem 3.2 follows straightaway.

Theorem 7.2 Let t € [0,00) and M(t) = o{(Mi(u), Ma(u), ..., Myu)),u €
[0, t1} be the filtration generated by the maximum priority process up to time t.

1. Conditional on M(t), the accumulated priorities {Vé (), =1,2...} of the cus-
tomers of class i still present in the queue are distributed as independent Poisson
processes with rate A; /b; on the intervals [0, M;(t)).

2. Conditional on M(t), the accumulated priorities {V,(t),£ = 1,2,...} of all
customers still present in the queue are distributed as a Poisson process with
piecewise constant rates zero on the interval [M(t), 00), and Zl;zl Aj/bj onthe
interval [My41(t), My(t)).

3. A waiting customer with priority V. € [My4+1(t), My (1)) is of class i with prob-
ability (A; /b,-)/(zl;zl (Aj/b})) independently of the class of all other customers
present in the queue.

4. The statements 1-3 above also hold at any random time T that is a stopping time
with respect to M(t).

Proof Since arrivals occur as a Poisson process, the accumulated priorities of the
customers of class k present in the queue at time ¢ are distributed as a Poisson process
withrate A /by on the interval [0, M} (¢)). The result then follows via similar reasoning
as we used in the proof of Theorem 3.2. O
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We shall say that a customer (which must be of class j < k) is at accreditation level
k at time ¢ if its priority lies in the interval (My41(¢), My (¢)]. Similarly, we shall say
that a customer becomes accredited at level k when its priority moves into the interval
(My41(t), My (2)]. An application of Lemma 4.2 yields the following as a corollary to
Theorem 7.2.

Corollary 7.3 Within a busy period, the time points at which customers of classi < k
become accredited at level k occur as a Poisson process with rate A; (b; — byy1)/b;.
Thus, within a busy period, the time points at which customers of all classes i < k
become accredited at level k are distributed as a Poisson process with rate

k

bi — br11
Akzzxi’b—f. 1)
i=1 !

We say that a customer from class j < k is served at accreditation level k if its
priority lies in the interval [Mj41(¢), Mi(¢)) when it is admitted into service. An
accreditation interval at level k is a period of time that starts either at the beginning
of a busy period or when a customer is served at some accreditation level ¢ for
£1 > k, and finishes either at the end of a busy period or when another customer is
served at some accreditation level ¢, for £, > k. Whenever a customer is served at
accreditation level k, accreditation intervals at all levels £ < k commence. In particular,
considering accreditation intervals at level O to be services of a single class 1 customer,
an accreditation interval at level k£ can be divided into a sequence of accreditation
intervals at level £ — 1, all except the last of which finish when a customer is served
at accreditation level k.

Figure 6 illustrates this. It depicts the maximal priority process for a three-class
accumulating priority queue. Accreditations intervals at levels 1 and 2 both start at the
beginning of the busy period. The entire busy period can be thought of as an accred-
itation interval at level 3. The fourth customer to be served also starts accreditation
intervals at levels 1 and 2. The third and fifth customers to enter service start an accred-
itation interval at level 1, but not level 2, while the service of the second customer can
be thought of as constituting an accreditation interval at level 0. Notice that, for each
k = 1,2,3, accreditation intervals at level k consist of a sequence of accreditation
intervals at level k — 1.

We have defined the concept of an accreditation interval at level k. Each one of
these can be thought of as a delay cycle in the sense of Conway, Maxwell and Miller
[5] that starts with the service of the initiating customer and continues as long as there
are customers at accreditation levels £ < k. By Corollary 7.3, these customers arrive
at rate Ay and have service time distribution

k

~ ;\i (bi - bk+1) =10
B — E S T B . 42
() ar b (s) (42)
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Thus, conditional on the fact that such a delay cycle is started by a customer of class
J» the duration of the cycle is given by

(:)yf())(s) = Go(s; Ax, x. BY) (43)

in the sense of (11).
The following theorem gives an expression for the stationary proportion of time
that the server spends on such customers.

