
Queueing Syst (2014) 76:347–401
DOI 10.1007/s11134-013-9363-9

Diffusion approximation for an overloaded X model
via a stochastic averaging principle

Ohad Perry · Ward Whitt

Received: 3 May 2012 / Revised: 19 April 2013 / Published online: 24 May 2013
© Springer Science+Business Media New York 2013

Abstract In previous papers we developed a deterministic fluid approximation for an
overloaded Markovian queueing system having two customer classes and two service
pools, known in the call-center literature as the X model. The system uses the fixed-
queue-ratio-with-thresholds (FQR-T) control, which we proposed as a way for one
service system to help another in face of an unexpected overload. Under FQR-T,
customers are served by their own service pool until a threshold is exceeded. Then,
one-way sharing is activated with customers from one class allowed to be served in
both pools. The control aims to keep the two queues at a pre-specified fixed ratio.
We supported the fluid approximation by establishing a functional weak law of large
numbers involving a stochastic averaging principle. In this paper we develop a refined
diffusion approximation for the same model based on a many-server heavy-traffic
functional central limit theorem.
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1 Introduction

In this paper we establish a many-server heavy-traffic functional central limit theorem
(FCLT) for an overloaded large-scale Markovian queueing system having two classes
and two service pools, known as the X model [7], using the fixed-queue-ratio with
thresholds (FQR-T) routing, which we proposed in [21].

In particular, we consider a system in which each class has its own designated service
pool, but with all agents, in both pools, capable of serving customers from both classes.
The control aims to prevent sharing of customers (i.e., sending customers from one
class to be served at the other class pool) when both classes are normally loaded, and
to activate sharing when the system unexpectedly experiences an overload, due to an
unforseen shift in the arrival rates.

When sharing is taking place, the control aims at keeping a pre-specified fixed
ratio between the two queues, both as the overload develops over time and in the
overload steady-state. This ratio is chosen according to an optimization problem for
the approximating stationary deterministic “fluid” model, assuming a convex holding
cost is incurred on the two queues during the overload incident; see §5.3 in [21], where
it is also shown that sharing should not be allowed at both directions simultaneously,
i.e., at any time there should be at most one pool working with both classes. In general,
there are two different ratios: If class 1 is overloaded, then an optimal ratio r1,2 should
hold between the queues. If class 2 is overloaded, then an optimal ratio r2,1 should
hold between the queues. In [24] we showed that the FQR-T control achieves the
target ratios asymptotically as the scale increases (in the fluid limit), for the time-
dependent transient performance as well as in steady- state. Moreover, the FQR-T
control produces a tractable fluid limit. Here, we show that the FQR-T control also
produces a tractable refined stochastic limit.

The FQR-T control here is a modification of the FQR control (without the thresh-
olds), which is a special case of the queue-and-idleness ratio (QIR) controls suggested
by Gurvich and Whitt [11]. These QIR and FQR controls were analyzed in [10–12] for
critically loaded systems, operating in the quality and efficiency driven (QED) many-
server heavy-traffic regime; see [8,13]. Heavy-traffic limits for networks having cyclic
graphs, such as the X model, were obtained under the condition that the service rates
are class or pool-dependent; see Theorem 3.1 in [11]. In general, when the service rate
depends on both the class and the pool, FQR can perform badly in cyclic networks,
creating severe congestion even if each pool is not congested by itself; see §4.1 in [21]
and §EC.2 in [22].

We suggested the FQR-T control in [21], and analyzed the X model using a station-
ary fluid approximation. In [22] we determined the transient behavior of that same fluid
model, based on a stochastic averaging principle (AP), but that AP was introduced
there as a heuristic engineering principle (i.e., used without proof), supported only by
simulation. This heuristic analysis and the AP were made rigorous in our subsequent
papers. In particular, the purpose of [23,24] was to establish key mathematical prop-
erties of the fluid model, expressed as an ordinary differential equation (ODE), and
show that the fluid model in [21,22], arises as the many-server heavy traffic limit of a
sequence of X models in the many-server efficiency driven (ED) regime. That FWLLN
is challenging, because the fluid limit depends critically on the AP. For each n, the

123



Queueing Syst (2014) 76:347–401 349

system evolves as a 6-dimensional continuous-time Markov chain (CTMC), but there
is a (somewhat complicated) statistical regularity associated with the many-server
heavy-traffic limit. In particular, the limiting fluid approximation is a deterministic
function characterized by an ODE (and an initial condition), which is driven by the
time-varying instantaneous average behavior of a family of fast-time-scale stochastic
processes (FTSP’s), which produces the AP. See §1.3 of [24] for a discussion of the
literature on AP’s; notable contributions in the queueing literature are by Coffman et
al. [4] and Hunt and Kurtz [15]. See [6] for a (quite different) FCLT involving an AP,
building on [15].

We now build on the FWLLN and the AP to describe the distribution of the stochastic
fluctuations about the fluid path; i.e., we establish the corresponding FCLT, which is
Theorem 4 here. There is technical novelty in properly treating the FTSP’s alluded to
above. The limit process involves an independent Brownian motion (BM) term with
deterministic time scaling involving the asymptotic variance of the FTSP; see §4.1 and
L̂2, Î , γ2 and γ3 in Theorem 4. A key step in establishing the main result—the FCLT in
Theorem 4—is a FCLT for the family of FTSP’s, Theorem 6, which is of independent
interest. This challenging step proves a FCLT for a sequence of CTMC’s having time-
varying parameters depending on the fluid limit. The new methods developed here
should prove useful for analyzing related problems.

From an engineering perspective, Corollary 1 is especially useful for understanding
the performance of the FQR-T control. It describes the stochastic-process limit once the
fluid has stabilized (i.e., when the fluid is stationary). With a constant fluid state, the key
limit process becomes the well-studied bivariate Ornstein-Uhlenbeck (BOU) process,
which has a Gaussian distribution for each t ; see Corollary 1 below. Consequently, the
approximating steady-state distribution during the overload is a Gaussian distribution,
with mean values equal to the stationary fluid point in Theorem 2 multiplied by n, and
variance and covariance terms in (24) multiplied by

√
n.

The FCLT extension is essential for truly understanding the system performance
under overloads, because the actual performance is not nearly deterministic, as
described by the fluid approximation, unless the scale is extremely large. This phe-
nomenon is well- illustrated by the example here in §11. For that example, the standard
deviations of the queue lengths are about equal to (half of) the mean queue lengths
when the number of servers in each pool is 25 (100).

Here is how the paper is organized: after preliminaries in §2, we briefly state the
FWLLN and the associated WLLN for the stationary distributions in §3. We state
the FCLT and our other main results in §4. We prove the FCLT in §5 except for
Lemma 6, establishing joint convergence of the driving processes. We give the proof
of Lemma 6 in §6 except for two supporting results. The key supporting result is a
FCLT for the FTSP with time-varying parameter state function in Theorem 6. We
prove Theorem 6 in §7. Our proof of Lemma 14 to prove Theorem 6 exploits the
martingale FCLT for triangular arrays. We state these supporting martingale results
in §8. We then prove five remaining Lemmas in §9. A key technical step in the
proofs is approximating the given process with time-varying parameters over appro-
priate subintervals by associated frozen processes, where the parameters are fixed
(frozen) at designated values. Those approximation steps are justified in §10 using
coupling constructions. In particular, we prove Lemmas 8 and 12 there. Finally, we

123



350 Queueing Syst (2014) 76:347–401

evaluate the quality of the approximations by making comparisons with simulations
in §11.

2 Preliminaries

2.1 Notation

Let R, Z and N denote the real numbers, integers, and non-negative integers, respec-
tively. Let ≡ denote equality by definition. For a subinterval I of [0,∞), let D ≡
D(I ) ≡ D(I,R) be the space of all right-continuous R-valued functions on I with
limits from the left everywhere, endowed with the familiar Skorohod J1 topology [31].
Let C be the subset of continuous functions in D. Let a subscript k appended to one
of these spaces denote the set of all k-dimensional vectors with components from the
space, endowed with the corresponding product topology, e.g., Rk and Dk .

Let dJ1 denote a metric on Dk(I ) inducing the convergence. Since we will be
considering continuous limits, the topology is equivalent to uniform convergence on
compact subintervals of I . Let e be the identity function in D ≡ D1; i.e., e(t) ≡
t, t ∈ I . Let ◦ be the composition function, i.e., (x ◦ y)(t) ≡ x(y(t)). Let ⇒ denote
convergence in distribution [31].

We use the familiar big-O and small-o notation for deterministic functions: For
two real functions f and g, we write

f (x) = O(g(x)) whenever 0 < lim sup
x→∞

| f (x)/g(x)| < ∞,

f (x) = o(g(x)) whenever lim sup
x→∞

| f (x)/g(x)| = 0.

(note that our definition of O(g(x)) deviates from the standard definition which allows
for the lim sup in the right-hand side to be equal to 0). For a function x : [0,∞) → R

and 0 < t < ∞, let ‖x‖t ≡ sup0≤s≤t |x(s)|.
For a stochastic process Y ≡ {Y (t) : t ≥ 0} and a deterministic function f :

[0,∞) → [0,∞), we say that Y is oP ( f (t)) if ‖Y‖t/ f (t) ⇒ 0 as t → ∞.
For a sequence of stochastic processes or random variables, {Y n : n ≥ 1}, we denote

its fluid-scaled version by Ȳ n ≡ Y n/n. We let Y̆ n ≡ Y n/
√

n be the
√

n-scaled
processes without the centering about the fluid limit, and Ŷ n denote the diffusion-
scaled processes centered about the fluid limit, as in (15) below.

2.2 A sequence of overloaded Markovian X models

We consider a sequence of overloaded Markovian X models, indexed by superscript n.
There are two customer classes and two service pools. We are looking at these models
during the overload incident, after the arrival rates have changed. The arrival rates are
considered fixed, but the system is typically not yet in its new steady-state during the
overload (assuming that the overload would persist). For each n and i = 1, 2, there
is a class-i Poisson arrival process with rate λn

i . Customers have limited patience,
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and may abandon when waiting in queue. The times to abandon are i.i.d. exponential
variables with rate θi for each class-i customer in queue. Service pool j has mn

j
homogeneous agents (servers). Service times of class-i customers by pool- j agents
are mutually independent and exponentially distributed with rate μi, j , i, j = 1, 2.
The abandonment and service rates are independent of n. We mention that we make
no assumptions on the four service rates and, in particular, we do not assume that the
weak inefficiency condition holds, namely, that μ1,1μ2,2 ≥ μ1,2μ2,2. This condition
was key to our analysis in [21], but here we study a more general system.

Since we are considering an overload incident, we will scale to achieve an ED
many-server heavy-traffic regime.

Assumption 1 (Many-server heavy-traffic scaling) For λi , mi > 0, i = 1, 2,

λn
i − nλi√

n
→ 0 and

mn
i − nmi√

n
→ 0 as n → ∞.

We could instead obtain a modified, more general, FCLT if there were non-degenerate
limits in Assumption 1, but we consider our choice natural, because the system operates
in an overload regime (the modified limit includes a deterministic term ct in the
diffusion limit, but there is no difference in the variability of the limit process, as can
be seen from (30). For the FWLLN, it is sufficient that λn

i /n → λi and mn
i /n → mi

as n → ∞, i = 1, 2). Let

ρi ≡ λi

miμi,i
and qa

i ≡ (λi − μi,i mi )
+

θi
, i = 1, 2,

where, for y ∈ R, y+ ≡ max {0, y}. Then ρi is the traffic intensity for pool i and
qa

i is the stationary class-i fluid-limit queue, when both pools operate independently.
We say that pool i is overloaded if ρi > 1. However, with sharing allowed, pool i
can be overloaded even if ρi < 1 provided that enough class j customers are routed
to be served there, j �= i . The next assumption makes precise our notion of system
overload.

Assumption 2 (System overload, with class 1 more overloaded)
The rates in the system are such that

(I ) θ1qa
1 > μ1,2m2(1 − ρ2)

+ and (I I ) qa
1 > r1,2qa

2 .

Clearly, ρ1 > 1 by Condition (I ), so that class 1 is overloaded. However, Condition
(I ) also ensures that pool 2 is overloaded if sharing is taking place. That is so because,
even if ρ2 < 1, there is not enough extra service capacity in pool 2 to take care of
all the class-1 customers that pool 1 cannot serve. Condition (I I ) in the assumption
implies that even if pool 2 is overloaded by itself (i.e., if ρ2 > 1), then class 1 is the
one that should receive help from pool 2.
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2.3 The FQR-T control

We now describe the FQR-T control for each system n. The purpose of the FQR-T
control is: (i) to prevent sharing under normal loads, (ii) to activate sharing as soon
as an overload incident begins, and (iii) to keep close to the desired ratio between the
two queues, making sure that sharing takes place in the needed direction only. The
control is based on two positive thresholds, kn

1,2 and kn
2,1, and the two ratio parameters

discussed above, r1,2 and r2,1, which satisfy r1,2 ≥ r2,1; see Proposition EC.2 and Eq.
(EC.11) in [21].

Let Qn
i (t) be the number of customers in the class-i queue and let Zn

i, j (t) be the
number of class-i customers being served in service pool j , at time t, i, j = 1, 2
(in the nth system). The FQR-T routing is based on the queue-difference stochastic
processes

Dn
1,2(t) ≡ Qn

1(t)− kn
1,2 − r1,2 Qn

2(t), and (1)

Dn
2,1(t) ≡ r2,1 Qn

2(t)− kn
2,1 − Qn

1(t), t ≥ 0.

As long as Dn
1,2(t) ≤ 0 and Dn

2,1(t) ≤ 0, no sharing of customers is allowed, i.e., a
server in pool j takes only class j customers, j = 1, 2. It follows from [8] that thresh-
olds of order larger than O(

√
n) will prevent sharing (asymptotically, as n → ∞)

when both pools are normally loaded, because normally loaded systems, that are not
overloaded, have stochastic fluctuations that are of order O(

√
n). Once one of the

queue-difference processes in (1) becomes strictly positive (so that one of the thresh-
olds is crossed) sharing is initiated. It follows from the Corollary 2.1 in [32], that
thresholds of size o(n) will detect an overload relatively quickly (instantly, asymptot-
ically as n → ∞). This is because overloaded queues are of order n asymptotically.
We thus choose the thresholds according to the following assumption.

Assumption 3 (Scaling of the thresholds) For k1,2, k2,1 > 0 and a sequence of
positive numbers {cn : n ≥ 1}, where cn/n → 0 and cn/

√
n → ∞ as n → ∞,

kn
1,2/cn → k1,2 and kn

2,1/cn → k2,1 as n → ∞.

Finally, only one-way sharing is allowed at any time. For example, a newly available
pool-2 agent at time t serves a class-1 customer if Dn

1,2(t) > 0, provided no class-
2 customers are served in pool 1 at that same time t ; otherwise he serves a class-2
customer.

2.4 Dimension reduction

For the X model operating under FQR-T, the six-dimensional process

Xn
6 ≡ (

Qn
1, Qn

2, Zn
1,1, Zn

1,2, Zn
2,1, Zn

2,2

)
(2)

is a CTMC for each n ≥ 1. However, there is an important dimension reduction estab-
lished in §6 of [24]. It was shown, under the assumptions above and with appropriate
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initial conditions, that asymptotically the two service pools remain fully occupied with
no pool-1 servers serving class 2; i.e., for each T > 0,

P
(
Zn

1,1(t) = mn
1, Zn

2,1(t) = 0, Zn
1,2 + Zn

2,2 = mn
2, 0 ≤ t ≤ T

) → 1 as n → ∞.

Thus, the system is characterized by an essentially three-dimensional process

Xn,∗
6 ≡ (

Qn
1, Qn

2, mn
1, Zn

1,2, 0, mn
2 − Zn

1,2

)
, (3)

having the vector of essential components

Xn ≡ (
Qn

1, Qn
2, Zn

1,2

)
, (4)

whose evolution is directly specified, and will be specified here in Theorem 1. Theo-
rem 1 concludes that X̄n,∗

6 and X̄n
6 are asymptotically equivalent, so that X̄n is sufficient

to characterize the FWLLN and, in turn, to prove the FCLT. That implies that X̄n
6 ⇒ x6

in D6 if and only if X̄n ⇒ x in D3 as n → ∞, with x(t) ∈ S ≡ [0,∞)2 × [0,m2],
for t ≥ 0; see Theorem 1 below. We thus restrict attention to the space S.

2.5 The fast-time-scale process

Given that the system is overloaded with class 1 needing help from pool 2, as deter-
mined by Assumptions 1 and 2, the FQR-T control is driven by the process Dn

1,2 in
(1). Since the queue lengths are asymptotically of order O(n), the queue-difference
process Dn

1,2 has transitions at rate O(n). However, Theorem 4.5 in [24] shows that,
under regularity conditions, the sequence {Dn

1,2(t) : n ≥ 1} is stochastically bounded
in R, so that the difference process should be analyzed without any spatial scaling. On
the other hand, Theorem 4.4 in [22] also shows that this sequence is not D-tight. Thus,
these difference processes do not converge to non-degenerate limits in D as n → ∞
without spatial scaling. Nevertheless, both the FWLLN and FCLT depend heavily on
the asymptotic behavior of functionals of that driving queue-difference process and
on the analysis of a related family of fast time scale process (FTSP’s).

Fix t0 ≥ 0 and consider the time expanded queue-difference process

{
Dn

e (�
n, s) : s ≥ 0

} ≡ {
Dn

1,2(t0 + s/n) : s ≥ 0
}
, (5)

where �n is a random vector in R3, representing a possible state of Xn , and we
condition on Xn(t0) = �n . Theorem 4.4 in [24] shows, under the assumptions of the
FWLLN in Theorem 1 below, that

{
Dn

e (�
n, s) : s ≥ 0

} ⇒ {D(γ, s) : s ≥ 0} in D as n → ∞ (6)

if �n/n ⇒ γ ∈ S and Dn
e (�

n, 0) ⇒ D(γ, 0) in R as n → ∞. The limit process
D(γ, ·) is the FTSP, an irreducible pure-jump (time homogeneous) Markov process
having transition rates that are the limit of the instantaneous rates of Dn

1,2(t0) at time
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t0 (given the state of the CTMC Xn
6 (t0)), divided by n. Since the distribution of the

FTSP is determined by γ , we obtain a different FTSP D(γ, ·) for each γ ∈ S, and
thus for each t ≥ 0. The name “FTSP” becomes clear when observing that it arises as
the limit in (5) achieved by “slowing” time in the neighborhood of each time point t0
in Dn

1,2(t0).
As explained in §2.3, the purpose of the FQR-T control during overload periods

(with class 1 receiving help) is to keep the two queues approximately fixed at the target
ratio r . In this paper we will be concerned with the region of the state space in which
q1 = rq2 and the FTSP is positive recurrent. In particular, for γ ≡ (q1, q2, z1,2)we let

S
b ≡ {γ ∈ S : q1 = rq2}

denote the “boundary” set of points in S which is part of the state space to which
the control drives the process. We then let A denote the set of all γ ∈ S

b, such that
D(γ, ·) is positive recurrent, with D(γ,∞) denoting a random variable distributed as
the stationary distribution of the FTSP D(γ, ·). For each γ ∈ S

b, let

π1,2(γ ) ≡ P
(
D(γ,∞) > 0

)
. (7)

By Lemma 3.1 in [24], π1,2(γ ) is well-defined for all γ ∈ S, but D(γ, ·) is positive
recurrent if and only if 0 < π1,2(γ ) < 1 and γ ∈ S

b. By Theorem 6.1 of [23],

A =
{
γ ∈ S

b : 0 < π1,2(γ ) < 1
}
=
{
γ ∈ S

b : δ+(γ ) < 0 and δ−(γ ) > 0
}
, (8)

where δ+(γ ) and δ−(γ ), respectively, are the constant drift rates in the positive region
{s : D(γ, s) > 0} and the non-positive region {s : D(γ, s) ≤ 0}.

