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Abstract In this paper, we consider all singular cases of random walks in the quarter
plane. Specifically, exact light tail asymptotics for stationary probabilities are ob-
tained for all singular random walks.
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1 Introduction

Tail behaviour of stationary probabilities for random walks in the quarter plane has
long been a key issue, because not only its theoretical interest, but also its important
applications. For a detailed literature review and recent development of studies, we
refer readers to Miyazawa [11, 12] and Li and Zhao [9, 10].

Let X+, X1, X2, and X0 be random variables having the distributions, respectively,
pi,j , where i, j = 0,±1; p

(1)
i,j , where i = 0,±1 and j = 0,1; p

(2)
i,j , where i = 0,1

and j = 0,±1; and p
(0)
i,j , where i, j = 0,1. Then the random walk considered in
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this paper is a two-dimensional discrete-time Markov chain Lt on the state space S =
Z

2+ = {(m,n);m,n = 0,1,2, . . .}, partitioned as Z
2+ = S+ ∪S1 ∪S2 ∪S0, where S+ =

{(m,n);m,n = 1,2, . . .}, S1 = {(m,0);m = 1,2, . . .}, S2 = {(0, n);n = 1,2, . . .} and
S0 = {(0,0)}, with the following transition probabilities:

P
{
Lt+1 = (m2, n2)|Lt = (m1, n1)

}

=

⎧
⎪⎨

⎪⎩

P(X+ = (m2 − m1, n2 − n1)), if (m2, n2) ∈ S, (m1, n1) ∈ S+,

P (Xk = (m2 − m1, n2 − n1)), if (m2, n2) ∈ S, (m1, n1) ∈ Sk

with k = 0,1,2.

Let

M = (Mx,My) =
(∑

i

i

(∑

j

pi,j

)
,
∑

j

j

(∑

i

pi,j

))
,

M(1) = (
M(1)

x, M(1)
y

) =
(∑

i

i

(∑

j

p
(1)
i,j

)
,
∑

j

j

(∑

i

p
(1)
i,j

))
,

M(2) = (
M(2)

x, M(2)
y

) =
(∑

i

i

(∑

j

p
(2)
i,j

)
,
∑

j

j

(∑

i

p
(2)
i,j

))
.

When M �= 0, a necessary and sufficient condition for stability was obtained in Fay-
olle, Iasnogorodski, and Malyshev [3] and amended by Kobayashi and Miyazawa
(Lemma 2.1 of [7]).

Theorem 1.1 (Theorem 1.2.1 in [3] and Lemma 2.1 in [7]) When M �= 0, the random
walk is ergodic if and only if one of the following three conditions holds:

1. Mx < 0, My < 0, MxM
(1)
y − MyM

(1)
x < 0, and MyM

(2)
x − MxM

(2)
y < 0;

2. Mx < 0, My ≥ 0, MyM
(2)
x − MxM

(2)
y < 0, and M

(1)
x < 0 if M

(1)
y = 0;

3. Mx ≥ 0, My < 0, MxM
(1)
y − MyM

(1)
x < 0, and M

(2)
y < 0 if M

(2)
x = 0.

Throughout the paper, we assume that the random walk is stable and denote the
joint stationary probability vector by πm,n. For this random walk, the fundamental
form (for example, see p. 5 of [3]) is given by

−h(x, y)π(x, y) = h1(x, y)π1(x) + h2(x, y)π2(y) + h0(x, y)π0,0, (1.1)

where

π(x, y) =
∞∑

m=1

∞∑

n=1

πm,nx
m−1yn−1, π1(x) =

∞∑

m=1

πm,0x
m−1,

π2(y) =
∞∑

n=1

π0,ny
n−1,
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h(x, y) = xy

(
1∑

i=−1

1∑

j=−1

pi,j x
iyj − 1

)

= a(x)y2 + b(x)y + c(x)

= ã(y)x2 + b̃(y)x + c̃(y),

h1(x, y) = x

(
1∑

i=−1

1∑

j=0

p
(1)
i,j xiyj − 1

)

= a1(x)y + b1(x) = ã1(y)x2 + b̃1(y)x + c̃1(y)

h2(x, y) = y

(
1∑

i=0

1∑

j=−1

p
(2)
i,j xiyj − 1

)

= ã2(y)x + b̃2(y) = a2(x)y2 + b2(x)y + c2(x),

h0(x, y) =
(

1∑

i=0

1∑

j=0

p
(0)
i,j xiyj − 1

)

= a0(x)y + b0(x) = ã0(y)x + b̃0(y),

with

a(x) = p−1,1 + p0,1x + p1,1x
2, b(x) = p−1,0 − (1 − p0,0)x + p1,0x

2,

c(x) = p−1,−1 + p0,−1x + p1,−1x
2,

ã(y) = p1,−1 + p1,0y + p1,1y
2, b̃(y) = p0,−1 − (1 − p0,0)y + p0,1y

2,

c̃(y) = p−1,−1 + p−1,0y + p−1,1y
2,

a1(x) = p
(1)
−1,1 + p

(1)
0,1x + p

(1)
1,1x

2, b1(x) = p
(1)
−1,0 − (

1 − p
(1)
0,0

)
x + p

(1)
1,0x

2,

ã1(y) = p
(1)
1,0 + p

(1)
1,1y, b̃1(y) = p

(1)
0,0 − 1 + p

(1)
0,1y, c̃1(y) = p

(1)
−1,0 + p

(1)
−1,1y,

a2(x) = p
(2)
0,1 + p

(2)
1,1x, b2(x) = p

(2)
0,0 − 1 + p

(2)
1,0x, c2(x) = p

(2)
0,−1 + p

(2)
1,−1x,

ã2(y) = p
(2)
1,−1 + p

(2)
1,0y + p

(2)
1,1y

2, b̃2(y) = p
(2)
0,−1 − (

1 − p
(2)
0,0

)
y + p

(2)
0,1y

2,

a0(x) = p
(0)
0,1 + p

(0)
1,1x, b0(x) = p

(0)
1,0x − (

1 − p
(0)
0,0

)
,

ã0(y) = p
(0)
1,0 + p

(0)
1,1y, b̃0(y) = p

(0)
0,1y − (

1 − p
(0)
0,0

)
.

By simple algebra, we obtain

My = a(1) − c(1) = ã′(1) + b̃′(1) + c̃′(1),

Mx = ã(1) − c̃(1) = a′(1) + b′(1) + c′(1),
(1.2)
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Fig. 1 Singular cases corresponding to part 1 of Lemma 1.1

Fig. 2 Singular cases corresponding to part 2 and part 3 of Lemma 1.1

M(1)
y = a1(1) = ã′

1(1) + b̃′
1(1) + c̃′

1(1),

M(1)
x = ã1(1) − c̃1(1) = a′

1(1) + b′
1(1),

(1.3)

M(2)
y = a2(1) − c2(1) = ã′

2(1) + b̃′
2(1),

M(2)
x = ã2(1) = a′

2(1) + b′
2(1) + c′

2(1),
(1.4)

where ′ is the derivative of a function. The above expressions will be used to simplify
the stability condition in later sections.

Definition 1.1 A random walk in the quarter plane is called singular if h(x, y), as a
polynomial of two complex variables x and y, is either reducible or of degree one in
at least one variable.

A necessary and sufficient condition for a random walk to be singular was obtained
in [3] and is stated as follows.

Lemma 1.1 (Lemma 2.3.2 in [3]) The random walk is singular if and only if one of
the following conditions holds:

1. There exists (i, j) such that only pi,j > 0 and p−i,−j > 0;
2. There exists i with |i| = 1 such that for any j , pi,j = 0;
3. There exists j with |j | = 1 such that for any i, pi,j = 0.

Based on the above lemma, it is easy to see there are a total of eight possible differ-
ent cases (or transition diagrams) for the singular random walks, which are depicted
in Fig. 1 and Fig. 2.

