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Abstract This paper analyzes several aspects of the Markov-modulated infinite-
server queue. In the system considered (i) particles arrive according to a Poisson
process with rate λi when an external Markov process (“background process”) is in
state i , (ii) service times are drawn from a distribution with distribution function Fi (·)
when the state of the background process (as seen at arrival) is i , (iii) there are infinitely
many servers. We start by setting up explicit formulas for the mean and variance of the
number of particles in the system at time t ≥ 0, given the system started empty. The
special case of exponential service times is studied in detail, resulting in a recursive
scheme to compute the moments of the number of particles at an exponentially distrib-
uted time, as well as their steady-state counterparts. Then we consider an asymptotic
regime in which the arrival rates are sped up by a factor N , and the transition times
by a factor N 1+ε (for some ε > 0). Under this scaling it turns out that the number
of customers at time t ≥ 0 obeys a central limit theorem; the convergence of the
finite-dimensional distributions is proven.
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1 Introduction

Owing to its wide applicability and its attractive mathematical features, the infinite-
server queue has been intensively studied. Such a system describes units of work,
e.g., particles or customers, arriving at a resource, that stay present for some random
duration that is independent of other customers (in that there is no waiting). In the
special case that these customers arrive according to a Poisson process with rate λ,
and the sojourn times are i.i.d. random variables with finite mean 1/μ—a system
commonly referred to as the M/G/∞ queue—it is known that the stationary number
of particles in the system has a Poisson distribution with mean λ/μ. Also the transient
behavior of such an M/G/∞ queue is well understood; e.g. [24, p. 355].

When relaxing the model assumptions mentioned above, several interesting variants
arise. In one branch of the literature, for instance, attention has been paid to the case
of renewal (rather than Poisson) arrivals [10,11]. In the present paper, however, we
consider a variant in which we introduce some sort of “burstiness” in the arrivals and
service times, using the concept of Markov modulation. This means that both the arrival
process and the service-time distributions are driven by an external Markov process
(“background process”), in the following manner. Let X (t) denote an irreducible
continuous-time Markov process defined on a finite state space {1, . . . , d}. When
X (t) = i , then the (Poissonian) arrival rate at time t equals λi , where λ ≡ (λ1, . . . , λd)

is a vector with nonnegative entries. In addition, it is assumed that the time a particle
remains in the system, the service time, has some general distribution with distribution
function Fi (·) that depends on the state of the background process as seen upon arrival
by the particle.

The resulting model could be called a Markov-modulated M/G/∞ queue, or an
infinite-server queue in a Markov-modulated environment. This type of system is
relevant in a broad variety of application domains, ranging from telecommunication
networks to biology. The rationale behind using this model in a communication net-
works setting is that the arrival rate and service times of customers may vary during
the day, or on shorter timescales. In the biological context, one could think of mRNA
strings being transcribed and degraded in a cell, where these transcriptions typically
tend to occur in a clustered fashion; the proposed model captures the key characteristics
of this mechanism well, as argued in [23].

A variety of results exist on Markov-modulated single- and many-server queues,
whereas the literature on their infinite-server counterpart is, surprisingly, considerably
scarcer. In the case of a single server, the key result is that the stationary distribution
of the number of customers is of matrix-geometric form [17], so this system can be
viewed as a “matrix generalization” of the normal M/M/1 queue where the stationary
distribution is scalar-geometric. In [20] the stationary distribution for the case of
infinitely many servers is considered; the results are in terms of the factorial moments
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of the number of customers. More particularly, it is shown that the corresponding
distribution is not of matrix-Poisson type; in other words: this system is not the “matrix
generalization” of the M/M/∞, which has a scalar-Poisson distribution. A somewhat
more general model that includes retrials has been studied in [13].

The case of Markov-modulated renewal (rather than Poisson) arrivals, but exponen-
tial service times, is covered in [18]. Related results can be found in [16] as well, where
special attention is paid to the autocorrelations in infinite-server systems of various
types. Steady-state results for the infinite-server queue with modulated service rates
have been derived in [2]. Falin [8] furthermore considers the simultaneous modulation
of arrival and service rates and finds the mean number of customers in steady-state.

It should also be noted that introducing burstiness using a Markovian background
process is by no means the only way to incorporate a nonhomogeneous arrival
rate. Willmot and Drekic [25] apply bulk arrivals with a random bulk size, whereas
Economou and Fakinos [7] study arrivals generated by a compound Poisson process,
both to find the transient distribution of the number of customers in the system using
a generating functions based approach.

D’Auria [5] studies the same model as we do in the present paper. Among several
other results, he finds a recursion for the factorial moments of the stationary number
of particles in the system. A key observation in his analysis is that the number of
particles present has, in stationarity, a Poisson distribution with random parameter.
Fralix and Adan [9] focus on the situation that the service times have specific phase-
type distributions. In Hellings et al. [12] it was shown that if the transition times
of the background process are sped up by a factor N , then the arrival process tends
(as N → ∞) to a Poisson process; the queue under consideration then essentially
behaves as an M/G/∞ system.

While the above results focus on Markov-modulated infinite-server queues in sta-
tionarity, there are considerably fewer results on the associated transient behavior. In
[3], we studied both the transient and stationary behavior of a model similar to the
one studied in the present paper, viz. the one with exponential service times and a
Markovian background process with deterministic transition times. The main focus
of [3] lies on specific time scalings. In the first scaling, just the background process’
transition times are sped up by a factor N ; then it turns out that the distribution of the
resulting queueing system converges to that of an appropriate M/M/∞ queue (which
has, in steady-state, a Poisson distribution). In the second scaling, the background
process jumps at a faster rate than the arrival process: the arrival rates are scaled by a
factor N and the transition times by a factor N 1+ε for some ε > 0. Under this scaling
a central limit result was proven, for both the transient and stationary distribution.

