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Abstract We consider a multi-station fluid model with arrivals generated by a large
number of non-homogeneous heavy-tailed On/Off sources. If the model is feed-
forward in the sense that fluid cannot flow from one station to other with lighter tail
distributions, we prove that under heavy-traffic, the scaled workload converges in dis-
tribution to a reflected fractional Brownian motion process with a multi-dimensional
Hurst parameter. As an application, we analyze the impact of having independent
streams with variable parameters in high-speed telecommunication networks, on the
asymptotic behavior of the maximum queue length.
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1 Introduction

In the last decade of the twentieth century, researches became aware of the presence
of long-range dependence and self-similarity in modern high-speed network traffic,
especially in Internet traffic. As the fractional Brownian motion process with Hurst
parameter H > 1/2 has the properties of long-range dependence and self-similarity,
it has been used since then to built different models for these complex networks.
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From the well-known work of Taqqu, Willinger, and Sherman [12], it has been
generally accepted that one simple physical explanation for the observed phe-
nomenon of the long-range dependence and self-similarity, consists in the superpo-
sition of many On/Off sources with strictly alternating On- and Off-periods whose
lengths are heavy-tailed distributed. The fact that the superposition of N On/Off
sources generates an aggregate cumulative arrival process that conveniently scaled
in time by a factor r and in state space by a factor of r and

√
N , converges in some

sense as first N tends to infinity and then r tends to infinity, to a fractional Brownian
motion process, was proved in Theorem 1 of the paper of Taqqu, Willinger, and Sher-
man [12], where the authors show the relationship between the parameter describing
the heaviness of the tails and the Hurst parameter of the fractional Brownian motion,
which measures its degree of self-similarity.

Subsequent work has shown that the convergence of the aggregate cumulative ar-
rival process to a fractional Brownian motion carries over to the stationary buffer
content process in the heavy traffic scenario: the scaled workload process has been
proved to converge to a fractional Brownian motion process but reflected appropri-
ately to be non-negative, both in the case of single-station fluid models and in the
multi-station environment (see Debicki and Mandjes [3], and Delgado [4], respec-
tively).

More specifically, in Delgado [4] a non-deterministic fluid model which consists
of d stations with a single server that processes fluid in the arrival order, an infinite
buffer at each station and possible feedback routing is considered. The process of
external arrivals was taken to be a non-deterministic aggregated cumulative process
generated by a large enough number of homogeneous heavy tailed On/Off sources.
For each station, there are a large number of sources sending fluid to it, and these
sources can be On (sending fluid to the station at a constant traffic rate) or they can
be Off. The lengths of the On- and Off-periods are heavy-tailed with tail decay as
a power function, assumed to be the same for the d stations (but not necessarily the
same for the On- and the Off-periods) in Delgado [4].

The present paper has a twofold motivation. First, one might wonder if a general-
ization of the heavy-traffic limit theorem of Delgado [4] could be proved if sources
were heterogeneous, that is, if the power functions determining the decay of the tails
for the On- and the Off-periods, were allowed to vary from one to another station.
A motivation for that is the fact that some networks with independent streams with
variable parameters appear in applied research. For instance, in Fitzpatrick, Murphy,
and Murphy [8], a transport layer handover mechanism for Voice over Internet Proto-
col (VoIP) using the Stream Control Transmission Protocol (SCTP), which operates
in “heterogeneous transmission rate networks” is considered. Indeed, this mechanism
is shown to operate in WLAN networks where each node can communicate with the
Access Point (AP) at different transmission rates.

We see in this paper that, in fact, it is possible: In Theorem 1, we prove that after
adequate scaling and under heavy traffic conditions, the immediate workload process
converges to a d-dimensional reflected fractional Brownian motion process on the
positive orthant R

d+ with drift θ ∈ R
d , completely-S reflection matrix R defined

from the flow matrix associated with the fluid model, and multi-dimensional Hurst
parameter H = (H1, . . . ,Hd)T ∈ ( 1

2 ,1)d .
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That is, we extend the heavy-traffic limit given by Theorem 1 of Delgado [4] to
this more general setting. The proof follows similar ideas but presents some inter-
esting differences. On one hand, heterogeneity of the sources forces us to impose
some restrictions, the most important of which, denoted by (HP), is a feed-forward
condition in the sense that fluid cannot flow from one station to another with strictly
lighter tail distributions. On the other hand, we introduce here a heavy traffic condi-
tion which generalizes that used in Delgado [4]: fixed r , the traffic intensity tends to 1
as N → +∞ in the sense that the difference multiplied by

√
N converges to −γ̂ r ≤ 0

(assumed to be 0 in Delgado [4]), where vector γ̂ r converges to 0 as r → +∞ in the
sense that if multiplied by some fixed power of r , it converges to some γ ≥ 0. Because
it seems interesting, we highlight both the expression in terms of the flow matrix P of
the reflection matrix associated with the multidimensional reflected fractional Brow-
nian motion appearing in Theorem 1, R, and also that the drift vector turns out to be
θ = −Rγ . And last but not least, a major difference is that the proof of Theorem 1
will rely heavily on Theorem 7.2.5 of Whitt [13], which represents an improvement of
Theorem 1 [12] in two ways: first, it establishes that the limit as N → +∞ is actually
in distribution and not only in the sense of the convergence of the finite dimensional
distributions, and secondly, because it fills a gap in the proof of the convergence in
distribution as r → +∞ given in Theorem 1 [12].

In Corollary 1, we prove a Functional Weak Law of Large Numbers (FWLLN)
for the total amount of fluid arriving to the stations (including both feedback flow
and external input), and also for the total amount of leaving fluid from the stations
(to other stations or outside the system). This result, which generalizes Theorem 2 of
Delgado [4], justifies the interpretation of the solution to the limiting traffic equation
as the long run fluid rate into and out of any station.

On the other hand, as second motivation we have considered the question of
the impact of having independent streams with variable parameters in high-speed
telecommunication networks, on the asymptotic behavior of the maximum queue
length. Asymptotics of a single-server queue fed by a fractional Brownian motion
process has been considered by different authors. Among them, we mention Zeevi
and Glynn, which in Zeevi and Glynn [15] considered the behavior of the maximum
queue length over the interval [0, t] as t → +∞. More specifically, they showed that
under heavy traffic, this maximum grows like tH , H ∈ (1/2,1) being the Hurst pa-
rameter of the driftless fractional Brownian process that feeds the queue, whereas if

the queue is stable, the maximum grows like (log t)
1

2(1−H) . In Delgado [5], a gener-
alization of the result under heavy traffic to the multidimensional and non-zero drift
setting was considered. For that, it was necessary to overcome certain difficulties aris-
ing from the lack of an explicit expression of the pushing process associated to the
multidimensional fractional Brownian motion process.