Both the FWLLN and the FCLT depend critically on distributional and topological
characteristics of the FTSP’s. A simplification is achieved by representing the FTSP
as a quasi-birth-and-death (QBD) process, which can be done by assuming that r1,2 is
rational. The QBD representation is not straightforward, thus we refer to §6.2 in [23]
for more details on the QBD representation of the FTSP, and to [18] for the general
theory of QBD processes. See also Theorem 6.1 and Eq. (7.2) in [23] for how the QBD
representation simplifies the characterization of A, as well as §11 in [23], where an
efficient algorithm for computing the fluid limit numerically is developed, based on
that QBD representation. For our purposes here, it only matters that the FTSP can be
analyzed as a QBD, provided that the queue ratios are rational number. We thus make
the following assumption.

Assumption 4 (Queue ratios parameters) The queue ratios r1,2 and r2,1 are positive
rational numbers.

Since we are considering the case when sharing is taking place with class-1 cus-
tomers receiving help, we essentially need only consider r1,2, which we henceforth
denote by r , i.e., r ≡ r1,2.
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3 The fluid limit

We now review the FWLLN for the process X̄n
6 in (2) and the WLLN for the associated

sequence of stationary random variables X̄n
6 (∞), established in [24]. For these, we

assume that the fluid x(t) is in the set A, where the FTSP is positive recurrent. We
conclude by reviewing a result stating that the fluid model eventually remains in A.

3.1 The FWLLN

We now describe the fluid limit, i.e., the limit of X̄n
6 for Xn

6 in (2). The FWLLN
requires an assumption about the initial conditions. In [24] we considered a (more
general) version of the following.

Assumption 5 Assume that

P
(
Zn

2,1(0) = 0, Qn
i (0) > an, i = 1, 2

) = 1 for all n ≥ 1,

X̄n(0) ⇒ x(0) ∈ A and Dn
1,2(0) ⇒ L as n → ∞,

where L is a finite random variable, x(0) is deterministic and {an : n ≥ 1} is a sequence
of numbers satisfying an/cn → a, 0 < a ≤ ∞, for cn in Assumption 3.

We note that in [24] x(0) was not necessarily in A. The following theorem is a
version of the main result—Theorem 4.1—in [24], adapted to our needs here.

Theorem 1 (FWLLN) Under Assumptions 1–5,

X̄n
6 ⇒ x6 in D6([0,∞)) as n → ∞,

for Xn
6 in (2), where x6 ≡ (qi , zi, j ; i, j = 1, 2), is a deterministic element of C6,

with z1,1 = m1e, z2,1 = 0e and z2,2 = m2e − z1,2 and x ≡ (q1, q2, z1,2) being the
unique solution to the three-dimensional ODE

q̇1(t) ≡ λ1 − m1μ1,1 − π1,2(x(t))
[
z1,2(t)μ1,2 + z2,2(t)μ2,2

]− θ1q1(t)

q̇2(t) ≡ λ2 − (1 − π1,2(x(t)))
[
z2,2(t)μ2,2 + z1,2(t)μ1,2

]− θ2q2(t)

ż1,2(t) ≡ π1,2(x(t))z2,2(t)μ2,2 − (1 − π1,2(x(t)))z1,2(t)μ1,2, (9)

for π1,2(x(t)) ≡ P(D(x(t),∞) > 0) in (7). Moreover, there exists δ, 0 < δ ≤ ∞,
such that x(t) ∈ A, so that 0 < π1,2(x(t)) < 1 and q1(t) = rq2(t), for all t ∈ [0, δ).
Just as the routing of customers at each time t ≥ 0 in the prelimit is determined
by whether Dn

1,2(t) > 0 or ≤ 0, so also the instantaneous future evolution of the
fluid limit x(t) at time t ≥ 0, is determined by whether the FTSP corresponding to
x(t), D(x(t), ·), is positive or non-positive. However, that evolution is determined by
the long-run average behavior of the FTSP corresponding to time t , i.e., by π1,2(x(t)),
giving rise to the term “averaging principle”. Loosely speaking, Dn

1,2(t) achieves a
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local steady-state (the steady-state of the FTSP) instantaneously as n → ∞, at each
time t ≥ 0.

Observe that Theorem 1 concludes that if x(0) ∈ A, then x(t) ∈ A for all t over
some interval [0, δ) (that part of the theorem follows from Theorem 4.5 in [24]), so that
we have SSC in the sense that the original six-dimensional process is a deterministic
function of a two-dimensional process. More importantly for the FCLT, we also have
that Qn

1(t) − kn
1,2 − r Qn

2(t) = o(
√

n) for t ∈ (t1, t2) if x(t) ∈ A over [t1, t2), so the
SSC to two dimensions holds in diffusion scale as well; see Lemma 2 below.

3.2 The stationary fluid limit

Our main theorem here will be establishing the FCLT about the fluid trajectory, given
that the trajectory is in A. An important consequence will be the BOU limit when the
fluid limit is stationary. Since the fluid limit of X̄n in (4) is the unique solution to the
ODE (9), there is an immediate equivalence between stationarity of the fluid limit and
stationarity of the dynamical system in (9), and we do not distinguish between the
two.

Recall that e denotes the identity function, i.e., e(t) = t, t ≥ 0.

Definition 1 (Fluid stationarity) A point x∗ ∈ S is a stationary point of the unique
solution x ≡ {x(t) : t ≥ 0} to the ODE (9) if x(0) = x∗ implies x = x∗e. If x = x∗e,
then x is said to be stationary.

Since the ODE is autonomous (i.e., time invariant), we can replace time 0 with any
t > 0 in Definition 1. That is, if x(T ) = x∗ for some T > 0, then x(t) = x∗ for all
t > T . Time invariance also implies that x(t) is stationary at time t (x(t) = x∗) if and
only if ẋ(t) ≡ (q̇1(t), q̇2(t), ż1,2(t)) = (0, 0, 0); see §8 of [23].

There are several issues regarding stationarity, which we addressed in [23]. In
advance, neither existence of a stationary point to the fluid limit nor uniqueness are
immediate. Even if there exists a unique stationary point, it needs to be identified.
Moreover, it must be shown that the fluid limit converges to a stationary point as
t → ∞ (there are still other issues regarding stability of the dynamical system in
(9), and we refer to §8.3 in [23] for a discussion). Finally, the fluid limit of X̄n

6 in (2)
is characterized by the fluid limit of the three-dimensional X̄n in (4), but that does
not directly imply any relation between the stationary fluid limit and the stationary
stochastic prelimit.

We now present the most relevant results for the FCLT regarding fluid stationarity.

Theorem 2 (Fluid stationarity) Under Assumptions 1–5, the following hold:

(i) For each n, X̄n
6 (t) ⇒ X̄n

6 (∞) in R as t → ∞, with X̄n
6 (∞) being the unique

stationary distribution of the CTMC, and X̄n
6 (∞) ⇒ x∗

6 in R as n → ∞ for

x∗
6 ≡ (

q∗
1 , q∗

2 , m1, z∗
1,2, 0, m2 − z∗

1,2

)
, (10)
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where

z∗
1,2 = θ2

(
λ1 − m1μ1,1

)− rθ1
(
λ2 − m2μ2,2

)

rθ1μ2,2 + θ2μ1,2
∧ m2,

q∗
1 = λ1 − m1μ1,1 − μ1,2z∗

1,2

θ1
and q∗

2 = λ2 − μ2,2
(
m2 − z∗

1,2

)

θ2
.

(ii) x∗ ≡ (q∗
1 , q∗

2 , z∗
1,2) is the unique stationary point of x, the unique solution to

the ODE (9).
(iii) π1,2(x∗) ≡ P(D(x∗,∞) > 0) = π∗

1,2, where D(x∗,∞) is a random variable
with the stationary distribution of the FTSP D(x∗, ·) and

π∗
1,2 ≡ μ1,2z∗

1,2

μ1,2z∗
1,2 + (

m2 − z∗
1,2

)
μ2,2

. (11)

(iv) x(t) → x∗ as t → ∞ exponentially fast.

Proof Parts (i), (i i) and (i i i), and (iv), respectively, are covered by Theorem 4.2 in
[24], §8 of [23] and Theorem 9.2 in [23]. Explicit exponential bounds on the rate of
convergence to stationarity in (iv) are given in [23]. We now elaborate on (i i) and (i i i).
First, if x∗ /∈ A, then the fact that x∗ is a stationary point of x follows immediately
from the fact that π1,2(x∗) = 0 or = 1. In that case, it is also easy to see that π∗

1,2 in
(11) is equal to π1,2(x∗); see Corollary 8.1 in [23]. It is the unique stationary point by
Theorem 8.1 in [23]. The more challenging case, in which x∗ ∈ A and the existence
of a stationary point is non-trivial, is proved in Theorem 8.2 in [23]. ��

3.3 Eventually remaining in the set where the FTSP is positive recurrent

The FCLT will be stated under the assumption that the associated fluid limit lies in
the set A. Thus, we now explain why this makes sense and introduce an additional
assumption.

Note that x∗
6 in (10) is completely characterized by x∗, which involves only the

rates in the system, and does not require any knowledge of the transient fluid limit or
the initial condition (in particular, SSC to three dimensions holds for the WLLN of the
stationary distributions). Simple algebra shows that if 0 < z∗

1,2 < m2, then q∗
1 = rq∗

2 .
Together with (8) and (11) we see that x∗ ∈ A if and only if 0 < z∗

1,2 < m2. It follows
from Assumption 2 and from (10) that z∗

1,2 > 0 (see also Corollary 8.2 in [23]), so
that, under Assumption 2,

x∗ ∈ A if and only if z∗
1,2 < m2. (12)

The next theorem, which follows from Theorem 10.2 in [23], shows that there is not
much loss in assuming that the limit x lies entirely in A whenever x∗ ∈ A.

Theorem 3 If x∗ ∈ A then there exists TA < ∞ such that x(t) ∈ A for all t ≥ TA.
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Since we are interested in the case x∗ ∈ A, which is the main case, as is clear from
(12), we make the following assumption

Assumption 6 For all t ≥ 0, x(t) ∈ A.

Assumption 6 is not essential for our results; we make it only for simplicity of the
exposition. Without this assumption, the FCLT can be proved over a finite interval
over which x ∈ A. In applications, the fluid limit is likely to hit A immediately after
the overload begins, and remain in A thereafter; see §11.3 in [23].

4 The main results

In preparation for the FCLT, we indicate how the limit is affected by the FTSP in §4.1.
We then state the main FCLT and important corollaries in §4.2 and §4.3. We conclude
in §4.4 by indicating how the results simplify in the special case r ≡ r1,2 = 1, where
FQR reduces to serving the longer queue.

4.1 The role of the FTSP’s in the stochastic limit

Just as the limiting ODE in (9) arising in the FWLLN depends on the FTSP’s D(γ, ·)
(through the probability π1,2(x(t))), the stochastic limit process arising in the FCLT
refinement depends on these same FTSP’s. Since the FTSP D(γ, ·) depending on the
state γ is a positive recurrent QBD under the assumption that γ ∈ A, the stochastic
refinement depends on the asymptotic variability of the FTSP. In particular, since the
FTSP D(γ, ·) is a regenerative process (which can be represented as a QBD whenever
the ratio r is rational), the associated cumulative process obtained by integrating the
indicator functions 1{D(γ,s)>0} obeys a FCLT; i.e.,

Ĉn
QBD(t; γ ) ≡ n−1/2

nt∫

0

(
1{D(γ,s)>0} − π1,2(γ )

)
ds ⇒ B(σ 2(γ )t) (13)

in the functions space D as n → ∞, where B is a standard BM for each γ ∈ A.
The constant σ 2(γ ) appearing inside the BM on the right in (13) is often called

the asymptotic variance (see [3,9,30]) of the regenerative process D(γ, s) (and the
function f with f (D(γ, s)) ≡ 1{D(γ,s)>0}). For each γ ∈ A, it is defined as the limit

σ 2(γ ) ≡ lim
t→∞

1

t
Var

⎛

⎝
t∫

0

1{D(γ,s)>0} ds

⎞

⎠ .

In this paper we will be making extensive use of the regenerative structure; see
[3,9] for background. In our QBD context, the underlying regenerative cycles can be
determined by successive visits of D(γ, ·) to any fixed state, i.e., starting at a transition
into the state and ending at the next transition into that state after first leaving that
state (the next transition into the state after leaving is the beginning of the next cycle;
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the cycles are closed on the left and open on the right). The asymptotic behavior is
determined by the random length of a cycle, τ(γ ), and either the random integral over
a cycle, Ỹ (γ ), or the random centered integral over a cycle, Y (γ ), where

Ỹ (γ ) ≡
τ(γ )∫

0

1{D(γ,s)>0} ds and Y (γ ) ≡
τ(γ )∫

0

(
1{D(γ,s)>0} − π1,2(γ )

)
ds.

The key asymptotic quantities here can be expressed in terms of the means of the first
two variables and the variance of Y (γ ) via

π1,2(γ ) = E[Ỹ (γ )]
E[τ(γ )] and σ 2(γ ) = Var(Y (γ ))

E[τ(γ )] ; (14)

see [3,9]. Of course, Y (γ ) = Ỹ (γ )−π1,2(γ )τ (γ ), so that Var(Y (γ )) can be expressed
in terms of the means, variances, and the covariance of the variables τ(γ ) and Ỹ (γ ),
where 0 ≤ Ỹ (γ ) ≤ τ(γ ) w.p.1. Here we have strong regularity, with the random
variable τ(γ ) having a finite moment generating function and all these quantities
being continuous functions of the state γ , by virtue of Lemma C.5 of [24].

4.2 The FCLT

Let An
i (t) count the number of class-i customer arrivals, let Sn

i, j (t) count the number
of service completions of class-i customers by agents in pool j , an let U n

i (t) count
the number of class-i customers to abandon from queue, all in model n during the
time interval [0, t]. Let Dn

1,2(t) be the queue-difference process in (1) and let Qn
s (t) ≡

Qn
1(t)+ Qn

2(t), all at time t . Let p1 ≡ r/(1 + r) and p2 ≡ 1 − p1 = 1/(1 + r), where
r ≡ r1,2. For t ≥ 0 and i, j = 1, 2, let the diffusion-scaled processes be

Ân
i (t) ≡ An

i (t)− nλi t√
n

, Û n
i (t) ≡ U n

i (t)− nθi
∫ t

0 qi (s) ds√
n

,

Ẑ n
i, j (t) ≡ Zn

i, j (t)− nzi, j (t)√
n

, Ŝn
i, j (t) ≡ Sn

i, j (t)− nμi, j
∫ t

0 zi, j (s) ds√
n

,

Q̂n
1(t) ≡ Qn

1(t)− nq1(t)√
n

, Q̂n
2(t) ≡ Qn

2(t)− nq2(t)√
n

,

Q̂n
s (t) ≡ Qn

s (t)− nqs(t)√
n

, D̂n(t) ≡ Dn
1,2(t)√

n

Î n(t) ≡ √
n

t∫

0

(1{Dn
1,2(s)>0} − π1,2(x(s)))ds, t ≥ 0, (15)

where x ≡ (q1, q2, z1,2) is the customary three-dimensional representation of the
fluid limit, z1,1 ≡ m1e, z2,1 = 0e z2,2 ≡ m2e − z1,2, qs ≡ q1 + q2 and π1,2(x(s)) ≡
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P(D(x(s),∞) > 0), with D(x(s),∞) being a random variable with the steady-state
distribution of the FTSP {D(x(s), t) : t ≥ 0} associated with the fluid limit x(s) at
time s.

Here is the main result of this paper: the FCLT for the overloaded X model operating
under FQR-T. Since the limit is clearly a Markov process with continuous sample paths,
it is by definition a diffusion process. Most of the rest of the paper is devoted to its
proof.

Theorem 4 (FCLT) If, in addition to Assumptions 1–6,

(
Q̂n

s (0), Ẑ n
1,2(0)

)
⇒
(

Q̂s(0), Ẑ1,2(0)
)

∈ R2 as n → ∞,

then, for i, j = 1, 2,

(
Ân

i , Û n
i , Ŝn

i, j , D̂n, Î n, Q̂n
i , Q̂n

s , Ẑ n
i, j

)
(16)

⇒
(

Âi , Ûi , Ŝi, j , D̂, Î , Q̂i , Q̂s, Ẑi, j

)

in D17, where the processes depending on n on the left are defined in (15) and
the limit process has continuous paths w.p.1. The initial 10-dimensional component
( Âi , Ûi , Ŝi, j , D̂, Î ) is a vector of independent Brownian motions, time scaled by
increasing continuous deterministic functions (for the first 8, the fluid limits in the
translation terms of (15)), with two null components Ŝ2,1 ≡ 0e and D̂ ≡ 0e. Five com-

ponents of the limit are determined by the relations Q̂i
d= pi Q̂s, Ẑ2,1 ≡ Ẑ1,1 ≡ 0e

and Ẑ2,2 ≡ −Ẑ1,2. Finally, (Q̂s, Ẑ1,2) is the unique solution of the following two-
dimensional stochastic integral equation:

Q̂s(t)= Q̂s(0)+(μ2,2−μ1,2)

t∫

0

Ẑ1,2(s) ds − (
p1θ1 + p2θ2

)
t∫

0

Q̂s(s) ds

+L̂1(t)− L̂1,2(t)− Ŝ1,2(t)− L̂2,2(t)− Ŝ2,2(t),

Ẑ1,2(t) = Ẑ1,2(0)−
t∫

0

[
(μ2,2 − μ1,2)π1,2(x(s))+ μ1,2

]
Ẑ1,2(s) ds

−L̂1,2(t)+ L̂2,2(t)+ L̂2(t), (17)

where, for i = 1, 2,

L̂1 ≡ Â1 + Â2 − Û1 − Û2 − Ŝ1,1
d=
{

B1 (γ1(t)) : t ≥ 0
}
,

L̂i,2 ≡ {
Bi,2(φi,2(t)) : t ≥ 0

}
, Ŝi,2 ≡ {

Bi,3
(
γi,2(t)

) : t ≥ 0
}
,

L̂2 ≡
{

B2 (γ2(t)) : t ≥ 0
}

and Î ≡
{

B2 (γ3(t)) : t ≥ 0
}
, (18)
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with B1, B1,2, B2,2, B1,3, B2,3 and B2 being six independent standard BM’s, while
γi , γi,2 andφi,2 are strictly increasing continuous deterministic functions. Specifically,

γ1(t) ≡ (
λ1 + λ2 + m1μ1,1

)
t + (

p1θ1 + p2θ2
)

t∫

0

qs(u) du

φ1,2(t) ≡ μ1,2

t∫

0

(
1 − π1,2(x(u))

)
z1,2(u) du,

φ2,2(t) ≡ μ2,2

t∫

0

π1,2(x(u))(m2 − z1,2(u)) du,

γ1,2(t) ≡ μ1,2

t∫

0

π1,2(x(u))z1,2(u) du

γ2,2(t) ≡ μ2,2

t∫

0

(
1 − π1,2(x(u))

)(
m2 − z1,2(u)

)
du,

γ2(t) ≡
t∫

0

ψ2(x(u))σ 2(x(u)) du, γ3(t) ≡
t∫

0

σ 2(x(u)) du, (19)

where

ψ(x(u)) ≡ μ2,2
(
m2 − z1,2(u)

)+ μ1,2z1,2(u), u ≥ 0, (20)

with π1,2(x(u)) and σ 2(x(u)) being the quantities associated with the FTSP
D(x(u), ·), defined in (7) and (13), respectively, and characterized in (14).

