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Abstract We study the asymptotic behavior of the tail probabilities of the waiting
time and the busy period for the M/G/1/K queues with subexponential service times
under three different service disciplines: FCFS, LCFS, and ROS. Under the FCFS
discipline, the result on the waiting time is proved for the more general G I/G/1/K
queue with subexponential service times and lighter interarrival times. Using the well-
known Laplace–Stieltjes transform (LST) expressions for the probability distribution
of the busy period of the M/G/1/K queue, we decompose the busy period into a sum
of a random number of independent random variables. The result is used to obtain the
tail asymptotics for the waiting time distributions under the LCFS and ROS disciplines.

Keywords M/G/1/K queue · G I/G/1/K queue · Waiting time · Busy period ·
Subexponential distribution · Tail asymptotics
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1 Introduction

In this paper, we study the tail asymptotic behavior of the distribution function (d.f.) of
the busy period and of the waiting time for the M/G/1 queueing system with a fixed
capacity K ≥ 1 (including the service position). Specifically, we assume that the i.i.d.
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service time variables have a subexponential distribution. The family of subexponential
distributions is an important class of heavy-tailed distributions, both in theory and in
queueing applications.

The M/G/1 queueing system, with either a finite or infinite capacity, is a classical
queueing system about which basic properties can be found in many queueing books.
For the finite-capacity model, which is closely related to our study on the busy period
and waiting time, we refer readers to Miller [25], and Takagi and LaMaire [31],
among others, for standard results, and particularly to the book by Takagi [30] and the
references therein. It is worthwhile mentioning that tail asymptotic properties are not
a focus of the above-mentioned references.

Studying tail asymptotic properties has a twofold significance—its own theoretical
importance and its applications. In either case, and particularly when studying its appli-
cations, people often search for simple explicit expressions for important performance
measures such as the waiting time and the busy period. This is usually accomplished
by employing the useful tool of transformations. Our focus is on finding a simple
explicit characterization for the tail asymptotic of the distribution function of the busy
period and the waiting time with various service disciplines for the M/G/1/K queue
when G is heavy-tailed. Tail asymptotic properties can often lead to approximations
and performance bounds.

When G is heavy-tailed, comprehensive studies on asymptotic properties for the
M/G/1 (and also for the more general G I/G/1) queueing system with an infinite
system capacity can be found in the literature. Most of the literature references focus
on the waiting time distribution. For example, Cohen [13] considered the G I/G/1
queue when the service time is regularly varying, Pakes [27] studied the M/G/1
queue when the service time is subexponential, and Veraverbeke [32] tackled the
problem through Wiener–Hopf factorizations. Borst et al. [10] considered the impact
of the service discipline on delay asymptotics and Boxma and Zwart [12] reviewed the
impact of scheduling on tail behavior. Recently, Boxma and Denisov [11] considered
the G I/G/1 queue with a regularly varying service time distribution of index α and
proved that under a proper service discipline, the waiting time is regularly varying
with any given index value between −α and 1 − α. The paper by Abate and Whitt [1]
considered tail behavior for the waiting time of the M/G/1 priority queue (both heavy
tail and light tail cases, and also closely related to the busy period).

Considering an infinite-capacity, but for the busy period, De Mayer and Teugels [14]
obtained a tail asymptotic result for the M/G/1 queue with regularly varying service
times. However, it was shown in Asmussen et al. [5] that the result proven in [14]
cannot be true for the entire class of subexponential distributions. Zwart [38] extended
the result in [14] to the G I/G/1 queue under the assumption that the tail of the service
time distribution is of intermediate regular variation. His method is probabilistic and
revealed an insightful relationship between the busy period and the cycle maximum.
Jelenković and Momc̆ilović [20] derived an asymptotic result for the busy period
distribution in the stable G I/G/1 queue with square-root-insensitive service times,
and Baltrunas et al. [9] considered the G I/G/1 queue with Weibull service times.

Also for the busy period, but for light-tailed behavior, Kyprianou [22] investi-
gated the asymptotic for the M/G/1 queue where a service time has a meromorphic
moment generating function and Palmowski and Rolski [28] studied the G I/G/1
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work-conserving queues and provided exact tail asymptotics for the distribution of the
busy period under light-tailed assumptions.

References on asymptotic properties, either light- or heavy-tailed, for the M/G/1
queue with a processor sharing server are also abundant, and mainly focus on the
probability of the sojourn time, either conditional or unconditional. These include
Zwart and Boxma [39], Egorova et al. [16], Mandjes and Zwart [24], Yashkov [33];
Egorova and Zwart [15], Zhen and Knessl [35], Yashkov and Yashkova [34], and Zhen
and Knessl [36].