Theorem 7.4 The stationary probability that the server is serving a customer that
commenced their service at accreditation level k is

k
pj(bk — biy1)

p® = Z Bk T (44)

— bj
j=1
Proof By Corollary 7.3, customers of class j < k become accredited at level k in a
Poisson process withrate A j (b; — by+1)/b;, and they become accredited at level k — 1
in a Poisson process with rate A;(b; — by)/b;. Let N ® (1) be the number of class
Jj customers served at accreditation level k in the interval [0, #]. Then it follows that
the long-term rate AW = lim;— o0 N;k) (t)/t1is Aj(bx — br+1)/b;. Thus the stationary
probability that the server is serving a class j customer that commenced their service
at accreditation level k is p;k) = pj(bx — bry1)/b; and the stationary proportion of
time the server spends on customers of all classes served at accreditation level & is

k (k)

8 Waiting times in the multiclass queue: the general case

In this section, we establish a recursion between the LST of the waiting time dis-
tribution for delayed customers of a given class k with that of customers of class
k+1.

maximum
priorities

class1 b =125

class2 b,=0.66
class3 b,=0.25

Fig. 6 Accreditation intervals for a three-class accumulating priority queue
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Let us consider the waiting time distribution for customers of class k, where 1 <
k < N — 1. Arriving customers of class k are of three kinds—those who begin a busy
period, those customers within a busy period who are served at accreditation level k,
and those customers within a busy period who are served at accreditation level £ for
some £ > k + 1. A proportion 1 — p of the customers of class k begin a busy period,
and therefore experience a waiting time of zero. By Theorem 7.4, of those class k
customers who arrive within a busy period, a proportion (by — bi4+1)/by are served
at accreditation level k, and the remainder, a proportion by 1 /by, are served at some
accreditation level £ > k + 1. Thus we can decompose the LST of the waiting time
distribution for class k customers so that

WHR () = (1= p) + oW (s) (45)
= (1= p) + pl((bx — brs1) /OWE (5) + (g1 /b)Y W), o ()]

where WJ(FM (s) denotes the LST of the class k waiting time distribution, conditional on
it being positive and VT/CEIEZ (s) and ngﬁ)acc(s) denote the respective LSTs of the waiting
time distributions for class k customers, served at accreditation level k or £ > k + 1,
respectively.

Similarly, let Va(fg(s) and V;,’?m (s) denote the respective LSTs of the priority
accumulation distributions for class k& customers, servgd at accreditation level k or
£ > k + 1, respectively, within a busy period, and let V®)(s) denote the LST of the
class k priority accumulation distribution, conditional on it being positive. Then

~ ~ ~ ~ ~ & ~
WL s) = VENs /bi), Wikheo(s) = ViReo(s/b), W (s) = VO (s/by).
Using reasoning similar to the observations in Remark 4.1, we observe that those class
k customers who arrive within a busy period and who are served at accreditation level
£ > k + 1 will have an accumulated priority on entering service that is distributed
identically to that of a class k + 1 customer who arrives during a busy period, so that
VE () = VED (). (46)

unacc

Thus, we can write

VO (s) = (b = by ) /b VEL(S) + (et /o) VETD (). (47)
The final element required to complete the specification of W® (s) is the LST of the
priority accumulation distribution for class k customers, served at accreditation level
k. These are customers who enter service with priority in the interval [ M1 (¢), My (¢))
during an accreditation interval at level k that must have been initiated by a customer
served at some accreditation level £ > k + 1. The length of this accreditation interval
will depend on the service time distribution of the customer that initiated it. This
will vary depending on whether the accreditation interval at level k started at the
beginning of an overall busy period or, if it started within a busy period, according to
the accreditation level £ at which it started.
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We begin by considering an accreditation interval at level k — 1 that starts at the
beginning of a busy period (and therefore is the first accreditation interval at level k — 1
within an accreditation interval at level k that also starts at the beginning of the busy
period). The first service in both such accreditation intervals has distribution

N
BV =>" %’é(“(s) (48)

i=1

and the accreditation interval at level k — 1 is continued by customers that are served
at accreditation level £ < k — 1. The duration of this accreditation interval thus has
LST

0¥ (s) = Gols; Ax—1, Br_1, B, (49)

with Br_1, as defined in Eq. (42), denoting the distribution of the service times of
customers served at accreditation level £ < k — 1.