The main contributions of our paper are the following. In the first place we develop in
Sect. 2 expressions for the transient mean and variance for the number of particles in the
system at time t ≥ 0. For exponential service times the resulting expressions simplify
considerably. In Sect. 3 we exclusively consider the special case of exponential service
times: we develop a differential equation that describes the moment generating function
of the number of particles in the system, and show how this differential equation
facilitates the computation of moments (at an exponentially distributed time epoch, as
well as in steady-state). This section also includes a recursive scheme to compute the
higher moments. Section 4 considers one of the scalings studied in [3]: the arrival rates
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λi are replaced by Nλi , while the transition times of the background Markov process
are sped up by a factor N 1+ε, for some ε > 0, where N grows large. The objective is
to prove a central limit theorem for the number of particles in the system in a finite-
dimensional setting, that is, at multiple points in time. The result is established by first
setting up a system of differential equations for the number of particles in the system
at multiple points in time in the non-scaled system, then applying the scaling, and then
deriving (using Taylor approximations) a limiting differential equation (as N → ∞)
which eventually provides us with the claimed multivariate central limit theorem.
Finally, Sect. 5 contains examples demonstrating analytically and numerically the
results from Sects. 3 and 4.

2 General results

In full detail, the model can be described as follows. Consider an irreducible
continuous-time Markov process X (t) on a finite state space {1, . . . , d}, with d ∈ N.
X (t), often referred to as the background process, has a transition rate matrix given
by Q = (

qi j
)d

i, j=1. The steady-state distribution of X (t) is given by π , being a
d-dimensional vector with non-negative entries summing to 1, solving π Q = 0.
Define qi := −qii = ∑

j �=i qi j .
Now consider the embedded discrete-time Markov chain that corresponds to the

jump epochs of X (t). It has a probability transition matrix P = (
pi j

)d
i, j=1, with

diagonal elements equalling 0 and pi j := qi j/qi . Let π̂i be the stationary probability
vector at the jump epochs of X (t); it solves (after normalization to 1) the linear system
π̂ D−1

Q Q = 0, with DQ := diag{q}. The time spent by X (t) in state i , denoted Ti , is
referred to as transition time. Ti has an exponential distribution with mean 1/qi . There
is the following obvious relation between π and π̂ :

πi := π̂i ETi
∑d

j=1 π̂ j ETj
= π̂i/qi

∑d
j=1 π̂ j/q j

.

While the process X (t) is in state i , particles arrive according to a Poisson process
with rate λi ≥ 0, for i = 1, . . . , d. The service times are assumed to be i.i.d. samples
distributed as a random variable Bi with mean 1/μi if the client was generated when the
background process was in state i ; the corresponding distribution function is Fi (x) :=
P(Bi ≤ x), with x ≥ 0. The service times are independent of the background process
X (t) and the arrival process. The system we consider is an infinite-server queue,
meaning that each particle stays in the system just for the duration of its service time
(that is, there is no waiting). In the rest of this section we focus on analyzing the
probabilistic properties of the number of particles in the system at given points in
time, starting empty. It is assumed that the background process is in stationarity at
time 0.

We start by considering a somewhat different model than the one introduced above,
where the relation with our model becomes clear soon. Consider an M/G/∞ queue with
(i) a nonhomogeneous arrival process with rate function λ(·) (such that the Poissonian
arrival rate is λ(s) at time s), and (ii) a time dependent distribution function F(s, ·)
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(to be interpreted as the probability that a customer that arrives at time s leaves before
time t + s is F(s, t)). Observe that, conditional on the event that there are n arrivals
by time t , the joint distribution of the arrival times is that of the order statistics taken
from independent random variables with density

λ(s)

�(t)
1[0,t](s),

where �(t) = ∫ t
0 λ(s)ds. It now follows that if M(t) is the number of particles in the

system at time t , starting with an empty system, then with F̄(·) := 1 − F(·) we find
that M(t) has a Poisson distribution:

M(t)
d= Pois

(∫ t

0
F̄(s, t − s)λ(s)ds

)
,

and we note for later that
∫ t

0
F̄(s, t − s)λ(s)ds =

∫ t

0
F̄(t − s, s)λ(t − s)ds.

After this general observation, we return to the initial context. Whereas we so far
assumed that the input rate function and service-time distribution function were deter-
ministic, we now assume that they are stochastic. More specifically, we use λi for the
arrival rate when the background process X (·) is in state i , and Fi (·) for the distribution
function of particles arriving while the background process is in the state i .

By conditioning on the sample path of the background process, say X (s) = f (s),
we find that M(t) is Poisson distributed with parameter

∫ t
0 F̄ f (t−s)(s)λ f (t−s)ds. Then

by unconditioning, i.e., averaging over all paths f (·) of the background process, its
probability generating function (pgf) equals the moment generating function (mgf) of
its random parameter, evaluated at (z − 1):

E zM(t) = E exp

(
−(1 − z)

∫ t

0
F̄X (t−s)(s)λX (t−s)ds

)
;

see for example [5, p. 226]. Recalling that X (·) is assumed to be stationary, we have

the distributional equality {X (t + u)| u ∈ R} d= {X (u)| u ∈ R}, so that

E zM(t) = E exp

(
−(1 − z)

∫ t

0
F̄X (−s)(s)λX (−s)ds

)
,

or, denoting by X̂(·) the time-reversed version of X (·), with ai (s) := λi F̄i (s),

E zM(t) = E exp

(
−(1 − z)

∫ t

0
F̄X̂(s)(s)λX̂(s)ds

)

= E exp

(
−(1 − z)

∫ t

0
aX̂(s)(s)ds

)
.
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This probability generating function allows us to analyze the mean and variance of
M(t). It is immediate that the mean of M(t) equals, cf. [21, Thm. 2.1],

EM(t) = E

∫ t

0
aX̂(s)(s)ds =

∫ t

0
EaX̂(s)(s)ds =

d∑

i=1

πiλi

∫ t

0
F̄i (s)ds. (1)

This evidently converges to
∑d

i=1 πi�i as t → ∞, where �i := λi
∫ ∞

0 F̄i (s)ds is the
traffic intensity when in state i .

The variance can be computed as well, as follows. We start with the standard equality
(commonly known as the “law of total variance”)

Var(M(t)) = E

[
Var(M(t)|X̂)

]
+ Var

[
E(M(t)|X̂)

]
.