In the analysis throughout the paper, we assume a positive probability for every
possible transition in all singular cases. Only minor modifications might be needed if
the probability were to be zero for a possible transition.
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Remark 1.1 Our focus is on a stable random walk with light-tailed behaviour of its
stationary probabilities, which is equivalent to the case of M �= 0. By light-tailed
behaviour, we mean that both complex functions π1(x) and π2(y) have a convergence
radius greater than 1, which is equivalent to both πi,0 and π0,j being light-tailed.
When M = 0, Lemma 3.3 in [7] showed that the random walk is heavy-tailed. When
M �= 0, all random walks are light-tailed. For non-singular cases, this was proved in
[3] (for example, Corollary 3.2.4). For the singular cases, this is also true. In fact,
analytic continuation in each singular case is automatically clear from the detailed
analysis provided in the following sections except for case 3. In this case, analytic
continuation is not immediately clear and the kernel method in [3] seems not feasible.
Instead, one can use other methods (for example, He, Li, and Zhao [6], [3, 11], or
Guillemin and Simonian [5]) to show that both πi,0 and π0,j are light-tailed.

The literature study has mainly been focusing on non-singular random walks. Tail
asymptotic analysis for singular cases is only available for a few specific models, for
example, the priority queues (see Abate and Whitt [1] and Li and Zhao [8] for details
and relevant references). It is of interest to provide a complete description of the tail
asymptotic properties for all singular cases, which is the purpose of this paper. Based
on the fundamental form (1.1), a modified kernel method is applied to confirm that
the exact tail asymptotics for boundary probabilities πm,0 (and π0,n) for the singular
cases have the same four types as that for the non-singular cases. This is also true for
the two marginal distributions: π

(1)
m = ∑

n πm,n and π
(2)
n = ∑

m πm,n, but details will
not be presented in the paper since they only require some minor efforts. However,
a new type of exact tail asymptotic property for joint probabilities πm,n along a co-
ordinate direction, say for a fixed n as m → ∞, can appear for a reducible h(x, y).
For tail asymptotic properties in the joint distribution along a coordinate direction,
we define and analyze the generating functions:

ϕj (x) =
∞∑

i=1

πi,j x
i−1, j ≥ 0,

ψi(y) =
∞∑

j=1

πi,j y
j−1, i ≥ 0.

Notice that ϕ0(x) = π1(x) and ψ0(y) = π2(y). Recursive relationships will be ob-
tained for ϕj (x) and ψi(y), respectively, based on the balance equations of the ran-
dom walk:

(
1 − p

(0)
0,0

)
π0,0 = p

(1)
−1,0π1,0 + p

(2)
0,−1π0,1 + p−1,−1π1,1, (1.5)

(
1 − p

(1)
0,0

)
π1,0 = p

(0)
1,0π0,0 + p

(1)
−1,0π2,0 + p−1,−1π2,1 + p

(2)
1,−1π0,1

+ p0,−1π1,1, (1.6)
(
1 − p

(1)
0,0

)
πi,0 = p

(1)
1,0πi−1,0 + p

(1)
−1,0πi+1,0 + p−1,−1πi+1,1 + p1,−1πi−1,1

+ p0,−1πi,1, i ≥ 2, (1.7)
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(
1 − p

(2)
0,0

)
π0,1 = p

(0)
0,1π0,0 + p

(2)
0,−1π0,2 + p−1,−1π1,2 + p

(1)
−1,1π1,0

+ p−1,0π1,1, (1.8)
(
1 − p

(2)
0,0

)
π0,j = p

(2)
0,1π0,j−1 + p

(2)
0,−1π0,j+1 + p−1,−1π1,j+1 + p−1,1π1,j−1

+ p−1,0π1,j , j ≥ 2, (1.9)

(1 − p0,0)πi,j = p1,−1πi−1,j+1 + p−1,−1πi+1,j+1 + p0,−1πi,j+1

+ p1,0πi−1,j + p−1,0πi+1,j + p1,1πi−1,j−1 + p0,1πi,j−1

+ p−1,1πi+1,j−1, i ≥ 2, j ≥ 2. (1.10)

Throughout the paper, a Tauberian-like theorem (see, for example, Theorem 4 in Ben-
der [2] or Corollary 2 in Flajolet and Odlyzko [4]) is frequently used for asymptotic
analysis.

The rest of the paper is organized as follows: In Sect. 2 to Sect. 6, all eight singular
cases are analyzed and exact tail asymptotics are obtained for boundary probabilities
(πm,0 and π0,n) as well as for joint probabilities along a coordinate direction (πm,j

for j ≥ 1 and πi,n for i ≥ 1). Finally, concluding remarks are offered in Sect. 7.

2 Exact tail asymptotics for case 1 and case 2

Since these two cases are symmetric, we provide a detailed analysis only for case 1.
Corresponding results for case 2 can be easily obtained by symmetry.

In this case, we have

a(x) = 0, b(x) = p−1,0 − (1 − p0,0)x + p1,0x
2, c(x) = 0, (2.1)

ã(y) = p1,0y, b̃(y) = −(1 − p0,0)y, c̃(y) = p−1,0y.

(2.2)

Hence,

h(x, y) = [
p−1,0 − (1 − p0,0)x + p1,0x

2]y. (2.3)

To make h = 0, we should have y = 0 or

x = (1 − p0,0) ± √
(1 − p0,0)2 − 4p1,0p−1,0

2p1,0
= (p−1,0 + p1,0) ± |p−1,0 − p1,0|

2p1,0
.

Under the stability condition, we have Mx < 0 since My = 0 (remember that we are
considering the light-tailed case only for M �= 0). The condition Mx < 0 is equivalent
to p−1,0 > p1,0. Therefore,

x =
{

p−1,0/p1,0,

1.

Let x = 1 and |y| ≤ 1. Then π(1, y) is finite and the fundamental form leads to

h1(1, y)π1(1) + h2(1, y)π2(y) + h0(1, y)π0,0 = 0,
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or

π2(y) = −h1(1, y)π1(1) + h0(1, y)π0,0

h2(1, y)
(2.4)

if h2(1, y) �= 0. Notice that h2(1, y) = (a2(1)y −c2(1))(y −1) gives two zeros: y = 1
and y = c2(1)/a2(1) > 1 according to the stability condition. Also, y = 1 is a zero of
the numerator in (2.4) since π2(y) is the generating function of a probability sequence
that should be finite at y = 1. Specifically, since

h1(1, y) = a1(1)(y − 1), h0(1, y) = a0(1)(y − 1),

we have

π2(y) = a1(1)π1(1) + a0(1)π0,0

c2(1) − a2(1)y
. (2.5)

Obviously, y = c2(1)/a2(1) is the dominant simple pole of π2(y), which leads to an
analytic continuation of π2(y) and (2.5) implies that

π0,j+1 = c

(
a2(1)

c2(1)

)j

, j ≥ 0. (2.6)

Therefore, for large j ,

π0,j+1 ∼ c

(
a2(1)

c2(1)

)j

,

where

c = a1(1)π1(1) + a0(1)π0,0

c2(1)
. (2.7)

It follows from (2.6) that c = π0,1 and according to the definition of π2(y), c = π2(0).
Now, using expression (2.5) in the fundamental form and let y = 0 leads to

π1(x) = −c2(x)c + b0(x)π0,0

b1(x)
.

b1(x) has two zeros:

x±
b1

=
1 − p

(1)
0,0 ±

√
(1 − p

(1)
0,0)

2 − 4p
(1)
−1,0p

(1)
1,0

2p
(1)
1,0

, (2.8)

of which, x−
b1

≤ 1 is removable and x+
b1

> 1 is the dominant pole of π1(x). This gives
an analytic continuation of π1(x) and implies that for large i,

πi+1,0 ∼ c1,0

(
1

x+
b1

)i

,

where c1,0 is a constant that can be expressed in terms of c and π0,0, which will be
explicitly determined in Sect. 2.3. We therefore postpone the expression of c1,0 to
Sect. 2.3.
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For tail asymptotics along a coordinate direction, we consider the sequence of
generating functions ϕn(x) or ψn(y).

2.1 Along the x-direction

By multiplying balance equations (1.6), (1.7), and (1.10) to an appropriate power of
y and taking summations, and after some simplifications, we have

b1(x)ϕ0(x) = a∗
0(x),

b(x)ϕ1(x) + a1(x)ϕ0(x) = a∗
1(x),

b(x)ϕj (x) = a∗
j (x), j ≥ 2,

where

a∗
0(x) = −c2(x)π0,1 − b0(x)π0,0,

a∗
1(x) = −c2(x)π0,2 − b2(x)π0,1 − a0(x)π0,0,

a∗
j (x) = −c2(x)π0,j+1 − b2(x)π0,j − a2(x)π0,j−1, j ≥ 2.