The services that initiate subsequent accreditation intervals at level k — 1 within
the initial accreditation interval at level k£ have service time distribution given by the
LST

k

- Ai(bk — brt1) =
B0 =3 ", B, (50)
k 1

i=1
where A,iN) = Zf: 1 i (b — br11)/b;, and the LST of the duration of these accredi-
tation intervals at level k — 1 is

O (s) = Gols: Ax—1. Br—1, B™). (51)

The expressions on the right hand side of (49) and (51) should be understood as
described in Eq. (11).

Lemma 8.1 The priority accumulation distribution for customers who are served
at accreditation level k during an accreditation interval at level k that starts at the
beginning of a busy period has LST

k
~ ~ Libk _ _
VED(s) = Vst b by, == OV 0 ) (52)

i=1 !

where the expression on the right-hand-side is evaluated by using Eq. (29).

Proof We apply the results of Theorem 3.2, with service times in that theorem replaced
by durations of accreditation intervals at level k — 1. That is, we decompose an accred-
itation interval at level k into a succession of accreditation intervals at level kK — 1.
The first, So, will be initiated by the customer that initiates the busy period and, by the
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above reasoning, has a duration with LST (:)(()kfl) (s). The remainder will be accred-

itation intervals at level k — 1 initiated by a customer of class j < k who is served
at accreditation level k. Again by the above reasoning, such a period has duration
@I(Ck_l)(s). The rate at which customers arrive that will be accredited at level k, but
not k — 1 is given by A,(<N) which can be rewritten as (1 — bxy1/by) Zle Aiby /b;
and the result then follows by using expression (29) with the parameters by, by and 1|
replaced by by, byy1 and Zf‘z | Aibi /b;, respectively. O

Now we consider accreditation intervals at level k that do not initiate an overall
busy period. For j =1, ..., N, define

k

~ ~ Liby _ _

VED(s) = Vs b b, 205 07 0001, (53)
i=1
where again the second expression on the right-hand-side of (53) is evaluated by using
Eq. (29).

Lemma 8.2 The priority accumulation distribution for class k customers who are
served at accreditation level k during accreditation intervals that are not initial accred-
itation intervals at level k of an overall busy period has LST

e b . o
S pi R VED O VED () + 2 0, VO ) VED ()

7 (k)

ViTi(s) =
1 k b N

ijl Pj% + Zj=k+l pj

(54)

Proof The mix of customers initiating an accreditation interval at level k that lies
within an overall busy period is different from that for the initiating interval. In par-
ticular, the initiating customer must be served at an accreditation level £ > k + 1. Of
those customers from class j < k who are served within a busy period, a proportion
(bj — bry1)/bj will be served at an accreditation level £ < k, and so a proportion
brs1/bj will be served at an accreditation level £ > k + 1.

Now consider the customers remaining in the system at the completion epoch of
an accreditation interval at level k. The next customer to be served will be the one
with the greatest accumulated priority. Unaccredited customers from class j < k + 1
will have the accumulated priority distribution of a class k + 1 customer. Customers
from class j > k + 1 will just have the accumulated priority distribution of a class j
customer.

To progress further, we need to condition on the class, say j, of the customer initi-
ating the accreditation interval at level k. Suppose that this customer had accumulated
credit Vip;; at the time they commenced service. Then as we observed earlier, the accu-
mulated priority of a customer at the point their service commences can be written as
Vinit + V, where V is the additional priority accumulated after priority Vjy;; is attained,
which is independent of Vjy;; (although the form of its distribution depends on j).