First notice that Var(M(t)|X̂) = E(M(t)|X̂) = ∫ t
0 aX̂(s)(s)ds because (M(t) | X̂) has

a Poisson distribution (as was noted above). Hence,

E

[
Var(M(t)|X̂)

]
= E

[
E(M(t) | X̂)

]
= EM(t) =

d∑

i=1

πiλi

∫ t

0
F̄i (s)ds.

The only quantity that remains to be computed is now Var[E(M(t)|X̂)]. That is done
as follows:

Var

(∫ t

0
aX̂(s)(s)ds

)
=

∫ t

0

∫ t

0
Cov

(
aX̂(u)(u), aX̂(s)(s)

)
du ds

=
d∑

i, j=1

∫ t

0

∫ t

0
ai (u)a j (s)Cov

(
1{X̂(u) = i}, 1{X̂(s) = j}

)
du ds,

where for u < s

Cov
(

1{X̂(u) = i}, 1{X̂(s) = j}
)

= πi

(
eQ̂(s−u)

)

i j
− πiπ j

= π j

(
eQ(s−u)

)

j i
− πiπ j . (2)

We now make the expressions more explicit for the case where t tends to ∞. With
Dπ = diag{π}, Q and Q̂ = D−1

π QT D−1
π are the transition rate matrices of X and X̂ ,

respectively. Let us define the matrix �(s) = (σi j (s))di, j=1 through

σi j (s) := π j

(
eQs

)

j i
− πiπ j .
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Letting t → ∞, we obtain

Var

(∫ ∞

0
aX̂(s)(s)ds

)
=

d∑

i, j=1

∫ ∞

0

∫ ∞

0
ai (u)a j (s)

(
σi j (s − u)1{s > u}

+ σ j i (u − s)1{s < u}) du ds

=
d∑

i, j=1

∫ ∞

0

∫ ∞

0

(
ai (u)a j (u + s)σi j (s)

+ ai (u + s)a j (u)σ j i (s)
)

du ds

= 2
d∑

i, j=1

∫ ∞

0

∫ ∞

0
ai (u)a j (u + s)σi j (s)du ds.

When the service-time distributions are exponential, that is, F̄i (t) = e−μi t , so that
ai (t) = λi e−μi t , we have

Var

(∫ ∞

0
aX̂(s)(s)ds

)
= 2

∑

i, j

λiλ j

μi + μ j

∫ ∞

0
e−μ j sσi j (s)ds. (3)

We summarize (some of) our findings.

Proposition 1 The transient mean of the number of particles is

EM(t) = E

∫ t

0
aX̂(s)(s)ds =

∫ t

0
EaX̂(s)(s)ds =

d∑

i=1

πiλi

∫ t

0
F̄i (s)ds,

whereas the stationary variance is

VarM(∞) =
d∑

i=1

πi
λi

μi
+ 2

d∑

i, j=1

∫ ∞

0

∫ ∞

0
ai (u)a j (u + s)σi j (s)du ds,

provided that the system started empty.

We finish this section by performing some explicit calculations for the case that X
is reversible and exponential service times; later on we further focus on the situation
of d = 2. Due to the reversibility, πi qi j = π j q ji for all i, j ∈ {1, . . . , d}. As a
consequence Dπ Q = QT Dπ , so that the matrix

D1/2
π Q D−1/2

π

is symmetric, and can be written as G(−	)GT, where G is a (real-valued) orthogonal
matrix, and 	 = diag{δ} is a (real-valued) diagonal matrix (where it is noted that,
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owing to the background process’ irreducibility all but one entries of δ are strictly
positive). It follows that

Q = (D−1/2
π G)(−	)(D−1/2

π G)−1,

and therefore

eQs = (D−1/2
π G)(e−	s)(D−1/2

π G)−1 = D−1/2
π G e−	s GT D1/2

π ;
(eQs)T = D1/2

π G e−	s GT D−1/2
π .

It now follows that

�(s) = (eQs)T Dπ − ππT = D1/2
π G e−	s GT D1/2

π − ππT

is symmetric, and hence for each i, j ∈ {1, . . . , d} we can write σi j (s) =
∑d

k=1 ci jke−δk s − πiπ j . As a consequence,

Var

(∫ ∞

0
aX̂(s)(s)ds

)
= 2

∑

i, j

λiλ j

μi + μ j

∫ ∞

0
e−μ j sσi j (s)ds

= 2
∑

i, j,k

λiλ j

μi + μ j

(
ci jk

μ j + δk
− πiπ j

μ j

)
.

In the case of d = 2, we have π1 = q2/q̄ = 1 − π2, with q̄ := q1 + q2. It is readily
verified that δ1 = 0 and δ2 = q̄. It requires a standard computation to verify that

eQs =
(
π1 + π2e−q̄s π2 − π2e−q̄s

π1 − π1e−q̄s π2 + π1e−q̄s

)
,

and also
∫ ∞

0
�(s)

(
e−μ1s 0

0 e−μ2s

)
ds = π1π2

(
(q̄ + μ1)

−1 −(q̄ + μ2)
−1

−(q̄ + μ1)
−1 (q̄ + μ2)

−1

)
.