Since the FCLT describes a refinement of the transient behavior of the fluid limit,
it should not be surprising that the limiting stochastic process (Q̂s, Ẑ1,2) would be
difficult to analyze. On the positive side, we can solve for Ẑ1,2 in (17) without having
to simultaneously solve for Q̂s , but we need Ẑ1,2 to solve for Q̂s . An additional
complication for Q̂s is the dependence between the driving Brownian motions for
the two processes Q̂s and Ẑ1,2; note that the time-transformed Brownian terms L̂i,2
appear in both.

The FCLT shows the impact of system variability on the stochastic limit. First, and

perhaps of greatest interest, there is a Brownian contribution L̂2
d= B2(γ2(t)) from

the FTSP appearing in the equation for Ẑ1,2; note the dependence between L̂2 and Î .
However, (L̂2, Î ) is independent of all other Brownian terms. We thus see that the
fluctuations about the fixed target ratio r in the queue-difference process (1) due to
FQR do have an impact on the stochastic limit.
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On the other hand, we see that the stochastic fluctuations associated with external
arrivals and abandonments only affect Q̂s ; they have no impact on Ẑ1,2. The same is
true for the stochastic fluctuations of service facility 1, which is always busy, without

any sharing. These fluctuations are captured by the Brownian term L̂1
d= B1(γ1(t)).

However, as noted above, in distinct contrast, the stochastic fluctuations in the service
processes at service facilty 2 have a more complicated impact, because they appear in
the Brownian driving processes of both equations.

4.3 Important corollaries

The stochastic limit in the FCLT depends critically on the fluid limit x , which typically
must be computed numerically, but an efficient algorithm was developed in [23],
exploiting the QBD structure of the FTSP D when r1,2 is rational. Since we are mainly
interested in the steady-state variance of the diffusion limits, and since the stochastic
fluctuations become more significant when the fluid is nearly constant (which happens
when it is close to its stationary point) it is reasonable to initialize the fluid model at
this fluid stationary point to simplify the expressions in (17) and (19). We do this in
the next corollary.

From an application point of view, the fluid limit is “more important” than the refined
stochastic limit during the fluid transient period, since then the changes in the prelimit
are of order O(n). It follows from Theorem 2 that after some (relatively short) time,
the fluid stabilizes close to its unique stationary point x∗

6 in (10). After that happens,
the refined stochastic limits become the significant approximation to consider.

When we consider the stochastic refinement of the stationary fluid limit x∗, the
stochastic limit process becomes much more tractable: it is a bivariate Ornstein-
Uhlenbeck (BOU) process centered at the origin, as in [2,29]. Consequently, the
random vector (Q̂s(t), Ẑ1,2(t)) has a bivariate normal distribution with zero means
for all t , and the associated steady-state random vector (Q̂s(∞), Ẑ1,2(∞)) can be
very useful in applications. It is characterized by three parameters: the two variances
and the covariance, which we exhibit explicitly in (24) below.

For a matrix M , let Mt denote its transpose. The following is the key result for appli-
cations. It gives explicit Gaussian approximations for the steady-state distributions of
all quantities of interest.

Corollary 1 (FCLT with a stationary fluid) If, in addition to the conditions of The-
orem 4, x(0) = x∗ for the stationary point x∗ in (10) so that x is stationary, then
the time transformations in (19) simplify by having γi (t) = ξi t, γi,2(t) = ξi,2t , and
φi,2(t) = ηi,2t, i = 1, 2, where

ξ1 ≡ 2(λ1 + λ2)− μ1,2z∗
1,2 − μ2,2(m2 − z∗

1,2),

ξ1,2 ≡ μ1,2π1,2(x
∗)z∗

1,2, ξ2,2 ≡ μ2,2(1 − π1,2(x
∗)(m2 − z∗

1,2),

η1,2 ≡ μ1,2(1 − π1,2(x
∗))z∗

1,2,

η2,2 ≡ μ2,2π1,2(x
∗)(m2 − z∗

1,2),

ξ2 ≡ ψ2(x∗)σ 2(x∗) and ξ3 ≡ σ 2(x∗), (21)
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for σ 2(x∗) and ψ(x∗) defined in (13) and (20) with x(u) = x∗. Then (Q̂s, Ẑ1,2)

becomes a BOU process, satisfying the two-dimensional stochastic differential equa-
tion (sde)

dX = MX + SdB, (22)

where X ≡ (Q̂s, Ẑ1,2)
t ,B ≡ (B1, B2)

t , with B1 and B2 being two independent
standard BM’s, and

M1,1 ≡ −(p1θ1 + p2θ2), M1,2 ≡ (μ2,2 − μ1,2), M2,1 ≡ 0,

M2,2 ≡ −μ1,2μ2,2m2z∗
1,2

μ1,2z∗
1,2 + μ2,2(m2 − z∗

1,2)
< 0,

S2
1,1 ≡ ξ1 + ξ1,2 + ξ2,2 + η1,2 + η2,2 = 2(λ1 + λ2),

S1,2 ≡ S2,1 ≡ η1,2 − η2,1 = 0, S2
2,2 ≡ ξ2 + ξ4,

ξ4 ≡ η1,2 + η2,2 = 2μ1,2μ2,2z∗
1,2(m2 − z∗

1,2)

μ1,2z∗
1,2 + (m2 − z∗

1,2)μ2,2
. (23)

As a consequence, (Q̂s(t), Ẑ1,2(t)) has a bivariate normal distribution with
zero means for each t. The covariance matrix of the steady-state random vector
(Q̂s(∞), Ẑ1,2(∞)) has elements

σ 2
Qs
(∞) ≡ Var(Q̂s) = Q1 + Q2,

Q1 ≡ S2
1,1

2|M1,1| =
(

λ1 + λ2

p1θ1 + p2θ2

)
,

Q2 ≡
M1,2σ

2
Qs ,Z1,2

(∞)

|M1,1| =
(
(μ2,2 − μ1,2)σ

2
Qs ,Z1,2

(∞)

p1θ1 + p2θ2

)

,

σ 2
Z1,2
(∞) ≡ S2

2,2

2|M2,2| ≡ Z1 + Z2,

Z1 ≡ ξ4

2|M2,2| = 1 − z∗
1,2

m2
, Z2 ≡ ξ2

2|M2,2| = ψ2(x∗)σ 2(x∗)
2|M2,2| ,

σ 2
Qs ,Z1,2

(∞) ≡ Cov(Q̂s, Ẑ1,2) = ξ5σ
2
Z1,2
(∞), ξ5 ≡

( M1,2

|M1,1 + M2,2|
)
. (24)

Proof By the definition of a stationary point, if x(0) = x∗ then x(t) = x∗ for all t > 0
given in (10); then π1,2(x∗) appears in (11). The expressions in (21) follow directly
from the expressions in (19), by replacing the time-dependent fluid quantities by their
stationary counterparts. The resulting pair of integral equations for (Q̂s(t), Ẑ1,2(t))
is known to be equivalent to the BOU sde in (22). The covariance matrix of the
stationary distribution,�, is known to satisfy the matrix equation M�+�Mt = −V ,
where V ≡ SS t , from which (24) follows; e.g., see [2] and [16]. Algebra shows that
ξ4/2|M2,2| = (1 − (z∗

1,2/m2)). ��
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Remark 1 (When components become null) Notice that the results in Corollary 1
simplify greatly with pool-dependent service rates, i.e., whenM1,2 ≡ μ2,2−μ1,2 = 0.
Then Q2 = 0 and ξ5 = 0, so that σ 2

Qs ,Z1,2
(∞) = 0.

We now see how Theorem 4 simplifies under the condition of pool-dependent
service rates (no longer assuming that x(0) = x∗).

Corollary 2 (FCLT with pool-dependent service rates) If, in addition to the assump-
tions of Theorem 4, μ2,2 = μ1,2 ≡ ν, then the two diffusion-limit processes Q̂s and
Ẑ1,2 can both be represented as separate one-dimensional processes, which satisfy
the following integral equations

Q̂s(t) = Q̂s(0)− η̃2

t∫

0

Q̂s(s) ds + B1 (γ̃1(t)) ,

Ẑ1,2(t) = Ẑ1,2(0)− ν

t∫

0

Ẑ1,2(s) ds + B2 (γ̃2(t)) ,

where

γ̃1(t) ≡ 2(λ1 + λ2)t +
(
η̃1

η̃2
− qs(0)

)
(1 − e−η̃2t )

γ̃2(t) ≡ ν

⎛

⎝
t∫

0

[
m2π1,2(x(u))+ z1,2(u)− 2π1,2(x(u))z1,2(u)

]
du

⎞

⎠+ γ2(t),

with γ2(t) defined in (19),

η̃1 ≡ λ1 + λ2 − m1μ1,1 − m2ν, η̃2 ≡ p1θ1 + p2θ2,

but B1 and B2 are dependent standard BM’s.

Proof It is immediate from the expression for Q̂s in (17) that when μ1,2 = μ2,2

the diffusion process Q̂s can be analyzed separately from Ẑ1,2. Since qi = pi qs and
μ1,2 = μ2,2, it follows from (9) that q̇s(t) satisfies the simple ODE

q̇s(t) = (
λ1 + λ2 − m1μ1,1 − m2μ2,2

)− (
p1θ1 + p2θ2

)
qs(t) ≡ η̃1 − η̃2qs(t),

whose solution is

qs(t) = η̃1

η̃2
+
(

q(0)− η̃1

η̃2

)
e−η̃2t

for η̃1 and η̃2 in the statement of the lemma. Notice that γ̃1(t) here corresponds to
γ1(t)+ γ1,2(t)+ γ2,2(t) in (19). Inserting qs(t) above into γ1(t) in (19) gives γ̃1(t).
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Notice that γ̃2(t) corresponds to φ1,2(t)+ φ2,2(t)+ γ2(t) in (19). Again substituting
yields the conclusion.

Remark 2 (Equivalence with the single-class model) If, in addition to the conditions of
both Corollaries 1 and 2, we also have θ1 = θ2 ≡ θ , then the diffusion-limit process Q̂s

is the same as the limit obtained for the M/M/n+M model in the ED regime, see [32].
That is, Q̂s is an Ornstein-Uhlenbeck process with infinitesimal mean equal to θ and
infinitesimal variance 2λ ≡ 2(λ1 + λ2). Thus, its steady-state distribution is normal
with mean zero and variance λ/θ . However, Ẑ1,2 remains somewhat complicated
involving γ2(t) in (19).

4.4 The case r = 1: longer queue first (LQF)

The most complicated feature in the FWLLN and FCLT asymptotic results in the previ-
ous two sections, inhibiting application, is the need to analyze the FTSP. Specifically,
both the approximating fluid model and the stochastic refinement depend critically
on the FTSP D ≡ D(γ ) ≡ {D(γ, s) : s ≥ 0} at each point γ ∈ A. In particular,
both limits depend on D(γ ) through the two functions π1,2(γ ) and σ 2(γ ). These two
functions can be computed numerically, as indicated above. For the stationary fluid
point x∗, π1,2(x∗) is given explicitly in (11).

However, there is an important special case, itself of practical value, in which
the analysis simplifies greatly, which can provide insight more generally. When the
target queue ratio is r = 1, the FTSP D(γ ) becomes an ordinary birth-and-death
(BD) process for each γ ∈ A. Then the quantities π1,2(γ ) and σ 2(γ ) are both easily
expressed. It turns out that they can be expressed in terms of the first two moments of
the busy-period distributions of two M/M/1 queues. We consider that case now.

We now assume that r = 1, and take γ ∈ A. In this case, the FTSP evolves as one
BD process when D(γ ) > 0 and evolves as another BD process when D(γ ) ≤ 0.
We call zero the boundary state. Let λ1(γ ) denote the constant rate up (away from
the boundary) and let μ1(γ ) denote the constant rate down (toward the boundary) of
D(γ ) when D(γ ) > 0. Focusing on the movement relative to the boundary, let λ2(γ )

denote the constant rate down (away from the boundary) and let μ2(γ ) denote the
constant rate up (toward the boundary) of D(γ ) when D(γ ) ≤ 0.

Note that we need to analyze D(γ ) only through the associated stochastic process

X (γ, t) ≡ 1{D(γ,t)>0}, t ≥ 0,

which records which region D(γ, t) is in at each time t . The stochastic process X ≡
X (γ ) ≡ {X (γ, t) : t ≥ 0} is a {0, 1}-valued process associated with an alternating
renewal process. Let T1(γ ) denote a time interval between the instant of a state change
from state 0 to state 1 until the next instant of a state change from state 1 back to state
0. Similarly, let T2(γ ) denote a time interval between instant of a state change from
state 1 to state 0 until the next instant of a state change from state 0 back to state 1. The
successive times in the alternating renewal process are independent random variables
distributed as T1(γ ) and T2(γ ). The process X (γ ) is a regenerative process in which
the regeneration times can be the successive instant of a state change from state 0 to
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state 1 until the next instant of the same state change again at a later time. The intervals
between successive regenerations are distributed as T1(γ )+ T2(γ ).

Now observe that Ti (γ ) is distributed as a busy period in an M/M/1 queue with
arrival rate λi (γ ) and service rateμi (γ ), i = 1, 2. In this context, the condition γ ∈ A

is equivalent to λi (γ ) < μi (γ ), i = 1, 2. Under this condition, Ti (γ ) is known to
have a finite moment generating function with a positive radius of convergence, so
that all moments of Ti (γ ) are finite. Let

mi (γ ) ≡ 1/μi (γ ) and ρi (γ ) ≡ λi (γ )/μi (γ ), i = 1, 2. (25)

Then, from basic M/M/1 theory, we have

E
[
Ti (γ )

] = mi (γ )

1 − ρi (γ )
and E

[
Ti (γ )

2] = 2mi (γ )
2

(1 − ρi (γ ))3
. (26)

Finally, we are interested in the cumulative process associated with X (γ ),

C(γ, t) ≡
∫ t

0
X (γ, s) ds ≡

t∫

0

1{D(γ,s)>0} ds, t ≥ 0.

We can apply (14) to obtain the following result.

Theorem 5 (The FTSP when r = 1) When r = 1 and γ ∈ A, the FTSP becomes
a recurrent BD process. Hence the key FTSP quantities can be expressed directly in
terms of the four BD rates λi (γ ) and μi (γ ) via

π1,2(γ ) = E[T1(γ )]
E[T1(γ )] + E[T2(γ )] , σ 2(γ ) = Var(T1(γ ))

E[T1(γ )] + E[T2(γ )] (27)

for E[Ti (γ )] and E[Ti (γ )
2] in (26) and (25), i = 1, 2.

In the more general QBD setting arising with r �= 1, the analysis is more com-
plicated, because the excursions of

∫ t
0 1{D(γ,s)>0} above and below 0 depend on the

entering and exit states from level 0; thus these excursions are not simply indepen-
dent. Theorem 5 can be the basis for heuristic extensions to non-Markovian models in
which the arrival, service, and abandonment processes are non-Markovian. We may
then exploit approximations for the busy period in G I/G I/1 queues, e.g., [1] and
[25].

5 Proof of Theorem 4

First observe that the assumed convergence in R2 at time zero is actually equivalent to
the full convergence in R17 of the process in (16) at time zero because of Assumption 5.
Our proof has four main steps: The first step is to exploit SSC results established
in [24]. In particular, we first give an asymptotically equivalent three-dimensional
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representation of Xn
6 (without any scaling) involving rate-1 Poisson processes. Then,

we observe that the essential dimension is actually two (when scaling by
√

n) because
the queue lengths are asymptotically in the fixed ratio. Thus, we deduce that it is
sufficient to directly prove convergence of the two-dimensional process (Q̂n

s , Ẑ n
1,2).

The second step is to facilitate application of the continuous mapping theorem by
showing that an essential mapping is continuous. The third step is to construct appro-
priate martingale representations, allowing application of the continuous mapping
theorem. The fourth and final hardest step is to show that the driving stochastic terms
in this martingale representation converge to the specified limits. This final step uses
a new result of independent interest, Theorem 6, the generalization of the classical
FCLT for cumulative processes in (13) to the case where the QBD parameters at time
t are given by the fluid limit x(t), which in general is time-varying.

5.1 Representation and SSC

Following common practice, as reviewed in §2 of [20], we represent the processes
An

i (t), Sn
i, j (t) and U n

i (t) introduced at the beginning of §4.2 in terms of mutually
independent rate-1 Poisson processes; let

An
i (t) ≡ N a

i (λ
n
i t),

Sn
i, j (t) ≡ N s

i, j

⎛

⎝μi, j

t∫

0

Zn
i, j (s) ds

⎞

⎠ and Sn ≡
2∑

j=1

2∑

i=1

Sn
i, j ,

U n
i (t) ≡ N u

i

⎛

⎝θi

t∫

0

Qn
i (s) ds

⎞

⎠ , t ≥ 0,

where N a
i , N s

i, j and N u
i for i = 1, 2; j = 1, 2 are eight mutually independent rate-1

Poisson processes. Theorem 5.1 of [24] gives a representation of the CTMC in terms
of these processes. Corollaries 6.1–6.3 plus Theorem 6.4 of [24] then establish state
space collapse (SSC) results yielding an asymptotically equivalent three-dimensional
representation of Xn

6 involving these mutually independent rate-1 Poisson processes
plus two others. Since we exploit that representation, we state it here. Directly, the
representation of Zn

1,2 below keeps it in the interval [0, mn
2]. However, the representa-

tion directly allows the queue lengths Qn
i to become negative. The results in [24] show

that the occurrence (anywhere in a a bounded interval) is asymptotically negligible.
Recall that dJ1 denotes the Skorohod J1 metric.