For a customer of class j > k41, the LST of the accumulated credit for a customer
initiating an accreditation interval at level k£ will just be VU (s). To find the LST of
V, the argument now follows that for the initial accreditation interval, except that the

@ Springer



Queueing Syst (2014) 77:297-330 323

length of the first accreditation interval at level k — 1 within this accreditation interval
at level k now has LST ®5_k0— b (s). The lengths of later accreditation intervals at level

k — 1, within the accreditation interval at level k will again have LST @(k_l)(s) We

again apply Theorem 6.2, but now with By = O( . For an unaccredited customer of
class j < k,the LST of the accumulated credit for acustomer initiating an accreditation
interval for class k will be V4+1 (s), and the argument then follows as for j > k + 1.

Finally, we determine the probabilities of the various delay cycle types occurring.
In the stationary regime, the system is idle for a proportion (1 — p) of the time.
The remaining proportion of time p when the system is busy can be divided into the
following separate cases:

1. An arrival to an empty server induces an accreditation interval at level k for
all k = 1,..., N. Arrivals to an empty server from customers of class j =
1,2,..., N occur at rate 1;j(1 — p), and the mean duration of the accredita-
tion interval at level k that such an arrival induces is 1/(u;(1 — o0%)), where
ox = Zz o = Z Z] 1P (Z) Z] 1 Pj(bj — bry1)/bj is the stationary
proportion of time that the server spends on customers served at all accreditation
levels £ < k. The proportion of time occupied by accreditation intervals at level k
started by customers of class j that arrive at the beginning of a busy period is thus

1 —
20— P =P

0j (55)

and, summing over j, the proportion of time taken up by all accreditation intervals
at level k that occur at the beginning of a busy period is

7 = (1= p)p/(1 — o). (56)

2. An arrival finding a busy server must be served at accreditation level ¢ > k + 1
to induce a further accreditation interval at level k. All arrivals of classes j > k
that arrive to a busy system comply; their contribution due to these later cycles
following the same logic as above is

7 = pp;j/(1 = o). (57)

For the remaining classes, that is where j < k, a customer must be served at an
accreditation level £ > k + 1 to induce a later accreditation interval at level k, and
the contribution of such customers is

”J('k) = ppj(bi+1/bj)/(1 — o%). (58)

Summing these two terms over j = 1,2,..., N, we see that

k N
i w P [Zj:l Pibkt1/bj+ 21 /)j] (59)
Ak mi = o .
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Combining these proportions, we see that

N

k N
Sl =p A=)+ D pilbrsa/bp+ D 0| /0 —0p)

j=0 j=1 Jj=k+1

k k
=p I—ij +Z,0j(bk+l/bj) /(1 —o%)

j=1 j=1

k
=p | 1= pi(l=bip1/bj) | /(1 —00)
L =
=p(l—op)/(1—0y) = p (60)

as we would expect.
For 1 < j < N, dividing the JT](-k) by p and cancelling the common factor (1 — o)
from all terms, one arrives at the weights used in Eq. (54). O

Finally, to obtain V;’;ﬁ (s) we need to take the appropriate mixture of y k.0) (s) from
Lemma 8.1 and Vl(k) (s) from Lemma 8.2.

Theorem 8.3

acc

VA (s) = % (2" V40w + (0 = 7T ) 61)

Proof This follows immediately from the argument in the preceding Lemma. O

Lemmas 8.1 and 8.2 and Theorem 8.3, taken together, give a recursive method for
finding the LST for the priority accumulation distribution for a class k, in terms of
the LSTs of the priority accumulation distributions for classes j > k. The LST of the
class k waiting time distribution conditional on it being positive, Wj_k) (s), can then be
obtained directly as follows.