Elementary calculus now yields that (3) equals

q1q2

q̄2

(
λ2

1

μ1
· 1

q̄ + μ1
+ λ2

2

μ2
· 1

q̄ + μ2
− 2

λ1λ2

μ1 + μ2

(
1

q̄ + μ1
+ 1

q̄ + μ2

))

.

3 Exponential service times

In this section we analyze the special case of exponential service times in greater detail.
We set up a system of differential equations for the moment generating function of the
transient number of particles in the system. Then this is used to determine the mean
and higher moments after an exponential amount of time.
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We start this section with some preliminaries and additional notation. Here and in
the remaining sections we denote by Mi (t) the number of particles in the system at
time t , conditional on the background process being in state i at time 0. It is evident
that Mi (t) can be written as the sum of two independent components: the number of
particles still present at time t out of the original population of size x0 (in the sequel
denoted by M̌(t)), increased by the number of particles that arrived in (0, t] that is
still present at time t (in the sequel denoted by M̄i (t) in case the background process
is in state i at time 0).

Due to the assumption that the service times are exponentially distributed, there
are positive numbers μi (for i = 1, . . . , d) such that F̄i (t) = e−μi t . In the case
that the μi are identical (say equal to μ > 0), M̌(t) follows a binomial distribution
with parameters x0 and e−μt . In the case the μi are not identical, we need to know
the number x0,i particles present at time 0 that were generated while the background
process was in state i . The resulting (independent) random variables M̌i (t) follow
binomial distributions with parameters x0,i and e−μi t ; indeed, M̌(t) = ∑

i M̌i (t).
Given these observations we concentrate in the remainder of this section on the

more complicated component of M(t), that is M̄i (t).

3.1 Differential equation

Recall that we write, for ease of notation, qi := 1/ETi , and qi j := pi j qi (where i �= j),
with qii = −qi . The main quantity in this subsection is the moment generating function
of M̄i (t):

�i (ϑ, t) := Eeϑ M̄i (t).

Consider a small time period 	t , and focus on all terms of magnitude O(	t) or
larger. In our continuous-time Markov setting, the background process has either zero
jumps (with probability 1 − qi	t + o(	t)), or a jump to state j �= i (with probability
qi j	t + o(	t)); the probability of more than one transition is o(	t) (see for instance
[19, Thm. 2.8.2]).

Note that

�i (ϑ, t) =
∞∑

k=0

e−λi	t (λi	t)k

k! (pi (ϑ, t))k

×
⎛

⎝
∑

j �=i

qi j	t � j (ϑ, t −	t)+
⎛

⎝1 −
∑

j �=i

qi j	t

⎞

⎠�i (ϑ, t −	t)

⎞

⎠

+O
(
(	t)2

)
; (4)

here pi (ϑ, t) is the mgf of a random variable distributed on {0, 1}, indicating whether
a particle arriving in the time period (0,	t) is still present at t . It is seen that the value
1 occurs with probability
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∫ 	t

0

1

	t

(∫ ∞

t−u
μi e

−μivdv

)
du = e−μi t

	t

∫ 	t

0
eμi udu = e−μi t

μi	t
(eμi	t − 1)

= e−μi t + O (	t) .

Hence, pi (ϑ, t) = 1 + e−μi t
(
eϑ − 1

) + O (	t), and thus

∞∑

k=0

e−λi	t (λi 	t)k

k! (pi (ϑ, t))k = e−λi	t exp [λi 	t pi (ϑ, t)]

= 1 + λi	t
(
eϑ − 1

)
e−μi t + O

(
(	t)2

)
.

Now qi = ∑
j �=i qi j yields

�i (ϑ, t) =
(

1 + λi 	t (eϑ − 1)e−μi t
)

×
⎛

⎝
∑

j �=i

qi j	t � j (ϑ, t −	t)+ (1 − qi	t)�i (ϑ, t −	t)

⎞

⎠ + O
(
(	t)2

)

=
(

1 + λi 	t (eϑ − 1)e−μi t
)

×
⎛

⎝
∑

j �=i

qi j	t � j (ϑ, t)+�i (ϑ, t)−	t �′
i (ϑ, t)− qi	t �i (ϑ, t)

⎞

⎠ + O
(
(	t)2

)

=
(

1 + λi 	t (eϑ − 1)e−μi t
)

×
⎛

⎝
d∑

j=1

qi j	t � j (ϑ, t)+�i (ϑ, t)−	t �′
i (ϑ, t)

⎞

⎠ + O
(
(	t)2

)
,

where the derivative is with respect to t . We have found the following system of
differential equations.

Proposition 2 The mgfs �i (ϑ, t) satisfy

λi (e
ϑ − 1)e−μi t�i (ϑ, t) = �′

i (ϑ, t)−
d∑

j=1

qi j� j (ϑ, t). (5)

Now define ψi (α, ϑ) := ∫ ∞
0 αe−αt�i (ϑ, t)dt . Then, by integrating,

∫ ∞

0
αe−αt�′

i (ϑ, t)dt = α(ψi (α, ϑ)− 1).

We thus obtain

λi (e
ϑ − 1)

α

α + μi
ψi (α + μi , ϑ) = α(ψi (α, ϑ)− 1)−

d∑

j=1

qi jψ j (α, ϑ); (6)
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cf. [1, Eq. (4.6), Cor. 1] in the one-dimensional case and [15, Thm. 3] in the network
case for equations that resemble (5) for Markov-modulated shot-noise models. These
may be viewed as continuous state-space analogs or weak limits of the infinite-server
queue (see [14] regarding a general framework that includes both for the network
version in the non-modulated case).