Therefore,

ϕ0(x) = a∗
0(x)

b1(x)
,

ϕ1(x) = a∗
1(x)b1(x) − a1(x)a∗

0(x)

b(x)b1(x)
,

ϕj (x) = a∗
j (x)

b(x)
, j ≥ 2.

Note that the two zeros of b(x) are given by

x±
b = 1 − p0,0 ± √

(1 − p0,0)2 − 4p−1,0p1,0

2p1,0
, (2.9)

of which x−
b ≤ 1 is removable and x+

b is a simple pole of ϕj (x), j ≥ 2. For ran-
dom walks in case 1, we specifically have x−

b = 1 and x+
b = p−1,0/p1,0. Using the

Tauberian-like theorem to the above functions ϕj (x), j ≥ 0, we immediately have
the following tail asymptotic properties.

Theorem 2.1 For the case 1 singular random walk, we have the following tail asymp-
totic properties along the x-direction: for large i,

πi+1,0 ∼ c1,0

(
1

x+
b1

)i

;
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πi+1,1 ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c
(a)
1,1

( 1
x+
b1

)i
, if x+

b1
< x+

b ,

c
(b)
1,1i

( 1
x+
b

)i
, if x+

b1
= x+

b ,

c
(c)
1,1

( 1
x+
b

)i
, if x+

b1
> x+

b ;

πi+1,j ∼ c1,j

(
1

x+
b

)i

, j ≥ 2.

where all constants c1,0, c
(t)
1,1 for t = a, b, c and c1,j for j ≥ 2 are independent of i

and explicitly determined in Sect. 2.3.

Remark 2.1 The Tauberian-like theorem provides a relationship between the asymp-
totic property at the dominant singularity of the generating function and the tail
asymptotic property of the coefficients (probabilities of interest) of the function.
Therefore, the decay rate is the reciprocal of the dominant singularity of the func-
tion. For example, the dominant singularity of ϕ1(x) is given by the smallest zero of
the functions b(x) and b1(x) since at which the numerator of the expression for ϕ1(x)

is not zero.

2.2 Along the y-direction

By using balance equations (1.8), (1.9), and (1.10) and a similar argument to that in
Sect. 2.1, we have

c̃(y)ψ1(y) + b̃2(y)ψ0(y) = ã∗
0(y),

c̃(y)ψ2(y) + b̃(y)ψ1(y) + ã2(y)ψ0(y) = ã∗
1(y),

c̃(y)ψi+1(y) + b̃(y)ψi(y) + ã(y)ψi−1(y) = ã∗
i (y), i ≥ 2,

where

ã∗
0(y) = −c̃1(y)π1,0 − b̃0(y)π0,0,

ã∗
1(y) = −c̃1(y)π2,0 − b̃1(y)π1,0 − ã0(y)π0,0,

ã∗
i (y) = −c̃1(y)πi+1,0 − b̃1(y)πi,0 − ã1(y)πi−1,0, i ≥ 2.

Let y∗ = c2(1)
a2(1)

. By induction on n, we obtain

lim
y→y∗

(
1 − c2(1)

a2(1)

)
ψn(y) = c2,n, n ≥ 0,

and

c̃
(
y∗)c2,1 + b̃2

(
y∗)c2,0 = 0,

c̃
(
y∗)c2,2 + b̃

(
y∗)c2,1 + ã2

(
y∗)c2,0 = 0,
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p−1,0c2,j+1 − (1 − p0,0)c2,j + p1,0c2,j−1 = 0, j ≥ 2,

where c2,0 = c. Solving the above second-order relations, we obtain

c2,n = A

(
p1,0

p−1,0

)n−1

+ B, n ≥ 1.

For determining A and B , from h2(1, y∗) = b̃2(y
∗) + ã2(y

∗) = 0 and

c̃
(
y∗)(A + B) + b̃2

(
y∗)c = 0,

c̃
(
y∗)

[
A

p1,0

p−1,0
+ B

]
+ b̃

(
y∗)(A + B) + ã2

(
y∗)c = 0,

we obtain

p−1,0

[
A

p1,0

p−1,0
+ B

]
+ [

p−1,0 − (1 − p0,0)
]
(A + B) = 0,

which yields B = 0. From c̃(y∗)(A + B) + b̃2(y
∗)c = 0, we get

A = − b̃2(y
∗)c

c̃(y∗)
,

where c is given in (2.7).
Finally, the asymptotic properties follow from the Tauberian-like theorem.

Theorem 2.2 For the case 1 singular random walk, we have the following tail asymp-
totic properties along the y-direction: for large j

π0,j+1 ∼ c

(
a2(1)

c2(1)

)j

,

πi,j+1 ∼ A

(
p1,0

p−1,0

)i−1(
c2(1)

a2(1)

)j

, i ≥ 1.

Remark 2.2 Case 2 is completely symmetric to case 1, for which one can easily find
the result.

2.3 Determinations of coefficients in 2.1

Coefficients c1,0, c
(t)
1,1 for t = a, b, c, and c1,j for j ≥ 2 in Theorem 2.1 can be ex-

pressed, according to the analysis in Sect. 2.1 and the Tauberian-like theorem, as

c1,0 = −a∗
0(x+

b1
)

p
(1)
1,0x

+
b1

(x+
b1

− x−
b1

)
,

c
(a)
1,1 = a1(x

+
b1

)a∗
0(x+

b1
)

p
(1)
1,0x

+
b1

(x+
b1

− x−
b1

)b(x+
b1

)
,
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c
(b)
1,1 = −a1(x

+
b )a∗

0(x+
b )

p1,0p
(1)
1,0x

+2
b (x+

b − x−
b1

)(x+
b − x−

b )
,

c
(c)
1,1 = −a∗

1(x+
b )b1(x

+
b ) − a1(x

+
b )a∗

0(x+
b )

p1,0x
+
b (x+

b − x−
b )b1(x

+
b )

and for j ≥ 2,

c1,j = −a∗
j (x+

b )

p1,0x
+
b (x+

b − x−
b )

= c2(x
+
b )π0,j+1 + b2(x

+
b )π0,j + a2(x

+
b )π0,j−1

p1,0x
+
b (x+

b − x−
b )

= c
c2(x

+
b )(

a2(1)
c2(1)

)2 + b2(x
+
b )(

a2(1)
c2(1)

) + a2(x
+
b )

p1,0x
+
b (x+

b − x−
b )

(
a2(1)

c2(1)

)j−1

.

In the above expressions, all components are explicitly expressed in terms of sys-
tem parameters and probabilities π0,0, π0,1 (noting that c = π0,1) and π0,2. In the fol-
lowing, we express π0,1 and π0,2, and π1(1) and π2(1) (therefore, π(1,1)) in terms
of π0,0. This also leads to a determination of π0,0 according to the normalization
condition: 1 = π(1,1) + π1(1) + π2(1) + π0,0.

First, from

π1(x) = a∗
0(x)

b1(x)
= a∗

0(x)

p
(1)
1,0(x − x−

b1
)(x − x+

b1
)

we conclude that since 0 < x−
b1

< 1, x−
b1

is also a zero of the numerator, i.e.

a∗
0

(
x−
b1

) = −c2
(
x−
b1

)
π0,1 − b0

(
x−
b1

)
π0,0 = 0.

Therefore, we can express π0,1 in terms of π0,0 as follows:

π0,1 = −b0(x
−
b1

)π0,0

c2(x
−
b1

)
. (2.10)

Using (2.10) we express π1(1) in terms of π0,0:

π1(1) = c2(1)π0,1 + b0(1)π0,0

b1(1)
= −t1π0,0, (2.11)

where

t1 = −
c2(1)

−b0(x
−
b1

)

c2(x
−
b1

)
+ b0(1)

b1(1)
.

Now, we can use the above result to express π2(1) in terms of π0,0 as follows.
From

π2(y) = a1(1)π1(1) + a0(1)π0,0

c2(1) − a2(1)y
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we obtain

π2(1) = −a1(1)t1 + a0(1)

c2(1) − a2(1)
π0,0 = −t2π0,0,

where

t2 = −a1(1)t1 + a0(1)

c2(1) − a2(1)
.