Lemma 1 (Representation via SSC of the service process) Under the assumptions
in Theorem 1, dJ1(X

n
6 , Xn,∗

6 ) ⇒ 0 in D6 as n → ∞, with the three determining
components of Xn,∗

6 in (4), i.e., in Xn in (4), being represented via

Zn
1,2(t) ≡ Zn

1,2(0)+
t∫

0

1{Dn
1,2(s−)>0} dSn

2,2(s)−
t∫

0

1{Dn
1,2(s−)≤0} dSn

1,2(s)
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d= Zn
1,2(0)+ N s

2,2

⎛

⎝μ2,2

t∫

0

1{Dn
1,2(s)>0}

(
mn

2 − Zn
1,2(s)

)
ds

⎞

⎠

−N s
1,2

⎛

⎝μ1,2

t∫

0

1{Dn
1,2(s)≤0} Zn

1,2(s) ds

⎞

⎠ ,

Qn
1(t)≡ Qn

1(0)+ An
1(t)−

t∫

0

1{Dn
1,2(s−)>0}dSn(s)−

t∫

0

1{Dn
1,2(s−)≤0} dSn

1,1(s)−U n
1 (t)

d= Qn
1(0)+ N a

1 (λ
n
1 t)− N s

1,1

(
μ1,1mn

1 t
)− N s,2

1,2

⎛

⎝μ1,2

t∫

0

1{Dn
1,2(s)>0} Zn

1,2(s)) ds

⎞

⎠

−N s
2,2

⎛

⎝μ2,2

t∫

0

1{Dn
1,2(s)>0}

(
mn

2 − Zn
1,2(s)

)
ds

⎞

⎠− N u
1

⎛

⎝θ1

t∫

0

Qn
1(s) ds

⎞

⎠ ,

Qn
2(t)≡ Qn

2(0)+ An
2(t)−

t∫

0

1{Dn
1,2(s−)≤0}dSn

2,2(s)−
t∫

0

1{Dn
1,2(s−)≤0}dSn

1,2(s)−U n
2 (t)

d= Qn
2(0)+ N a

2 (λ
n
2 t)− N s,2

2,2

⎛

⎝μ2,2

t∫

0

1{Dn
1,2(s)≤0}

(
mn

2 − Zn
1,2(s)

)
ds

⎞

⎠

−N s
1,2

⎛

⎝μ1,2

t∫

0

1{Dn
1,2(s)≤0} Zn

1,2(s) ds

⎞

⎠− N u
2

⎛

⎝θ2

t∫

0

Qn
2(s) ds

⎞

⎠ .

where N s,2
1,2 and N s,2

2,2 are two additional rate-1 Poisson processes, independent of the
others.

The representation in Lemma 1 provides important simplification, but it also shows
the difficulty in proving heavy traffic limit theorems; the integrals contain the indicator
functions depending on Dn

1,2. We now show that the essential dimension can be reduced
from three to two when we introduce scaling. The next result follows from Corollary
4.1 of [24].

Lemma 2 (SSC to two dimensions) Under the conditions of Theorem 1, the
essential dimension can be reduced from 3 established in Lemma 1 to 2, because
dJ1(Q

n
1, r Qn

2)/an ⇒ 0 in D([0, δ)) for δ in Theorem 1 whenever an/ log n → ∞ as
n → ∞. If x ∈ A over an interval [t1, t2), 0 < t1 < t2 ≤ ∞, then the conclusion
holds in D((t1, t2)).

Due to Assumption 6 and Lemma 2, it is sufficient to directly prove convergence of
the two-dimensional process (Q̂n

s , Ẑ n
1,2); the more general 16-dimensional limit in (16)

can be obtained as a byproduct of the analysis, and in particular, Q̂i
d= pi Q̂s, i = 1, 2.
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5.2 A continuous mapping

As in [20], our proof exploits the continuous mapping theorem. However, in our
case, the stochastic processes describing the evolution of the system (the queue length
and service processes) cannot be expressed directly as a continuous mapping of the
primitive processes. We next establish the continuity of the mapping that we will
eventually apply.

Lemma 3 (Continuity of the two-dimensional integral representation) Consider the
two-dimensional integral representation

x1(t) = b1 + y1(t)+ α2

t∫

0

x2(s) ds + α1

t∫

0

x1(s) ds

x2(t) = b2 + y2(t)+
t∫

0

g(s)x2(s) ds

where g : R → R satisfies g(0) = 0 and is Lipschitz continuous with a Lipschitz con-
stant cg. That integral representation has a unique solution (x1, x2), so that the integral
representation constitutes a function f : D2 × R2 → D2 mapping (y1, y2, b1, b2)

into (x1, x2) ≡ f (y1, y2, b1, b2). In addition, the function f is a continuous map-
ping from D2 × R2 to D2. Moreover, if y2 is continuous then x2 is continuous. If both
y1 and y2 are continuous, then x1 is also continuous.

Proof By the conditions on the function g we have for all T ≥ 0

‖g‖T ≤ g(0)+ ‖g(u)− g(0)‖T ≤ g(0)+ cgT = cgT .

Note that x2 does not depend on x1, hence we can prove the lemma iteratively by
first showing that the function f2 : D × R mapping (y2, b2) into x2 ≡ f2(y2, b2) is
continuous, and then use this result to show that the function f1 : D2 × R mapping
(y1, x2, b1) into x1 ≡ f1(y1, x2, b1) is continuous.

To show that f2 is continuous we use Theorem 2.11 in [27] with h(x2(u), u) ≡
g(u)x2(u). For that purpose, choose T > 0 and let λ be a homeomorphism on [0, T ]
with strictly positive derivative λ̇. Then, for every ϕ1, ϕ2 ∈ D

t∫

0

|g(u)ϕ1(u)− g(λ(u))ϕ2(λ(u))| du

≤
t∫

0

|g(u)ϕ1(u)− g(u)ϕ2(λ(u))| du

+
t∫

0

|g(u)ϕ2(λ(u))− g(λ(u))ϕ2(λ(u))| du
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≤ ‖g‖T

t∫

0

|ϕ1(u)− ϕ2(λ(u))| du + ‖ϕ2‖T

t∫

0

|g(u)− g(λ(u))| du

≤ ‖g‖T

t∫

0

|ϕ1(u)− ϕ2(λ(u))| du + cgT ‖ϕ2‖T ‖λ− e‖T

= c1‖λ− e‖T + c2

t∫

0

|ϕ1(u)− ϕ2(λ(u))| du.

where c1 ≡ cgT ‖ϕ2‖T and c2 ≡ ‖g‖T . For x1 = f1(y1, x2, b1) we can apply
Theorem 4.1 in [20] with input y ≡ y1 + α2

∫ t
0 x2(u) du. It follows from Theorem

2.11 in [27] that if y2 is continuous then so is x2. If, in addition, y1 is continuous, then
y is continuous and, by Theorem 4.1 in [20], so is x1. ��

5.3 Martingale representations

As in Theorem 6.3 of [24], we next apply the representation in Lemmas 1 and 2 to
obtain martingale representations for Q̂n

s and Ẑ n
1,2, but now we are interested in the

FCLT instead of the FWLLN. We exploit martingale representations for the count-
ing processes appearing in Lemma 1 constructed from the rate-1 Poisson processes
N a

i , N s
i,2, N s,2

i,2 and N u
i , i = 1, 2, in particular,

Mn
1,1(t) ≡ N s

1,1
(
mn

1μ1,1t
)− mn

1μ1,1t,

Mn
1,2(t) ≡ N s

1,2

⎛

⎝μ1,2

t∫

0

1{Dn
1,2(s)≤0}Zn

1,2(s) ds

⎞

⎠− μ1,2

t∫

0

1{Dn
1,2(s)≤0}Zn

1,2(s) ds,

Mn
2,2(t) ≡ N s

2,2

⎛

⎝μ2,2

t∫

0

1{Dn
1,2(s)>0}(mn

2 − Zn
1,2(s)) ds

⎞

⎠

−μ2,2

t∫

0

1{Dn
1,2(s)>0}

(
mn

2 − Zn
1,2(s)

)
ds,

Mn
1,3(t) ≡ N s,2

1,2

⎛

⎝μ1,2

t∫

0

1{Dn
1,2(s)>0}Zn

1,2(s) ds

⎞

⎠− μ1,2

t∫

0

1{Dn
1,2(s)>0}Zn

1,2(s) ds,

Mn
2,3(t) ≡ N s,2

2,2

⎛

⎝μ2,2

t∫

0

1{Dn
1,2(s)≤0}(mn

2 − Zn
1,2(s)) ds

⎞

⎠

−μ2,2

t∫

0

1{Dn
1,2(s)≤0}

(
mn

2 − Zn
1,2(s)

)
ds,
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Mn
ai
(t) ≡ Na

i
(
λn

i t
)− λn

i t, i = 1, 2,

Mn
ui
(t) ≡ N u

i

⎛

⎝θi

t∫

0

Qn
i (s)ds

⎞

⎠− θi

t∫

0

Qn
i (s)ds, i = 1, 2. (28)

Lemma 4 (Martingale representation for Q̂n
s )

Q̂n
s (t) = Q̂n

s (0)+ (μ2,2 − μ1,2)

t∫

0

Ẑ n
1,2(s) ds − (

p1θ1 + p2θ2
)

t∫

0

Q̂n
s (s) ds

+M̂n
s (t)+ oP (1) as n → ∞,

where M̂n
s ≡ Mn

s /
√

n for

Mn
s (t) ≡

2∑

i=1

Mn
ai
(t)−

2∑

i=1

Mn
ui
(t)−

2∑

i=1

Mn
i,2(t)−

2∑

i=1

Mn
i,3(t)− Mn

1,1(t). (29)

The terms in (28) can be shown to be martingales with respect to an appropriate
filtration, so that Mn

s in (29) is also a martingale. However, since our proofs will
not employ the martingale property, we do not specify the filtration and only use the
term “martingale” for convenience. See §2.1 and §3.4 of [20] for background on the
construction and the martingale property, including the appropriate filtration.

Proof By Lemma 1,

Qn
s (t) = Qn

s (0)+ (
λn

1 + λn
2

)
t − mn

1μ1,1t − μ1,2

t∫

0

Zn
1,2(s) ds − μ2,2

t∫

0

Zn
2,2(s) ds

−θ1

t∫

0

Qn
1(s) ds − θ2

t∫

0

Qn
2(s) ds + Mn

s (t),

for Mn
s (t) in (29). Observe that the indicator functions in the representation of Xn in

Lemma 1 do not appear in the representation of Qn
s (t). That simplifies the analysis.

From (9) it follows that qs ≡ q1+q2, the fluid counterpart of Qn
s , evolves according

to the integral equation:

qs(t) = qs(0)+ (λ1 + λ2)t − μ1,1m1t − μ1,2

t∫

0

z1,2(u) du − μ2,2

t∫

0

z2,2(u) du

−θ1

t∫

0

q1(u) du − θ2

t∫

0

q2(u) du,

so that, substituting q1 with p1qs(u) and q2(u) with p2qs(u),
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qs(t) = qs(0)+ (λ1 + λ2)t − μ1,1m1t − μ2,2m2t

+(μ2,2 − μ1,2
)

t∫

0

z1,2(u) du − (
p1θ1 + p2θ2

)
t∫

0

qs(u) du.

Then, by centering about nqs and dividing by
√

n as in (15), we have

Q̂n
s (t) = Q̂n

s (0)+
[
(λn

1 + λn
2)− n(λ1 + λ2)

]
t√

n
− μ1,1(mn

1 − nm1)t√
n

(30)

−μ1,2
∫ t

0 (Z
n
1,2(s)− nz1,2(s)) ds√

n
− μ2,2

∫ t
0 (Z

n
2,2(s)− nz2,2(s)) ds√

n

−θ1
∫ t

0 (Q
n
1(s)− nq1(s)) ds√

n
− θ2

∫ t
0 (Q

n
2(s)− nq2(s)) ds√

n
+ Mn

s (t)√
n
.

By Assumption 1, the second and third terms in the expression above converge to
zero. By Corollary 6.2 and Theorem 6.4 in [24], n−1/2‖Zn

2,2 − (mn
2 − Zn

1,2)‖ ⇒ 0 in
D as n → ∞ so that z2,2 = m2 − z1,2. Also, (mn

2 − nm2)/
√

n → 0 as n → ∞ by
Assumption 1. Hence,

Q̂n
s = Q̂n

s (0)+ (
μ2,2 − μ1,2

)
t∫

0

Ẑ n
1,2(s) ds

−θ1

t∫

0

Q̂n
1(s) ds − θ2

t∫

0

Q̂n
2(s) ds + M̂n

s (t)+ oP (1).

Define

Q̂n
a,s(t) ≡ Q̂n

s (0)+ (
μ2,2 − μ1,2

)
t∫

0

Ẑ n
1,2(s) ds − p1θ1

t∫

0

Q̂n
s (s) ds

−p2θ2

t∫

0

Q̂n
s (s) ds + M̂n

s (t)

By applying the SSC result in Lemma 2, we conclude that ‖Q̂n
s − Q̂n

a,s‖T ⇒ 0 in D
as n → ∞ for any T > 0. That completes the proof. ��

We now turn to the process Zn
1,2. As in Lemma 4, we call Mn

Z in (33) below a
“martingale” for convenience, although we do not employ any martingale property.
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Lemma 5 (Martingale representation for Ẑ n
1,2)

Ẑ n
1,2(t) = Ẑ n

1,2(0)−
t∫

0

[
(μ2,2 − μ1,2)π1,2(x(s))+ μ1,2

]
Ẑ n

1,2(s) ds (31)

+L̂n + M̂n
Z + o(1),

where L̂n ≡ Ln/
√

n, M̂n
Z ≡ Mn

Z/
√

n,

Ln(t) ≡
t∫

0

[1{Dn
1,2(s)>0} − π1,2(x(s))]�n(s) ds, (32)

�n(s) ≡ μ2,2(m
n
2 − Zn

1,2(s))+ μ1,2 Zn
1,2(s)

and

Mn
Z (t) ≡ Mn

2,2(t)− Mn
1,2(t), (33)

for Mn
2,2 and Mn

1,2 in (28).

Proof We start by rewriting the representation of Zn
1,2 in Lemma 1 as

Zn
1,2(t) = Zn

1,2(0)− μ1,2

t∫

0

(
1 − π1,2(x(s))

)
Zn

1,2(s) ds

+μ2,2

t∫

0

π1,2(x(s))
(
mn

2 − Zn
1,2(s)

)
ds + Ln + Mn

Z .

To achieve the diffusion-scaled process, we center Zn
1,2 about nz1,2 and divide by

√
n,

where, by (9), the fluid limit z1,2 satisfies the equation

z1,2(t) = z1,2(0)+ μ2,2

t∫

0

π1,2(x(s))
(
m2 − z1,2(s)

)
ds

−μ1,2

t∫

0

(1 − π1,2(x(s)))z1,2(s) ds.

We get the representation (31) with the o(1) term replacing the deterministic term

[(mn
2 − nm2)

t∫

0
π1,2(x(s)) ds]/√n ≤ (mn

2 − nm2)t/
√

n, which converges to zero by

Assumption 1. ��
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5.4 Convergence of stochastic driving terms

Given the representations in Lemmas 4 and 5, we can complete the proof of the
convergence of (Q̂n

s , Ẑ n
1,2) in Theorem 4 by establishing convergence of the driving

terms and applying the continuous mapping theorem with the mapping in Lemma 3,
i.e., with the following lemma, proved in the next section. We add an extra process,
Î n , also defined in (15), which is closely related to L̂n , but not directly needed to treat
(Q̂n

s , Ẑ n
1,2).

Lemma 6 (Convergence of driving terms) Under the assumptions of Theorem 4,

(
M̂n

s , M̂n
Z , L̂n, Î n) ⇒

(
M̂s, M̂Z , L̂2, Î

)
in D4, (34)

where

M̂s(t) ≡ B1 (γ1(t))− B1,2
(
γ1,2(t)

)− B2,2
(
γ2,2(t)

)

−B1,3
(
φ1,2(t)

)− B2,3
(
φ2,2(t)

)
,

M̂Z (t) ≡ B2,2
(
φ2,2(t)

)− B1,2(φ1,2(t)),

L̂2(t) ≡ B2(γ2(t)) and Î (t) ≡ B2(γ3(t)), t ≥ 0,

B1, B1,2, B2,2, B1,3, B2,3 and B2 are independent standard BM’s as in the statement
of Theorem 4 and γ1(t), γ2(t), γ3(t), γ1,2(t), γ2,2(t), φ1,2(t) and φ2,2(t) are the
increasing continuous functions defined in (19).

5.5 Overall Proof of Theorem 4

We prove convergence of (Q̂n, Ẑ n
1,2) by applying the continuous mapping theorem

with the continuous function in Lemma 3, exploiting the representations in Lemmas 4
and 5 and the convergence established in Lemma 6. In applying Lemma 3, we rely
heavily on Theorem 7.1 in [23], which establishes that π1,2(·) is locally Lipschitz
continuous in A as a function of the fluid state x and is thus Lipschitz continuous over
compact sets. Moreover, x(·) is itself Lipschitz continuous, as a function of the time
argument s by Corollary 5.1 in [24]. It follows that π1,2(x(s)) is Lipschitz continuous
as a function of the time argument s as well (using Assumption 6 implying that x lies
entirely in A). Thus, the proof of Theorem 4 is complete with the exception of the
proof of Lemma 6. The next four sections are devoted to that proof.

Difficulties in the Proof of Lemma 6

The first two terms in the left-hand side of (34), which we refer to as “martingales”,
are relatively easy to deal with, using the standard Poisson FCLT; see [20]. This is
done in Lemma 7 below.

However, the limits of the last two terms in (34) is far more complicated to derive.
These two terms are not martingales, and the process Dn

1,2 is neither Markov nor
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regenerative. Moreover, as was shown in §4 of [24], the number of jumps of the
process Dn

1,2 grows to ∞ as n → ∞ w.p.1 over any interval, and this process is not
stochastically bounded (in particular, it is not D-tight). An additional complication
stems from the fact that the two martingale terms are not independent from the last two
terms in (34), so the joint convergence in the statement of the lemma is not immediate.
Joint convergence is proved via an asymptotic independence result, which is proved
in Lemma 10. Therefore, we elaborate on the steps that are required to identify the
limit of (L̂n, Î n).

The main intuition comes from the convergence in (6) of the time-expended process
Dn

e in (5). Loosely speaking, the convergence in (6) implies that the process Dn
1,2(t) is

approximately distributed as the FTSP D(x(t), ·) at a small neighborhood of time t , for
any t ≥ 0 and for large n. Since (13) holds for each of the (uncountably-many) FTSP’s
{D(x(t), ·) : t ≥ 0}, the main idea is to bound the sample paths of the process Dn

1,2
appropriately for each n with a countable number of time-scaled FTSP’s processes,
each operating in the same time scale as Dn

1,2. More specifically, we bound Dn
1,2 over

short intervals with processes that have the same structure as the FTSP’s, but with
scaled rates (their generators are scaled by O(n)); see D̃n

f in (42) below. Since scaling
the rates of a time-homogeneous CTMC by n without scaling time is equivalent to
scaling its time argument by n and keeping the rates fixed, the bounds D̃n

f in (42)
below, having O(n) rates, are distributed the same as versions of the FTSP with O(1)
rates, but with the time scaled by O(n).

Now, for the cumulative processes associated with each of these bounding FTSP’s
there exists an FCLT as in (13), and we need to “paste together” all the bounding FTSP’s
(each having random rates) and their FCLT’s so as to achieve the Brownian limit of Î n

in (18) and (19). This final step includes Theorem 6 below, which is a generalization
of the FCLT for cumulative processes. In particular, Theorem 6 states an FCLT for a
cumulative processes associated with the FTSP having time-varying parameters.

6 Proof of Lemma 6

This section is devoted to proving Lemma 6. In §6.1 we apply standard arguments to
establish the convergence of the first two terms (M̂n

s , M̂n
Z ). In preparation for treating

the last two terms, in §6.2 we state two key results that we will use; they are proved
in the following three sections. In §6.3 we establish convergence of the last two terms
(L̂n, Î n). Finally, in §6.4 we establish joint convergence of all four terms by proving
asymptotic independence of the last two terms from the first two terms.

6.1 The first two terms in (34)

We start by establishing convergence of the first two terms in Lemma 6.