From the stochastic process point of view, finite-capacity models can be stud-
ied through reflected barriers at both 0 and K , such as reflected random walks
for discrete models and reflected Brownian motion/Lévy processes for continu-
ous models. For asymptotic properties of the M/G/1/K (or for the more gen-
eral single server) queues with a finite capacity K , much attention has been
given to the blocking probability or the loss rate as K goes to infinity. For
example, Baiocchi considered the M/G/1/K and G I/M/1/K models, and the
M AP/G/1/K model in [7] and [8], respectively; Jelenković [19] obtained subex-
ponential loss rates for a G I/G/1 queue; Zwart [37] studied a G I/G/1 queue
(and also a fluid model) with a subexponential input; Pihlsgård [29] obtained
loss rate asymptotics for a G I/G/1 queue; Miyazawa et al. [26] studied asymp-
totic behavior for a finite buffer queue with QBD structure; Asmussen and
Pihlsgård [6] studied the loss rate associated with a reflected Lévy process;
Kim and Kim [21] carried out an asymptotic analysis for the loss probabil-
ity of queues of the G I/M/1 type; Andersen and Asmussen [3] examined loss
rate asymptotics for centered Lévy processes; Andersen [2] derived subexpo-
nential loss rate asymptotics for a reflected Lévy process when the mean is
negative and the positive jumps are subexponential; and Liu and Zhao [23]
considered an M/G/1/N queue with server vacations and exhaustive service
discipline.

In contrast to the above-mentioned studies, our focus in this paper is on tail asymp-
totic properties of the busy period and the waiting time of the M/G/1/K queue when
G is a subexponential random variable with distribution B(x). Our main contributions
in this paper include: (1) Based on the recursive formula with respect to the capacity K
for the busy period, we connect the LST of the busy period distribution with a geomet-
ric sum of random variables. We derive the tail asymptotics for the busy period; (2) we
study the tail asymptotic behavior for the waiting time distribution with the three ser-
vice disciplines: first-come-first-served (FCFS), last-come-first-served (LCFS), and
random-order-service (ROS). Under the FCFS discipline, the result is proved for the
more general G I/G/1 queue with lighter interarrival times. The main results are
reported in Theorems 2.1, 3.1, 4.1, and 5.1.

Throughout the paper, for a given non-negative r.v. X , its distribution function
is denoted by F(x) = P(X ≤ x) and its tail (or, survival) function is denoted by
F(x) = 1 − F(x) = P(X > x). A d.f. F has a light tail if there exists ε > 0 such
that E(eεX ) < ∞. Otherwise, the d.f. F is referred to as heavy-tailed. In this paper,
we focus on a special class, S, of heavy-tailed distributions, called subexponential
distributions.
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Definition 1.1 Let F∗n denote the n-fold convolution of F with corresponding tail
F∗n = 1−F∗n , then the d.f. F is called subexponential (or F ∈ S) if F(x) > 0, x ≥ 0,
and for all n ≥ 2,

lim
x→∞

F∗n(x)

F(x)
= n.

It can be shown that if the condition holds for n = 2 then it holds for all n ≥ 2. The
reader is referred to [17] or [18] for details and further references about subexponential
distributions.

Also, throughout the paper the notations a(x) ∼ b(x) and a(x) = o(b(x)) mean
that a(x)/b(x) → 1 and a(x)/b(x) → 0 as x → ∞, respectively. For two random
variables, X and Y , with d.f.s F(x) and G(x), respectively, we say X has a lighter

tail if F(x) = o(G(x)) as x → ∞. We denote by
d= the equality in distribution, i.e.,

X
d= Y means that the d.f.s of r.v.s X and Y are the same.
The rest of this paper is organized as follows. In Sect. 2, we obtain a tail asymptotic

result on the waiting time of the G I/G/1/K queue for the FCFS case. In Sect. 3, the
tail asymptotic result is proved for the busy period of the M/G/1/K queue. Sections 4
and 5 are devoted to the tail asymptotic results on the waiting time of the M/G/1/K
queue for the LCFS and ROS cases, respectively. Appendix contains literature results
that are used in our analysis.

2 Waiting Time for FCFS System

In this section, we prove a tail asymptotic result on the waiting time distribution for the
G I/G/1/K system with subexponential service times and lighter interarrival times
under the FCFS discipline. The system is assumed to be stable. Let W be the waiting
time of an arriving customer (the tagged customer) who is accepted in to the system.
We first prove the following fact:

Lemma 2.1 Let Z1 and Z2 be independent r.v.s with d.f.s F1 and F2, respectively.
Define Z = Z1 + Z2. Assume that Z has a d.f. F ∈ S and F2(t) = o(F(t)). Then,
F1 ∈ S and F1(t) ∼ F(t) as t → ∞.

Proof We can write

F(t) = P(Z1 + Z2 > t) = P(Z1 > t) + P(Z2 > t, Z1 ≤ t)

+P(Z1 + Z2 > t, Z2 ≤ t, Z1 ≤ t)

= F1(t) + F2(t)F1(t) +
t∫

0

(F2(t − y) − F2(t))d F1(y).