For expressing π(1,1) in terms of π0,0, we consider the following expression,
which is valid for all cases:

π(x,1)

= {x[p(1)
1,1 + p

(1)
1,0] − [p(1)

−1,0 + p
(1)
−1,1]}π1(x) + ã2(1)π2(1) + [p(0)

1,0 + p
(0)
1,1]π0,0

(p1,1 + p1,0)x − (p−1,1 + p−1,0)
,

from which, by using the above result, we have

π(1,1) = t3π0,0,

where

t3 = {x[p(1)
1,1 + p

(1)
1,0] − [p(1)

−1,0 + p
(1)
−1,1]}t1 + ã2(1)t2 + [p(0)

1,0 + p
(0)
1,1]

(p1,1 + p1,0)x − (p−1,1 + p−1,0)
.

Remark 2.3 In case 1, p1,1 = p−1,1 = 0. However, we keep p1,1 and p−1,1 in the
expression for t3 since in this way the expression becomes valid for case 5 as well.

Finally, π0,0 is determined as

π0,0 = 1

1 + t1 + t2 + t3

and

π0,2 = π0,1
a2(1)

c2(1)

from the Taylor expansion of (2.4).

3 Exact tail asymptotics for case 3

In this case, we have

a(x) = p1,1x
2, b(x) = −(1 − p0,0)x, c(x) = p−1,−1;

ã(y) = p1,1y
2, b̃(y) = −(1 − p0,0)y, c̃(y) = p−1,−1.



Queueing Syst (2013) 74:151–179 163

Therefore, the kernel function h is given as

h(x, y) = a(x)y2 + b(x)y + c(x) = p1,1x
2y2 − (1 − p0,0)xy + p−1,−1

= p1,1(xy − 1)

(
xy − p−1,−1

p1,1

)
. (3.1)

Since Mx = My in this case, for the system to be stable we need Mx = My < 0 or
p1,1 < p−1,−1.

From balance equations, we also have

c̃(y)ψ1(y) + b̃2(y)ψ0(y) = ã∗
0(y),

c̃(y)ψ2(y) + b̃(y)ψ1(y) + ã2(y)ψ0(y) = ã∗
1(y),

c̃(y)ψi+1(y) + b̃(y)ψi(y) + ã(y)ψi−1(y) = ã∗
i (y), i ≥ 2,

and

c(x)ϕ1(x) + b1(x)ϕ0(x) = a∗
0(x),

c(x)ϕ2(x) + b(x)ϕ1(x) + a1(x)ϕ0(x) = a∗
1(x),

c(x)ϕj+1(x) + b(x)ϕj (x) + a(x)ϕj−1(x) = a∗
j (x), j ≥ 2,

where ã∗
i (y), i ≥ 0, and a∗

j (x), j ≥ 0, are given in Sects. 2.1 and 2.2, respectively. In
fact, the above recursive relations hold for all singular cases.

Remark 3.1 In this case, one can see easily that the system is stable if and only if
(i) p1,1 < p−1,−1; (ii) p

(1)
1,0 − p

(1)
0,1 − p

(1)
−1,0 − 2p

(1)
−1,1 < 0; and (iii) p

(2)
0,1 − p

(2)
1,0 −

p
(2)
0,−1 − 2p

(2)
1,−1 < 0.

3.1 Asymptotics along a coordinate direction

Consider the function π1(x) first, which will lead to the exact tail asymptotic property
for πi,0.

This singular case is the only case for which the provided analysis in this paper
could not automatically lead to analytic continuation to the circle beyond the unit
one. Instead, according to Remark 1.1, we assume that the radius of convergence
for both π1(x) and π2(y) is greater than 1. Under this assumption, we can choose
proper y = 1

x
as a function of x to be Y(x) = 1/x to make the right-hand side of the

fundamental form equal to zero, or

π1(x) = −h2(x,Y (x))π2(Y (x)) − h0(x,Y (x))π0,0

h1(x,Y (x))

at least in the region: ε ≤ |x| < R, where 0 < ε < 1 and R is the dominant singular
point of π1(x). Since π2(Y (x)) is analytic for |x| > 1, it is easy to see that the zeros
of h1(x,Y (x)) are the only potential poles of π1(x).
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To determine the dominant pole of π1(x), we notice that h1(1, Y (1)) = 0 and
h′

1(1, Y (1)) < 0 from ergodic condition. Therefore, it is easy to see that h1(x,Y (x))

has two zeros in [−1,1] and one zero in (1,∞). Let xdom be the zero of h1(x,Y (x))

in (1,∞), which is the dominant simple pole. It is clear now that πi,0 has an exact
geometric tail with the decay rate 1

xdom
. Here, xdom can be easily found by noticing

xh1
(
x,Y (x)

) = a1(x)(1 − x) + x(x − 1)
{
x
[
p

(1)
1,1 + p

(1)
1,0

] − [
p

(1)
−1,0 + p

(1)
−1,1

]}

= (x − 1)
{
x2[p(1)

1,1 + p
(1)
1,0

] − x
[
p

(1)
−1,0 + p

(1)
−1,1

] − p
(1)
−1,1 − p

(1)
0,1x

− p
(1)
1,1x

2},

which leads to

xdom =
p

(1)
−1,0 + p

(1)
−1,1 + p

(1)
0,1 +

√
[p(1)

−1,0 + p
(1)
−1,1 + p

(1)
0,1]2 + 4p

(1)
1,0p

(1)
−1,1

2p
(1)
1,0

. (3.2)

We can similarly determine that π0,j has a geometric solution by letting x =
X(y) = 1

y
. To determine the dominant simple pole ydom for π2(y), which is the zero

of h2(X(y), y) in (1,∞). Now, we show that xdomydom = p−1,−1
p1,1

. In fact, since

X(ydom)ydom = p−1,−1

p1,1
,

Y (xdom)xdom = p−1,−1

p1,1
,

and

h
(
X(ydom), Y (xdom)

)

= p1,1
[
X(ydom)Y (xdom) − 1

][
X(ydom)Y (xdom) − p−1,−1

p1,1

]
= 0,

we obtain

Y(xdom)X(ydom) = p−1,−1

p1,1
.

Therefore,

xdomydom = p−1,−1

p1,1
.

By induction, we can show easily that ψi(y), i ≥ 1 (ϕj (x), j ≥ 1) has the
same dominant singular point as ψ0(y) (ϕ0(x)). Using the recursive relations for
ψi(y) (ϕj (x)) and then solving the corresponding second-order relation as we did in
Sect. 2.2, we obtain the following theorem.

Theorem 3.1 For the singular random walk in case 3, we have the following exact
tail asymptotic properties:
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1. (Along the x-direction): For large i,

πi,0 ∼ c1

(
1

xdom

)i

, (3.3)

πi,j ∼ D1

(
p1,1xdom

p−1,−1

)j( 1

xdom

)i

= D1

(
1

ydom

)j( 1

xdom

)i

, j ≥ 1, (3.4)

where c1 and D1 are constants independent of i and j .
2. (Along the y-direction): For large j ,

π0,j ∼ c2

(
1

ydom

)j

, (3.5)

πi,j ∼ D2

(
p1,1ydom

p−1,−1

)i( 1

ydom

)j

= D2

(
1

xdom

)i( 1

ydom

)j

, i ≥ 1, (3.6)

where c2 and D3 are constants independent of i and j .

Remark 3.2 The coefficients c1, c2, D1, and D2 are independent of i and j . We did
not provide expressions for these coefficients though it is possible. The main reason
is that expressions for them involve information about generating functions π1(x) or
π2(y) for which we do not have explicit expressions. Therefore, these coefficients
cannot be explicitly expressed in terms of system parameters in general.

4 Exact tail asymptotic for singular case 4

First, notice that this is not a symmetric case to case 3. In this case, we have

a(x) = p−1,1, b(x) = −(1 − p0,0)x, c(x) = p1,−1x
2, (4.1)

ã(y) = p1,−1, b̃(y) = −(1 − p0,0)y, c̃(y) = p−1,1y
2 (4.2)

and

h(x, y) = a(x)y2 + b(x)y + c(x) = p−1,1y
2 − (1 − p0,0)xy + p1,−1x

2

= p−1,1(y − x)

(
y − p1,−1

p−1,1
x

)
. (4.3)

To make h(x, y) = 0, we need either y = x or

y = p1,−1

p−1,1
x.

Since in this case Mx = −My , there are two possibilities for the system to be stable:

MyM
(2)
x − MxM

(2)
y < 0, if My > 0; (4.4)
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MxM
(1)
y − MyM

(1)
x < 0, if Mx > 0. (4.5)

Analysis for these two possibilities are completely symmetric. Therefore, we only
provide details for My > 0, i.e. p−1,1 > p1,−1.