Moreover, in Duncan and Jin [6], a stable fluid single-server queue with an input
that is the aggregation of independent driftless fractional Brownian motions, which is
a generalization of the model introduced in Zeevi and Glynn [15], is considered, and

its maximum queue length over [0, t], M(t), is proved to grow like (log t)
1

2(1−H+) ,
where H+ is the largest Hurst parameter of the aggregated fractional Brownian mo-
tions. Stimulus for the introduction of this model, as the authors explain in the In-
troduction of their article, is that firstly, from a practical point of view, a fractional
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Brownian queueing model is an approximation of Internet traffic and can produce
meaningful results for queueing performance. For example, estimations of overflow
probabilities P(M(t) > b) are important in practice for the admission control in net-
work systems. On the other hand, it has been observed that the Hurst parameter esti-
mated in network does not remain constant in practice, which has suggested the ag-
gregation of independent fractional Brownian motions with (possibly) different Hurst
parameters.

Section 5 is devoted to the study of the asymptotic behavior of the maximum queue
length up to time t , as t → +∞ and under heavy traffic conditions, for a queue fed by
many heterogeneous heavy-tailed On/Off sources. Results of this section, which are
an application of the heavy-traffic limit result given in Theorem 1, generalize those
of Delgado [5] to the case of a multi-dimensional Hurst parameter, and at the same
time, they extend the results of Duncan and Jin [6] to a multi-station network with not
necessarily zero drift in a heavy-traffic environment. In particular, we highlight the
fact that the asymptotic behavior of the maximum fluid in queue in the heavy traffic
regime obtained in Corollary 2 depends not only on the Hurst parameter but also on
the drift vector θ as well as on the mean service rate at each station. In particular,
we show that in the driftless case θ = 0, as far as the fluctuations are concerned, the
station with the highest Hurst component (heaviest tails) ultimately dominates upper
bound as t → +∞, while it is the station with the lowest Hurst component (lightest
tails) which dominates lower bound. If θ �= 0, we observe a different behavior on the
fluctuations.

The organization of the rest of the paper is as follows: definitions, notations, and
terminology are introduced in Sect. 2, while Sect. 3 is devoted to the introduction
of the fluid model with which we deal, including the statement of the heavy traffic
assumption and a technical lemma. In Sect. 4, we state and prove our heavy-traffic
limit (Theorem 1) as well as the FWLLN in Corollary 1. The last section is a technical
Appendix.

2 Notations and preliminaries

We will denote the identity matrix by I (regardless of its dimension). Vectors will
be column vectors and vT means the transpose of a vector (or a matrix) v. By
diag(v) we denote the diagonal matrix with diagonal elements the components of
vector v (in the same order). Inequalities for vectors must be understood in the
componentwise sense. For any fixed d ≥ 1, the d-dimensional positive orthant is
R

d+ = {v = (v1, . . . , vd)T ∈ R
d : vi ≥ 0 ∀i = 1, . . . , d (i.e. v ≥ 0)}. For any d × d ′

matrix A = (aij )i=1,...,d,j=1,...,d ′ , let |A| def= max1≤j≤d ′(
∑d

i=1 |aij |) (where |x| de-

notes the absolute value of x ∈ R). In particular, for any v ∈ R
d , |v| def= ∑d

i=1 |vi |. For
a non-negative real number x, [x] denotes the maximum integer less or equal to x

(the integer part of x).
Let Dd be the space of all right-continuous R

d -valued functions with left limits
defined on R+ = [0,+∞). Let C d denote the subspace of continuous functions with
the topology of the uniform convergence on compact time intervals. In Dd , we con-
sider the standard Skorokhod metric J1, which relativized to C d coincides with the
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topology of the uniform convergence over compacts. For each t ≥ 0 and f ∈ C d , we
define the norm and the oscillation of f on [0, t] by

∥
∥f (·)∥∥

t

def= max
0≤s≤t

(
d∑

�=1

∣
∣f�(s)

∣
∣

)

and

Osc
(
f (·), [0, t]) def= max

0≤s<r≤t

(
d∑

�=1

∣
∣f�(r) − f�(s)

∣
∣

)

,

respectively. Note that Osc(f (·), [0, t]) ≤ 2‖f (·)‖t and also that if f (0) = 0 and
f (s) ∈ R

d+ for all s ≥ 0, then Osc(f (·), [0, t]) ≥ ‖f (·)‖t .
We will use the following notations for different types of convergence: D-lim de-

notes the convergence in distribution (on Dd or C d ), while P-lim denotes the con-
vergence in probability (uniformly on compacts), which has the following meaning:
we say that a family {Xr}r of random elements on C d converges in probability to the
random element X if for any T > 0 and for any ε > 0,

lim
r→+∞P

(∥
∥Xr(·) − X(·)∥∥

T
≥ ε

) = 0.

If X is a deterministic element of C d the convergence in probability is equivalent to
the convergence in distribution.

Let
fdd= denote the equality of the finite-dimensional distributions between stochas-

tic processes. Φ stands for the standard Gaussian distribution function, that is,

Φ(x) = 1√
2π

∫ x

−∞
e− y2

2 dy for any x ∈ R.

Although multi-dimensional fractional Brownian motion has appeared previously
in the literature (see Biagini et al. [2]), we give here its definition for the sake of
completeness and in order to fix notation. As seen in the definition, what characterizes
this process and distinguishes it from that introduced in Definition 1 of Delgado [4]
is that each component process may have a different Hurst parameter.

Definition 1 (The multi-dimensional fractional Brownian motion) A vector valued
stochastic process BH = {BH (t) = (BH

1 (t), . . . ,BH
d (t))T , t ≥ 0}, defined on some

probability space, is called a d-dimensional fractional Brownian motion of parameter
H = (H1, . . . ,Hd)T ∈ (0,1)d , starting from x ∈ R

d and with drift vector θ ∈ R
d , if

it is a continuous Gaussian process with E(BH (t)) = x + θt for any t ≥ 0, and with
covariance function given by: for any s, t ≥ 0,

Cov
(
BH (t),BH (s)

) = E
((

BH (t) − (x + θt)
)(

BH (s) − (x + θs)
)T )

= diag

(
σ 2

1

2

(
t2H1 + s2H1 − |t − s|2H1

)
, . . . ,

σ 2
d

2

(
t2Hd + s2Hd − |t − s|2Hd

)
)

,

where σ 2
i = E(BH

i (1)−E(BH
i (1)))2 > 0 for any i = 1, . . . , d . H is called the (multi-

dimensional) Hurst parameter of the process.
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Note that by definition, the component processes BH
1 , . . . ,BH

d are indepen-
dent one-dimensional fractional Brownian motions of respective Hurst parameters
H1, . . . ,Hd . For short, we will say that BH is a d-dimensional fBm with associated
data (x, θ,H,σ 2), where σ 2 = (σ 2

1 , . . . , σ 2
d )T > 0.

Remark 1 If BH is a d-dimensional fBm with associated data (x = 0, θ = 0,H,σ 2),
then BH is vector self-similar in the sense of Lavancier, Philippe, and Surgailis [9],
that is, for any λ > 0,

(
BH

1 (λt), . . . ,BH
d (λt)

) fdd= (
λH1BH

1 (t), . . . , λHd BH
d (t)

)
.

Analogously to what is done in Definition 2 of Delgado [4], we now introduce a
process which behaves like a multi-dimensional fractional Brownian motion in the
interior of R

d+ and is confined to this orthant by instantaneous “reflection” at the
boundary.