3.2 Mean

To compute EM̄i (τα), with τα ∼ exp(α), we differentiate Eq. (6) with respect to ϑ
and let ϑ ↓ 0, thus obtaining

λi
α

α + μi
ψi (α + μi , 0) = α · lim

ϑ↓0

d

dϑ
ψi (α, ϑ)−

d∑

j=1

qi j · lim
ϑ↓0

d

dϑ
ψ j (α, ϑ),

or

λi
α

α + μi
= α

∫ ∞

0
αe−αt

EM̄i (t)dt −
d∑

j=1

qi j

∫ ∞

0
αe−αt

EM̄ j (t)dt

= αEM̄i (τα)−
d∑

j=1

qi j EM̄ j (τα). (7)

Now consider the special case that the background process is in equilibrium at
time 0. It turns out that the expressions simplify significantly. We have, due to (7),
using the fact that

∑
i πi qi j = 0,

d∑

i=1

πi EM̄i (τα) =
d∑

i=1

πiλi
1

α + μi
.

Laplace inversion yields

d∑

i=1

πi EM̄i (t) =
d∑

i=1

πiλi

μi
(1 − e−μi t ),

in line with (1). Now consider steady-state behavior, that is, we let α ↓ 0. From
the above, we obtain an expression that could as well have been found by applying
Little’s law:

d∑

i=1

πi EM̄i (∞) =
d∑

i=1

πi
λi

μi
.
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3.3 Higher moments

A second differentiation of (6) yields

2λi
α

α + μi
EM̄i (τα+μi )+ λi

α

α + μi
= αEM̄2

i (τα)−
d∑

j=1

qi j EM̄2
j (τα).

In other words, once we know the EM̄i (τα) for all α > 0, we can compute the
associated second moment as well.

Along the same lines,

λi
α

α + μi

n−1∑

k=0

(
n

k

)
· lim
ϑ↓0

dk

dϑk
ψi (α + μi , ϑ) = λi

α

α + μi

n−1∑

k=0

(
n

k

)
EM̄k

i (τα+μi )

= αEM̄n
i (τα)−

d∑

j=1

qi j EM̄n
j (τα).

As a consequence, these higher moments (at exponentially distributed epochs) can be
recursively determined. Again there is a simplification if the background process is in
equilibrium at time 0. Then we have the equation

d∑

i=1

πi EM̄n
i (τα) =

d∑

i=1

πiλi
1

α + μi

n−1∑

k=0

(
n

k

)
EM̄k

i (τα+μi ).

For the steady-state we obtain, cf. [1],

d∑

i=1

πi EM̄n
i (∞) =

d∑

i=1

πi
λi

μi

n−1∑

k=0

(
n

k

)
EM̄k

i (τμi ).

4 Asymptotic normality for general service times

In this section we consider our Markov-modulated infinite-server system, but, as
opposed to the setting discussed in the previous section, now with generally dis-
tributed service times. The main result is a central limit theorem (for N → ∞) under
the scaling qi j �→ N 1+εqi j and λi �→ Nλi ; here ε > 0. The intuitive idea behind this
scaling is that the state of the background process moves at a faster time scale than
the arrival processes (so that the arrival process is effectively a single Poisson process
as N → ∞), while this arrival process is sped up by a factor N (so that a central limit
regime kicks in).

Remark 1 We already observed that the number M̌ (N )
i (t) of particles still present at

time t , out of the initial population of size N x0 and that arrived while the background
process was in state i , is not affected by the evolution of the background process, as the
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departure rate has been determined upon arrival. Specializing to the case of exponential
service times (with mean μ−1

i if the particle under consideration had entered while
the background process was in state i), the corresponding random variables have
independent binomial distributions with parameters N x0,i and e−μi t . N x0,i denotes
the number of particles present at time 0 that arrived while the background was in
state i . Therefore, as N → ∞

M̌ (N )
i (t)− N x0,i e−μi t

√
N

d→ Norm
(
0, x0,i e

−μi t (1 − e−μi t )
)
.

For other service-time distributions the quantities e−μi t have to be replaced by the
appropriate survival probability associated with the residual lifetime of a particle that
is present at time 0 and that had arrived while the background process was in i .

In light of the above, it suffices to focus on establishing a central limit theorem for
the number of particles that arrived in (0, t] that are still present at time t . Let, in line
with earlier definitions, this number be denoted by M̄ (N )

i (t) in case the modulating
process is in state i at time 0. ♦

One of the leading intuitions of this section is that, due to the fact that the timescale
of the background process is faster than that of the arrival process, we can essentially
replace our Markov-modulated infinite-server system, as N → ∞, by an M/G/∞
queue. This effectively means that, irrespective of the initial state i, M̄ (N )

i (t) can be
approximated by a Poisson distribution with parameter N�t . The candidate for �t can
be easily identified using the theory of Sect. 2:

�t :=
d∑

i=1

πiλi

∫ t

0
F̄i (s) ds. (8)

Let us now focus on identifying a candidate for the limiting covariance between
M̄ (N )

i (t) and M̄ (N )
i (t + u); this is a rather elementary computation that we include for

the sake of completeness. Let N (t) be the number present in an M/G/∞ queue that
started off empty at time 0; the arrival rate is λ and the distribution function of the
service times is denoted by F(·). In this system it is possible to compute the covariance
between N (t) and N (t + u) explicitly in terms of the arrival rate and the distribution
function F(·) of the service times. Realize that N (t + u) can be written as the sum of
the particles that were already present at time t and that are still present at time t + u
(which we denote by Nt (t + u)), and the ones that have arrived in (t, t + u] and that
are still present at time t + u. The latter quantity being independent of N (t), we have
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Cov(N (t), N (t + u)) = Cov(N (t), Nt (t + u)).