Lemma 7 There is joint convergence of the processes

(
M̂n

s , M̂n
Z

) ⇒ (
M̂s, M̂Z

)
in D2,

where the processes are defined in (29), (33) and Lemma 6.
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Proof Let

M̂n
S (t) =

(
M̂n

1,1(t), M̂n
1,2(t), M̂n

2,2(t), M̂n
1,3(t), M̂n

2,3(t)
)

in D5,

M̂n
A(t) =

(
M̂a1(t), M̂a2(t)

)
and M̂n

U (t) =
(

M̂n
u1
(t), M̂n

u2
(t)
)

in D2

for the processes in (28). To compress the notation, for x ∈ Dk and t ∈ [0,∞)k , let
x(t) ≡ (x1(t1), x2(t2), . . . , xk(tk)). We start by proving that

(
M̂n

A(t), M̂n
S (t), M̂n

U (t)
)
⇒
⎛

⎝BA(λt), BS(φ(t)), BU

⎛

⎝θ

t∫

0

q(s) ds

⎞

⎠

⎞

⎠ in D9

(35)

as n → ∞, where

φ(t) ≡ (
φ1(t), φ2(t), φ3(t), φ4(t), φ5(t)

)
,

φ1(t) ≡ m1μ1,1t, φ2(t) ≡ φ1,2(t), φ3(t) ≡ φ2,2(t),

φ4(t) ≡ γ1,2(t), φ5(t) ≡ γ2,2(t), (36)

for φi,2 and γi,2 defined in (19). Here BA(t), BS(t) and BU (t) are vectors
of independent standard Brownian motions. Using our compressed notation, we
have λt ≡ (λ1t, λ2t) and θq(s) ≡ (θ1q1(s), θ2q2(s)). For example, BA(λt) =
(BA1(λ1t), BA2(λ2t)), and similarly for BS(·) and BU (·).

To prove (35), we apply the FCLT for Poisson processes. For the Poisson processes
in Lemma 1, let

M̃n
ai

= N a
i (nt)− nt√

n
, M̃n

i, j = N s
i, j (nt)− nt√

n
and

M̃n
ui

= N u
i (nt)− nt√

n
, i = 1, 2; j = 1, 2, 3.

Let M̃n
A(t), M̃n

S (t) and M̃n
U (t) be the corresponding vector-valued processes. By the

independence of all the unit-rate Poisson processes N a
i (·), N s

i, j (·) and N u
i (·), and the

FCLT for a Poisson process, the following joint convergence holds:

(
M̃n

A(t), M̃n
S (t), M̃n

U (t)
)

⇒
(

B̃A(t), B̃S(t), B̃U (t)
)

in D9 as n → ∞, (37)

where B̃A, B̃S and B̃U are, respectively, 2-dimensional, 5-dimensional, and 2-
dimensional independent Brownian motions; see Theorem 4.2 and §9.1 in [20].
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We now introduce random time changes. Let

�n
A,i (t) ≡ n−1λn

i t, �n
S,1(t) ≡ n−1μ1,1mn

1 t,

�n
S,2(t) ≡ n−1μ1,2

t∫

0

1{Dn
1,2(s)≤0}Zn

1,2(s) ds,

�n
S,3(t) ≡ n−1μ2,2

t∫

0

1{Dn
1,2(s)>0}(mn

2 − Zn
1,2(s)) ds,

�n
S,4(t) ≡ n−1μ1,2

t∫

0

1{Dn
1,2(s)>0}Zn

1,2(s) ds,

�n
S,5(t) ≡ n−1μ2,2

t∫

0

1{Dn
1,2(s)≤0}(mn

2 − Zn
1,2(s)) ds,

�n
U,i (t) ≡ n−1θi

t∫

0

Qn
i (s) ds, i, j = 1, 2. (38)

By Assumption 1 on the arrival rates, �n
Ai

→ λi e in D, i = 1, 2. From the initial
conditions in the statement of Theorem 4, the fluid limit and the continuity of the
integral mapping, it follows that�n

S,i ⇒ φi , 1 ≤ i ≤ 5, and�n
U,i (t) ⇒ θi

∫ t
0 qi (s) ds

in D as n → ∞.
Let �n

A(t),�
n
S(t) and �n

U (t) be the corresponding vector-valued processes. By
Theorem 11.4.5 of [31], these limits hold jointly, yielding

(
�n

A(t), �
n
S(t), �

n
U (t)

) ⇒
⎛

⎝λt, φ(t), θ

t∫

0

q(s) ds

⎞

⎠ in D9 (39)

as n → ∞. By Theorem 11.4.5 of [31], the limits in (37) and (39) also hold jointly.
By definition,

(
M̂n

A(t), M̂n
S (t), M̂n

U (t)
)

=
(

M̃n
A

(
�n

A(t)
)
, M̃n

S

(
�n

S(t)
)
, M̃n

U

(
�n

U (t)
))
.

Thus, the convergence in (35) follows from the continuity of the composition mapping
at continuous limits, Theorem 13.2.1 in [31]. Finally, the conclusion of the lemma itself
then follows from the definition of M̂n

s and M̂n
Z in (29) and (33), and the continuity of

addition under continuous limits, e.g., Corollary 12.7.1 in [31]. ��
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6.2 Key supporting results for the last two terms

In §4.1 we indicated that the stochastic limit will depend on the FCLT for cumulative
processes associated with the FTSP, as stated in (13). As indicated in §6 of [23], the
FTSP with fixed state γ is a QBD; its parameters (transition rates) are given explicitly
in (13)–(16) of [24]. Since the FTSP D(γ, ·) is a QBD for each state γ , it is a relatively
simple regenerative stochastic process for each state γ , assuming that γ makes the
QBD positive recurrent. However, in our application, the fluid state is not fixed at γ , but
is instead given by the fluid limit x(t), which is a function of time t . That means that the
parameters of the FTSP are actually time-varying. By Assumption 6, the FTSP with
fluid state x(t) is a positive recurrent QBD for all states x(t) considered. Moreover,
by Lemma C.5 of [24], the infinitesimal generator and the asymptotic variance of
the QBD are continuous functions of the underlying state x(t). Since the essential
matrix structure (e.g., the dimension of the matrices) of the QBD’s depends only on
the rational ratio parameter r1,2, and thus does not change, the QBD is characterized
by only finitely many parameters. As a consequence, we can establish a variant of the
FCLT in (13), allowing the FTSP to have a time-varying state.

In our remaining proof of Lemma 6, in particular for Lemma 8 below, we will
want to generalize the state of the QBD. The parameters of the QBD not only depend
on the fluid state γ ≡ (q1, q2, z1,2), but also on the rest of the QBD parameters, in
particular, also upon ζ ≡ (λi ,m j ; i, j = 1, 2). In order to establish Lemma 8 below,
we will want to allow the parameters λi and m j to vary, because they vary with n in
the many-server heavy-traffic scaling in Assumption 1. The QBD also depends on the
other model parameters θi and μi, j , but they are fixed, so we do not include them.
Thus, we will consider the more general “full” parameter state function η ≡ (ζ, γ ) for
η ≡ η(t) and γ ≡ γ (t) above, which we understand to be an element of the functions
space D. We obtain a conventional stationary QBD model for each full parameter state
η(t).

Now we will establish a FCLT for

Ĉn(t; η) ≡ n−1/2

nt∫

0

(
1{D(η(s/n),s)>0} − π1,2(η(s/n))

)
ds, t ≥ 0, (40)

where the state function η is an element of D and D(η(0), 0) is some fixed finite
initial value. Note that in the special case of a constant parameter state function, with
η(t) = γ, 0 ≤ t ≤ T , this new process reduces to the previous one in §4.1; i.e.,

Ĉn(t; η) = Ĉn
QBD(t; γ ), 0 ≤ t ≤ T .

for Ĉn
QBD(t; γ ) in (13).

However, more generally, the process Ĉn(t; η) in (40) is more complicated, so that
the new FCLT is by no means immediate. The non-constant function ηmakes the new
process {D(η(s/n), s) : s ≥ 0} appearing in the integrand of (40) neither a QBD nor
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a regenerative process. Nevertheless, we establish the following generalization of the
FCLT in (13). The proof is given in §7.

Theorem 6 (FCLT for FTSP with time-varying parameter state) Consider the FTSP
D as a function of its parameter state function η specified above, where η is an element
in C. Suppose that the QBD D(η(t), ·) is positive recurrent for all η(t), 0 ≤ t ≤ T .
Then

Ĉn(·; η) ⇒ Ĉ(·; η) in D([0, T ]) as n → ∞,

where Ĉn(·; η) is given in (40) and

Ĉ(t; η) ≡ B

⎛

⎝
t∫

0

σ 2(η(u)) du

⎞

⎠ , t ≥ 0,

with B being a standard BM and, for each u, σ 2(η(u)) is the asymptotic variance of
the cumulative process with constant full parameter state η(u), as in (13)–(14).

For Lemma 8 below, we will also want to extend the FCLT in Theorem 6 to full
parameter state functions that are suitably near a given deterministic one. For that
purpose, we use the following elementary corollary to Theorem 6 and its proof (also see
§6 of [23] and §C.3 of[24]). We use the Prohorov metric dP,T (Y1,Y2) characterizing
convergence in distribution inD([0, T ]); see p. 77 of [31]. We say that a parameter-state
function η is positive recurrent if the associated FTSP D(η, ·) is positive recurrent.

Corollary 3 (Continuity of the FCLT for the FTSP with time-varying parameter state)
Consider the FTSP D as a function of its parameter state function η specified above,
where the parameter state function η is continuous and positive-recurrent. For all
ε > 0 and T > 0, there exists δ > 0 such that, if η′ ∈ D is a parametric state
function satisfying ‖η − η′‖T < δ, then η′ is positive recurrent for all t in [0, T ] and
dP,T (Ĉ(·; η), Ĉ(·, η′)) < ε where Ĉ(·; η) is the limit process associated with D(η, ·)
in Theorem 6.

Proof We exploit the criterion for recurrence in terms of the drift rates given in (8).
The drift rates δ+(η) and δ−(η) for constant η in the regions {s : D(η, s) > 0} and
{s : D(η, s) ≤ 0}, respectively, are linear functions of the components of the vector
η. We can thus express the drifts as the inner products δ±(η) = a± · η, where a+ and
a− are constant vectors. Hence, if |η − η′| ≤ ε, then |δ±(η)− δ±(η′)| ≤ ε(|a±| · 1),
where here 1 is a vector of 1’s of the appropriate dimension. This property for constant
parameter states extends immediately to more general state functions in D using the
uniform norm; i.e., if ‖η − η′‖T ≤ ε, then ‖δ±(η) − δ±(η′)‖T ≤ ε(|a±| · 1). Thus,
for any positive recurrent state function η, there exists ε > 0 such that δ+(η′) < 0 and
δ−(η′) > 0 if ‖η − η‖T < ε, implying that η′ is also positive recurrent. ��

In Lemma 8 below, we will apply Corollary 3 to random state functions η̃n which
converge weakly to a continuous function η as n → ∞, i.e., for which η̃n ⇒ η in
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D as n → ∞. To do so, we need to connect the queue-difference processes Dn
1,2

appearing in Î n in (15) to the FTSP. We do that via the associated frozen processes,

introduced in §A.1 of [24]. The frozen process
{

Dn
f (X

n(t), s) : s ≥ 0
}

corresponds

to the queue-difference process Dn
1,2 starting at time t , conditioned on the state Xn(t)

at time t under the assumption that the transition rates are fixed (“frozen”) at the rates
associated with the initial state Xn(t). A key property, for applying Theorem 6 and
Corollary 3 above, is that the frozen process can be represented as the FTSP with
modified parameters. To express the connection, we write the frozen process and the
FTSP as functions of the parameters (λi , m j , γ, s). As in equation (74) of [24], we
have the representation

{
Dn

f

(
λn

i , mn
j , Xn(t), s

) : s ≥ 0
}

d=
{

D
(
λn

i /n, mn
j/n, Xn(t)/n, ns

) : s ≥ 0
}
,

(41)

where Dn
f on the left of (41) is the frozen process described above, and D on the right

of (41) is the FTSP.
Like the queue-difference process, the frozen process has O(n) transition rates,

whereas the FTSP has O(1) transition rates, because of the time scaling in (5). Thus,
the time variable s on the right in (41) is scaled by n.

However, we need to construct a process that is made up of different frozen processes
over different subintervals. Thus, for each n ≥ 1, we will construct a process that is a
different frozen process over each successive interval of length 1/n, but identical to
the queue-difference process at each interval endpoint. In particular, we will construct
the overall frozen process by setting

D̃n
f (t) ≡ Dn

f (X
n((k − 1)/n), t − (k − 1)/n),

k − 1

n
≤ t <

k

n
, (42)

0 ≤ t ≤ T , where Dn
f is the frozen process defined above. That is, we use a different

frozen state and thus frozen process for each interval [(k − 1)/n, k/n) in [0, T ]. As a
consequence, the frozen process state for the process D̃n

f as a function of t is thus

Xn
f (t) ≡ Xn(�nt�/n

)
, 0 ≤ t ≤ T . (43)

As a consequence of (41)–(43) above, we can simply write

{
D̃n

f (t) : t ≥ 0
}

d= {D(η̃n(t), nt) : t ≥ 0} , (44)

where η̃n is a random full parameter state function with the special parameter function
given in (41) above, with the frozen state at time t given by (43). Corollary 3 is relevant
because, by virtue of Assumption 1 and Theorem 1, for each T > 0, we have

‖η̃n − η‖T ⇒ 0 as n → ∞,
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where η has fixed components λi ,m j and x(t), t ≥ 0.
Hence, the FCLT for fixed positive recurrent state function η, which holds by

Theorem 6, also holds with η replaced by η̃n by virtue of Corollary 3. However, it
remains to show that the newly constructed frozen processes approximate the queue-
difference processes suitably well. For that, we will use a special coupling construction,
similar to the coupling constructions used in [24]. The following result is proved in
§10.

Lemma 8 For each n, we can construct the new frozen processes D̃n
f defined by (41)–

(44) on the same underlying probability space with the queue-difference processes Dn
1,2

so that �n ⇒ 0 in D as n → ∞, where

�n(t) ≡ √
n

t∫

0

(
1{Dn

1,2(s)>0} − 1{D̃n
f (s)>0}

)
ds, t ≥ 0. (45)

6.3 The last two terms in (34)

We now establish joint convergence of the last two terms in Lemma 6.

Lemma 9 There is joint convergence of the last two terms in Lemma 6, i.e.,

(
L̂n, Î n) ⇒ (

L̂2, Î
)

in D2,

where the converging processes L̂n and Î n are defined, respectively, in (32) and (15),
while the vector limit process is (L̂2(t), Î (t)) ≡ (B2(γ2(t), B2(γ3(t)) for B2 a stan-
dard Brownian motion and (γ2(t), γ3(t)) in (19), as in (18).

Proof We start by considering just Î n . We make a change of variables in (15) to get

Î n(t) ≡ 1√
n

nt∫

0

[
1{Dn

1,2(s/n)>0} − π1,2(x(s/n))
]

ds, 0 ≤ t ≤ T . (46)

From either the original representation of Î n in (15) or the equivalent alternative
expression in (46), the main line of the proof should be evident: We show that the
time-scaled queue-difference process Dn

1,2(s/n) in (46) is asymptotically equivalent
to the scaled FTSP D(x(s/n), s), making the expression in (46) be essentially of
the form of Ĉn in (40). If we could just directly make that substitution, then the
desired limit Î n ⇒ Î would be an immediate consequence of Theorem 6. However,
the desired substitution is only valid asymptotically. We actually achieve the desired
approximation by the FTSP indirectly by approximating the queue-difference process
and applying Lemma 8 and Corollary 3 in addition to Theorem 6. In particular, we
can write
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1√
n

nt∫

0

[
1{Dn

1,2(s/n)>0} − π1,2(x(s/n))
]

ds = √
n

t∫

0

[
1{Dn

1,2(s)>0} − π1,2(x(s))
]

ds

= √
n

t∫

0

(
1{Dn

1,2(s)>0}−1{D̃n
f (s)>0}

)
ds+ 1√

n

nt∫

0

[
1{D̃n

f (s/n)>0}−π1,2(x(s/n))
]

ds.

We then apply Lemma 8 to the first component in the RHS of the equality, and Corol-
lary 3 to the second component, using (44).

Having established the limit for Î n , we turn to L̂n . From (32), we know that L̂n

differs from Î n by having the extra term �̄n in the integrand. However, by the FWLLN,
Theorem 1, �̄n ≡ �n/n ⇒ ψ as n → ∞, where ψ(t) ≡ μ2,2(m2 − z1,2(t)) +
μ1,2z1,2(t). Hence, we can reduce the proof of joint convergence of ( Î n, L̂n) to the
convergence of Î n established above, as we now show.

By the uniform continuity of ψ over [0, T ], for any ε > 0, we can choose K
sufficiently large that we can find a partition of [0, T ] 0 = t0 < t1 < t2 < · · · <
tK−1 < tK = T such that |ψ(s) − ψ(tk−1)| < ε for all s with tk−1 ≤ s ≤ tk, 1 ≤
k ≤ K . Of course, K ≡ K (ε) depends upon ε. However, since the fluid limit x is
Lipschitz continuous by Corollary 5.1 of [24], ψ is also Lipschitz continuous, so that
there exists a constant K1 independent of ε such that K ≤ K1/ε.

Let ψε be the piecewise-constant function on [0, T ] mapping s into ψ(tk−1) for
all s with tk−1 ≤ s ≤ tk, 1 ≤ k ≤ K . As noted above, we apply the FWLLN to
obtain �̄n ≡ �n/n ⇒ ψ as n → ∞. For simplicity, we now invoke the Skorohod
representation theorem, and assume the convergence is w.p.1. Then, we choose n0
sufficiently large that ‖�̄n − ψ‖T < ε for all n ≥ n0 (w.p.1, no longer mentioned).
As a consequence, ‖�̄n − ψε‖T ≤ 2ε for all n ≥ n0.

Now, for n ≥ n0 and any subinterval [tk−1, tk], we have either

∣∣∣∣∣
∣

tk∫

tk−1

[
1{Dn

1,2(s)>0} − π1,2(x(s))
]
�̄n(s) ds

∣∣∣∣∣
∣

≤
∣
∣∣∣∣∣

tk∫

tk−1

[
1{Dn

1,2(s)>0} − π1,2(x(s))
]
(ψ(tk−1)+ 2ε) ds

∣
∣∣∣∣∣
,

or

∣
∣∣∣∣∣

tk∫

tk−1

[
1{Dn

1,2(s)>0} − π1,2(x(s))
]
�̄n(s) ds

∣
∣∣∣∣∣

≤
∣∣
∣∣∣∣

tk∫

tk−1

[
1{Dn

1,2(s)>0} − π1,2(x(s))
](
ψ(tk−1

)− 2ε) ds

∣∣
∣∣∣∣
.
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In either case,

∣
∣∣∣∣∣

√
n

tk∫

tk−1

[
1{Dn

1,2(s)>0} − π1,2(x(s))
]
�̄n(s) ds − ψ(tk−1) Î

n
k

∣
∣∣∣∣∣
≤ 2ε| Î n

k |,

where

Î n
k (t) ≡ √

n

tk∫

tk−1

[
1{Dn

1,2(s)>0} − π1,2(x(s))
]

ds for tk−1 ≤ t < tk,

and Î n
k (t) ≡ 0 elsewhere in [0, T ]. Hence, ‖L̂n − L̂n

1‖T ≤ 2ε Î n∗ , where

L̂n
1(t) ≡ √

n

t∫

0

[
1{Dn

1,2(s)>0} − π1,2(x(s))
]
ψe(s) ds =

K∑

k=1

ψ(tk−1) Î
n
k (t),

and Î n∗ ≡ ∑K
k=1 ‖ Î n

k ‖T .