Definition 2 (The multi-dimensional reflected fractional Brownian motion) A d-dim.
reflected fractional Brownian motion on the positive orthant R

d+ with associated data

(
x, θ,H,σ 2,R

)
,

where x ∈ R
d+, θ ∈ R

d , H = (H1, . . . ,Hd)T ∈ (0,1)d , σ 2 = (σ 2
1 , . . . , σ 2

d ) > 0 and R

is a d-dimensional completely-S matrix, is a d-dimensional process W = {W(t),

t ≥ 0} defined on some probability space such that

(i) W has continuous paths and W(t) ∈ R
d+ for all t ≥ 0, a.s.,

(ii) W = X + RY a.s., with X and Y two d-dimensional processes defined on the
same probability space and verifying:

(iii) X is a d-dimensional fBm with associated data (x, θ,H,σ 2),
(iv) Y has continuous and non-decreasing paths, and for each j = 1, . . . , d , a.s.,

Yj (0) = 0 and
∫ +∞

0 1{Wj (s)>0} dYj (s) = 0 (that means that Yj can only increase
when W is on face Fj = {y ∈ R

d+ : yj = 0}).
We also say that the pair (W,Y ) is a R-regularization of X, that (W,Y ) is a

solution of the R-regularization problem of X, or that it is a solution of the multi-
dimensional Skorokhod problem associated with X. Note that by definition, W(0) =
X(0) = x. The driftless case corresponds to θ = 0. Process Y is called the pushing
process, and matrix R the reflection matrix. If the triplet W,X, and Y verifies (i), (ii),
and (iv) of Definition 2, we say that W = X + RY is a Skorokhod decomposition.

Remark 2 For each j , the direction of the reflection on face Fj is given by the j th
column of the reflection matrix R. The completely-S property of matrix R is suf-
ficient for the existence of the R-regularization of X, as can be seen in Theorem 2
of Bernard and El Kharroubi [1]. But as is pointed out in the remark following that
result, this property cannot ensure the adaptedness of process Y to any filtration to
which X is adapted. Nevertheless, Proposition 4.2 of Williams [14] shows that under
a stronger assumption on R, henceforth denoted by (HR), this issue is solved, where
this assumption is
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(HR) R can be expressed as I +Θ , with Θ a d ×d matrix such that 〈Θ〉 has spectral
radius strictly less than 1

(given a matrix A, 〈A〉 stands for the matrix obtained from A by replacing all its
entries by their absolute values). (HR) is a sufficient condition for strong pathwise
uniqueness, as can be seen in the proof of Proposition 4.2 [14, p. 23], where this
assumption is denoted condition (II). Interested readers may alternatively consult
Sect. 2 of Delgado [4] for more details.

3 The fluid model

We consider a network composed of d stations, where each station consists of a single
server that processes continuous fluid, and an infinite buffer. We follow the model
introduced in Delgado [4] but the main difference here is that the On/Off sources of
different stations are allowed to be non-homogeneous. More specifically, we suppose
first that for any station j , there is only one external source sending fluid to it, and
that the source can be On or Off. This source generates a stationary binary time
series {Uj(t), t ≥ 0} where Uj (t) = 1 means that at time t the source is On (and it is
sending fluid to station j , at a constant rate), and Uj (t) = 0 means that it is Off. We
suppose that the lengths of the On-periods are independent, those of the Off-periods
are independent, and the lengths of On- and Off-periods are independent of each
other.

Let f on
j and f off

j be the probability density functions corresponding to the lengths
of On- and Off-periods for the source feeding station j , respectively, which are non-
negative and heavy-tailed. Therefore, their (positive) expected values are

μ̃on
j =

∫ +∞

0
uf on

j (u) du and μ̃off
j =

∫ +∞

0
uf off

j (u) du.

Assume that as x → +∞,

∫ +∞

x

f on
j (u) du ∼ x

−βon
j Lon

j (x) and
∫ +∞

x

f off
j (u) du ∼ x

−βoff
j Loff

j (x), (1)

where 1 < βon
j , βoff

j < 2 and Lon
j ,Loff

j are positive slowly varying functions at infinity

such that if βon
j = βoff

j , then limx→+∞
Lon

j (x)

Loff
j (x)

exists and belongs to (0,+∞). Note

that μ̃on
j and μ̃off

j are finite while variances are not.
Suppose now that for each station j , there are N i.i.d. sources, each one with

its own binary time series {U(n)
j (t), t ≥ 0}, n = 1, . . . ,N , on a common probability

space, and that they are all independent. We define the cumulative external fluid ar-
rived up to time t (by the N sources) at station j by

EN
j (t)

def= αN
j

∫ t

0

1

N

(
N∑

n=1

U
(n)
j (u)

)

du,
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where αN
j > 0 is the (possibly dependent on N ) deterministic rate at which fluid

would arrive at station j if all sources were On, or external arrival rate. The d

component processes of the (non-deterministic) cumulative external fluid arrival pro-
cess EN = {EN(t) = (EN

1 (t), . . . ,EN
d (t))T t ≥ 0}, are all independent. We assume

EN(0) = 0. Let αN = (αN
1 , . . . , αN

d )T .
We suppose that fluid at each server is processed in the arrival order (FIFO service

discipline). When fluid arrives at station j and the server is busy, it must wait for
service at its buffer, that we suppose without restriction of capacity. We consider that
the service discipline is a non-idling (or work-conserving) policy that means that a
server is never idle when there is fluid waiting to be processed at its station.

Let Pj� be the proportion of fluid that leaving station j goes next to station �.
We assume that for each j,

∑d
�=1 Pj� ≤ 1 and 1 − ∑d

�=1 Pj� ≥ 0 is the proportion of
fluid that leaving station j goes outside the network. Thus, P = (Pj�)

d
j,�=1 is a sub-

stochastic matrix. It is called the “flow” matrix of the fluid network, and it is assumed

to have spectral radius strictly less than one. Hence, Q
def= (I −P T )−1 is well defined.

Hereafter, we will denote by α̃N the vector

α̃N def=
(

αN
1

μ̃on
1

μ̃on
1 + μ̃off

1

, . . . , αN
d

μ̃on
d

μ̃on
d + μ̃off

d

)T

= diag

(
μ̃on

1

μ̃on
1 + μ̃off

1

, . . . ,
μ̃on

d

μ̃on
d + μ̃off

d

)

αN,

and we can define λN to be the unique d-dimensional vector solution to the traffic
equation

λN def= α̃N + P T λN
(
that is, λN = Qα̃N

)
.

We point out that λN
j can be interpreted as the long run fluid rate into and out of

station j . Indeed, Corollary 1 in Sect. 4 gives support to this interpretation.
Two descriptive (d-dimensional) processes will be used to measure the perfor-

mance of the fluid model: the immediate workload process WN and the cumulative
idle-time process YN . Let WN

j (t) denote the amount of time required for server j

to complete processing of all the fluid in queue (or being processed) at station j at
time t , and YN

j (t) denote the cumulative amount of time that server j has been idle
in the time interval [0, t], that is,

YN
j (t)

def=
∫ t

0
1{WN

j (s)=0} ds.