Let

Wi () = VED(s/by), 0 < j < N (62)

denote the LST for the distribution of the delay incurred within an accreditation interval
by a class k customer who becomes accredited either during the initial accreditation
interval for class k in a busy period (the case j = 0) or a later accreditation interval
with a busy period initiated by a class j service time (the case j > 0). Then, we have
the following corollary.

Corollary 8.4 The Laplace—Stieltjes transform VT/(k), k=1,2,...,N — 1is given
by

W () = (1 = b1 /o) WEL(s) + Bt /i) WD (i1 /br)s)
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where
—p ~ £ (br+1/br)
i) = T Wik ) + WD (s 1b0s) Z W 0)
j=1
+ Z Wi“((b /b)) Waed (5).
j= k+1

9 Waiting times in the multiclass queue: the lowest class

In this section, we derive the LSTs of the waiting time distributions for delayed cus-
tomers in the lowest priority class (class V). The waiting time distribution for the lowest
class is the starting point that we use in the recursive determination for the waiting
time distributions of the higher classes presented in the previous section. While one
could, of course, merely evaluate the general expressions derived in Sect. 8 in terms of
a null lower priority class, as we did for the two-class case in Sect. 6, we gain further
insight by an alternative approach, which exploits the fact that the lowest class is the
only one incapable of overtaking any customers that it finds in the system upon arrival.
This view enables us to establish that its waiting time distribution possesses a classical
priority structure that the others do not.

Theorem 9.1 The waiting-time distribution for the lowest-priority class has LST
WM (s) = W (s + Avor (1= iiv-1 0 A, BSY) (63)
where An_1 is defined in (41),
v-1(s) = G(s: An—1. By-1) (64)

as definedin Eq. (10), and w (s; A, B) isthe M/G/1 waiting time LST given in Eq. (12).

Proof Before a marked customer from the lowest class enters service, all work present
in the system upon arrival must be processed, as well as that brought by later arriving
customers from higher classes whose priority overtakes that of the marked customer.
Thus, we can treat the waiting time for the marked class N customer as comprised of
two components. The first is the virtual workload present upon their arrival, which in
the stationary regime has the same distribution as that of the stationary waiting time
in the equivalent M/G/1 queue.

By an argument similar to that used in the proof of Lemma 7.3, the instants at
which customers of class i, 1 < i < N — 1 overtake the marked class N customer
are distributed as a Poisson process with rate A; (b; — by)/b;. These customers will
be served ahead of the marked customer, and the additional delay they introduce thus
represents a “delay busy period” in the sense of Conway, Maxwell, and Miller [5, p.
151], with the arrival rate of customers equalling A y_1. The result then follows from
(11) above. O
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Remark 1 Inthe N = 2 case, it takes a few lines of algebra to establish the equivalence
of (31) and (63), but they are, indeed equivalent.

Remark 2 For appropriate values of the parameters, the waiting time distribution for
class N customers turns out to be identical to that of the lower-priority group in a
classical priority queue with two classes; see for instance [5, p. 164, Eq. (29)]. After
substitution and elementary algebra, one finds that

(1= p)(s + Ay_1(1 = Ty_1(s)))
s = >N Ai(bn/bi)(1 — BO(s 4+ Ay_1(1 = in-1(5))))

WV (5) = (65)

In the classical priority formulation with the notation of [5], the arrival rate of the
higher priority classis A, = Ay—1 = ZlNz_ll i (bi — by)/b;, while the arrival rate of
the lower priority class is Aj = ZZN=1 Aiby /b;.

10 An efficient simulation procedure

We present below an efficient method for simulating an accumulating priority queue.
One method to simulate the system, of course, is to use a standard event-scheduling
approach, where the simulation maintains a record of all customers in the queue
together with their accumulated priorities. The alternative simulation method that we
describe here simulates the maximum priority process. It requires only that a record be
maintained of the maximal priorities for each of the classes, the length of the current
service time, and the time that it commenced.