By essentially the same argument as for Î n , we can establish convergence of Î n
k

for all k, L̂n
1 and Î n∗ jointly with Î n as n → ∞. However, it is important to note that

the upper bound on the error ‖L̂n − L̂n
1‖T involves Î n∗ , which is the sum of K terms,

where K ≡ K (ε) depends on ε.
To show that the error bound 2ε Î n∗ is small, we use our previous observation that

K (ε) ≤ K1/ε, where K1 is a constant independent of ε, and the form of the Brownian
limit established for Î ; see Theorems 4 and 6. As can be seen from the statement of
Theorem 4, for any K , the limit of | Î n

k | over the interval of length T/K where it is

positive is stochastically bounded above by a quantity distributed as ‖B(c·)‖T/K
d=√

t/K‖B(c·)‖1, where B is a standard BM, for a constant c that depends on the
continuous fluid limit over the finite interval [0, T ]. Thus, we can apply Markov’s
inequality to deduce that, for any η > 0,

P
(
2ε Î n∗ > η

) ≤ 2εE[ Î n∗ ]
η

≤ εK2
√

K

η
≤ K1 K2

√
ε

η
,

where K1 and K2 are constants independent of ε and η. Hence, for any η > 0, ε > 0
can be chosen to make the right side small.

Thus, for any η > 0, we can choose n1 > n0 so that P(‖L̂n − L̂n
1‖T > η) < η for

all n ≥ n1. Hence, we have proved the joint convergence of ( Î n, L̂n) as claimed. ��

6.4 Joint convergence in Lemma 6

To complete the proof of Lemma 6, it remains to show that the two limits estab-
lished in Lemmas 7 and 9 actually hold jointly. To that end, we next prove that the
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sequences (M̂n
s , M̂n

Z ) and (L̂n, Î n) are asymptotically independent in the sense
that

P
((

M̂n
s , M̂n

Z

) ∈ B1,
(
L̂n, Î n) ∈ B2

)

= P
((

M̂n
s , M̂n

Z

) ∈ B1

)
P
((

L̂n, Î n) ∈ B2

)
+ o(1),

for any two Borel sets B1 and B2 in D2. In particular, the limits (M̂s, M̂Z ) and (L̂, Î )
are independent.

Lemma 10 (Asymptotic independence) The sequences (M̂n
s , M̂n

Z ) and (L̂n, Î n) are
asymptotically independent.

In order to prove Lemma 10, we use the following lemma.

Lemma 11 (Basis for asymptotic independence) If D̂n ⇒ 0e, Î n ⇒ Î and V̂ n ⇒ V̂
as n → ∞ for random vectors ( Î n, D̂n, V̂ n) in D3, where D̂n = f (V̂ n) for some
function f and P( Î n ∈ B|V̂ n = v) = P( Î n ∈ B|D̂n = f (v)) for all Borel sets B
almost surely with respect to d P(V̂ n = v), then Î n is asymptotically independent of
V̂ n.

Proof Let gi be a continuous bounded real-valued function on D for i = 1, 2, 3. By
the assumptions above,

E
[
g1( Î

n)g2(D̂
n)g3(V̂

n)
]

= E
[

E[g1( Î
n)g2(D̂

n)|V̂ n]g3(V̂
n)
]

= E
[

E[g1( Î
n)g2(D̂

n)|D̂n]g3(V̂
n)
]

= E
[

E[g1( Î
n)|D̂n]g2(D̂

n)g3(V̂
n)
]
. (47)

Since Î n ⇒ Î and D̂n ⇒ 0e, we also have ( Î n, D̂n) ⇒ ( Î , 0e) by Theorem 11.4.5 of
[31]. Thus, E[g1( Î n)g2(D̂n)] ⇒ E[g1( Î )g2(D̂)] = g2(0e)E[g1( Î )] as n → ∞, so
that Î n is asymptotically independent of D̂n and therefore also of V̂ n

E
[
g1( Î

n)|D̂n]g2(D̂
n) ⇒ E

[
g1( Î )

]
g2(0e) ∈ R as n → ∞.

By Theorem 11.4.5 of [31] once again,

(
E[g1( Î

n)|D̂n]g2(D̂
n), V̂ n

)
⇒
(

E[g1( Î )]g2(0e), V̂
)

in R × D as n → ∞,

so that, applying the continuous mapping theorem with the function h : R × D → R

defined by h(x, y) ≡ xg3(y), we obtain

E
[
g1( Î

n)|D̂n]g2(D̂
n)g3(V̂

n) ⇒ E
[
g1( Î )

]
g2(0ee)g3(V̂ ) in R. (48)
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Since the random variables in (48) are bounded, we can apply the bounded convergence
theorem, combined with (47) and (48), to get

E
[
g1( Î

n)g2(D̂
n)g3(V̂

n)
] → E

[
g1( Î )

]
g2(0e)E

[
g3(V̂ )

]
as n → ∞.

From the special case g2 ≡ 1e, E[g1( Î n)g3(V̂ n)] → E[g1( Î )]E[g3(V̂ )] as n → ∞.
Since the product g1g3 is a continuous bounded real-valued function, we also have
E[g1( Î n)g3(V̂ n)] → E[g1( Î )g3(V̂ )] as n → ∞. Hence,

E
[
g1( Î )g3(V̂ )

] = E
[
g1( Î )]E[g3(V̂ )

]

for all continuous bounded real-valued functions g1 and g3, so that Î is independent
of V̂ . ��

Proof of Lemma 10 We show that the conditions of Lemma 11 are satisfied in our
case. For that, we rely strongly on the SSC result in Corollary 4.1 of [24]. We first
observe that, for each n, the stochastic process {Dn

1,2(t) : t ≥ 0}, and thus also

the stochastic processes {1{Dn
1,2(t)>0} : t ≥ 0} and Î n in (15) are directly functions

of D̂n in (15). Thus, for each n, the conditional distribution of Î n in D conditional
on V̂ n ≡ ( Ân

i , Û
n
i , Ŝn

i, j , D̂n, Q̂n
i , Q̂n

s , Ẑ n
i, j ) in (15) coincides with the conditional

distribution of Î n in D conditional on D̂n . Moreover, D̂n is scaled in the same way
as the other processes in V̂ n in (15). However, Theorem 4.5 (iii) and its Corollary
4.1, both from [24], imply that D̂n ⇒ 0e. Thus all the conditions of Lemma 11 are
satisfied, and the statement of the Lemma follows. ��

7 Proof of Theorem 6

First, if the parameter state function η is a constant function, with η(t) = γ, 10 ≤ t ≤
T , then Ĉn(t; η) = Ĉn

QBD(t, γ ) for Ĉn(t; η) in (40) and Ĉn
QBD(t, γ ) in (13), as noted

in §6.2. Moreover, if the QBD D(γ, ·) is positive recurrent, then the conclusion in
Theorem 6 reduces to the standard FCLT for a cumulative process in (13). To consider
more general time-varying parameter state functions η ≡ {η(u) : 0 ≤ u ≤ T }, we
require that η be positive recurrent where, as before, we say that a state function η
is positive recurrent if the associated FTSP D(η(t), ·) is positive recurrent for all
t, 0 ≤ t ≤ T .

Next, we observe that the conclusion in Theorem 6 is also valid for all positive-
recurrent piecewise constant parameter state functions, where we include the condition
that there may be only finitely many discontinuities in each bounded interval. Let Dpc

be the subspace of D containing all such piecewise constant functions. To see that the
conclusion holds for each positive recurrent η ∈ Dpc, note that, because of the time
scaling, each subinterval [a, b) of length O(1) for the state function η corresponds to
an interval of length O(n) for the stochastic process {D(η(s/n), s) : s ≥ 0}, which
has transition rates of O(1). Moreover, the convergence on each successive interval
implies that the initial distributions converge on the next interval. Hence, the initial
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conditions on each subinterval do not alter the limit. Thus, the separate subintervals can
be treated separately, as if we were considering the first case of a constant parameter
state function.

Intuitively, it should be evident that the result extends to positive recurrent state
functions η in D because each such function is the uniform limit over bounded intervals
of piecewise-constant state functions; see p. 393 of [31]. However, a complete proof
for this seemingly minor extension seems quite complicated. The remaining proof will
be based on a series of lemmas, which are proved in the next section.

First, we exploit Corollary 3 showing that the subset of positive recurrent state
functions in D is an open subset. With Corollary 3, we then exploit the continuity
of QBD’s established in Lemma C.5 of [24] to complete the proof. We complete the
proof in several steps, requiring further lemmas. In doing so, we will exploit frozen
processes to simplify the argument. As before, we use a coupling construction to show
that they serve as suitable asymptotic approximations.

Here we consider a modification of the process Ĉn in (40), having a parameter
state that is frozen over each successive cycle, where as before a cycle is the period
between successive visits to a fixed state. As remarked before, in the case of a constant
parameter state function η, with η(t) = γ, 0 ≤ t ≤ T , these are the regeneration cycles
associated with the regenerative process D(γ, ·), as in §4.1, but here we have a more
general case. For each n, let Ĉn

f denote this modification of Ĉn , having a parameter
state that is frozen over each successive cycle. We use a coupling construction to show
that it suffices to consider Ĉn

f to establish the desired convergence of Ĉn in (40).

Lemma 12 (Frozen cumulative processes) The processes Ĉn
f and Ĉn can be con-

structed on the same underlying space so that dJ1(Ĉ
n
f , Ĉn) ⇒ 0.

Now we want to establish the convergence Ĉn
f ⇒ Ĉ as n → ∞. To do so, we apply

modified versions of the reasoning used to prove the FCLT in (13), as given in [9]. In
particular, as in (1.1–1.4) of [9], we observe that Ĉn

f is asymptotically equivalent to
a random sum, ignoring remainder terms, and we then establish convergence for the
sequence of random sums. To set the stage, let the i th full cycle in system n end at
time T n

i (recall that the cycle begins upon transition into the designated state, while
the next cycle begins upon first returning to that state after first leaving the state, which
is well-defined because the processes are pure-jump processes).

As in §4.1, the key random variables associated with these cycles are the cycle
lengths

τ n
i ≡ T n

i − T n
i−1, i ≥ 1, (49)

and the integrals of the centered process over the cycle, which we call the cycle
variables,

Y n
i ≡

T n
i∫

T n
i−1

(
1{D(γi ,s)>0} − π1,2(γi )

)
ds, i ≥ 0, (50)
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where γi ≡ η(T n
i−1), with T n

i−1 being the random time at which the i th full cycle begins
and T n

0 = 0, so that Y n
0 is the cycle variable for the first partial cycle. We do not need

to make additional assumptions for the analog of the variables Wi ( f ) in (1.2) of [9]
because

W n
i ≡

T n
i∫

T n
i−1

∣∣1{D(γi ,s)>0} − π1,2(γi )
∣∣ ds ≤ τ n

i . (51)

With this construction, we can write

Ĉn
f (T

n
i ; η) = Ĉn(T n

i ; η̃n
f

)
, i ≥ 0,

for

η̃n
f (t) = γi , T n

i−1 ≤ t < T n
i , t <≥ 0.

Unlike for a regenerative process, as in [9], here the random cycle vectors (τ n
i , Y n

i )

are in general neither independent nor identically distributed. However, the sequence
of cycle variables {(τ n

j , Y n
j ) : j ≥ i} is conditionally independent of the entire system

history up to time T n
i−1, which we denote by Fn

i−1, given only T n
i−1, for each i ≥ 0

and n ≥ 1. Of course, in general these conditional distributions vary with i because
the parameter state function η is not constant, but they change little if η changes little,
by the QBD continuity.

Let N n(t) count the number of full cycles up to time t . As in (1.4) of [9], we can
write

Ĉn
f (t) = R̂n(t)+ R̂n

1 (t)+ R̂n
2 (t), t ≥ 0,

where R̂n(t) is the random sum

R̂n(t) ≡ n−1/2
N n(t)∑

i=1

Y n
i , t ≥ 0,

while R̂n
1 (t) and R̂n

2 (t) are remainder terms involving the initial and final partial cycle,
if any, also scaled by dividing by

√
n.

Just as in the standard regenerative setting, we are able to show that Ĉn
f is asymp-

totically equivalent to R̂n , so that it suffices to work with R̂n .

Lemma 13 (Reduction to random sums) As n → ∞, R̂n
1 ⇒ 0e and R̂n

2 ⇒ 0e, so

that dJ1(R̂
n, Ĉn

f ) ⇒ 0.

It now suffices to show that R̂n(·; η) ⇒ Ĉ(·; η) as n → ∞ for each continuous
positive recurrent η. By virtue of Corollary 3, given such an η, we can find a sequence
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of piecewise-constant state functions {ηm
pc : m ≥ 1} in D where ‖ηm

pc − η‖T → 0 as
m → ∞ with ηm

pc being positive recurrent for all sufficiently large m. For those m, we

have the desired convergence Ĉn(·; ηm
pc) ⇒ Ĉ(·; ηm

pc) as n → ∞, as observed in the

beginning of the proof. Thus, by Lemma 12 and 13 above, we also have R̂n(·; ηm
pc) ⇒

Ĉ(·; ηm
pc) as n → ∞ for these m as well. We now want to show that the established

convergence also holds when ηm
pc is replaced by η. For that purpose, we need to

establish convergence as n → ∞ and m → ∞ jointly. In order to justify that joint
convergence, we establish the following result.

Lemma 14 (Tightness and bounds for the random sums) Consider a continuous
parameter state function η and a piecewise-constant parameter state function ηpc,
where both η and ηpc are positive recurrent. Let T > 0 and δ > 0 be such that
‖η − ηpc‖T < δ. Then the sequence {R̂n(·, η)} is C-tight in D([0, T ∗]) for some
constant T ∗ > 0 and there exist functions σl(ηpc(·), δ) and σu(ηpc(·), δ) such that the
limit, say R̂(·, η), of any convergent subsequence of {R̂n(·, η)} can be represented as

R̂(t, η) = B
(
W̄ (t), η

)
, 0 ≤ t ≤ T ∗, (52)

where B is standard BM and W̄ can be bounded above and below by

t2∫

t1

σ 2
l

(
ηpc(s), δ

)
ds ≤ W̄ (t2, η)− W̄ (t1, η) ≤

t2∫

t1

σ 2
u

(
ηpc(s), δ

)
ds (53)

for all t1 and t2 with 0 ≤ t1 < t2 ≤ T ∗, where 0 ≤ σ 2
l (ηpc(s), δ) ≤ σ 2

u (ηpc(s), δ) <
∞ for all s, 0 ≤ s ≤ T , and having the form in (14) determined by the state ηpc(s).
Moreover, for any ε > 0 and T ∗ > 0, there exist δ > 0 and T > 0 as above, such that

‖σ 2
u

(
ηpc(·), δ

)− σ 2
l

(
ηpc(·), δ

)‖T ∗ < ε. (54)

Lemma 14 is based on associated lemmas for partial sums from triangular arrays of
the cycle lengths and cycle variables τ n

i and Y n
i , exploiting martingale structure; these

results are stated in §8 and proved in §9. Given these lemmas, we now can complete
the proof of Theorem 6. First, we have observed that Ĉn(·, ηpc) ⇒ Ĉ(·, ηpc) in D for
any positive-recurrent piecewise-constant parameter state functionηpc. By Lemmas 12
and 13, R̂n(·, ηpc) ⇒ Ĉ(·, ηpc) in D as well. We can then apply Lemma 14 to deduce
that the sequence of random sums {R̂n(·, η)} is tight. Hence, each subsequence has a
convergent subsequence. Let R̂(·, η) be the limit of such a convergent subsequence.
Next, we construct a sequence {ηm

pc} of positive-recurrent piecewise-constant state
functions with ‖ηm

pc − η‖T → 0 as m → ∞. As shown above, for each of them,

we have {R̂n(·, ηm
pc)} ⇒ Ĉ(·, ηm

pc) as n → ∞. However, again by Lemma 14, we

have R̂(·, η) bounded above and below by the limits Ĉ(·, ηm
pc) which converge to

{Ĉ(·, η)} as m → ∞. Hence, we must have R̂(·, η) = {Ĉ(·, η)}. Hence all convergent
subsequences must have the same limit, which implies that we must have the full
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convergence, R̂n(·, η) ⇒ Ĉ(·, η) in D as n → ∞. By Lemmas 12 and 13, we must
also have Ĉn(·, η) ⇒ Ĉ(·, η) in D. Hence, Theorem 6 is proved. ��

8 Proof of Lemma 14: using the martingale FCLT

We have indicated that Lemma 14 is based on associated lemmas for partial sums
from triangular arrays of the cycle lengths and cycle variables τ n

i and Y n
i , exploiting

martingale structure; in particular, we apply the martingale FCLT for triangular arrays.
We can treat these two components of R̂n(·, η) separately because, just as in the familiar
setting of renewal reward processes discussed in §§7.4 and 13.2 of [31], the FCLT
for R̂n(·, η) depends on a FCLT for partial sums of Y n

i and a FWLLN for N n(t)
separately. By the inverse relation discussed in §§7.3 and 13.6 of [31], a FWLLN for
N n(t) is equivalent to a corresponding FWLLN for the partial sums of τ n

i . Since we
can reduce the case of piecewise-constant ηpc to the case of constant ηc by focusing
on the subintervals separately, we now relate the given η to a constant ηc.

Consider the cycle variables Y n
i in (50) associated with a parameter state function

η. Let Fn
k be the σ -field generated by Xn

6 (t) : 0 ≤ t ≤ T n
k , k ≥ −1. Let

Mn
Y (k) ≡

k∑

i=1

Y n
i , k ≥ 1, and M̂n

Y (t) ≡ n−1/2 Mn
Y (�nt�), t ≥ 0. (55)

For i ≥ 0, let

σ 2
n,i ≡ E

[
(Y n

i )
2|Fn

i−1

]
, (56)

V̄ n(t) ≡ n−1
�nt�∑

i=1

σ 2
n,i and Vn(t) ≡ sup

{
s : V̄ n(s) ≤ t

}
, t ≥ 0.

We will be strongly exploiting the QBD continuity to obtain regularity in the variables
Y n

i .