Immediate workload process measures the congestion and delay in the network, while
idle-time process measures utilization of resources. We assume WN(0) = 0.

In addition, other processes such as AN and DN also deserve consideration. AN
j (t)

is the total fluid arriving to station j up to time t , including both feedback flow from
other stations and external input, and DN

j (t) is the total amount of fluid departing
station j (both being routed to other station or leaving the network), up to time t . We
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assume AN(0) = DN(0) = 0. For these processes, we will obtain in Corollary 1 a
functional weak law of large numbers.

For any r > 0 real valued parameter, we can consider a sequence of fluid models
indexed by (r,N), where N is the number of On/Off sources feeding each station. We
will use r as a scalar parameter in time. For the (r,N) fluid model, suppose that server
at station j processes fluid at a constant rate μ

r,N
j if station j were never idle (that is,

m
r,N
j = 1/μ

r,N
j is the mean service time for station j ). Let mr,N = (m

r,N
1 , . . . ,m

r,N
d )T

and Mr,N = diag(mr,N ). We assume that limN→+∞ Mr,N exists and does not depend
on r ; we denote it by M .

We also introduce the fluid traffic intensity for station j by

ρ
r,N
j

def= m
r,N
j λN

j

(
in matricial form, ρr,N = Mr,NλN

)
.

In order to define the scaled processes associated with the (r,N) fluid model, we
have to introduce some notation by following Taqqu, Willinger, and Sherman [12]

(see also Delgado [4]). For any j = 1, . . . , d set aon
j = Γ (2−βon

j )

(βon
j −1)

and aoff
j = Γ (2−βoff

j )

(βoff
j −1)

,

where βon
j and βoff

j are defined by (1). The normalization factors used below depend

on bj , defined by bj
def= limt→+∞ t

βoff
j −βon

j
Lon

j (t)

Loff
j (t)

, which exists although it could be

infinite. If 0 < bj < +∞ (implying βon
j = βoff

j and bj = limt→+∞
Lon

j (t)

Loff
j (t)

), set βj =
βon

j = βoff
j ,Lj = Loff

j and

σ
2,lim
j

def= 2((μ̃off
j )2aon

j bj + (μ̃on
j )2aoff

j )

(μ̃on
j + μ̃off

j )3Γ (4 − βj )
.

If, on the other hand, bj = +∞ (βoff
j > βon

j ), set Lj = Lon
j , βj = βon

j , and

σ
2,lim
j

def= 2(μ̃off
j )2aon

j

(μ̃on
j + μ̃off

j )3Γ (4 − βj )
.

If bj = 0 (βoff
j < βon

j ), set Lj = Loff
j , βj = βoff

j , and

σ
2,lim
j

def= 2(μ̃on
j )2aoff

j

(μ̃on
j + μ̃off

j )3Γ (4 − βj )
.

In either case, βj ∈ (1,2) for any j . Let we define Hj
def= 3−βj

2 . Therefore, Hj ∈
( 1

2 ,1). Let H
def= (H1, . . . ,Hd)T .

Now we can introduce the scaled processes associated with the (r,N) fluid model.
We will use a hat to denote them. For any j = 1, . . . , d ,

Ŵ
r,N
j (t)

def= √
N

WN
j (rt)

rHj L
1/2
j (r)
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Ê
r,N
j (t)

def= √
N

EN
j (rt) − α̃N

j rt

rHj L
1/2
j (r)

Ŷ
r,N
j (t)

def= √
N

YN
j (rt)

rHj L
1/2
j (r)

or, in matricial form,

Ŵ r,N (t) = (
Lr,H

)−1√
NWN(rt)

Êr,N (t) = (
Lr,H

)−1√
N

(
EN(rt) − α̃N rt

)

Ŷ r,N (t) = (
Lr,H

)−1√
NYN(rt),

where

Lr,H def= diag
(
rH1L

1/2
1 (r), . . . , rHd L

1/2
d (r)

)
. (2)

The next lemma generalizes the Skorokhod decomposition given by formula (17) of
Delgado [4] to our setting, and will be used in the proof of Theorem 1 below.

Lemma 1 The scaled processes are related by means of

Ŵ r,N (t) = X̂r,N (t) + R̂r,N Ŷ r,N (t), (3)

with

X̂r,N (t)
def= Mr,NÊr,N (t) + (

Lr,H
)−1

Rr,N
√

N
(
ρr,N − e

)
rt, (4)

Rr,N being a square matrix defined by

Rr,N def= Mr,NQ−1(Mr,N
)−1 = I − Mr,NP T

(
Mr,N

)−1
,

and

R̂r,N def= Λ̂r,NQ−1(Λ̂r,N
)−1 = I − Λ̂r,NP T

(
Λ̂r,N

)−1

with Λ̂r,N = (
Lr,H

)−1
Mr,N . (5)

Proof Analogously to Lemma 1 of Delgado [4] we can obtain that for the (r,N) fluid
model,

WN(rt) = Mr,NEN(rt) − Rr,Nert + Rr,NYN(rt).

Indeed, by using the notations of this paper, relation (8) in Lemma 1 [4] can be writ-
ten as WN(t) = Rr,NMr,NQEN(t) − Rr,Net + Rr,NYN(t), and taking into account
that Rr,NMr,NQ = (Mr,NQ−1(Mr,N )−1)Mr,NQ = Mr,N , we obtain the desired ex-
pression simply by replacing t by rt .
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Therefore, we can write for each j = 1, . . . , d ,

Ŵ
r,N
j (t) = m

r,N
j Ê

r,N
j (t) +

√
N

rHj L
1/2
j (r)

(
Rr,N

(
ρr,N − e

))
j
rt

+
√

N

rHj L
1/2
j (r)

(
Rr,NYN(rt)

)
j

because Mr,N α̃N = Rr,Nρr,N . Then expression (3) is proved, with X̂r,N (t) given by
(4) and

R̂r,N = (
Lr,H

)−1
Rr,NLr,H = Λ̂r,NQ−1(Λ̂r,N

)−1 = I − Λ̂r,NP T
(
Λ̂r,N

)−1
. �

Remark 3 Taking the limit as N → +∞ in (5), we can introduce

ˆ̂
Rr def= lim

N→+∞ R̂r,N = ˆ̂
ΛrQ−1( ˆ̂

Λr
)−1 = I − ˆ̂

ΛrP T
( ˆ̂
Λr

)−1 with ˆ̂
Λr def= (

Lr,H
)−1

M,

and matrix ˆ̂
Rr verifies (HR) since ˆ̂

ΛrP T (
ˆ̂

Λr)−1 has the same spectral radius as P ,
which is assumed to be strictly less than 1.

Remark 4 Note that processes appearing in expression (3) verify: Ŵ r,N has continu-
ous paths; for any t ≥ 0, a.s. Ŵ r,N (t) ∈ R

d+; Ŷ r,N has continuous and non-decreasing

paths, and for each j , a.s. Ŷ
r,N
j (0) = 0 and

∫ +∞

0
Ŵ

r,N
j (s) dŶ

r,N
j (s) = 0

(

equivalently,
∫ +∞

0
1{Ŵ r,N

j (s)>0} dŶ
r,N
j (s) = 0

)

.