It thus suffices to compute the quantity Cov(N (t), Nt (t + u)). To this end, define

qA ≡ qA
u,t :=

∫ t

0

1

t
F(t − v)dv =

∫ t

0

1

t
F(v)dv,

qB ≡ qB
u,t :=

∫ t

0

1

t
(F(t + u − v)− F(t − v))dv =

∫ t

0

1

t
(F(v + u)− F(v))dv,

qC ≡ qC
u,t :=

∫ t

0

1

t
(1 − F(t + u − v))dv =

∫ t

0

1

t
(1 − F(v + u))dv;

the first of these quantities can be interpreted as the probability that an arbitrary
particle that has arrived in [0, t) has already left the system at time t , the second as
the probability that it is still present at time t but not at t + u anymore, and the third
as the probability that it is still present at time t + u. It now follows that

EN (t) Nt (t + u) =
∞∑

k=0

k∑

�=0

k�P(N (t) = k, Nt (t + u) = �)

=
∞∑

m=0

e−λt (λt)m

m!
m∑

k=0

k∑

�=0

k�

(
m

k, �

)
(qA)m−k(qB)k−�(qC)�,

which turns out to equal (after some elementary computations) qC λt+qC(1−qA)λ2t2.

As EN (t) = (1 − qA)λt and ENt (t + u) = qC λt , it follows that

Cov(N (t), N (t + u)) = qC λt = λ

∫ t

0
(1 − F(v + u))dv.

This computation provides us with the candidate for the central limit result in the case
of general service times. Define in this context, for t1 ≤ t2,

ct1,t2 :=
d∑

i=1

πiλi

∫ t1

0
F̄i (v + t2 − t1)dv

(while if t2 < t1 we put ct1,t2 = ct2,t1 ).
The following result covers the asymptotic multivariate normality. In the proof we

consider the bivariate case (time epochs t and t + u), but the extension to a general
dimension (time epochs t1 up to tK with, without loss of generality, t1 ≤ . . . ≤ tK ) is
straightforward and essentially a matter of careful bookkeeping.

Theorem 1 For any α ∈ R
K and t ∈ R

K (with t1 ≤ . . . ≤ tK ), and general service
times, as N → ∞,

∑K
k=1 αk M̄ (N )

i (tk)− N
∑K

k=1 αk�tk√
N

d→ N (0, σ 2),
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with

σ 2 :=
K∑

k=1

α2
k�tk + 2

K−1∑

k=1

k−1∑

�=1

αkα�ctk ,t� .

This theorem shows convergence of the finite-dimensional distributions to a multi-
variate Normal distribution. A next step would be to prove convergence at the process
level, viz. convergence of

(
M̄ (N )

i (t)− N�t√
N

)

t≥0

to a Gaussian process with a specific correlation structure. Such a result has been proven
for the regular (that is, non-modulated) M/M/∞ queue in which the Poisson arrival
rate is scaled by N ; the limiting process is then an Ornstein-Uhlenbeck process—see,
for example [22]. The proofs of such weak convergence results typically consist of
three steps: single-dimensional convergence, finite-dimensional convergence, and a
tightness argument, where the tightness step tends to be relatively complicated. In our
setup (that is, the Markov-modulated M/G/∞ queue) we have proven the first two
steps; the third step (tightness) is beyond the scope of this paper.

We prove Thm. 1 for the case of K = 2, with t1 = t and t2 = t + u (for t, u ≥ 0);
higher dimensions can be dealt with fully analogously but these require substantially
more administration. Our starting point is to set up a system of differential equations for
the non-scaled process. This system is derived in the very same way as the differential
equations for the univariate exponential case (see Prop. 2). Define, for fixed scalars
α1, α2, and for u ≥ 0 given,

�i (ϑ, t) := E exp(ϑα1 M̄i (t)+ ϑα2 M̄i (t + u)).

In addition, let

pi (ϑ, t) := Fi (t) + eϑα1(Fi (t + u)− Fi (t)) + eϑ(α1+α2)(1 − Fi (t + u))

= eϑ(α1+α2) − (eϑα1 − 1)Fi (t)− eϑα1(eϑα2 − 1)Fi (t + u).

Proposition 3 The mgfs �i (ϑ, t) satisfy

p̄i (ϑ, t)�i (ϑ, t) = �′
i (ϑ, t)−

d∑

j=1

qi j� j (ϑ, t),

where p̄i (ϑ, t) := λi (pi (ϑ, t)− 1).

Proof Let Ii (t) be the indicator function of the event that a particle arriving in (0,	t]
(while the background process was in state i) is still in the system at time t , and consider
the random variable α1 Ii (t) + α2 Ii (t + u). Similarly to what we did earlier in this
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section, α1 Ii (t)+α2 Ii (t + u) can be split into three contributions; one corresponding
to the event that a particle that arrived in (0,	t] has already left the system at time t ,
one corresponding to the event that it is still present at time t but not anymore at time
t + u, and finally one corresponding to the event that it is still present at time t + u.
With some standard calculus it is readily obtained that

E exp (ϑα1 Ii (t)+ ϑα2 Ii (t + u)) = pi (ϑ, t)+ O(	t).

This means that we obtain

�i (ϑ, t) = λi	t · pi (ϑ, t)�i (ϑ, t −	t)

+
∑

j �=i

qi j	t ·� j (ϑ, t−	t)+(1 − λi	t−qi	t)�i (ϑ, t −	t)+ o(	t).

Now subtracting �i (ϑ, t − 	t) from both sides, dividing by 	t , and letting 	t ↓ 0
leads to the desired system of differential equations. ��

Proof of Thm. 1. Now we are ready to prove the bivariate asymptotic normality for
the case of general service times. The idea behind the proof is to (i) start off with the
differential equations for the non-scaled system as derived in Prop. 3; (ii) incorporate
the scaling in the differential equations, and apply the centering and normalization
corresponding to the central limit regime; (iii) use Taylor expansions (for large N );
(iv) obtain a limiting differential equation (as N → ∞). This limiting differential
equation finally yields the claimed central limit theorem.