Theorem 7.2 is the basis for our alternative method of simulating the multiclass
queue. The idea underlying the simulation is that at each departure instant, the class of
the next customer to be served is determined by simulating the maximum accumulated
priority as an observation from the non-homogenous Poisson process described in
Theorem 7.2. Once the class of the next customer to be served is determined, their
service time is drawn from the appropriate distribution for that class, the maximum
priority processes are updated, and the simulation continues. The waiting time of a
customer can be determined from the accumulated priority at the time it starts service. If
the simulation of the non-homogenous Poisson process at a departure instant contains
no points, then a busy period finishes, and the next busy period starts when the ensuing
idle period is complete. We give a brief outline of the simulation below. Here we let
T, x(m), X, and D,, be the arrival time, class, service time and departure time
respectively of the mth customer to be served, for m > 1 and we put A = ZIN= 1A

We begin the simulation in the usual way with an exponentially distributed random
variable with mean A~! giving the first arrival time, 71, letting this arrival be of class
k with probability Ax /A, 1 < k < K, and then drawing a service time X from the
appropriate distribution. Given the initial 7y, x (1), X1 and D; = 11 + X}, then, for
1<k <N, M,(Di—)=0bX;.

At the mth service completion time D,,, for m > 1, draw an exponentially dis-
tributed random variable E,, | with mean by /A1. If E;;, 1 < M{(Dyy—) — M2(Dy—)
then the busy period continues with service of a class 1 customer at accreditation level
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1, with service time drawn from B (s), and M|(D,,) = M{(D,—) — E.1 and
M;(D,,) = M;(D,,—) fori > 1.

If Ei > Mi(Dp—) — Ma(Dy,—) then set k = 2, and carry out the following
loop until a new customer is generated. For each k, draw an exponentially distributed
random variable E,, ; with mean (Zf=1 Ai /b,-)".

1 If By < Mi(Dyy—) — Mi1(Dp,—) then the busy period continues with the ser-
vice of a customer at accreditation level k, and this customer (the m +1°7) is of class
j, 1 < j <k with probability ()\j/bj)/(z;;l Ai/bi). For i < k, the maximal pri-
orities become M;(D,,) = My(Dy—) — Ep k. Fori > k, M;(D,,) = M;(Dy,—).
Draw the service time for the m + 157 customer, X+ from the appropriate distri-
bution, set Dyy11 = Dy + X1, Mi(Dpy1) = Mi(Di) +bi Xpy1,1 <i <N
and exit the loop.

2 If, on the other hand, E,, x > My (Dy—) — Mi+1(D;,—) and k < N then set k to
be k + 1 and return to step 1.

3If Emr > Mi(Dyy—) — Myy1(Dp,—) for all & < N, then the busy period has
finished. The interval to the first arrival in the next busy period is generated as
before, the next service and departure times are generated in the same manner as
for the first customer, and the pattern above is repeated until termination.

Notice that the simulation requires only that the maximum priorities be carried
forward, and that at each step the service time for a customer be generated, but not
their arrival time, unless the customer initiates a busy period.

11 Numerical example

To illustrate the utility of the accumulating priority queue model, we use it to test
whether suggested accumulation rates produce waiting time distributions that comply
with Canadian Triage and Acuity Scale (CTAS) [4] delay targets for a particular con-
figuration. Below, we derive the waiting time distributions for an idealized emergency
ward area treating only CTAS 4 (less urgent) and CTAS 5 (non urgent) patients. Our
class 1 comprises the CTAS 4 stream, with class 2 comprising the CTAS 5 stream.
The CTAS 4 Key Performance Indicator (KPI) is that treatment for at least 85 % of
less urgent patients should have commenced within one hour. The CTAS 5 KPI is for
at least 80 % of non urgent patients to commence treatment within 2 h.

We assume that the arrival rates for both classes are the same: on average, one patient
arrives from each class every 25min. We have assumed exponentially distributed
treatment times for both classes, with a common mean of 10 min. Class 1 accumulates
priority at rate 1 per minute, while class 2 accumulates at rate b < 1 per minute.