4.1 Along the y-direction

When y = x and |x| ≤ 1, π(x, y) < ∞. It follows from the fundamental form that

π1(x) = −h2(x, x)π2(x) + h0(x, x)π0,0

h1(x, x)
. (4.6)

On the other hand, when y = p1,−1
p−1,1

x and |x| ≤ 1, we clearly have |y| < 1. It fol-
lows from the fundamental form again that

π1(x) = −
h2(x,

p1,−1
p−1,1

x)π2(
p1,−1
p−1,1

x) + h0(x,
p1,−1
p−1,1

x)π0,0

h1(x,
p1,−1
p−1,1

x)
. (4.7)

Combining Eqs. (4.6) and (4.7), and substituting x by y in all expressions lead to,
when |y| ≤ 1,

π2(y) = N(y)

h1(y,
p1,−1
p−1,1

y)h2(y, y)
, (4.8)

where

N(y) = h1(y, y)

[
h2

(
y,

p1,−1

p−1,1
y

)
π2

(
p1,−1

p−1,1
y

)
+ h0

(
y,

p1,−1

p−1,1
y

)
π0,0

]

− h1

(
y,

p1,−1

p−1,1
y

)
h0(y, y)π0,0.

Let ydom be the dominant singular point of π2(y). Since |p1,−1
p−1,1

y| < |ydom| when

|y| < |ydom|, π2(
p1,−1
p−1,1

y) is analytic on the disk |y| ≤ |ydom| + ε for some ε > 0. It

follows that ydom is either a zero of h1(y,
p1,−1
p−1,1

y) or a zero of h2(y, y).

For the case of max{p(1)
0,1,p

(1)
1,1,p

(1)
1,0} > 0, since h1(0,0) ≥ 0, h1(1,

p1,−1
p−1,1

) < 0,

h1(−1,−p1,−1
p−1,1

) > 0 and h1(y,
p1,−1
p−1,1

y) > 0 when y is sufficiently large, h1(y,
p1,−1
p−1,1

y)

has two positive zeros, y′
1 and y1, with y′

1 ∈ [0,1] and y1 ∈ (1,∞), as well as a

negative zero, y′′
1 ∈ (−1,−∞), if p

(1)
1,1 > 0. By simple algebra, we can show easily

|y′′
1 | ≥ y1 and |y′′

1 | = y1 if and only if max{p(1)
0,1,p

(1)
0,−1,p

(1)
1,0} = 0.

In the case of max{p(1)
0,1,p

(1)
1,1,p

(1)
1,0} = 0, h1(y,

p1,−1
p−1,1

y) has only one zero y′
1. In

this case, we let |y1| = ∞. Similarly, if p
(2)
1,1 > 0, h2(y, y) has three zeros: 1, y2 and

y′′
2 , where

y2 =
−(1 − p

(2)
0,−1 − p

(2)
1,−1) +

√
[1 − p

(2)
0,−1 − p

(2)
1,−1]2 + 4p

(2)
1,1p

(2)
0,−1

2p
(2)
1,1

,
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y′′
2 =

−(1 − p
(2)
0,−1 − p

(2)
1,−1) −

√
[1 − p

(2)
0,−1 − p

(2)
1,−1]2 + 4p

(2)
1,1p

(2)
0,−1

2p
(2)
1,1

.

Since h2(1,1) = 0 and h′
2(1,1) < 0, y2 ∈ (1,∞). Clearly, |y′′

2 | > y2. Note that

h′
2(1,1) < 0 follows from h′

2(1,1) = M
(2)
x + M

(2)
y and the stability condition. In the

case of p
(2)
1,1 = 0, y2 = p

(2)
0,−1

1−p
(2)
0,−1−p

(2)
1,−1

and y′′
2 does not exist, so we let y′′

2 = ∞. Hence,

|ydom| = min{y1, y2}. Assume N(y) �= 0 (see Remark 4.1 for the case of N(y) = 0).
Applying the Tauberain-like theorem on ψ0(y), we obtain the asymptotics for π0,j .
Using a similar argument to that for Theorem 3.1, we obtain the asymptotics for πi,j

for a fixed i ≥ 1.
Applying the Tauberain-like theorem on ψ0(y), we obtain the asymptotics for π0,j

and using a similar argument used for Theorem 3.1, we obtain the asymptotics for πi,j

for each fixed i ≥ 1 as given below.

Theorem 4.1 For the singular random walk in case 4, we have the following exact
tail asymptotic properties:

1. (a) If y1 < y2 and max{p(1)
0,1,p

(1)
1,0,p

(1)
−1,0} �= 0, or if y2 < y1, we have, for large j ,

π0,j ∼ c∗
0,1(ydom)

(
1

ydom

)j−1

,

πi,j ∼ c∗
0,1(ydom)c∗

i (ydom)

(
1

ydom

)j−1

, i ≥ 1;

(b) If y1 < y2 and max{p(1)
0,1,p

(1)
1,0,p

(1)
−1,0} = 0, we have, for large j ,

π0,j ∼ [
c∗

0,1

(|ydom|) + (−1)j−1c∗
0,1

(−|ydom|)]
(

1

|ydom|
)j−1

,

πi,j ∼ [
c∗
i

(|ydom|)c∗
0,1

(|ydom|) + (−1)j−1c∗
i

(−|ydom|)

× c∗
0,1

(−|ydom|)]
(

1

|ydom|
)j−1

, i ≥ 1,

where X1(y) = p1,−1
p−1,1

y, X0(y) = y, and

c∗
0,1

(|ydom|) = lim
y→|ydom|

(
1 − y

|ydom|
)

π2(y),

c∗
0,1

(−|ydom|) = lim
y→−|ydom|

(
1 − y

−|ydom|
)

π2(y),

c∗
i (y) = A∗

1(y)

(
1

X1(y)

)i−1

+ B∗
1 (y)

(
1

X0(y)

)i−1

,
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B∗
1 (y) = −h2(X0(y), y)

ã(y)[X1(y) − X0(y)]y ,

A∗
1(y) = −B∗

1 (y) + −b̃2(y)

c̃(y)
.

2. (a) If y1 = y2 and max{p(1)
0,1,p

(1)
1,0,p

(1)
−1,0} = 0, we have, for large j ,

π0,j ∼ [
(−1)j−1c∗

0,1

(−|ydom|) + c∗
0,4(ydom)j

]( 1

ydom

)j−1

,

πi,j ∼
[
(−1)j−1c∗

i

(−|ydom|)c∗
0,1

(−|ydom|) + A∗
4(ydom)c∗

0,4(ydom)j

×
(

1

X1(ydom)

)i−1](
1

xdom

)j−1

, i ≥ 1;

(b) If y1 = y2 and max{p(1)
0,1,p

(1)
1,0,p

(1)
−1,0} �= 0, we have, for large j ,

π0,j ∼ c∗
0,4(ydom)j

(
1

ydom

)j−1

,

πi,j ∼ c∗
0,4(ydom)

[
A∗

4(ydom)

(
1

X1(ydom)

)i−1]
j

(
1

xdom

)j−1

, i ≥ 1,

where

c∗
0,4(ydom) = lim

y→ydom

(
1 − y

ydom

)2

π2(y) and A∗
4(y) = −b̃2(y)

c̃(y)
.

Remark 4.1 In the case of N(ydom) = 0, ydom will be a simple pole and, therefore,
πi,j has an exact geometric decay. Since N(y) is a function of π2(

p1,−1
p−1,1

y) when
|y| ≤ ydom, where π2(y) is not explicitly determined, we are unable to give a simple
characterization for N(ydom) = 0. For some special cases, it becomes possible. For
example, if y1 = y2, we can show that it is equivalent to h1(y2,

p1,−1
p−1,1

y2) = 0, or a
simple characterization of N(y) = 0 is given by

a1(y2)
p1,−1

p−1,1
y2 + b1(y2) = 0.

4.2 Along the x-direction

Let xdom be the dominant singular point of π1(x). From (4.6), xdom is either a zero of
h1(x, x) or the dominant singular point of π2(x).