(2.1)
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Fig. 1 The service starting times of C−(K−1), . . . , C0 and the arriving time of C0

Note that

lim sup
t→∞

1

F(t)

t∫

0

(F2(t − y) − F2(t))d F1(y)

≤ lim sup
t→∞

∞∫

0

(
F2(t − y)

F(t − y)
· F(t − y)

F(t)
− F2(t)

F(t)

)
d F1(y) = 0, (2.2)

where we have used the facts: limt→∞ F(t − y)/F(t) = 1 (by Lemma 6.1) and the
dominated convergence theorem for interchanging the limit and the integral. Now,
limt→∞ F1(t)/F(t) = 1 follows from (2.1) and (2.2). 	

Remark 2.1 The above fact is useful, which is very likely available in the literature
[18].

Theorem 2.1 For the G I/G/1/K queueing system with a subexponential service
time distribution B(x) and a lighter interarrival time under the FCFS discipline,
P(W > x) ∼ (K − 1)B(x) as x → ∞.

Proof We refer to the tagged customer as C0, and denote C− j ( j = 1, 2, . . .) by the
j th last customer who enters the system before C0 (blocked arrivals are not counted).
Let s− j represent the “service starting time” of C− j ( j = 0, 1, . . .), X− j represent the
length of service time of C− j ( j = 1, 2, . . .), and a0 represent the arrival time of C0.
Figure 1 depicts a typical order of service starting times of C−(K−1), C−(K−2), . . . , C0
and the arriving time of C0. The following observations are straightforward.

(1) The start of the service of customer C−(K−1) must be before the arrival of customer
C0, i.e., s−(K−1) < a0. This is because C−(K−1), C−(K−2), . . . , C−1 must have
entered the system before C0 does.

(2) All customers that arrived during (s−(K−1), a0) should be accepted into the system
without blocking. The number of arrivals during (s−(K−1), a0) is K −τ −1, where
τ = the number of customers in the system at time t = s−(K−1) and 1 ≤ τ ≤ K−1.
Precisely, C−(K−τ−1), C−(K−τ−2), . . . , C−1 arrive during (s−(K−1), a0).

By (2), we know that a0 − s−(K−1) equals the sum of K − τ (1 ≤ τ ≤ K − 1)
interarrival times, where the first interarrival time should be interpreted as a partial
interarrival time. Hence
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s0 − s−(K−1) = s0 − a0 + a0 − s−(K−1)

= W +sum ofK −τ interarrival (or partial interarrival) times. (2.3)

On the other hand, s−( j−1) − s− j is the length of time between the service startings
of customers C− j and C−( j−1). It is worthwhile noticing that there may be an idle
period between two consecutive services before t = a0. So s−( j−1) − s− j = X− j+ at
most one idle period. Since C−(K−1), C−(K−2), . . . , CK−τ are already in the system at
time t = s−(K−1) and they are continuously served without any idle period in between,
we have

s0 − s−(K−1) = (s0 − s−1) + (s−1 − s−2) + · · · + (s−(K−2) − s−(K−1))

=
K−1∑
j=1

X− j + sum of at most K − τ idle periods. (2.4)

It follows from (2.3) and (2.4) that

W + Y1 =
K−1∑
j=1

X− j + Y2, (2.5)

where Y1
�= sum of K − τ interarrival (or partial interarrival) times, and Y2

�= sum of
at most K − τ idle periods.

By Lemma 6.3 and Corollary 6.1, we have P(
∑K−1

j=1 X− j + Y2 > t) ∼
P(

∑K−1
j=1 X− j > t) ∼ (K − 1)B(t) because an idle period has a lighter tail than

B(t). So, P(W + Y1 > t) ∼ (K − 1)B̄(t) as t → ∞. Again, by Lemma 6.3,
limt→∞ P(Y1 > t)/B(t) = 0 because an interarrival time has a lighter tail than B(t).
Applying Lemma 2.1, we have P{W > t} ∼ (K − 1)B̄(t) as t → ∞. 	


3 Busy Period of M/G/1/K Queue

In this section, we investigate the asymptotic behavior for the busy period for the
M/G/1/K system. Assume that customers arrive according to a Poisson process
with rate λ. Let X be the length of a generic service time, and N (X) be the number

of arrivals during (0, X). Let ck = P(N (X) = k) = ∫ ∞
0

(λx)k

k! e−λx d B(x), k ≥ 0,
which is the probability that k customers arrive during a service time. Further, we let
ck = P(N (X) ≥ k) = 1 − ∑k−1

j=0 c j , k ≥ 1, which is the probability that k or more
customers arrive during a service time.

Define h1 = 1 and hn , recursively, by

hn = c−1
0 ·

[
1 +

n−1∑
j=2

cn− j+1h j

]
, n ≥ 2. (3.1)

The main result in this section is the following theorem.
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Theorem 3.1 Let An be the length of the busy period of the M/G/1/n queueing
system with a subexponential service time distribution B(x). Then, P(An > x) ∼
hn B(x) as x → ∞, where hn is given by (3.1).