Lemma 15 (Sums of cycle variables) Consider a continuous parameter state function
η in D and an associated constant parameter state function ηc, where ‖η− ηc‖T < δ

for some T > 0 and δ > 0, and both η and ηc are positive recurrent. Consider the
cycle variables Y n

i in (50) and the associated variables in (55) and (56), all associated
with η. Then there exist constants σ 2

l (ηc, δ), σ
2
u (ηc, δ) and δ′ > 0 such that, for all i

and n,

σ 2
l (ηc, δ) ≤ σ 2

n,i ≤ σ 2
u (ηc, δ) and σ 2

u (ηc, δ)− σ 2
l (ηc, δ) < δ′, (57)

for σ 2
n,i in (56), associated with η, so that

σ 2
l (ηc, δ)(t2 − t1) ≤ V̄ n(t2)− V̄ n(t1) ≤ σ 2

u (ηc, δ)(t2 − t1) (58)
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for all n ≥ 1 and 0 ≤ t1 < t2 ≤ T , for V̄ n in (56). As a consequence,

(t2 − t1)

σ 2
u (ηc, δ)

≤ Vn(t2)− Vn(t1) ≤ (t2 − t1)

σ 2
l (ηc, δ)

(59)

for all n ≥ 1 and 0 ≤ t1 < t2 ≤ T ′ for T ′ ≡ T/σ 2
u (η, δ). Hence, the sequences

{
V̄ n
}

and {Vn} associated with η, defined in (56), are C-tight in D([0, T ]) and D([0, T ′]),
respectively. Moreover, the limits of convergent subsequences, say V̄ and V must satisfy
corresponding inequalities, i.e.,

σ 2
l (ηc, δ)(t2 − t1) ≤ V̄ (t2)− V̄ (t1) ≤ σ 2

u (ηc, δ)(t2 − t1) and

(t2 − t1)

σ 2
u (ηc, δ)

≤ V(t2)− V(t1) ≤ (t2 − t1)

σ 2
l (ηc, δ)

(60)

for the same ranges of t1 and t2 above, so that V̄ and V are both continuous and strictly
increasing. In addition,

M̂n
Y ◦ Vn ⇒ B in D([0, T ′]) (61)

for M̂n
Y in (55), where B is standard BM. Thus, the sequence

{
M̂n

Y

}
is C-tight in

D([0, T ]) with the limit of any convergent subsequence, say M̂Y , being of the form

M̂Y (t) = B(V̄ (t)), 0 ≤ t ≤ T, (62)

where V̄ is bounded above and below over all subintervals as in (60). If we are free
to choose the bounding constant δ above, then for any ε > 0, we can find δ > 0 so
that δ′ < ε for δ′ in (57).

We now state the corresponding result for the partial sums of the cycle lengths.

Lemma 16 (Sums of cycle lengths) Consider a continuous parameter state function
η and a constant state function ηc, where both η and ηc are positive recurrent. Let
T > 0 and δ > 0 be such that ‖η − ηc‖T < δ. Consider the cycle lengths τ n

i in (49)
associated with η. Let U n

k ≡ τ n
1 + · · · + τ n

k , k ≥ 1, and Ū n(t) ≡ n−1U n�nt�, t ≥ 0.

Let Mn
U,i ≡ E[τ n

i |Fn
i−1], M̄n

U (t) ≡ n−1(Mn
U,1 + · · · + Mn

U,�nt�). Then the sequence

{Ū n} is C-tight in D([0, T ′′]) for an appropriate time T ′′ > 0, and if Ū is the limit
of a convergent subsequence, then necessarily it is bounded above and below with
probability 1 by linear functions, i.e.,

P
(
ml(ηc, δ)t ≤ Ū (t) ≤ mu(ηc, δ)t, 0 ≤ t ≤ T ′′) = 1.

where ml(ηc, δ) and mu(ηc, δ) are constants depending on δ such that 0 < ml(ηc, δ) ≤
mu(ηc, δ) < ∞. If we are free to choose the time T > 0 and the bounding constant
δ above, then for any ε > 0 and T ′′, 0 < T ′′ < ∞, we can find δ > 0 so that the
conclusions above hold with mu(ηc, δ)− ml(ηc, δ) < ε.
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As a consequence of the inverse relation between the partial sums and the associated
counting processes, as in Chapter 13 of [31], we obtain the following corollary for the
counting processes associated with the partial sums. Let N̄ n(t) ≡ n−1 N n(nt), t ≥ 0.
In the next section we combine Corollary 4 below with Lemma 15 to prove Lemma 14.

Corollary 4 (Counting process for cycle lengths) Under the assumptions of
Lemma 16, the sequence of scaled counting processes {N̄ n} is C-tight in D([0, T ′′′])
for any time T ′′′ < T ′′/ml(δ), where T ′′ is as in Lemma 16. If N̄ is the limit of a
convergent subsequence of {N̄ n}, then necessarily it is bounded above and below with
probability 1 by linear functions, i.e.,

P
(
t/mu(ηc, δ) ≤ N̄ (t) ≤ t/ml(ηc, δ), 0 ≤ t ≤ T ′′′) = 1. (63)

where ml(ηc, δ) and mu(ηc, δ) are the constants depending on δ from Lemma 16
above. If we are free to choose the time T > 0 and the bounding constant δ above,
then for any ε > 0 and T ′′′, we can find δ > 0 so that the conclusions above hold with
mu(ηc, δ)− ml(ηc, δ) < ε.

9 Remaining Proofs of Lemmas in §§7 and 8

In this section we prove five lemmas in the previous two sections, which were used in
the proof of Theorem 6. We prove them in the order needed for the proof. We prove the
one remaining lemma, Lemma 12 justifying the approximation by the frozen process
Ĉn

f , afterwards in §10.

Proof of Lemma 15 The key observation is that the sequence of random vectors
{(τ n

j ,Y n
j ) : j ≥ i} associated with the general parametric state function η is con-

ditionally independent of the entire system history up to time T n
i−1 for each i , which

we have denoted by Fn
i−1, given only T n

i−1. As a consequence, paralleling the regen-
erative case in [9] and (14),

E

⎡

⎢
⎣

T n
i∫

T n
i−1

(
1{D(ηi ,s)>0}

)
ds|Fn

i−1

⎤

⎥
⎦ = π1,2(ηi )E

[
τ n

i |Fn
i−1

]

for i ≥ 1, where ηi ≡ η(T n
i−1), so that E[Y n

i |Fn
i−1] = 0 for each i . Hence, the

stochastic process {Mn
Y (k) : k ≥ 1} is a square integrable martingale with respect to

the filtration {Fn
k : k ≥ 1}.

Moreover, by the QBD continuity, the variances σ 2
n,i ≡ E[(Y n

i )
2|Fn

i−1] in (56)
cannot differ too much from the corresponding variance for the constant parameter
function ηc. For a fixed t ≥ 0, let σ 2

Y (η(t)) be σ 2
n,i under the condition that T n

i−1 = t ,
so that ηi ≡ η(T n

i−1) = η(t). Since ‖η− ηc‖T < δ, we can apply the QBD continuity
to obtain the relations in (57), where
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σ 2
l (ηc, δ) ≡ min

{
σ 2

Y (η(t)) : η ∈ A(ηc, δ)
}

and

σ 2
u (ηc, δ) ≡ max

{
σ 2

Y (η(t)) : η ∈ A(ηc, δ)
}

with

A(ηc, δ) ≡ {η : ‖η − ηc‖T ≤ δ} . (64)

These in turn imply that the inequalities in (58) and (59) hold for V̄ n and Vn for all n,
implying the tightness of the sequences {V̄ n} and {Vn} and the inequalities stated in
(60) for the limits of all convergent subsequences. However, we cannot conclude that
in general either V̄ n or Vn converges.

Nevertheless, we can apply an appropriate martingale FCLT to deduce that the limit
in (61) holds; e.g., see Theorems 2.1 and 2.2 of [5], Theorem 5 of [26] and p. 98 of
[14]. The QBD continuity and the bounds in (57) imply that the technical regularity
conditions are satisfied in this case. Hence, for any δ > 0, we can apply the martingale
FCLT to get the convergence in (61).

Given that V is a strictly increasing continuous function with bounded slope, as
in (60), we can deduce from the tightness of {M̂n

Y ◦ Vn}, which follows from the
convergence in (61), that the sequence {M̂n

Y } itself must be tight. That is most easily
done by letting Vn be a continuous function constructed by linear interpolation under
which we still have the convergence in (61). Then, V̄ n itself is a continuous strictly
increasing function with modulus bounds in (60). Hence, we can deduce that the
sequence {M̂n

Y } must be tight.
The sequence {(M̂n

Y , Vn, V̄ n)} is tight because the component sequences are all
tight. Starting from the joint convergence (M̂n

Y , Vn, V̄ n) ⇒ (M̂Y , V, V̄ ) in D3 for
any convergent subsequence, we can deduce from (61) that M̂Y = B ◦ V̄ , as claimed
in (62). The final ε bound follows from the QBD continuity in Lemma C.5 of [24]. ��

Proof of Lemma 16 The proof is similar to the proof of Lemma 15 above, but now
we need a FWLLN instead of a FCLT. However, it is convenient to apply the FCLT to
deduce the FWLLN. Indeed, by the same reasoning used to prove Lemma 15 above, we
can obtain a martingale FCLT for the sums of the centered variables τ n

i − E[τ n
i |Fn

i−1],
paralleling (61). Here, we use the conditional variances and their sums, defined by

σ 2
n,i ≡ E

[(
τ n

i − E
[
τ n

i |Fn
i−1

])2|Fn
i−1

]
, V̄ n(t) ≡ n−1

�nt�∑

i=1

σ 2
n,i .

instead of (56). We then obtain analogs of (57), (58) and (60).
Given that FCLT, we scale further, essentially dividing by

√
n, to get the associated

FWLLN for the centered variables. As a consequence, we obtain the FWLLN Ū n −
M̄n

U ⇒ 0e in D([0, T ′′]) as n → ∞, for an appropriate finite time T ′′, not necessarily
equal to T or T ′ in the previous proof above. Then, in direct analogy with (64), we
apply the QBD continuity to obtain ml(ηc, δ) ≤ Mn

U,i ≤ mu(ηc, δ) for all i and n.

Hence, ml(ηc, δ)t ≤ M̄n
U (t) ≤ mu(ηc, δ)t for all n and t, 0 ≤ t ≤ T . We can then

combine these bounds with the FWLLN to obtain the conclusions stated in the lemma.
By the QBD continuity, mu(ηc, δ)− ml(ηc, δ) → 0 as δ ↓ 0. ��

123



Queueing Syst (2014) 76:347–401 393

Proof of Lemma 14 First, Lemmas 15 and 16 and Corollary 4 can be extended directly
to piecewise-constant state functions as well as constant state functions. Thus, for η in
D, they imply that the sequences {M̂n

Y } and {N̄ n} are each C-tight in D. Consequently,
the associated sequence of vector processes {(M̂n

Y , N̄ n)} is C-tight in D2. Hence,
every subsequence has a further convergent subsequence. Moreover, by Lemma 15
and Corollary 4, any limit, say (M̂Y , N̄ ), can be represented as (B ◦ V̄ , N̄ ), where
V̄ and N̄ are bounded as in (60) and (63) over each subinterval where the piecewise-
constant parametric state function is constant. Hence, overall they can be bounded
above and below by

(
V̄Y,l , N̄l

) ≤ (
V̄Y , N̄

) ≤ (
V̄Y,u, N̄u

)
,

where (V̄Y,l(0), N̄l(0)) = (V̄Y,u(0), N̄u(0)) = (0, 0) and

(
V̄Y,l(t), N̄l(t)

) ≡ (
V̄Y,l(ti−1)+ σ 2

l,i (t − ti−1), N̄l(ti−1)+ (1/mu,i )(t − ti−1)
)
,

(
V̄Y,u(t), N̄u(t)

) ≡ (
V̄Y,u(ti−1)+ σ 2

u,i (t − ti−1), N̄u(ti−1)+ (1/ml,i )(t − ti−1)
)
,

for ti−1 ≤ t < ti , where 0 ≡ t0 < t1 < . . . < tk ≡ T , so that ti are the endpoints of a
piecewise constant state function ηpc, with σ 2

l,i and 1/mu,i being the lower bounds and

σ 2
u,i and 1/ml,i being the upper bounds on the i th subinterval, depending on ηpc and
δ. Hence, we can apply the continuous mapping theorem to obtain the corresponding
convergence for the random sum for all convergent subsequences, with the limit of
all convergent subsequences represented as claimed in (52) with W̄ there bounded
as in (53). The bounding variance functions are given explicitly by σ 2

u (ηpc(s), δ) =
σ 2

u,i/ml,i and σ 2
l (ηpc(s), δ) = σ 2

l,i/mu,i for ti−1 ≤ s < ti . Thus, by having ‖η −
ηpc‖T < δ and choosing δ sufficiently small, we can obtain the desired variance
inequality (54). ��

Proof of Lemma 13 The reasoning follows the regenerative case as in [9]. First, the
remainder term R̂n

1 (t) is relatively easy to treat since it involves the initial cycle and
is thus independent of t . Since D(η(0), 0) has been specified as some fixed state after
(40), the initial partial cycle until hitting time of the designated state is clearly O(1)
and becomes asymptotically negligible when we divide by

√
n.

As in [9], to treat the second remainder term, we exploit the representation

∣∣R̂n
2 (t)

∣∣ ≤ n−1/2W n
N n(t)+1 ≤ n−1/2τ n

N n(t)+1

≤ n−1/2 max
{
τ n

i : 1 ≤ i ≤ N n(t)+ 1
}
, t ≥ 0, (65)

for W n
i and τ n

i defined in (51) and (49). However, the last term in (65) is asymptotically
negligible because of the FCLT for the cycle lengths used in the proof of Lemma 16
above. The last term is the maximum discontinuity in the prelimit process indexed by
n. Since the limit is continuous, that term is asymptotically negligible. ��
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10 Proof of Lemmas 8 and 12: coupling constructions

In this section we prove the two lemmas justifying approximation by frozen processes,
using coupling constructions.

Proof of Lemma 8 By the construction in (42), we have forced the new frozen processes
D̃n

f to coincide with the queue-difference processes Dn
1,2 for all time points t of the form

k/n. To complete the proof, we employ a special coupling construction to construct
these two processes on the same underlying probability space to make the processes
have the same transitions within each interval [(k − 1)/n, k/n) with high probability.
As usual [19,28], this coupling construction produces an artificial joint distribution,
but leaves the distributions of each of the two processes individually unchanged.

We start by focusing on a single interval [(k − 1)/n, k/n). It suffices to focus on
one of these intervals, because we will show that the construction is uniform over the n
intervals. Since the transition rates in system n are of order O(n) and the interval is of
length 1/n, it is convenient to start by rescaling time as in the fluid limit in Theorem 1.
By doing a change of variables, we have

√
n

k/n∫

(k−1)/n

(
1{Dn

1,2(s)>0} − 1{D̃n
f (s)>0}

)
ds,

= 1√
n

1∫

0

(
1{Dn

1,2((k−1)/n+s/n)>0} − 1{D̃n
f ((k−1)/n+s/n)>0}

)
ds.

Then recall that both processes inside the integral converge appropriately to the FTSP.
To expose the connection, let k go to infinity with n so that k/n → t as n → ∞. First,
by Theorem 1, X̄n((k − 1)/n) ⇒ x6(t). Then, by Theorem 4.4 of [24],

Dn
1,2

(
(k − 1)/n + s/n

) ≡ Dn
e
(
Xn((k − 1)/n), s

) ⇒ D
(
x6(t), s

)
.

Second, by (41),

{
D̃n

f ((k − 1)/n + s/n) : 0 ≤ s ≤ 1
}

d=
{

D
(
λn

i /n, mn
j/n, Xn((k − 1)/n), s

) : 0 ≤ s ≤ 1
}

⇒ {D(x6(t), s) : 0 ≤ s ≤ 1} .

The main point for the coupling is that, after the change of time scale, both processes
have transition rates of order O(1) that differ by O(1/n). Moreover, the processes are
identical w.p.1 at the left end point of the interval [0, 1].

However, we need to apply the argument above to all n intervals, where n → ∞. It is
thus important that the conclusions are valid uniformly over the n subintervals. Those
conclusions are justified because the fluid limit in Theorem 1 implies that X̄n

6 ⇒ x6
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uniformly over each finite interval. Moreover, the limit x6 is a continuous function
over a bounded interval with values in a compact subset of A. Finally, the limiting
transition rates are a continuous function of the state.

Let νn(T ) be the number of k for which the nk ≤ T and the sample paths of D̃n
f

and Dn
1,2 fail to be identical over the interval [(k − 1)/n, k/n). As a consequence of

the asymptotically equivalent transition rates after changing the time scale above, we
show below that νn(T ) = O(1) as n → ∞. Thus, to complete the proof, we use the
elementary bound ‖�n‖T ≤ νn(T + ε)/

√
n for all n ≥ 1/ε, where T > 0 and ε > 0

are arbitrary constants.
We now discuss the coupling in more detail. Since the transitions in the queue-

difference process Dn
1,2 are generated from state changes in the CTMC Xn

6 , we do the
special construction from the perspective of the CTMC Xn

6 . We use the device of uni-
formization to generate the transitions of the CTMC; i.e., we construct the transitions
by thinning a Poisson process. Without loss of generality, we use different independent
Poisson processes to generate potential transitions for each kind of transition, each
interval [(k −1)/n, k/n) and each n. Since the transition rate of the CTMC is not uni-
formly bounded, there is a possibility that this direct construction will be invalid, but
by choosing these Poisson process rates sufficiently high, we can make the likelihood
of a violation asymptotically negligible. In the actual construction, we can change
the Poisson process when the constructed process hits a state from which a further
transition could lead to a violation. The detailed construction does not matter because
we declare a difference occurring throughout the entire subinterval if the Poisson rate
needs to be adjusted, thus contributing the maximum possible to the bound above.
Since the integrand in (45) is bounded by one, the total impact upon (45) by such rate
violations can clearly be made asymptotically negligible.

The coupling is achieved using the same Poisson processes to generate the transi-
tions in both Dn

1,2 and D̃n
f over each subinterval [(k −1)/n, k/n). These are done with

respect to the states of Xn
6 (t) and Xn

6 ((k − 1)/n). For Dn
1,2, the transitions rates of the

various transitions (arrivals, abandonments from each queue and service completions
of each class from each pool) are determined by the actual state Xn

6 (t), which changes
throughout the interval [(k − 1)/n, k/n). For, D̃n

f , we do the same construction, but
we leave the state fixed at its initial value Xn

6 ((k − 1)/n) throughout the interval
[(k − 1)/n, k/n), so that the transition rates do not change. However, we match the
transitions in the two systems as much as possible. We make the transitions differ only
to the extent that the state of Xn

6 (t) differs from Xn
6 ((k − 1)/n).