This shows that (3) turns out to be a Skorokhod decomposition.

4 The heavy-traffic limit

Our goal now is to prove that the scaled workload process Ŵ r,N converges to a
d-dimensional reflected fractional Brownian motion process in distribution, when N

first and then r , tend to infinity in this order, under heavy traffic. This result general-
izes Theorem 1 of Delgado [4]. Heavy traffic condition establishes that the total load
imposed on each service station tends to the value of its capacity, that is, its traffic
intensity tends to be equal to 1, in the following sense:

(HT) lim
N→+∞

√
N

(
ρr,N − e

) = −γ̂ r ,

where e = (1, . . . ,1)T ∈ R
d , for some γ̂ r = (γ̂ r

1 , . . . , γ̂ r
d )T ≥ 0 such that it converges

to zero as r → +∞ in the sense that a vector γ = (γ1, . . . , γd)T ≥ 0 exists such that

lim
r→+∞

r1−Hj

L
1/2
j (r)

γ̂ r
j = γj for any j = 1, . . . , d. (6)
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Note that from (HT) and the fact that λN = (Mr,N )−1ρr,N we deduce the exis-

tence of λ
def= limN→+∞ λN and also that M = diag(λ1, . . . , λd)−1 (or λ = M−1e).

Moreover, since λN = Qα̃N and limN→+∞ α̃N = Q−1M−1e, the limit external ar-
rival rate needed to achieve the maximum capacity of the system is

lim
N→+∞αN = α = diag

(
μ̃on

1

μ̃on
1 + μ̃off

1

, . . . ,
μ̃on

d

μ̃on
d + μ̃off

d

)−1

Q−1M−1e(> 0).

Remark 5 Heavy traffic condition (HT) generalizes that introduced in Delgado [4]
in the sense that γ̂ r was taken there to be identically zero. Motivation for this gener-
alization is what is named “thin control” in the literature (see Lee and Weerasinghe
[11]), which typically consists of processing rates of the form

μ
r,N
j = λN

j

(

1 + 1√
N

γ̂ r
j

)

with γ̂ r
j satisfying (6). If this is the case, (HT) necessarily holds.

Before stating our result, we must introduce two more assumptions, namely

(HL) if Hi = Hj, then there exists �ij = lim
t→+∞

Lj (t)

Li(t)
∈ (0,+∞)

and

(HP) Pij = 0 if Hj < Hi, i, j = 1, . . . , d.

(Assumption (HL) is technical while (HP), which is vacuous if Hi = Hj for all i, j =
1, . . . , d , forces the system to be feed-forward in the sense that fluid cannot flow from
one station to other with lighter tail distributions.)

Theorem 1 (The heavy-traffic limit) Under heavy traffic condition (HT) and as-
sumptions (HL) and (HP), the following limits exist:

ˆ̂
Wr = D-lim

N→+∞ Ŵ r,N
(
in Dd

)
and W = D-lim

r→+∞
ˆ̂

Wr
(
in C d

)
,

and W is a d-dimensional reflected fractional Brownian motion process on R
d+ with

associated data

(
x = 0, θ = −Rγ,H = (H1, . . . ,Hd)T , σ 2,R

)
,

where H ∈ ( 1
2 ,1)d , γ ≥ 0, σ 2 = M2 diag(α)2σ 2,lim and R = I − P̃ , P̃ being the

d-dimensional matrix defined by

P̃ij =
{

Pji
mi

mj
�

1/2
ij if Hi = Hj,

0 otherwise.
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Proof The proof follows the same ideas as that of Theorem 1 of Delgado [4], uses
the invariance principle of Williams [14] as a basic ingredient, and relies heavily on
Theorem 7.2.5 of Whitt [13], from which the weak convergence of process Êr,N ,
first as N → +∞, and then as r → +∞, is obtained (while Theorem 1 [12] only
provides the corresponding convergence of the finite dimensional distributions in the
first case).

First, by Lemma 1 (Ŵ r,N , Ŷ r,N ) is the solution of the Skorokhod problem asso-
ciated with X̂r,N with reflection matrix R̂r,N . In order to use the invariance principle
of Williams (actually, Corollary 4.3 [14], as stated here in the Appendix for the con-
venience of the reader) for processes Ŵ r,N , X̂r,N and Ŷ r,N , we will use the fact that

limN→+∞ R̂r,N = ˆ̂
Rr satisfies assumption (HR) as discussed in Remark 3, and also

the weak convergence of X̂r,N as N → +∞, which is a consequence of Theorem 1
[12] and Theorem 7.2.5 [13]. Indeed, for any j = 1, . . . , d ,

Ê
r,N
j (t) = √

N
EN

j (rt) − α̃N
j rt

rHj L
1/2
j (r)

= αN
j

rHj L
1/2
j (r)

1√
N

N∑

n=1

(∫ rt

0
U

(n)
j (u) du − μ̃on

j

μ̃on
j + μ̃off

j

rt

)

and using both results we have that in Dd there exists the limit

ˆ̂
Er = D-lim

N→+∞ Êr,N , (7)

which has paths in C d , and in C d

D-lim
r→+∞

ˆ̂
Er = BH , (8)

BH being a d-dimensional fractional Brownian motion with associated data
(x = 0, θ = 0,H,diag(α)2σ 2,lim).

Now we apply Lemma 1 and combining (4), heavy traffic condition (HT), and the

continuous mapping theorem, we obtain that there exists ˆ̂
Xr = D-limN→+∞ X̂r,N ,

with

ˆ̂
Xr(t) = M

ˆ̂
Er(t) + ˆ̂

Rr
(
Lr,H

)−1(−γ̂ r
)
rt, (9)

that implies that paths of ˆ̂
Xr are continuous. Indeed, (9) is justified because

(
Lr,H

)−1
Rr,N

√
N

(
ρr,N − e

) = (
Lr,H

)−1
Mr,NQ−1(Mr,N

)−1√
N

(
ρr,N − e

)
,

which converges as N → +∞ to

(
Lr,H

)−1
MQ−1M−1(−γ̂ r

) = ˆ̂
ΛrQ−1( ˆ̂

Λr
)−1(

Lr,H
)−1(−γ̂ r

) = ˆ̂
Rr

(
Lr,H

)−1(−γ̂ r
)
.
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Then, by Corollary 4.3 [14] (see the Appendix), we have that in Dd there exists

D-lim
N→+∞

(
Ŵ r,N , X̂r,N , Ŷ r,N

) = ( ˆ̂
Wr,

ˆ̂
Xr,

ˆ̂
Y r

)

and the limit satisfies the conditions (i), (ii), and (iv) of Definition 2, that is,

ˆ̂
Wr = ˆ̂

Xr + ˆ̂
Rr ˆ̂

Y r

is a Skorokhod decomposition.