To prove the above tail asymptotic result, let us use αn(s) to represent the LST
of the distribution function of An . It is well known that αn(s) can be expressed in a
recursive form with respect to the system capacity n as follows (see for example, p.
225 in Takagi [30], or Miller [25]):

α1(s) = β(s), (3.2)

αn(s) = u0(s)

1−∑n−2
k=1 uk(s)

∏n−1
j=n−k+1 α j (s)−

[ ∑∞
k=n−1 uk(s)

] ∏n−1
j=2 α j (s)

, n ≥ 2,

(3.3)

where β(s) is the LST of the service time distribution and

uk(s) =
∞∫

0

(λt)k

k! e−(λ+s)t dB(t).

It is a convention that for b < a,
∑b

a ≡ 0 and
∏b

a ≡ 1.
The proof to Theorem 3.1 is carried out through the following steps with the use of

properties in Appendix: (a) rewrite αn(s) as the LST of the distribution function of the
sum of two independent random variables, one of which is a geometric sum of i.i.d.
random variables; (b) properly define random variables associated with the geometric
sum; and (c) tail asymptotic analysis for components of the random variables defined
in (b).

For the first step, we note that uk(s) is not the LST of a probability distribution
function (since uk(0) 
= 1). However, we can write uk(s) = ckβk(s), where βk(s) is
the LST of the conditional distribution function

Bk(t)
�= P(X < t |N (X) = k)

= c−1
k

t∫

0

(λx)k

k! e−λx dB(x), k ≥ 0. (3.4)

Now, we rewrite (3.3) in term of βk(s) as

αn(s) = σn(s) · β0(s), n ≥ 2, (3.5)

where

σn(s) = 1 − c1

1 − c1δn(s)
, (3.6)
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δn(s) =
n−2∑
k=1

ck

c1
βk(s)

n−1∏
j=n−k+1

α j (s) + cn−1

c1
τn−1(s)

n−1∏
j=2

α j (s), (3.7)

τn(s) =
∞∑

k=n

ck

cn
βk(s). (3.8)

Next, we will show that τn(s), δn(s), and σn(s) can be viewed as the LSTs of probability
distributions. To this end, let Bn be a random variable having distribution Bn(x) (by
abusing the notation). Define

Tn
d= Bk with probability ck/cn, k ≥ n ≥ 1, (3.9)

Dn
d=

{
Bk + ∑n−1

j=n−k+1 A j with probability ck/c1, 1 ≤ k ≤ n − 2

Tn−1 + ∑n−1
j=2 A j with probability cn−1/c1,

, n ≥ 2.

(3.10)

By Lemma 6.6, it is easy to see that the LSTs of the d.f.s of random variables Tn and
Dn are τn(s) and δn(s), respectively. According to Lemma 6.4, σn(s) can be viewed
as the LST of the d.f. of a geometric sum (denoted by Sn) with parameter c1 of i.i.d.
random variables (each equal to Dn in distribution). By (3.5), αn(s) is the LST of

the d.f. of random variable An
d= Sn + B0, the sum of the geometric sum Sn and the

variable B0 (which is independent of the geometric sum Sn).
Now, let us characterize the tail property for random variables Bk , Tn , and Dn . It is

easy to verify that

P{Bk > x} =
∞∫

x

c−1
k

(λt)k

k! e−λt d B(t) ≤ c−1
k

(λx)k

k! e−λx for x ≥ k/λ. (3.11)

Namely, Bk(x) (k = 0, 1, 2, . . .) is a light-tailed distribution. So, Bk(x) = o(1)B(x)

as x → ∞.
It follows from the definition of Tn in (3.9) and (3.11) that

P{Tn > x} =
∞∑

k=n

ck

cn
P{Bk > x} = 1

cn

∞∫

x

[
1 −

n−1∑
k=0

(λt)k

k! e−λt
]

d B(t)

∼ B(x)/cn, as x → ∞. (3.12)

For the tail behavior of Dn , it follows from its definition given in (3.10) that

P{Dn > x}=
n−2∑
k=1

ck

c1
P

[(
Bk +

n−1∑
j=n−k+1

A j

)
> x

]
+ cn−1

c1
P

[(
Tn−1+

n−1∑
j=2

A j

)
> x

]
.

(3.13)
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We are now ready to prove the theorem, i.e., P{An > x} ∼ hn B(x) as x → ∞ for
n ≥ 1.

Proof of Theorem 3.1 The proof of case n = 1 is immediate since A1
d= X (a service

time). We employ the induction on n to prove the general case of n ≥ 2.