As stated above, we use different independent Poisson processes for each kind of
transition. We have one Poisson process generate potential arrivals for each n. Since
the arrival rates are unaffected by the state, the Poisson process for generating potential
arrivals of class i can have rate λn

i , so that every potential arrival corresponds to an
actual arrival in both systems. Thus no difference is caused by any arrival. That arrival
in turn affects the constructed processes Dn

1,2 and D̃n
f in the obvious way: an arrival

of class 1 increases them by one, while an arrival of class 2 decreases them by r .
For service completions of class 1 by pool 2, we let the Poisson process generating

potential transitions have rate μ1,2mn
2. The actual transition rate at time t for Xn

6 (t)
is μ1,2 Zn

1,2(t), so that the Poisson rate is an upper bound on the actual transition rate
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for all states. If the Poisson process with rate μ1,2mn
2 has a transition at time t , where

(k − 1)/n ≤ t < k/n, then we let both systems have an actual service completion of
class 1 by pool 2 at time t with probability (Zn

1,2(t)∧ Zn
1,2((k −1)/n)/mn

2; we let only
the system associated with Dn

1,2 have an actual service completion of class 1 by pool 2
at time t with probability [Zn

1,2(t)− (Zn
1,2(t)∧ Zn

1,2((k − 1)/n)]/mn
2; we let only the

system associated with Dn
f have an actual service completion of class 1 by pool 2 at

time t with probability [Zn
1,2((k −1)/n)− (Zn

1,2(t)∧ Zn
1,2((k −1)/n)]/mn

2; and we let
neither system have an actual service completion of class 1 by pool 2 with probability
[mn

2 −(Zn
1,2(t)∨ Zn

1,2((k−1))/n)]/mn
2. Thus, a difference in the sample path is caused

by this transition with probability [(Zn
1,2(t)∨ Zn

1,2((k − 1)/n)− (Zn
1,2(t)∧ Zn

1,2((k −
1)/n)]/mn

2, which clearly is of order O(1/n).
We do similar constructions with independent Poisson processes for each of the

other transitions. The abandonments are where the transition rate is unbounded,
because the queue lengths Qn

i (t) are unbounded above. However, the maximum queue
length over the interval is bounded above by the initial queue length plus the number
of arrivals over the interval, so that the probability of violation is easily controlled by
the Poisson arrival process for that class. Hence, for the Poisson process generating
potential abandonments from the class-i queue over the interval [(k − 1)/n, k/n),
we can give it rate (Qn

i ((k − 1)/n) + cn3)θi for c > λi (the exponent 3 is chosen
to make careful calculations unnecessary). This is sufficient, because the initial num-
ber in queue i is Qn

i ((k − 1)/n) and new class-i arrivals occur at rate λn
i , which is

O(n). The higher power of n ensures that a violation of the rate-order uniformization
condition is asymptotically negligible as n → ∞. If the Poisson process generates a
potential abandonment at time t , then it is a real abandonment for at least one system
with probability an/cn = O(1/n2), a real abandonment for both systems with proba-
bility bn/cn = O(1/n2) and a real abandonment for only one of the two systems with
probability (an − bn)/cn = O(1/n3), where an ≡ Qn

i ((k − 1)/n) ∨ Qn
i (t), bn ≡

Qn
i ((k − 1)/n) ∧ Qn

i (t) and cn ≡ Qn
i ((k − 1)/n) + cn3. The main point is that

(an − bn) = O(1) because the two queues differ by arrivals at rate O(n) over the
interval of length 1/n. Hence, the probability that a real transition at t (not counting
transitions from a state to itself, which are generated by the common Poisson process)
produces an abandonment for only one of the two systems is (an −bn)/an = O(1/n).
At the same time, the probability that the uniformization condition is violated during
the entire interval is o(1/n), so that it is asymptotically negligible in the relevant scale.

We now assess the impact of this construction. Both processes have transition rates
of order O(n) because the relevant processes Qn

i and Zn
i, j in Xn

6 are O(n). Thus,

the processes Dn
1,2 and D̃n

f have O(1) transitions over each interval of length 1/n.
Hence, the state of Xn(t) will only change an amount of order O(1) within each
interval [(k − 1)/n, k/n). Consequently, the probability of any one transition being
different is O(1/n), and the probability that there is any difference over the interval
[(k − 1)/n, k/n) is also of O(1/n). Hence, νn(T )—the total number of intervals
having any difference over the interval [0, T ]—will be of order O(1), as claimed at
the beginning of the proof.

Elaborating on the last step, observe that conditional upon X̄n
6 , which converges

to x6, we can regard νn(T ) as the sum of at most �nT � + 1 independent Bernoulli
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random variable, assuming the value 1 with probability pn,i and 0 otherwise, where
pl/n ≤ pn,i ≤ pu/n for all i = 1, . . . , �nT � + 1, provided that n is suitably large,
where pl/n and pu/n are the minimum and maximum “success probabilities” among
those Bernoulli random variables. The bounds hold because t �→ x6(t) is a continu-
ous function that is considered over a compact interval. Hence, all the transition rates
described above, producing the probabilities pn,i over each interval i , also have con-
tinuous limits which can be bounded uniformly for all n large enough. Using the upper
bound, we can bound νn(T ) above stochastically by νn

u (T ), defined as the partial sum
of i.i.d. Bernoulli random variables. taking the value one with probability pu/n. By
the LLN for partial sums from triangular arrays νn

u (T ) ⇒ pu T as n → ∞, which
implies that νn(T ) is indeed properly O(1) as n → ∞. Hence, the proof is complete.

��

Proof of Lemma 12 The reasoning here is similar to the proof of Lemma 8. As before,
we can use a coupling construction to make the two processes have identical sample
paths over the vast majority of the cycles. We exploit the oscillation property for
functions in D([0, T ]), Corollary 12.2 of [31], concluding that, for any ε > 0, there are
k time points ti with 0 ≡ t0 < t1 < · · · < tk−1 < tk ≡ T such that |η(s1)−η(s2)| < ε

for all s1, s2 ∈ [ti−1, ti ) for all i . Hence, with the time scaling by 1/n in (40), we
see that, except for at most k cycles in [0, T ] containing the k boundary points ti , the
oscillation of η over the cycle is at most ε/n. Hence, the coupling can be performed as
in the proof of Lemma 8, making the probability that the sample paths differ over any
one cycle among all except the k be of order O(1/n). Since there are O(n) cycles in
[0, T ], as substantiated by Corollary 4, there are order O(1) among the O(n) cycles
that have any difference in the sample paths. Hence, with the spatial scaling by

√
n,

we clearly have dJ1(Ĉ
n
f , Ĉn) ⇒ 0 as n → ∞ as claimed. ��

11 Comparisons with simulation

To both support the validity of the theorems and their applicability to the intended engi-
neering problems, we now compare the approximations stemming from the FWLLN
and the FCLT to the results of simulation experiments. Specifically, we will com-
pare the Gaussian approximations for the steady-state queue lengths with simulation
estimates of these quantities, obtained by simulating the actual queueing model over
a large time interval. The approximate mean values come directly from the station-
ary point of the fluid limit, x∗ in Theorem 2; the approximate variances come from
Corollary 1, specifically, from (24).

Our simulation examples will have parameters related to a base case. First, scale is
described by the parameter n, which is the scaling parameter in our limit theorems. The
abandonment and service rate parameters, which describe the behavior of individual
customers and servers, are independent of n : θ1 = θ2 = 0.2, μ1,1 = μ2,2 = 1.0 and
μ1,2 = μ2,1 = 0.8. The service rates are chosen so that it is less efficient to serve a
customer from a different class.

The parameters that scale as the service system grows depend on n; they are chosen
to be directly proportional to n : m(n)

i ≡ nmi , λ
(n)
i ≡ nλi and k(n)1,2 ≡ nk1,2. We
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take kn
1,2 to be order O(n) so it is easy to compare different system sizes (note that

the scaling of the thresholds is different than in Assumption 3. This alternative choice
facilitates comparing the three different cases simulated). Our base case then has m1 ≡
m2 ≡ 1, λ1 = 1.3, λ2 = 0.9 and k1,2 = 0.1. The arrival rates are chosen to put class 1
in a focused overload, while class 2 is initially normally loaded or slightly underloaded,
but becomes overloaded too after the sharing (these model parameters satisfy case 1
of Assumption 3.1 of [24]). We use the FQR-T control with ratio parameter r = 1.0,
which allows us to apply the simple asymptotic formulas from §4.4.

From (10) and (11), we see that the stationary fluid solution for this base case yields
z∗

1,2 = 0.2111, q∗
1 = 0.6556, q∗

2 = 0.5556 and π∗
1,2 ≡ π1,2(x∗) = 0.1763. Without

any sharing, the fluid approximation for queue 1 would be 1.5000. Hence the sharing
reduces the first fluid queue from 1.5000 to 0.6556, at the expense of causing the
second class to have a fluid queue of 0.5556.

We now turn to the variances, for which we need to analyze the FTSP more carefully.
The FTSP has BD parameters: λ1(x∗) = 1.411, μ1(x∗) = 2.989, λ2(x∗) = 2.031
and μ2(x∗) = 2.369. The associated M/M/1 traffic intensities are ρ1(x∗) = 0.472
and ρ2(x∗) = 0.8574. The associated mean busy periods are E[T1(x∗)] = 0.6338
and E[T2(x∗)] = 2.9603. Hence, the alternative formula for π1,2(x∗) in (27) agrees
with the value 0.1763 given above (providing a check on our calculations).

Turning to the FCLT, from (20), we see that ψ(x∗) = 0.6200, so that ψ2(x∗) =
0.3844. For σ 2(x∗), from (26), we see that E[T1(x∗)2]=1.5218, so that Var(T1(x∗))=
1.1201, and σ 2(x∗)=1.1201/3.5941=0.3116. Then ξ2 ≡ ψ2(x∗)σ 2(x∗) = 0.1198.
Since |M2,2| = 0.176, Z2 = 0.3403. Hence, σ 2

Z1,2
(∞) = 1 − 0.2111 + 0.3403 =

1.1292.
As a consequence, σ 2

Qs ,Z1,2
(∞) = (1.1292)(0.5319) = 0.6006. Since μ2,2 −

μ1,2 = p1θ1 + p2θ2 = 0.2,Q2 = σ 2
Qs , Z1,2

(∞) = 0.6006. Since Q1 = 11.0, we have

σ 2
Qs
(∞) = 11.6006, so that the associated standard deviation is 3.41 (without Q2, we

would approximate the standard deviation by
√

11 = 3.32, so Q2 contributes only
3 % to the standard deviation approximation in this case).

By the SSC, the diffusion approximations for Q1 and Q2 are linearly related to Qs ;
in particular, σ 2

Qi
(∞) = (pi )

2σ 2
Qs
(∞), so that σ 2

Qi
(∞) = 11.6006/4 = 2.900 and

the associated standard deviation is 1.70.
We now turn to the simulations. We simulate the actual queueing system obtained by

scaling up the appropriate parameters by n. We consider three cases: n = 25, n = 100,
and n = 400 (since kn

1,2 must be an integer, we let kn
1,2 = 3 when n = 25).

In all our simulation experiments, we used five independent runs, each with 300,000
arrivals. We report averages together with the half widths of the 95 % confidence
intervals, based on a t statistic with four degrees of freedom. Simulation results for
the base case above are presented in Table 1 below.

The first four rows of Table 1 show mean values. We display both the steady-state
mean values and the associated scaled values (i.e., divided by n). The unscaled values
helps us evaluate the performance of the actual system, while the scaled values show
the convergence in the FWLLN. Table 1 clearly shows that the accuracy improves
as n gets larger, but even for relatively small systems, the fluid approximation gives
reasonable results.
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Table 1 A comparison of approximations to simulation results for the means and standard deviations of
the steady-state queue lengths as a function of the scale parameter n in the base case with λn

1 = 1.3n, λn
2 =

0.9n, kn
1,2 = 0.1n, r = 1 and other parameters defined above

n = 25 n = 100 n = 400

Perf. meas. Approx. Sim. Approx. Sim. Approx. Sim.

E[Q1] 16.6 15.7 ± 0.3 65.6 63.6 ± 1.9 262.2 258.3 ± 5.0

E[Q1/n] 0.656 0.629 ± 0.013 0.656 0.636 ± 0.019 0.656 0.646 ± 0.013

E[Q2] 13.6 15.9 ± 0.4 55.6 58.6 ± 1.8 222.2 223.9 ± 5.0

E[Q2/n] 0.556 0.636 ± 0.016 0.556 0.586 ± 0.018 0.556 0.560 ± 0.013

std(Qs ) 17.1 16.0 ± 0.3 34.1 33.7 ± 1.4 68.2 67.6 ± 2.9

std(Q̂s ) 3.41 3.21 3.41 3.37 3.41 3.38

std(Q1) 8.5 8.8 ± 0.1 17.0 17.2 ± 0.7 34.0 33.9 ± 1.4

std(Q̂1) 1.70 1.75 1.70 1.72 1.70 1.70

std(Q2) 8.5 8.6 ± 0.1 17.0 17.1 ± 0.7 34.0 33.9 ± 1.5

std(Q̂2) 1.70 1.73 1.70 1.71 1.70 1.69

Rows 5–10 of Table 1 show the standard-deviations of the total queue length Qs =
Q1 + Q2 as well as the two queues. As before, we treat both the actual values and
the scaled values, but now we are scaling in diffusion scale (dividing by

√
n after

subtracting the order-O(n) mean), as in (15), so that we will be substantiating the
FCLT, specifically Corollary 1 and the variance formulas in (24). To save space, we
omit the confidence intervals for the scaled standard deviations; these can be computed
from the confidence intervals of the actual queues by dividing the half widths by

√
n.

Overall, we conclude that Table 1 shows that the approximations are remarkably
accurate.

12 Conclusions and further research

In this paper we characterized the diffusion-limit refinements for the fluid limit of the
X model operating under FQR-T. Establishing the weak limits is non-standard due to
the effect of the stochastic AP, which contributes an additional Brownian term that is
independent of all other terms in the diffusion equation.

There are many open problems and directions for future research, to which we hope
to contribute. One extension, mentioned at the end of §4.2, is to establish limits for cor-
responding non-Markovian X models. A second extension is to establish asymptotic
optimality for the FQR-T control within the optimization framework of [21], including
a separable quadratic cost function, under which FQR-T was shown to be optimal for
the fluid model. A third extension is to design corresponding overload controls for
more complicated systems, possibly involving several customer classes and service
pools. A fourth extension is to study the current system in a time-varying environment,
in which arrival rates and/or staffing levels are assumed to be time-dependent. Finally,
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it remains to seek new applications of the AP. We anticipate that it will have many
more applications in the future.

Acknowledgements This research is part of the first author’s doctoral dissertation in the IEOR Department
at Columbia University. Additional work was done subsequently, including while the first author had a
postdoctoral fellowship at CWI in Amsterdam. This research was partly supported by NSF Grants DMI-
0457095, CMMI 0948190 and CMMI 1066372.

References

1. Abate, J., Whitt, W.: Limits and approximations for the busy-period distribution in single-server queues.
Probl. Eng. Inf. Sci. 9, 581–602 (1995)

2. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)
3. Asmussen, S.: Applied Probability and Queues, 2nd edn. Wiley, New York (2003)
4. Coffman, E.G., Puhalskii, A.A., Reiman, M.I.: Polling systems with zero switchover times: a heavy-

traffic averaging principle. Ann. Appl. Probab. 5, 681–719 (1995)
5. Durrett, R., Resnick, S.I.: Functional limit theorems for dependent random variables. Ann. Probab.

6(5), 829–846 (1978)
6. Fricker, C., Robert, P., Tibi, D.: A degenerate central limit theorem for single resource loss systems.

Ann. Appl. Probab. 13(2), 561–575 (2003)
7. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review and research prospects.

Manuf. Serv. Oper. Manag. 5, 79–141 (2003)
8. Garnet, O., Mandelbaum, A., Reiman, M.: Designing a call center with impatient customers. Manuf.

Serv. Oper. Manag. 4(3), 208–227 (2002)
9. Glynn, P.W., Whitt, W.: Limit theorems for cumulative processes. Stoch. Process. Appl. 47, 299–314

(1993)
10. Gurvich, I., Whitt, W.: Scheduling flexible servers with convex delay costs in many-server service

systems. Manuf. Serv. Oper. Manag. 11, 237–253 (2009)
11. Gurvich, I., Whitt, W.: Queue-and-idleness-ratio controls in many-server service systems. Math. Oper.

Res. 34, 363–396 (2009)
12. Gurvich, I., Whitt, W.: Service-level differentiation in many-server service systems via queue-ratio

routing. Oper. Res. 58, 316–328 (2010)
13. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3),

567–588 (1981)
14. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Applications. Academic Press, New York (1980)
15. Hunt, P.J., Kurtz, T.G.: Large loss networks. Stoch. Process. Appl. 53, 363–378 (1994)
16. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York (1981)
17. Karr, A.F.: Weak convergence of a sequence of Markov chains. Z. Wahrscheinlichkeitstheorie und

Verw. Gebiete 33, 41–48 (1975)
18. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM

and ASA, Philadelphia (1999)
19. Lindvall, T.: Lectures on the Coupling Method. Wiley, New York (1992)
20. Pang, G., Talreja, R., Whitt, W.: Martingale proofs of many-server heavy-traffic limits for Markovian

queues. Probab. Surv. 4, 193–267 (2007)
21. Perry, O., Whitt, W.: Responding to unexpected overloads in large-scale service systems. Manag. Sci.

55(8), 1353–1367 (2009)
22. Perry, O., Whitt, W.: A fluid approximation for service systems responding to unexpected overloads.

Oper. Res. 59(5), 1159–1170 (2011)
23. Perry, O., Whitt, W.: An ODE for an overloaded X model involving a stochastic averaging principle.

Stoch. Syst. 1, 17–66 (2011)
24. Perry, O., Whitt, W.: A fluid limit for an overloaded X call center via a stochastic averaging principle.

Math. Oper. Res. 38 (2013) (articles in advance online, December 20, 2012)
25. Salminen, P., Norros, I.: On busy periods of the unbounded Brownian storage. Queueing Syst. 39,

317–333 (2001)

123



Queueing Syst (2014) 76:347–401 401

26. Rootzen, H.: On the functional central limit theorem for Martingales. Zeit. Wahrscheinlichkeitsth.
werv. Gebiete 38, 199–210 (1977)

27. Talreja, R., Whitt, W.: Heavy-traffic limits for waiting times in many-server queues with abandonment.
Ann. Appl. Prob. 19(6), 2137–2175 (2009)

28. Whitt, W.: Comparing counting processes and queues. Adv. Appl. Prob. 13(1), 207–220 (1981)
29. Whitt, W.: On the heavy-traffic limit theorem for GI/G/infinity queues. Adv. Appl. Probab. 14(1),

171–190 (1982)
30. Whitt, W.: Asymptotic formulas for Markov processes with applications to simulation. Oper. Res.

40(2), 279–291 (1992)
31. Whitt, W.: Stochastic-Process Limits. Springer, New York (2002)
32. Whitt, W.: Efficiency-driven heavy-traffic approximations for many-server queues with abandonments.

Manag. Sci. 50(10), 1449–1461 (2004)

123


	Diffusion approximation for an overloaded X model via a stochastic averaging principle
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 A sequence of overloaded Markovian X models
	2.3 The FQR-T control
	2.4 Dimension reduction
	2.5 The fast-time-scale process

	3 The fluid limit
	3.1 The FWLLN
	3.2 The stationary fluid limit
	3.3 Eventually remaining in the set where the FTSP is positive recurrent

	4 The main results
	4.1 The role of the FTSP's in the stochastic limit
	4.2 The FCLT
	4.3 Important corollaries
	4.4 The case r = 1: longer queue first (LQF)

	5 Proof of Theorem 4
	5.1 Representation and SSC
	5.2 A continuous mapping
	5.3 Martingale representations
	5.4 Convergence of stochastic driving terms
	5.5 Overall Proof of Theorem 4
	Difficulties in the Proof of Lemma 6


	6 Proof of Lemma 6
	6.1 The first two terms in (34)
	6.2 Key supporting results for the last two terms
	6.3 The last two terms in (34)
	6.4 Joint convergence in Lemma 6

	7 Proof of Theorem 6
	8 Proof of Lemma 14: using the martingale FCLT
	9 Remaining Proofs of Lemmas in §§7 and 8
	10 Proof of Lemmas 8 and 12: coupling constructions
	11 Comparisons with simulation
	12 Conclusions and further research
	Acknowledgements
	References