To reapply this result now to processes ˆ̂
Wr,

ˆ̂
Xr , and ˆ̂

Y r , we must check the weak

convergence, as r → +∞, of ˆ̂
Xr . Indeed, this is a consequence of (9), (8), (6) and the

continuous mapping theorem, that imply the existence of D-limr→+∞ ˆ̂
Xr = X, with

X = MBH − Rγ t , which is a d-dimensional fractional Brownian motion process
with associated data (x = 0, θ = −Rγ,H,σ 2), where

γ ≥ 0, σ 2 = M2 diag(α)2σ 2,lim and R = I − P̃ .

Note that R = limr→+∞ ˆ̂
Rr , by assumptions (HL) and (HP), and also that R satisfies

(HR). We can see this by using that the spectral radius of P̃ is strictly less than one
if and only if the limit as k → +∞ of powers P̃ k equals zero. But this can be easily
checked since

P̃ = lim
r→+∞

ˆ̂
ΛrP T

( ˆ̂
Λr

)−1 and
( ˆ̂
ΛrP T

( ˆ̂
Λr

)−1)k = ˆ̂
Λr

(
P T

)k( ˆ̂
Λr

)−1
,

which implies that limk→+∞ P̃ k = limk→+∞ limr→+∞ ˆ̂
Λr(P T )k(

ˆ̂
Λr)−1, and if we

denote by aij (r, k) the elements of matrix ˆ̂
Λr(P T )k(

ˆ̂
Λr)−1, we can readily see that

aij (r, k) =
⎧
⎨

⎩

0 if Hj > Hi,

rHj −Hi
L

1/2
j (r)

L
1/2
i (r)

mi

mj
P

(k)
ij if Hj ≤ Hi,

denoting by P
(k)
ij the elements of matrix (P T )k . As a consequence, we have that, for

any fixed k, there exists limr→+∞ ˆ̂
Λr(P T )k(

ˆ̂
Λr)−1 since

lim
r→+∞aij (r, k) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Hj �= Hi,

P
(k)
ii if i = j,

�
1/2
ij

mi

mj
P

(k)
ij if Hi = Hj, i �= j

and there also exists limk→+∞ ˆ̂
Λr(P T )k(

ˆ̂
Λr)−1 = 0 uniformly in r , because there ex-

ists a constant C > 0 such that for any i, j, r, k, aij (r, k) < CP
(k)
ij , and

limk→+∞(P T )k = 0 because the spectral radius of P T (the same as P ) is strictly
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less than one by hypothesis. Therefore,

lim
k→+∞ P̃ k = lim

r→+∞ lim
k→+∞

ˆ̂
Λr

(
P T

)k( ˆ̂
Λr

)−1 = 0.

Then, by Corollary 4.3 [14] (see the Appendix) again, there exists

D-lim
r→+∞

( ˆ̂
Wr,

ˆ̂
Xr,

ˆ̂
Y r

) = (W,X,Y ),

where the triplet (W,X,Y ) satisfies conditions (i)–(iv) of the Definition 2. Thus,
W = X + RY is a d-dimensional reflected fractional Brownian motion on R

d+ with
associated data (x = 0, θ = −Rγ,H,σ 2,R). �

Analogous to Theorem 2 of Delgado [4], a functional weak law of large numbers
for processes AN and DN , which are the total amount of fluid arriving and depart-
ing stations up to any time, respectively, can be proved. This result reinforces the
interpretation of λ, which is the solution of the limiting traffic equation λ = Qα̃, with

α̃ = diag(
μ̃on

1
μ̃on

1 +μ̃off
1

, . . . ,
μ̃on

d

μ̃on
d +μ̃off

d

)α, as the long run fluid rate into and out of the sys-

tem.
Let us first introduce the associated scaled processes

Âr,N (t)
def= √

N
AN(rt) − λNrt

r
and D̂r,N (t)

def= √
N

DN(rt) − λNrt

r
.

Corollary 1 (FWLLN for processes AN and DN ) Under heavy traffic condition
(HT) and assumptions (HL) and (HP), there exist the limits in Dd

ˆ̂
Ar = D-lim

N→+∞ Âr,N and ˆ̂
Dr = D-lim

N→+∞ D̂r,N ,

and there also exist the limits in C d

D-lim
r→+∞

ˆ̂
Ar = D-lim

r→+∞
ˆ̂
Dr = 0.

Proof The proof is similar to that of Theorem 2 of Delgado [4] and, therefore, we
emphasize primarily those aspects which are different. In order to justify the existence

of ˆ̂
Ar and ˆ̂

Dr , we consider that for any j = 1, . . . , d ,

Â
r,N
j (·) − D̂

r,N
j (·) =

√
N

r

(
AN

j (r·) − DN
j (r·)) = rHj L

1/2
j (r)

r

(
m

r,N
j

)−1
Ŵ

r,N
j (·).

Then, by Theorem 1, there exists in Dd ,

D-lim
N→+∞

(
Âr,N − D̂r,N

) = 1

r
Lr,H M−1 ˆ̂

Wr. (10)
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We can write

Âr,N = 1

r
QLr,H Êr,N + QP T

(
D̂r,N − Âr,N

)
,

and, therefore, we can conclude from (10) and Theorem 1 again that there exists

ˆ̂
Ar = D-lim

N→+∞ Âr,N = 1

r
Q

(
Lr,H ˆ̂

Er − P T Lr,H M−1 ˆ̂
Wr

)
, (11)

and by combining (10) with (11) we deduce the existence of

ˆ̂
Dr = D-lim

N→+∞ D̂r,N = 1

r

(
QLr,H ˆ̂

Er − (
I + QP T

)
Lr,H M−1 ˆ̂

Wr
)
.

Now we show that the following limits (in C d ) exist and are equal to zero:

D-lim
r→+∞

ˆ̂
Ar = D-lim

r→+∞
ˆ̂
Dr(= 0),

which is equivalent to proving that for any T > 0 and for any ε > 0,

lim
r→+∞P

(∥
∥ ˆ̂
Ar(·)∥∥

T
≥ ε

) = lim
r→+∞P

(∥
∥ ˆ̂
Dr(·)∥∥

T
≥ ε

) = 0.

We only consider the case of ˆ̂
Ar (the same conclusion can be drawn for ˆ̂

Dr ): We
must show that if we fix T > 0 and ε > 0, for any δ > 0 there exists r0 such that if
r ≥ r0,

P
(∥
∥ ˆ̂
Ar(·)∥∥

T
≥ ε

) ≤ δ,

but this can be done since from (11) we obtain the upper bound

∥
∥ ˆ̂
Ar(·)∥∥

T
≤ |Q|

r

(∣
∣Lr,H

∣
∣
∥
∥ ˆ̂
Er(·)∥∥

T
+ ∣

∣P T Lr,H M−1
∣
∣
∥
∥ ˆ̂
Wr(·)∥∥

T

)

(recall the definition of Lr,H given by (2)). �

5 Asymptotics for the maximum queue length

First of all, we consider the extension of the results of Delgado [5] to our setting,
in which the Hurst parameter can vary with the station, and study the asymptotic
behavior as t → +∞ of the maximum process given by formula

M(t)
def= max

0≤s≤t

d∑

j=1

ajWj (s) = max
0≤s≤t

aT W(s),

with a = (a1, . . . , ad)T > 0, W being any general d-dimensional reflected fractional
Brownian motion process W = X + RY on R

d+ with associated data

(
x = 0, θ,H = (H1, . . . ,Hd)T , σ 2,R

)
,
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where θ ∈ R
d , H ∈ (0,1)d , σ 2 = (σ 2