For the case of n = 2, D2
d= T1 by the definition of Dn in (3.10). It follows from

(3.12) that P{D2 > x} = P{T1 > x} ∼ B(x)/c1, which implies that D2 has a
subexponential distribution according to Lemma 6.2. Therefore, by Lemma 6.5,

P{S2 > x} ∼ c1

1 − c1
· 1

c1
B(x) = B(x)

c0
= h2 B(x).

Furthermore, since B0 is light-tailed, P{A2 > x} ∼ P{B0 + S2 > x} ∼ h2 B(x)

according to Corollary 6.1. The proof for the case of n = 2 is complete.
Assuming that P(Ak > x) ∼ hk B(x) for all k (1 ≤ k ≤ n − 1), let us verify that

P(An > x) ∼ hn B(x) is also true. It follows from (3.13), Lemma 6.3, Corollary 6.1
and (3.12) that

P{Dn > x} ∼
n−2∑
k=2

ck

c1

n−1∑
j=n−k+1

h j B(x) + cn−1

c1

[
1

cn−1
B(x) +

n−1∑
j=2

h j B(x)

]

=
[

1 +
n−2∑
k=2

ck

n−1∑
j=n−k+1

h j + cn−1

n−1∑
j=2

h j

]
· B(x)/c1. (3.14)

Recall that An = Sn + B0. By (3.11), Corollary 6.1 and (3.14),

P{An > x} ∼ P(Sn > x) ∼ c1

1 − c1
· P{Dn > x}

= c−1
0 ·

[
1 +

n−2∑
k=2

ck

n−1∑
j=n−k+1

h j + cn−1

n−1∑
j=2

h j

]
B(x)

= c−1
0 ·

[
1 +

n−1∑
j=2

cn− j+1h j

]
B(x)

= hn B(x),

where the second last equation holds after interchanging the summations:
∑n−2

k=2∑n−1
j=n−k+1 = ∑n−1

j=3
∑n−2

k=n− j+1 and noticing that: cn− j+1 = cn−1 + ∑n−2
k=n− j+1 ck .

The proof is complete. 	


4 Waiting Time for LCFS System

In this section, we prove a tail asymptotic result for the waiting time distribution for
the M/G/1/K system with non-preemptive LCFS queueing discipline. Clearly, if
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K = 1 or 2, the waiting time of a customer remains the same regardless of the service
discipline. So, we assume that K ≥ 3. The system is assumed to be stable. Definitions
and notations used in the previous sections remain valid here, such as W , X , N (X), An ,
Bn , Bk(t), ck , ck , hn , and αn(s). Unlike the case of the FCFS, the waiting time under
the LCFS is closely related to the number of arrivals during the remaining service
time, and therefore an explicit expression of the joint stationary distribution of the
queue length and the remaining service time is required.

Consider the stationary system at an arbitrary time. Let L be the number of cus-
tomers in the system, X− be the elapsed service time, and X+ be the remaining service

time for the customer who is in service (if any). Denote pk
�= P(L = k), 0 ≤ k ≤ K ,

and

pk(x)dx
�= P(L = k, x ≤ X− < x + dx), 1 ≤ k ≤ K and x ≥ 0.

By (1.16) on p. 202 and (1.60a) on p. 213 in Takagi [30],

pK = 1 − (1 − p0)/ρ, (4.1)

pk = p0ck +
k+1∑
j=1

p j ck− j+1, 0 ≤ k ≤ K − 2, (4.2)

where ρ = λ
∞∫
0

xd B(x). Note that pk (0 ≤ k ≤ K ) are determined by independent

Eqs. (4.1) and (4.2) combined with the normalizing condition
∑K

k=0 pk = 1.
By (1.61a) on p. 214 in Takagi [30], we have

pk(x) = λB(x)e−λx
[

p0
(λx)k−1

(k − 1)! +
k∑

j=1

p j
(λx)k− j

(k − j)!
]
, 1 ≤ k ≤ K − 1 and x ≥ 0.

(4.3)

A formula for k = K is also available, but we do not need it here.
We study P(W > t), the tail probability of the waiting time of an arriving customer

(the tagged customer) who is accepted in the system. Because Poisson arrivals see time
average (PASTA), the tagged customer sees the system with L (0 ≤ L ≤ K ) customers
(excluding itself) and the remaining service time X+ if L 
= 0. Let W ′ be the waiting
time of this customer before receiving its service (we define W ′ = ∞ if it is blocked).
So P(W > t) = P(W ′ > t |0 ≤ L ≤ K − 1).

Let J be the number of customers that arrived (including those blocked) to the
system during the remaining service time X+ seen by the tagged customer. Define the
following conditional distribution functions
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Gk(t)
�= P(X+ ≤ t |L = k), 1 ≤ k ≤ K − 1,

Gk, j (t)
�= P(X+ ≤ t |L = k, J = j), 1 ≤ k ≤ K − 1 and j ≥ 0,

Tk,n(t)
�= P(X+ ≤ t |L = k, J ≥ n), 1 ≤ k ≤ K − 1 and n ≥ 1.