We first “center” the random variable α1 M̄ (N )
i (t)+ α2 M̄ (N )

i (t + u); to this end we
subtract N�(t, u) from this random variable, with

�(t, u) := α1�t + α2�t+u,

and �t defined as in Eq. (8). At this point we impose the scaling, that is, we replace qi j

by N 1+εqi j , and λi by Nλi . With these parameters, we now study the appropriately
centered and scaled random variable

ϑα1 M̄ (N )
i (t)+ ϑα2 M̄ (N )

i (t + u)− Nϑ�(t)√
N

,

where we suppress the argument u in �(t, u) (as u is held fixed throughout the proof).
It means that we study the “centered and scaled mgf”

�̃
(N )
i (ϑ, t) := �i

(
ϑ√
N
, t

)
exp

(
−√

Nϑ�(t)
)
, (9)

where, due to Prop. 3, �i (ϑ/
√

N , t) satisfies

N p̄i

(
ϑ√
N
, t

)
�i

(
ϑ√
N
, t

)
= �′

i

(
ϑ√
N
, t

)
− N 1+ε

d∑

j=1

qi j� j

(
ϑ√
N
, t

)
.
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Realize that, as a straightforward application of the chain rule,

(
�̃
(N )
i

)′
(ϑ, t) = �′

i

(
ϑ√
N
, t

)
exp

(
−√

Nϑ�(t)
)

− √
Nϑ�′(t)�̃(N )i (ϑ, t) .

Upon combining the above, we find a relation which is completely in terms of the
centered/scaled mgf �̃(N )i (ϑ, t):

N p̄i

(
ϑ√
N
, t

)
�̃
(N )
i (ϑ, t) =

(
�̃
(N )
i

)′
(ϑ, t)

+√
Nϑ�′(t)�̃(N )i (ϑ, t)− N 1+ε

d∑

j=1

qi j �̃
(N )
j (ϑ, t) .

(10)

We now study the solution of this system of differential equations for N large by
“Tayloring” the function p̄i (ϑ/

√
N , t) with respect to N . It is an elementary exercise

to check that

p̄i

(
ϑ√
N
, t

)
= h1,i (ϑ, t)√

N
+ h2,i (ϑ, t)

N
+ O(N− 3

2 ),

with

h1,i (ϑ, t) := λi
(
ϑα1 F̄i (t)+ ϑα2 F̄i (t + u)

)
,

h2,i (ϑ, t) := λi

2

(
ϑ2α2

1 F̄i (t)+ ϑ2(α2(2α1 + α2))F̄i (t + u)
)
.

We thus obtain the differential equation

(√
N

(
h1,i (ϑ, t)− ϑ�′(t)

) + h2,i (ϑ, t)+ O(N− 1
2 )

)
�̃
(N )
i (ϑ, t)

=
(
�̃
(N )
i

)′
(ϑ, t)− N 1+ε

d∑

j=1

qi j �̃
(N )
j (ϑ, t),

or in self-evident matrix/vector notation,

N 1+εQ�̃
(N )
(ϑ, t) =

(
�̃
(N )

)′
(ϑ, t)− √

N
(
H1(ϑ, t)− ϑ�′(t)

)
�̃
(N )
(ϑ, t)

− H2(ϑ, t)�̃
(N )
(ϑ, t)+ O(N− 1

2 ).

Now premultiply this equation by the so-called fundamental matrix F := (�− Q)−1,
where� := 1πT. It holds that�2 = �,F� = �F = �, and QF = F Q = �− I ;
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see for these properties and more background on fundamental matrices and deviations
matrices e.g. [4]. We then obtain

N 1+ε�̃(N )
(ϑ, t) = N 1+ε��̃

(N )
(ϑ, t)− F

(
�̃
(N )

)′
(ϑ, t)+ √

NF (H1(ϑ, t)

−ϑ�′(t)
)
�̃
(N )
(ϑ, t)

+ F H2(ϑ, t)�̃
(N )
(ϑ, t)+ O(N− 1

2 ).

Iterating this identity once, we obtain

N 1+ε�̃(N )
(ϑ, t) = N 1+ε��̃

(N )
(ϑ, t)−�F

(
�̃
(N )

)′
(ϑ, t)+ √

NF (H1(ϑ, t)

−ϑ�′(t)
)
��̃

(N )
(ϑ, t)

+ F H2(ϑ, t)��̃
(N )
(ϑ, t)+ O(N− 1

2 )+ O(N−ε).

Now premultiply the equation by d πT =1T�. Recalling the identity�F = � and
noting that it follows from the definition of �(t) that

1T�
(
H1(ϑ, t)− ϑ�′(t)

)
1 = 0,

all terms of O(Nα) with α > 0 cancel. For limN→∞ πT�̃
(N )
(ϑ, t) =: �̃(ϑ, t) we

thus obtain the following differential equation:

�̃′(ϑ, t) =
(

d∑

i=1

πi h2,i (ϑ, t)

)

�̃(ϑ, t).