1 , . . . , σ 2
d )T > 0 and R is a d × d completely-S

matrix.
For the case of homogeneous Hurst parameters (that is, Hi = Hj = H for any

i, j = 1, . . . , d), it was proved in Delgado [5] that the increase of M(t) is closer to
that of t if aT θ > 0, in the sense that it is smaller than that of any function growing
faster than t (Theorem 3.1 of Delgado [5]), and that if a restriction (named (HaR)) on
the weights a holds, this result is tight in the sense that the increase of M(t) is bigger
than that of any function growing slower than t (see Theorem 3.2 of Delgado [5]).
In the driftless case θ = 0 similar results were obtained but with tH instead of t . The
case aT θ < 0, which includes but is not restricted to, the negative drift case θ < 0,

was also considered, obtaining the result that (log t)
1

2(1−H) and any function growing
faster than t , respectively, are the asymptotic lower and upper bounds for M(t).

We note that, although in the results of Delgado [5] hypothesis (HR) on matrix R

is assumed, it is indeed sufficient to have the (weaker) completely-S condition. As
mentioned above, there is an additional assumption on matrix R to be considered:

(HaR) RT a ≥ 0.

Remark 6 We assume that R is a completely-S matrix, which is equivalent to saying
that R is strictly semi-monotone. This last property means that for each principal sub-
matrix R̃ of R, the system

R̃x ≤ 0 and x ≥ 0

has the unique solution x = 0. In particular, this implies that RT a cannot have non-
positive components since a ≥ 0 but a �= 0. Note that we need to impose (HaR),
which is a more restrictive condition in some sense (unless d = 1, in which case they
are equivalent), but only for the vector of weights a.

In the sequel, we will use notations

H+ def= max{H1, . . . ,Hd} and H− def= min{H1, . . . ,Hd},

and also μ
def= aT θ . Note that θ = 0 (respectively < 0,> 0) implies μ = 0 (respec-

tively < 0,> 0), but that the converses are not true.

Theorem 2

(a) (Asymptotic upper bound for the maximum.)

P-lim
t→+∞

M(t)

f (t)
= 0

for any positive real function f such that
⎧
⎨

⎩

limt→+∞ f (t)

tH
+ = +∞ if θ = 0,

limt→+∞ f (t)
t

= +∞ if θ �= 0.
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Furthermore, this convergence to zero in the probability sense is, in fact, conver-
gence in Lp for any p ≥ 1.

(b) (Asymptotic lower bound for the maximum.)
Assume that condition (HaR) holds.

– If μ ≥ 0, then

P-lim
t→+∞

M(t)

g(t)
= +∞

for any positive real function g such that

⎧
⎨

⎩

limt→+∞ g(t)

tH
− = 0 if μ = 0,

limt→+∞ g(t)
t

= 0 if μ > 0.

– If μ < 0, then

lim
t→+∞P

(
M(t)

(log t)
1

2(1−H−)

≥ C

)

= 1

for any 0 < C <

(
(aT σ )2

2(−μ)2H−

) 1
2(1−H−)

.

Proof

Part (a) The proof of this part follows that of Theorem 3.1 of Delgado [5] by taking
into account that for each j = 1, . . . , d and s > 0, the random variable Xj(s) ∼
N(θj s, s

2Hj σ 2
j ), and that

λj (ε, t)
def= ε

KR,ad

f (t)

tHj
− |θj |t1−Hj = t1−Hj

(
ε

KR,ad

f (t)

t
− |θj |

)

,

which increases to +∞ when t → +∞ for any fixed ε > 0, by the assumptions on
function f .

Part (b) The proof of this part is similar to that of Theorem 3.2 of Delgado [5]. We
will prove that

lim
t→+∞P

(
M(t)

g(t)
≥ C

)

= 1 (12)

for any arbitrary C > 0 and g verifying the aforementioned assumptions if μ ≥ 0,
which implies that M(t)

g(t)
is unbounded in probability, and for any

0 < C <

(
(aT σ )2

2(−μ)2H−

) 1
2(1−H−)

and g(t) = (log t)
1

2(1−H−) if μ < 0.
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Fix t > 0; for any δ ∈ (0, t), by assumption (HaR) we have

M(t) ≥ max
k=1,...,[ t

δ
]
Vk(δ) (13)

with Vk(δ)
def= aT (X(kδ) − X((k − 1)δ)) (see Step 1 in the proof of Theorem 3.2 of

Delgado [5]).
As X is a d-dimensional fractional Brownian motion process with associated data
(0, θ,H = (H1, . . . ,Hd)T , σ 2), we find that Vk(δ) ∼ N(μδ,σ 2

δ ) with

σδ =
d∑

j=1

ajσj δ
Hj . (14)

Vk(δ) can be normalized by

Zk
def= Vk(δ) − μδ

σδ

∼ N(0,1), for k = 1, . . . ,

[
t

δ

]

, (15)

forming a stationary sequence of standardized Gaussian random variables such that

lim
�→+∞ρZ(�) log� = 0

(because Hj < 1) with their covariance function

ρZ(�)
def= E(Z1Z1+�) = 1

σ 2
δ

d∑

j=1

a2
j

σ 2
j

2
δ2Hj

(
2Hj(2Hj − 1)�2Hj −2 + O

(
�2Hj −3)).

Following Theorem 4.3.3 of Leadbetter, Lindgren, and Rootzén [10], if we find
functions δ(t) and u(t) with 0 < δ(t) < t and u(t) > 0 and such that

(i) limt→+∞[ t
δ(t)

] = +∞, and

(ii) limt→+∞ t/δ(t)
u(t)

(1 − 1
(u(t))2 )e− (u(t))2

2 = +∞,

then we have limt→+∞ P(maxk=1,...,[ t
δ(t)

] Zk ≥ u(t)) = 1. Taking into account (15)

and (13), we can then deduce that

lim
t→+∞P

(
M(t) ≥ u(t)σδ(t) + μδ(t)

) = 1, (16)

where σδ(t) is obtained from (14) by replacing δ by δ(t). This finally implies (12) if
we define property δ(t) and u(t), and finishes the proof.
In order to define functions δ(t) and u(t), we take into account the sign of μ = aT θ

and split the definition into two cases:

• Case μ ≥ 0. Actually we only will consider here the case μ = 0 because if μ > 0
the proof is similar to that of Step 3 in the proof of Theorem 3.2 of Delgado [5].
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Then we assume μ = 0, fix an arbitrary C > 0, and define

δ(t)
def= (Cg(t))1/H−

(log( t

g(t)1/H− ))
1

2H+
and u(t)

def= 1

aT σ

(

log

(
t

g(t)1/H−

))1/2

.