By the definition of Gk(t), we can write

Gk(t) = p−1
k P(L = k, X+ ≤ t) = p−1

k

∞∫

0

P(X+ ≤ t |X− = x)pk(x)dx

= p−1
k

∞∫

0

B(x + t)

B(x)
pk(x)dx . (4.4)

Let

ck, j = P(J = j |L = k) =
∞∫

0

(λx) j

j ! e−λx dGk(x), j ≥ 0, 1 ≤ k ≤ K − 1,

(4.5)

ck, j = P(J ≥ j |L = k) =
∞∑

n= j

ck,n, j ≥ 1, 1 ≤ k ≤ K − 1. (4.6)

We will prove the following result:

Theorem 4.1 For the stable M/G/1/K with subexponential service times and non-
preemptive LCFS discipline, P(W > x) ∼ wlc f s · B(x) as x → ∞, where

wlc f s = 1

1 − pK

K−2∑
k=1

[
pk

K−k∑
n=2

hnck,K−(k+n−1) +
k∑

j=0

p j

]
+ 1.

It is obvious that W ′ = X+ if L = K − 1 or J = 0. Otherwise, there are J ≥ 1
arrivals (accepted or rejected to the system depending on whether or not the system
is full) during the remaining service time. When 1 ≤ L ≤ K − 2 and J ≥ K − L ,
after the remaining service time X+ the server will start serving the last accepted
customer to the system, and after time A2 the server will start serving the second last
accepted customer to the system that arrived during the remaining service time. This
will continue until all customers accepted to the system during the remaining service
time have been served, and then the server will start serving the tagged customer. The
total time is

W ′ = X+ + A2 + A3 + · · · + AK−L .
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When 1 ≤ L ≤ K − 2 and J ≤ K − L − 1, the waiting time for the server to
start serving the tagged customer can be similarly expressed in terms of the remaining
service time X+ and the busy period An . So, we have

W ′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if L =0,

X+ + ∑K−k
n=K−k− j+1 An, if L =k (1≤k ≤ K −2) and J = j (0 ≤ j ≤ K − k − 1),

X+ + ∑K−k
n=2 An, if L = k (1 ≤ k ≤ K − 2) and J = j ( j ≥ K − k),

X+, if L = K − 1,

∞, if L = K .

Let Tk,n , Gk, j and Gk be random variables having d.f.s Tk,n(t), Gk, j (t) and Gk(t),
respectively. It follows from the above expression of W ′ that

P(W > t) =
K−2∑
k=1

pk

1 − pK

[ K−k−1∑
j=0

ck, j P
(

Gk, j +
K−k∑

n=K−(k+ j−1)

An > t
)

+ck,K−k P
(

Tk,K−k +
K−k∑
n=2

An > t
)]

+ pK−1

1 − pK
P(G K−1 > t).

(4.7)

Next, we will study the tail probabilities of Tk,n , Gk, j and Gk . For this purpose, we
consider the probability of event {L = k, X+ > t}, which will be used in the proof.

P(L = k, X+ > t) =
∞∫

0

P(X+ > t |X− = x)pk(x)dx =
∞∫

0

B(x + t)

B(x)
pk(x)dx .

(4.8)

For a fix a > 0, it follows from (4.8) that

P(L = k, X+ > t)

B(t)
=

⎛
⎝

a∫

0

+
∞∫

a

⎞
⎠ B(x + t)

B(t)

pk(x)

B(x)
dx . (4.9)

For t ≥ 0,

∞∫

a

B(x + t)

B(t)

pk(x)

B(x)
dx ≤

∞∫

a

pk(x)

B(x)
dx → 0 as a → ∞. (4.10)

According to Lemma 6.1, B(x + t)/B(t) → 1 uniformly on 0 ≤ x ≤ a as t → ∞.
Therefore, from (4.9), (4.10) and (4.3)

lim
t→∞

P(L = k, X+ > t)

B(t)
=

∞∫

0

pk(x)

B(x)
dx =

k∑
j=0

p j , 1 ≤ k ≤ K − 1. (4.11)
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By the definitions of Gk(t), Gk, j (t) and Tk, j (t), we have, as t → ∞,

P(Gk > t) = P(X+ > t |L = k) = p−1
k P(X+ > t, L = k) ∼

(
p−1

k

k∑
j=0

p j

)
B(t),

(4.12)

P(Gk, j > t) = P(X+ > t |L = k, J = j) = o(1)B(t), (4.13)

P(Tk,n > t) = P(X+ > t |L = k, J ≥ n)

= (1/ck,n)P(X+ > t, J ≥ n|L = k)

= (1/ck,n)

∞∫

t

[
1 −

n−1∑
j=0

(λx) j

j ! e−λx
]
dGk(x)

∼ (1/ck,n)Gk(t)

∼
(
(1/ck,n)p−1

k

k∑
j=0

p j

)
B(t). (4.14)