Using the technique of separation of variables, it follows that

�̃(ϑ, t) = exp

(∫ t

0

d∑

i=1

πi h2,i (ϑ, s)ds

)

κ(ϑ, u),

or

�̃(ϑ, t)=exp

(
ϑ2

2

d∑

i=1

πi

∫ t

0

(
λi

(
α2

1 F̄i (s)+ (2α1+α2)α2 F̄i (s + u)
))

ds

)

κ(ϑ, u),

for some function κ(ϑ, u) that is independent of t . Now note that this expression should
not depend on α1 if t = 0. In addition, if we insert u = 0, then α1 and α2 should
appear in the expression as α1 +α2. This enables us to identify κ(ϑ, u). We eventually
obtain

�̃(ϑ, t) = exp

(
ϑ2

2

(
α2

1�t + 2α1α2ct,t+u + α2
2�t+u

))
, (11)

as desired. We have proven the claimed convergence.
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Remark 2 It is remarked that the central limit theorem does not carry over to the case
ε ∈ (−1, 0], as then the term of order N 1−2ε cannot be neglected relative to the term
of order N 1−ε. As a result, in that situation the variance featuring in the central limit
theorem will contain the fundamental matrix F for these values of ε. ♦

5 Examples

5.1 Two-state model

In this example we consider the case d = 2, and exponential sojourn times of the
background process, that is, the time spent in state i is exponential with mean 1/qi ∈
(0,∞). From EM̄(τα) = (A(α))−1ϕ(α)we obtain for the mean number in the system
after an exponential time with mean 1/α (ignoring the effect of an initial population)

(
EM̄1(τα)

EM̄2(τα)

)
= 1

q1 + q2 + α

(
q2 + α q1

q2 q1 + α

)
⎛

⎜
⎝

λ1

α + μ1
λ2

α + μ2

⎞

⎟
⎠

=
⎛

⎜
⎝

α + q2

α + q1 + q2

λ1

α + μ1
+ q1

α + q1 + q2

λ2

α + μ2
α + q1

α + q1 + q2

λ2

α + μ2
+ q2

α + q1 + q2

λ1

α + μ1

⎞

⎟
⎠

When sending α to ∞, we indeed obtain that EM̄i (τ∞) = 0; when sending α to 0,
the resulting formula is consistent with the long-term mean number in the system, as
found earlier. Replacing qi by Nqi (for i = 1, 2), we obtain that both components of
EM̄(τα) converge (as N → ∞) to

π1
λ1

α + μ1
+ π2

λ2

α + μ2
,

which is for μ1 = μ2 in line with the findings in [12].
We now focus on computing the second moment; for ease we consider the stationary

case. From Sect. 3.3, we have

d∑

i=1

2πiλi

α + μi
EM̄i (τα+μi )+

d∑

i=1

πiλi

α + μi
=

d∑

i=1

πi EM̄2
i (τα),

which becomes after sending α to 0,

EM̄2(∞) :=
d∑

i=1

πi EM̄2
i (∞) =

d∑

i=1

2πi
λi

μi
EM̄i (τμi )+

d∑

i=1

πi
λi

μi
;

obviously, π1 = 1 − π2 = q2/(q1 + q2).
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We now find a lower bound on the variance of the stationary number of particles in
the system. Restricting ourselves to the case μi ≡ μ for all i = 1, . . . , d, elementary
computations yield, with ri := λi/μ and q := q1 + q2,

EM̄2(∞) = π1r1

μ− q
((μ− q2)r1−q1r2)+ π1r1+ π2r2

μ− q
((μ− q1)r2−q2r1)+ π2r2.

We now claim that, with R denoting the stationary mean π1r1 + π2r2, the stationary
variance is larger than this R, or equivalently

EM̄2(∞) ≥ R2 + R, (12)

with equality only if λ1 = λ2. This can be shown as follows. Writing r1 = ar2, the
above claim reduces to verifying that, for all a ∈ (0,∞),

a2( f1 − π1)π1 + a( f2 − π2)π1 + a(g1 − π1)π2 + (g2 − π2)π2 ≥ 0, (13)

with equality only if a = 1; here

f1 = 1 − f2 := μ− q2

μ− q
, g2 := 1 − g1 := μ− q1

μ− q
.

Observe that f1 > π1, so that the left-hand side of (13) has a minimum. Now realize
that f1 − π1 = −( f2 − π2) and g2 − π2 = −(g1 − π1). As a result, (13) reduces to

(a − 1)(a( f1 − π1)π1 − (g2 − π2)π2) ≥ 0,

which, due to ( f1 −π1)π1 = (g2 −π2)π2 can be rewritten as ( f1 −π1)π1(a−1)2 ≥ 0.
Claim (12) thus follows. We conclude that VarM̄(∞) ≥ EM̄(∞), with equality if
and only if λ1 = λ2.

This result can be intuitively understood. As argued before, M̄(∞) is distributed as
a Poisson random variable with a random parameter. We showed with an elementary
argument in the introduction of [12] that this entails that VarM̄(∞) ≥ EM̄(∞);
informally, this says that Markov modulation increases the variability of the stationary
distribution. We have now shown that for d = 2 this inequality is in fact strict, unless
the λi match (and equal, say λ). In fact, then the queue is just an M/M/∞ system which
has the Poisson(λ/μ) distribution as the equilibrium distribution, for which mean and
variance coincide (and have the value λ/μ). In other words, for d = 2 there are no
other ways to obtain a Poisson stationary distribution than letting all λi be equal.

5.2 Computational results

We include computational results demonstrating the converging behavior of the two-
state scaled process in one dimension (i.e., K = 1 in Thm. 1). Unscaled, the parameters
are λ = (1, 2),μ = (1, 1), and q = (1, 3). Depicted in Fig. 1 is the limiting behavior
of Eq. (9) assuming exponential service times, obtained by solving the scaled version
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Fig. 1 (left) The scaled process, �̃(N )(0.5, t), approaches the limiting curve as N grows larger. (right)
Maximum error as a function of N shows loglinear convergence.

of the differential equation (5) with the mgf parameter ϑ = 0.5 and ε = 0.5. The
corresponding limiting curve from Eq. (11) is plotted as well. As in the case with
deterministic transition times [3], we observe loglinear convergence, with the solution
curve closely following the limiting curve for N = 1000. Tweaking the parameters
results in the same convergence behavior.
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