It is easy to see that h1(x, x) has three zeros: 1, x1 > 0 and x2 < 0 with
|x2| > x1 if p

(1)
1,1 �= 0. Let y∗

1 = x1 if x1 > 1 (noting that x1 > 1 if and only if

p
(1)
−1,0 > p

(1)
0,1 + 2p

(1)
1,1 + p

(1)
1,0), otherwise let y∗

1 = ∞. Since p1,−1
p−1,1

x < x when x > 0,



Queueing Syst (2013) 74:151–179 169

h1(x,
p1,−1
p−1,1

x) < h1(x, x). Also, y∗
1 < y1 if x1 > 1. Thus, |xdom| = min{y∗

1 , y1, y2}.
Applying the Tauberian-like theorem on ϕ0(x), we obtain the tail asymptotics for
πi,0. Using a similar argument used for Theorem 3.1 to πi,j for fixed j ≥ 1, we ob-
tain the following tail asymptotic properties.

Theorem 4.2 For the singular random walk in case 4, we have the following exact
tail asymptotic properties: for large i,

1. (a) If y1 < min{y2, y
∗
1 } and max{p(1)

0,1,p
(1)
1,0,p

(1)
−1,0} �= 0; or (b) if y2 <

min{y1, y
∗
1 }; or (c) if y∗

1 < y2, then

πi,0 ∼ c0,1(xdom)

(
1

xdom

)i−1

,

πi,j ∼ c0,1(xdom)cj (xdom)

(
1

xdom

)i−1

, j ≥ 1;

(d) If y1 < min{y∗
1 , y2} and max{p(1)

0,1,p
(1)
1,0,p

(1)
−1,0} = 0, then

πi,0 ∼ [
c0,1

(|xdom|) + (−1)i−1c0,1
(−|xdom|)]

(
1

xdom

)i−1

,

πi,j ∼ [
cj

(|xdom|)c0,1
(|xdom|) + (−1)i−1cj

(−|xdom|)c0,1
(−|xdom|)]

×
(

1

|xdom|
)i−1

, j ≥ 1,

where Y1(x) = p1,−1
p−1,1

x, Y0(x) = x,

c0,1
(|xdom|) = lim

x→|xdom|

(
1 − x

|xdom|
)

π1(x),

c0,1
(−|xdom|) = lim

x→−xdom

(
1 − x

−|xdom|
)

π1(x),

cj (y) = A1(y)

(
1

Y1(x)

)j−1

+ B1(x)

(
1

Y0(x)

)j−1

,

B1(x) = −h1(x, Y0(x), )

a(x)[Y1(x) − Y0(x)]x ,

A1(x) = −B1(x) + −b1(x)

c(x)
.

2. (a) If y1 = y2 < y∗
1 and max{p(1)

0,1,p
(1)
1,0,p

(1)
−1,0} = 0, then

π0,j ∼ (−1)i−1c0,1
(−|xdom|) + c0,4(xdom)i

(
1

xdom

)i−1

,
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πi,j ∼
[
(−1)i−1c0,1

(−|xdom|)cj

(−|xdom|) + A4
(|xdom|)c0,4

(|xdom|)i

×
(

1

Y1
(|xdom|)

)j−1](
1

xdom

)j−1

, j ≥ 1;

(b) If y∗
1 = y2; or (c) if y1 = y2 < y∗

1 and max{p(1)
0,1,p

(1)
1,0,p

(1)
−1,0} �= 0, then

πi,0 ∼ c0,4(xdom)i

(
1

xdom

)i−1

,

πi,j ∼ c0,4(xdom)

[
A4(xdom)

(
1

Y1(xdom)

)j−1]
i

(
1

xdom

)i−1

, i ≥ 1,

where

A4(x) = −b1(x)

c(x)
, and c0,4(xdom) = lim

x→xdom

(
1 − x

xdom

)2

π1(x).

Remark 4.2 For Mx > 0, the tail asymptotic properties can be obtained in the same
fashion simply by switching x and y.

5 Exact tail asymptotics for case 5 and case 6

These two cases are symmetric. We only provide details for case 5. Corresponding
results can be easily obtained by symmetry.

In case 5, we have

a(x) = p−1,1 + p0,1x + p1,1x
2, b(x) = p−1,0 − (1 − p0,0)x + p1,0x

2,

c(x) = 0,

ã(y) = p1,0y + p1,1y
2, b̃(y) = −(1 − p0,0)y + p0,1y

2,

c̃(y) = p−1,0y + p−1,1y
2.

5.1 Along the x-direction

Using the same method as in Sect. 2.1, we have

b1(x)ϕ0(x) = a∗
0(x),

b(x)ϕ1(x) + a1(x)ϕ0(x) = a∗
1(x), (5.1)

b(x)ϕj (x) + a(x)ϕj−1(x) = a∗
j (x), j ≥ 2.

The above recursive relations give a general solution

ϕ0(x) = a∗
0(x)

b1(x)
, (5.2)
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ϕj (x) = A0(x)

(
−a(x)

b(x)

)j−1

+
j−1∑

m=0

a∗
m+1(x)

b(x)

(
−a(x)

b(x)

)j−1−m

, j ≥ 1, (5.3)

where A0(x) is determined from expressions (5.2) and (5.3) for j = 1, together with
(5.1) as follows:

A0(x) = −a1(x)ϕ0(x)

b(x)
= −a1(x)

a∗
0 (x)

b1(x)

b(x)
= −a1(x)a∗

0(x)

b(x)b1(x)
.

From the expression for ϕj (x), it is clear that the zeros of b(x) and b1(x) are only
possible poles of ϕj (x), j ≥ 0, and it does not have any other singular points.

Based on the expressions for b(x) and b1(x), the zeros x±
b and x±

b1
of them are

given, respectively, by (2.9) and (2.8). Moreover, since b(1) < 0 and b(0) > 0, we
have 0 < x−

b < 1 < x+
b . Similarly, 0 < x−

b1
< 1 < x+

b1
. This means that only x+

b and

x+
b1

are possible poles of ϕj (x).
When j = 0, the following lemma follows immediately from the expression for

ϕ0(x) in (5.2).

Lemma 5.1 For j = 0, we have for large i,

πi+1,0 ∼ c1,0

(
1

x+
b1

)i

,

where

c1,0 = −a∗
0(x+

b1
)

p
(1)
1,0x

+
b1

(x+
b1

− x−
b1

)
.

For asymptotic properties of ϕj (x) at the dominant singular point for j ≥ 1, a
direct analysis reveals that there are three cases:

1. x+
b < x+

b1
. In this case, x+

b is the dominant singularity (pole) and

ϕj (x) ∼ c1,j

(
1 − x

xb+

)j

,

where

c1,j =
[

a(x+
b )

p1,0x
+
b (x+

b − x−
b )

]j−1
a1(x

+
b )

b1(x
+
b )

a∗
0(x+

b ) + a∗
1(x+

b )

p
(1)
1,0x

+
b1

(x+
b1

− x−
b1

)
;

2. x+
b = x+

b1
. In this case, x+

b is also the dominant pole and

ϕj (x) ∼ c2,j

(
1 − x

xb+

)j+1

,
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where

c2,j =
[

a(x+
b )

p1,0x
+
b (x+

b − x−
b )

]j−1 −a1(x
+
b )a∗

0(x+
b )

p1,0p
(1)
1,0x

+2
b (x+

b − x−
b )(x+

b − x−
b1

)
;

3. x+
b > x+

b1
. In this case, the dominant singularity x+

b1
is a simple pole. Therefore,

ϕj (x) ∼ c3,j

(
1 − x

xb+

)
,

where

c3,j = c1,0
−a1(x

+
b1

)

b(x+
b1

)

(
−a(x+

b1
)

b(x+
b1

)

)j−1

.

According to the Tauberian-like theorem, we obtain the asymptotic properties for
πi,j for fixed j ≥ 1 for large i.

Theorem 5.1 For the singular random walk in case 5, we have the following exact
tail asymptotic properties along the x-direction for large i:

1. For x+
b < x+

b1
,

πi+1,j ∼ c1,j

(
1

x+
b

)i
(i + 1)j−1

(j − 1)! ;

2. For x+
b = x+

b1
,

πi+1,j ∼ c2,j

(
1

x+
b

)i
(i + 1)j

j ! ;

3. For x+
b > x+

b1
,

πi+1,j ∼ c3,j

(
1

x+
b1

)i

.

Remark 5.1 All coefficients ci,j can be explicitly expressed in terms of system pa-
rameters, which will be done in Sect. 5.3.