It follows from (4.7), Theorem 3.1 and (4.12–4.14) that

lim
t→∞

P(W > t)

B(t)
= 1

1− pK

K−2∑
k=1

pk

[ K−k−1∑
j=1

ck, j

K−k∑
n=K−(k+ j−1)

hn +ck,K−k

K−k∑
n=2

hn + p−1
k

×
k∑

j=0

p j

]
+ 1

= 1

1 − pK

K−2∑
k=1

[
pk

K−k∑
n=2

hnck,K−(k+n−1) +
k∑

j=0

p j

]
+ 1,

where the last equation holds after interchanging the summations:
∑K−k−1

j=1∑K−k
n=K−(k+ j−1) = ∑K−k

n=2
∑K−k−1

j=K−(k+n−1) and noticing: ck,K−k−n+1 = ck,K−k +∑K−k−1
j=K−(k+n−1) ck, j .

5 Waiting Time for ROS System

In this section, we provide a tail asymptotic result on the waiting time for the
M/G/1/K system with ROS service discipline. The same method used for LCFS
systems will be used here. Again, the system is assumed to be stable. Definitions and
notations introduced so far remain valid in this section. For the same reason as in the
previous section, we assume that K ≥ 3.
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To state the main theorem, let

w0 = 0, (5.1)

wk = k

k + 1

[( K−k−1∑
j=0

c jwk+ j−1
) + 1 + cK−kwK−2

]
, 1 ≤ k ≤ K − 2. (5.2)

The main result is given in the following theorem.

Theorem 5.1 For the stable M/G/1/K with subexponential service times and ROS
discipline, P(W > x) ∼ wros · B(x) as x → ∞, where

wros = 1

1 − pK

K−1∑
k=1

[
pk

K−k−1∑
j=0

ck, jwk+ j−1 + pkck,K−kwK−2 +
k∑

j=0

p j

]
. (5.3)

In a ROS system, suppose that the tagged customer sees the system with L = k. If
k 
= 0 or K , and j customers arrived (not necessarily accepted to the system) during
the remaining service time X+, then there are min(k + j − 1, K − 2) other customers
(excluding the tagged one) in the system at the end of the remaining service time X+.
Therefore, we can write W ′ = X+ + Wmin(k+ j−1,K−2), where Wk is the length of the
time period starting from the completion of a service to the end of the waiting time
of the tagged customer, given that there are k other customers (excluding the tagged
one) left behind in the system at the completion of that service. We therefore have

W ′ =

⎧⎪⎪⎨
⎪⎪⎩

0, if L = 0,

X+ + Wk+ j−1, if L = k (1 ≤ k ≤ K − 1) and J = j (0 ≤ j ≤ K − k − 1),

X+ + WK−2, if L = k (1 ≤ k ≤ K − 1) and J = j ( j ≥ K − k),

∞, if L = K .

(5.4)

To characterize the tail behavior of the waiting time: P(W > t) = P(W ′ >
t |0 ≤ L ≤ K − 1), the key is to characterize the tail behavior of P(Wk > t) for
0 ≤ k ≤ K − 2. Because of the random selection, it is clear that Wk = 0 with
probability 1/(k + 1) and Wk > 0 with probability k/(k + 1). In the latter case, the
tagged customer has to wait one service time before the next selection made by the
server. Hence,

P(Wk > t) = k

k + 1

[ K−k−1∑
j=0

c j P(B j + Wk+ j−1 > t) + cK−k P(TK−k + WK−2 > t)

]
,

(5.5)

where 0 ≤ k ≤ K − 2.

Proposition 5.1 (1) For x > 0, P{W0 > x} = 0; (2) For 1 ≤ k ≤ K − 2, the
asymptotic tail probability of Wk is given by

P{Wk > x} ∼ wk B(x), asx → ∞, (5.6)
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where the recursive expression for wk is given in (5.2).

Proof Since W0 ≡ 0, part (1) is obvious. To prove (5.6), the key is to verify the
existence of limx→∞ P(Wk > x)/B(x) for all 1 ≤ k ≤ K − 2, which can be done
by the mathematical induction on K (K ≥ 3). When K = 3, W1 equals the sum
of a light-tailed number of service times, so limx→∞ P(W1 > x)/B(x) exists by
Lemma 6.5. Now, assuming that all limx→∞ P(Wk > x)/B(x) exist when K = n,
let us see the case of K = n +1. Conditioning on the events E = {no other customers
in the system when the tagged customer starts its service} and its complement event
Ec, we have P(Wk > x) = P(E)P(Wk > x |E) + P(Ec)P(Wk > x |Ec). The
existence of limx→∞ P(Wk > x |Ec)/B(x) follows from the induction assumption
(K = n) because one position is always occupied by a customer other than the tagged
customer before its service. The existence of limx→∞ P(Wk > x |E)/B(x) follows
from the fact that P(Wk > x |E) = P(An+1−k + An+1−(k−1) + · · · + An > x) and
from Theorem 3.1, where Am is the busy period of the M/G/1/m queue. So, all
limx→∞ P(Wk > x)/B(x) exist for the case K = n + 1.