The waiting time distributions were recovered from the LST formulae presented in
Sects. 5, 6, 7, 8, and 9 and via numerical inversion using the Gaver—Stehfest method
[8,16] employing 10 points. The method of Abate and Whitt [1] could equally well
have been used.

We compared the waiting time distributions produced by the LST inversion with
data produced by simulating the queue. The simulation produced histograms of the
waiting times of a total of half a million customers over the two classes, that were
virtually indistinguishable from the numerically-produced distributional curves. We
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report the waiting times as scaled multiples of the mean service time of 10min, so
that, for example, ¢ = 6 corresponds to 60 min.

Figure 7 illustrates that the KPI for CTAS 4 is met provided that the class 2 accu-
mulation rate b does not exceed a value just slightly less than 0.5. It is an interesting
question how we solve the inverse problem of identifying the maximum value of b
such that the stated KPI is met precisely.

Figure 8 indicates that practically any priority accumulation rate 0 < b < 1 will
result in the KPI for CTAS 5 being met. As a result, rather than a unique value of b,
there is a range of values of b that is compatible with both KPIs being met. It is then
open to Emergency Department administrators to choose a value of b that meets some
further criterion. In contrast, when the same example is rerun with the arrival rates
increased by 12.5 %, there is in fact no value of b for which both criteria are met.

The fact that there may be alternately an entire set of accumulation rates meeting
all KPI criteria, or none at all, suggests that a variety of optimization problems can be
formulated to identify the best among the feasible solutions available. This aspect is
being explored by the authors in follow-up work.

12 Conclusion and discussion

A number of extensions to the model studied here spring to mind almost immediately.
We have mentioned above the task of inverting the problem to identify the extremal
class 2 accumulation rate b in a two-class context so that a particular waiting time tail
KPI is just met, and the more general problem of formulating a variety of optimization

Class 1 Waiting Time CDF
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Fig. 7 Class 1 waiting time distribution
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Fig. 8 Class 2 waiting time distribution

problems that select the “best” set of b;s in some sense that not only meet the stated
KPIs, but also optimize other appropriate objectives.

There are, in addition, a number of extensions to the basic model itself to consider.
The first of these is to derive the waiting time distributions for the case where patients
are assigned a strictly positive initial priority (which may depend upon their class)
immediately upon arrival, rather than starting from 0. Further generalizations involve
models where the priority accumulation function takes a more general form. For exam-
ple, Kleinrock [13] considered a model where the priority at time ¢ of a customer who
arrived at time o < ¢ is of the form b; (t —1p)“. Piecewise linear priority accumulation
functions are also possible.

A further performance measure of interest is the joint stationary queue-length dis-
tribution of customers of all classes. We believe that this is related to the stationary
distribution of the maximum priority process, the derivation of which is an interesting
problem in its own right.

A multi-server variant of the present model is called for; at present, it seems to
the authors that the only case that is tractable is the special case where all classes
have exponentially distributed treatment times with the same mean. Finally, one can
consider the case in which the lowest priority stream represents a set of scheduled
tasks, to which higher priority customers appear at random. Such a model would
seem to be appropriate in a surgical setting in which scheduled elective surgeries are
disrupted by a stream of urgent surgeries arriving from the Emergency Department.

Addendum: At the galley proof stage the authors became aware of the paper [14]

by Ramanan and Stolyar. This paper analyzes a certain “largest-weighted-delay-first
(LWDF) scheduling policy”, which is related to our “accumulating priority discipline”.
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Specifically, the paper [ 14] uses a large deviations approach to compute the exponential
decay rate of the stationary distribution of the maximal weighted delay experienced
by a set of different customer classes under the LWDF policy, and also shows that the
LWDF policy is optimal (within a large class of work-conserving scheduling policies)
with respect to maximizing this exponential decay rate.
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