5.2 Along the y-direction

In this case, we can use the standard procedure of the kernel method for non-singular
random walks presented in [10]. In the following, we express π2(y) in terms of π1(x)

considering x as a function of y.
First, consider the equation h(x, y) = 0. For a fixed y, the two roots are given by

X±(y) = − b̃(y)

2ã(y)
±

√
b̃2(y) − 4ã(y)c̃(y)

4ã2(y)
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= [(1 − p0,0) − p0,1y]
2(p1,0 + p1,1y)

± 1

2

√
D(y)

(p1,0 + p1,1y)2
,

where

D(y) = [
p0,1y − (1 − p0,0)

]2 − 4(p1,0 + p1,1y)(p−1,0 + p−1,1y).

To locate the two branch points, notice that D(1) > 0 and D(
1−p0,0
p0,1

) < 0, which

implies that D(y) has a root (a branch point), denoted by y3, between 1 and 1−p0,0
p0,1

.

If p2
0,1 − 4p1,1p−1,1 > 0, the other distinct root, denoted by y4, of D(x) is greater

than 1−p0,0
p0,1

; otherwise this root is smaller than −y3. Write

D(y) = d

(
1 − y

y3

)(
1 − y

y4

)
,

where d = [p2
0,1 − 4p1,1p−1,1]y3y4.

For |y| ≤ 1, let

x = X0(y) =
{

X−(y), if |X−(y)| ≤ |X+(y)|,
X+(y), if |X−(y)| > |X+(y)|.

According to [3], X0(y) is analytic everywhere except on the cut [y3, y4]. Let
P(x, y) = ∑1

i=−1
∑1

j=−1 pi,j x
iyj = h(x,y)

xy
+ 1. It can be shown, either directly

or similar to the argument used in [3], that equation P(x, y) = 1 for |y| = |x| = 1
cannot hold except for x = y = 1. Hence, for |y| = 1 and y �= 1, |X0(y)| �= 1 since
P(X0(y), y) = 1. It is easy to see that

∣∣X0(−1)
∣∣ = |1 − p0,0 + p0,1 − √

D(−1)|
2|p1,0 − p1,1| .

By direct algebra, we obtain |X0(−1)| < 1. It follows that for |y| = 1, y �= 1,
|X0(y)| ≤ 1. This is because if there were y′, |y′| = 1, such that |X0(y

′)| > 1, then
there would exist y′′, |y′′| = 1 and y′′ �= 1, such that |X0(y

′′)| = 1, which is impos-
sible. Since X0(y) is analytic on the disk |y| ≤ 1, we obtain that |X0(y)| ≤ 1 when
|y| ≤ 1 from the maximum modulus principle.

Therefore, we have

0 = h1
(
X0(y), y

)
π1

(
X0(y)

) + h2
(
X0(y), y

)
π2(y) + h0

(
X0(y), y

)
π0,0

or

π2(y) = −h1(X0(y), y)π1(X0(y)) + h0(X0(y), y)π0,0

h2(X0(y), y)

= −
a1(X0(y))a∗

0 (X0(y))

b1(X0(y))
y + a∗

0(X0(y)) + h0(X0(y), y)π0,0

h2(X0(y), y)
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= −a1(X0(y))a∗
0 (X0(y))y + a∗

0 (X0(y))b1(X0(y)) + h0(X0(y), y)b1(X0(y))π0,0

b1(X0(y))h2(X0(y), y)
.

To specify the type of exact tail asymptotics, we need to locate zeros of
h2(X0(y), y). For convenience, let us study the zeros of the polynomial

g(y) = ã(y)h2
(
X0(y), y

)
h2

(
X1(y), y

) = ã(y)b̃2
2(y) − b̃(y)b̃2(y)ã2(y) + c̃(y)ã2

2(y),

where X1(y) is defined by

X1(y) =
{

X−(y), if |X−(y)| > |X+(y)|,
X+(y), if |X−(y)| ≤ |X+(y)|.

Since g(0) = 0 and g(1) = 0, we only need to solve a polynomial equation of de-
gree 4.

From Mx < 0, we know h′
2(X0(1),1) = h′

2(1,1) < 0. It follows that h2(X0(y), y)

has a zero in (1, y3] if h2(X0(y3), y3) ≥ 0 since h2(X0(1),1) = 0. Denote such a
zero by y∗. Using the same argument as in Sect. 5.2 of [10], we can show that y∗
is the only possible zero of h2(X0(y), y) whose modulus is in (1, y3]. Also, let ỹ be
the solution of X0(y) = x+

b1
in (1, y3], where x+

b1
is given in (2.8) if such a solution

exists, otherwise let ỹ > y3. Similarly, we assume y∗ > y3 if h2(X0(y), y) has no
zero with its modulus in (1, y3]. This convention is simply for convenience of using
the minimum function. Finally, let ydom = min(y∗, ỹ, y3) be the dominant singular
point of π2(y).

Using the Tauberian-like theorem on π2(y) as well as on π ′
2(y) when ydom = y3 <

min(y∗, ỹ), we obtain the tail asymptotics for π0,j . By a similar argument to that for
Theorem 3.1, we can show that ψi(y), i ≥ 1, has the same dominant singular point
as ψ0(y) = π2(y) and the tail asymptotics for πi,j for i ≥ 1.

Theorem 5.2 For the singular random walk in case 5, we have a total of four different
types of tail asymptotic properties along the y-direction for large j .

Type 1: (Exact geometric decay) For ydom = min{y∗, ỹ} < y3 or ydom = ỹ =
y∗ = y3,

π0,j ∼ c∗
0,1(ydom)

(
1

ydom

)j−1

,

πi,j ∼ c∗
0,1(ydom)

[
A∗

1(ydom)

(
1

X1(ydom)

)i−1

+ B∗
1 (ydom)

(
1

X0(ydom)

)i−1]

×
(

1

ydom

)j−1

, i ≥ 1;

Type 2: (Geometric decay multiplied by a factor j−1/2) For ydom = y3 = min{y∗, ỹ}
and y∗ �= ỹ,

π0,j ∼ c∗
0,2(ydom)√

π
j−1/2

(
1

ydom

)j−1

, (5.4)
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πi,j ∼ c∗
0,2(ydom)

[A∗
2(ydom) + (i − 1)B∗

2 (ydom)]√
π

(
1

X1(ydom)

)i−1

× j−1/2
(

1

ydom

)j−1

, i ≥ 1; (5.5)

Type 3: (Geometric decay multiplied by a factor j−3/2) For y3 = ydom < min{y∗, ỹ},

π0,j ∼ c∗
0,3(ydom)√

π
j−3/2

(
1

ydom

)j−2

, (5.6)

πi,j ∼ c∗
0,3(ydom)

[A∗
3(ydom) + (i − 1)B∗

3 (ydom)]√
π

(
1

X1(ydom)

)i−1

× j−3/2
(

1

ydom

)j−2

, i ≥ 1; (5.7)

Type 4: (Geometric decay multiplied by a factor j ) For ydom = y∗ = ỹ < y3,

π0,j ∼ c∗
0,4(ydom)j

(
1

y3

)j−1

,

πi,j ∼ c∗
0,4(ydom)

[
A∗

4(ydom)

(
1

X1(ydom)

)i−1]

× j

(
1

ydom

)j−1

, i ≥ 1,

where c∗
0,1(ydom), c∗

0,4(ydom), B1(y), A1(y) and A4(y) are given in Sect. 4 and

c∗
0,2(ydom) = lim

y→ydom

√
1 − y

ydom
π2(y),

c∗
0,3(ydom) = lim

y→ydom

√
1 − y

ydom
π ′

2(y),

A∗
3(y) = − b̃2(y)

c̃(y)
= A∗

2(y),

B∗
2 (y) = −h2(X0(y), y, )

ã(y)X2
0(y)

,

B∗
3 (y) = −h2(X0(y), y)

c̃(y)
.

Remark 5.2 Coefficients c0,i , Ai , and Bi are explicitly expressed in terms of sys-
tem parameters, since they are dependent on the function π2(y), which is explicitly
determined in this case.
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5.3 Determinations of coefficients ci,j for i = 1,2,3, and j ≥ 0

All coefficients ci,j in Sect. 5.1 can be explicitly expressed in terms of system pa-
rameters. For this purpose, we only need to determine π0,0, π0,1, and π0,2. The same
method used in Sect. 2.1 can be repeated here.