Let limx→∞ P(Wk > x)/B(x)
�= wk . It follows from (5.5), (3.11) and (3.12) that

wk satisfies (5.2). 	


Proof of Theorem 5.1 Recall that W is the waiting time of an arriving customer who
is accepted to a steady state system and P(W > t) = P(W ′ > t |0 ≤ L ≤ K − 1).
Following the same treatment as that in the previous section, we have

P(W > t) =
K−1∑
k=1

pk

1 − pK

[ K−k−1∑
j=0

ck, j P
(

Gk, j + Wk+ j−1 > t
)

+ck,K−k P
(

Tk,K−k + WK−2 > t
)]

.

Finally, by Proposition 5.1, (4.13) and (4.14),

lim
t→∞

P(W > t)

B(t)
= 1

1 − pK

K−1∑
k=1

pk

[( K−k−1∑
j=0

ck, jwk+ j−1

)
+

(
p−1

k

k∑
j=0

p j

)

+ck,K−kwK−2

]
.
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6 Appendix: Useful Literature Results

For convenience, we collected useful literature results for this paper in this appendix.
The following two basic properties of the subexponential distribution can be found

in Embrechts et al. [17].

Lemma 6.1 (Lemma 1.3.5 in [17]) If F ∈ S, let X be a random variable having F
as its distribution. Then, (a)

lim
x→∞ P(X > x+y|X > x)= lim

x→∞
F(x + y)

F(x)
=1, uniformly for any compact set of y;

and (b)
lim

x→∞ eεx P(X > x) = ∞ = E(eεX ), for all ε > 0.

The following lemma says that the class S is closed under tail-equivalence.

Lemma 6.2 (Lemma A 3.15 in [17]) Suppose that F and G are distributions on
(0,∞). If F ∈ S and

lim
x→∞

G(s)

F(x)
= c ∈ (0,∞),

then, G ∈ S.

The following result is useful for obtaining the asymptotic tail probability of the
sum of independent random variables having subexponential distributions.

Lemma 6.3 (Lemma A 3.28 of in [17]) Let Y1, Y2, . . . , Ym be independent r.v.s and
F ∈ S. Assume

lim
x→∞

P(Yi > x)

F(x)
= ai ∈ [0,∞], i = 1, 2, . . . , m.

Then,

lim
x→∞

P
(∑m

i=1 Yi > x
)

F(x)
=

m∑
i=1

ai .

Corollary 6.1 If F1 and F2 are two distributions such that F1 ∈ S and F2(x) =
o(F1(x)), then F1 ∗ F2 ∈ S and F1 ∗ F2(x) ∼ F1(x) as x → ∞.

Lemma 6.4 (Geometric Sum, p. 580 in [17]) Let Y1, Y2, . . . be a sequence of i.i.d.
r.v.s with a common d.f. F(x). Let N be an integer-valued random variable, which
is independent of the sequence Yi and has a geometric distribution P(N = k) =
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(1 − p)pk, k = 0, 1, 2, . . .. Define S0 ≡ 0 and Sn = Y1 + Y2 + · · · + Yn for n ≥ 1.
Then,

G(x)
�= P(SN ≤ x) = (1 − p)

∞∑
k=0

pk F∗k(x),

where F∗n denotes the n-fold convolution of F (F∗0 is defined as the Heaviside unit
step function), and the LST of G(x) is given by

γ (s) = 1 − p

1 − p f (s)
,

where f (s) is the LST of F(x).

Lemma 6.5 (p. 296 in Asmussen [4]) Let Y1, Y2, . . . be i.i.d. r.v.s with a common
subexponential distribution F and let N be an integer-valued random variable, inde-
pendent of the sequence Yi , with EzN < ∞ for some z > 1. Then,

P(Y1 + Y2 + · · · + YN > x) ∼ E N F(x).

Specifically, if P(N = k) = (1 − p)pk, k = 0, 1, 2, . . ., then

P(Y1 + Y2 + · · · + YN > x) ∼ p

1 − p
F(x) as x → ∞.

The following results can be easily verified.

Lemma 6.6 (1) Let Yi be a r.v. whose d.f. has the LST gi (s), i = 1, 2, . . . , n. Define

X = Yi with probability pi , 1 ≤ i ≤ n,

where
∑n

i=1 pi = 1. Then, the d.f. of X has the LST gX (s) = ∑n
i=1 pi fi (s);

(2) Let Y1, Y2, . . . , Yn be independent r.v.s whose d.f.s have the LST g1(s), g2(s), . . . ,
gn(s), respectively. Then, g(s) = ∏n

i=1 gi (s) can be viewed as the LST of the d.f.

of the r.v. X
d= ∑n

i=1 Yi .
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