Since the expression for ϕ0(x) for case 1 is also valid for case 5, we have

π0,1 = −b0(x
−
b1

)π0,0

c2(x
−
b1

)
,

π0,2 = π0,1
a2(1)

c2(1)
.

π0,0 is determined according to the normalization condition with the same formula:

π0,0 = 1

1 + t1 + t2 + t3
,

where t1 and t3 share the same expressions as for case 1, and we have

t2 = −a1(1)t1 + X′
0(1){[p(1)

1,1 + p
(1)
1,0] − [p(1)

−1,0 + p
(1)
−1,1]}t1 + {a0(1) + X′

0(1)[p(0)
1,0 + p

(0)
1,1]}

ã2(1)X′
0(1) + {[p(2)

1,1 + p
(2)
0,1] − [p(2)

0,−1 + p
(2)
1,−1]}

.

6 Exact tail asymptotics for case 7 and case 8

Case 7 and case 8 are symmetric. Here, we provide details for case 7 only and the
corresponding results for case 8 can be easily obtained by symmetry. for case 7, we
have

a(x) = 0, b(x) = p−1,0 − (1 − p0,0)x + p1,0x
2,

c(x) = p−1,−1 + p0,−1x + p1,−1x
2,

ã(y) = p1,−1 + p1,0y, b̃(y) = p0,−1 − (1 − p0,0)y,

c̃(y) = p−1,−1 + p−1,0y.

6.1 Along the y-direction

Consider the kernel equation h(x, y) = 0. For a fixed y, we find

X±(y) = − b̃(y)

2ã(y)
±

√
b̃2(y) − 4ã(y)c̃(y)

4ã2(y)
,

where D(y) = [p0,−1 − (1 − p0,0)y]2 − 4(p1,−1 + p1,0y)(p−1,−1 + p−1,0y).
Let y

b̃
= p0,−1

1−p0,0
. Since D(0) > 0, D(y

b̃
) < 0 and D(1) > 0, D(y) has two zeros,

denoted by y1 and y2, in the interval (0,1). Let x = X0(y) be defined in the same
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way as in Sect. 5.2 and follow a similar argument there to show that |X0(y)| ≤ 1 for
|y| ≥ 1.

Since X0(y) and π2(y) are analytic on |y| = 1, and π1(x) is analytic on |x| = 1,
near |y| = 1 we can write

π2(y) = −h1(X0(y), y)π1(X0(y)) − h0(X0(y), y)π0,0

h2(X0(y), y)
.

Since for |y| ≥ 1, |X0(y)| ≤ 1, the only possible singular point of π2(y) is a zero of
h2(X0(y), y). Therefore, π0,j has a geometric solution with rate 1/ydom, where ydom
is the dominant pole of π2(y). Using the same argument as in Sect. 5.2 of [10], we
can show that ydom is a simple zero of h2(X0(y), y) and h2(X0(y), y) has no other
zero on the circle |y| = ydom.

Now, using the Tauberian-like theorem and a similar argument to that for Theo-
rem 3.1, we have the following tail asymptotic property.

Theorem 6.1 For the singular random walk in case 7, the joint distribution has an
exact geometric tail along the y-direction with rate 1/ydom; i.e. for a fixed i ≥ 0 and
for large j ,

π0,j ∼ C0

(
1

ydom

)j−1

,

πi,j ∼
[
A

(
1

X1(ydom)

)i−1](
1

ydom

)j−1

, i ≥ 1,

where

C0 = −h1(X0(ydom), ydom)π1(X0(ydom)) − h0(X0(ydom), ydom)π0,0

h′
2(X0(ydom), ydom)X′

0(ydom)
,

and A = −C0b1(ydom)
c(ydom)

.

Remark 6.1 C0 can expressed explicitly in terms of the unknown function π1(x).
However, it cannot be explicitly expressed in terms of system parameters unless fur-
ther information about the unknown function becomes available.

6.2 Along the x-direction

Once again, consider the kernel equation h(x, y) = 0. For a fixed x, the unique y is
given by

y = Y(x) = c(x)

−b(x)
.

Near the unit circle |x| = 1, all Y(x), π1(x) and π2(Y (x)) are analytic. Hence, we
have, near |x| = 1,

π1(x) = −h2(x,Y (x))π2(Y (x)) − h0(x,Y (x))π0,0

h1(x,Y0(x))
,
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which, in fact, holds for ε′ < |x| < R′, where 0 < ε′ < 1 and R′ is the dominant
singular point of π1(x). Note that π2(Y (x)) is analytic if |Y(x)| < ydom, where ydom
is the pole of π2(y).

We first notice that b(x) has two zeros x±
b given by (2.9). We then consider the

equation Y(x) = y∗, where y∗ is the zero of h2(X0(y), y) in (1,∞), or c(x) +
y∗b(x) = 0. Since c(0)+y∗b(0) > 0 and c(1)+y∗b(1) < c(1)+b(1) < 0, Y(x) = y∗
has a unique root, denoted by x̃, in (1, x+

b ). If x̃ �= X0(y
∗), we have

lim
x→x̃

h2(x,Y (x))

h2(X0(Y (x)), Y (x))
= ∞,

which indicates that x̃ is a potential pole of π1(x) since

π1(x) = −h2(x,Y (x))π2(Y (x)) − h0(x,Y (x))π0,0

h1(x,Y0(x))
,

π2
(
Y(x)

) = −h1(X0(Y (x)), Y (x))π1(X0(Y (x))) − h0(X0(Y (x)), y)π0,0

h2(X0(Y (x)), Y (x))
.

Note that x+
b is not a singular point of π1(x) since X0(Y (x)) < 1 when Y(x) > 1.

Let x∗ be the zero of h1(x,Y (x)). Using elementary algebra, we can show that x∗ is
positive and simple, and h1(x,Y (x)) has no other zeros on the circle |x| = x∗.

Again, by using the Tauberian-like theorem and a similar argument to that for
Theorem 3.1, we have the following tail asymptotic property.

Theorem 6.2 For the singular random walk in case 7, the joint distribution has the
following exact tail asymptotic properties along the x-direction; i.e. for a fixed j and
for large i,

1. (Exact geometric decay) If x∗ �= x̃, then πi,j has an exact geometric tail decay
with rate equal to max{ 1

x∗ , 1
x̃
}, or

πi,j ∼ c1,j

(
1

xdom

)i−1

,

where xdom = min{x∗, x̃} and c1,j are constants independent of i and j .
2. (Geometric multiplied by a factor of i) If x∗ = x̃, then πi,j has a geometric tail

decay with rate x∗ multiplied by a prefactor i, or

πi,j ∼ c∗
1,j (i − 1)

(
1

xdom

)i−1

,

where xdom = x∗ = x̃ and c∗
j,0 are constants independent of i.

Remark 6.2 In the above theorem, we can explicitly express c1,j and c∗
1,j in terms

of c1,0 and c∗
1,0, respectively, as for case 4. However, c1,0 and c∗

1,0 are dependent
on the unknown functions π2(y) and π1(x), respectively. Therefore, they cannot be
explicitly expressed in terms of system parameters unless further information about
the unknown functions becomes available.
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7 Concluding remarks

In this paper, we considered exact tail asymptotics of stationary probabilities for sin-
gular random walks in the quarter plane. This brings to a closure the study on exact
tail asymptotics of the joint distribution along a coordinate direction and also of the
two marginal distributions. For a stable random walk in the quarter plane with M �= 0,
there are a total of four possible types of exact tail asymptotics along a coordinate di-
rection and of a marginal distribution for all cases, non-singular or singular, except
for singular cases 5 and 6. They are exact geometric and geometric multiplied by a
pre-factor of n−1/2, n−3/2 and n, respectively. For case 6, for a fixed j > 0 and large
i, πi,j has a new type of exact tail asymptotic. A symmetric property holds for case 7
as well.

Another note is that all asymptotic coefficients can be explicitly expressed in terms
of system parameters for following cases: case 1, case 2, case 5, and case 6. For other
cases, coefficients depend on functions that cannot be explicitly expressed using the
analysis provided in the paper.

In this paper, we only considered random walks in the quarter plane, which are
allowed to move to neighborhood states, that is, jumps are not allowed. For a random
walk in the quarter plane which allows jumps, or for a random walk in a higher
dimensional space, many interesting problems are still open.
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