With these definitions, conditions (i) and (ii) are easily checked. Now we can see
that (16) implies (12) by considering that

u(t)σδ(t) + μδ(t)

= u(t)σδ(t) = u(t)

d∑

j=1

ajσj

(
δ(t)

)Hj

= 1

aT σ

(

log

(
t

g(t)1/H−

))1/2
(

d∑

j=1

ajσj

(Cg(t))
Hj

H−

(log( t

g(t)1/H− ))
Hj

2H+

)

≥ 1

aT σ

d∑

j=1

ajσj

(
Cg(t)

) Hj

H− ≥ Cg(t),

where we have used the facts that
Hj

2H+ ≤ 1
2 and that

Hj

H− ≥ 1.
• Case μ < 0. Fix an (arbitrary by the moment) constant C > 0 and define

δ(t)
def= C(log t)

1
2(1−H−)

−μ
and

u(t)
def= 2C(log t)

1
2(1−H−)

aT σ (δ(t))H
−

= 2C1−H−
(log t)1/2(−μ)H

−

aT σ
.

Condition (i) is trivially satisfied and condition (ii) also holds if and only if

0 < C <

(
(aT σ )2

2(−μ)2H−

) 1
2(1−H−)

.

In this case, we have

u(t)σδ(t) + μδ(t) = u(t)

d∑

j=1

ajσj

(
δ(t)

)Hj + μδ(t) ≥ u(t)aT σ
(
δ(t)

)H− + μδ(t)

= 2C(log t)
1

2(1−H−) − C(log t)
1

2(1−H−) = C(log t)
1

2(1−H−) ,

and we obtain (12) from (16). �
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Secondly, in Corollary 2 below, we can study, as an application, the asymptotic
behavior of the total fluid in queue (or maximum queue length) under heavy traffic
for the fluid model considered in this paper. For any station j , the limit distribution

under heavy traffic of the fluid in queue at time t is that of
Wj (t)

mj
, so we can introduce

the maximum (total) amount of fluid in queue in the system on the interval [0, t], by
summing the fluid in queue over all stations, whose limit distribution under heavy
traffic is that of

M(t) = max
0≤s≤t

d∑

j=1

1

mj

Wj(s),

where W is a d-dimensional reflected fBm process on R
d+ with associated data

(x = 0, θ = −Rγ,H = (H1, . . . ,Hd)T , σ 2,R), with H ∈ ( 1
2 ,1)d , γ ≥ 0, σ 2

j =
m2

jα
2
j σ

2,lim
j , and R = I −P̃ . Recall that μ = aT θ so, in this case, μ = ( 1

m1
, . . . , 1

md
)θ .

Corollary 2 Assume that the fluid model considered in the previous sections verifies
(HL) and that the flow matrix verifies assumption (HP) and also that

for any i = 1, . . . , d,
∑

j∈{1,...,d}:Hj =Hi

Pij �
1/2
ji ≤ 1. (17)

We have

(a) if θ = 0, then M(t) grows less than any function growing faster than tH
+

and
more than any function growing slower than tH

−
,

(b) if θ �= 0 and μ = 0, then M(t) grows less than any function growing faster than
t and more than any function growing slower than tH

−
,

(c) if μ > 0, then M(t) grows like t ,
(d) if μ < 0, then M(t) grows less than any function growing faster than t and more

than any function growing slower than (log t)
1

2(1−H−) .

The proof of Corollary 2 is immediate from Theorem 2 by taking into account
that assumption (HaR) becomes (17) when applied to vector a = ( 1

m1
, . . . , 1

md
)T and

matrix R = I − P̃ . The fact that P is a sub-stochastic matrix does not necessarily
implies (17), therefore this condition should be imposed.

Finally, we introduce the level-crossing times for fluid in queue process as usual:
for any b > 0, let

T (b)
def= inf

{

s ≥ 0 :
d∑

j=1

1

mj

Wj (s) ≥ b

}

.

Then, using that the level-crossing times and the maximum are related by means of
{
T (b) ≤ t

} = {
M(t) ≥ b

}
,

by direct application of Corollary 2, we obtain the following.



62 Queueing Syst (2013) 74:41–63

Corollary 3 Under the same assumptions of Corollary 2, we have

(a) if θ = 0, then the growth of T (b) as b → +∞ is between that of b1/H+
and that

of b1/H−
,

(b) if θ �= 0 and μ = 0, then the growth of T (b) as b → +∞ is between that of b and
that of b1/H−

,
(c) if μ > 0, then T (b) grows as b as b → +∞,
(d) if μ < 0, then the growth of T (b) as b → +∞ is between that of b and that of

exp(b2(1−H−)).
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Appendix

The invariance principle of Williams and its corollary, Theorem 4.1, and Corol-
lary 4.3 [14], respectively, are stated and proved for a reflected Brownian motion, but
these results, whose proofs rely heavily on the oscillation inequality (Theorem 5.1
[14]), do not depend on fact on the law of the process, as can be checked by follow-
ing the steps of the proof. For convenience of the reader, we present the particular
(simplified) version of Corollary 4.3 [14] we use in our proof:

Version of Corollary 4.3 [14] Assume that matrix R satisfies (HR). For each posi-
tive integer n, let Rn be a d × d matrix and Wn,Xn,Y n be processes with paths in
Dd defined on some probability space such that

(i)′ Wn(0) = 0 and Wn(t) ∈ R
d+ for all t ≥ 0, a.s.,

(ii)′ Wn = Xn + RnYn a.s.,
(iii)′ Xn converges in distribution as n → +∞ to some process X whose paths live

in C d ,
(iv)′ Yn has non-decreasing paths, and for each j = 1, . . . , d , a.s., Yn

j (0) = 0 and
∫ +∞

0 1{Wn
j (s)>0} dYn

j (s) = 0,

(v)′ Rn converges to R as n → +∞.

Then there exists D-limn→+∞(Wn,Xn,Y n) = (W,X,Y ), where the limit
(W,X,Y ) satisfies conditions (i), (ii) and (iv) of Definition 2 (with W(0) = X(0) =
Y(0) = 0), that is, W = X + RY is a Skorokhod decomposition.

Brief justification First, note that we use Theorem 4.1 [14] in a particular situation
in which the probability measure ν on R

d+ gives probability 1 to the point 0 ∈ R
d+,

αn = γ n = δn = 0 for all n ≥ 1, and hypothesis (iii) of Theorem 4.1 is replaced by
(iii)′. The proof of this theorem does not uses any specific property of the Brownian
motion process. Indeed, the tightness of sequence {Xn}n is a consequence of (iii)′ and
{(Wn,Xn,Y n)}n inherits tightness from it (the necessary and sufficient conditions
for tightness given in Corollary 3.7.4 of Ethier and Kurtz [7] are verified). More-
over, by Theorem 3.10.2 [7], any (weak) limit point of {(Wn,Xn,Y n)}n has contin-
uous paths. Let (W,X,Y ) be a (weak) limit point, that is, there is a subsequence
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{(Wnk ,Xnk , Y nk )}k such that D-limk→+∞(Wnk ,Xnk , Y nk ) = (W,X,Y ). Then the
Skorokhod representation theorem (Theorem 3.1.8 [7]) is used to replace the above
sequence of processes by one that is term-by-term equivalent in distribution to the
original one and which a.s. converges uniformly on compact intervals. With this sim-
plification, it is easily seen that the limit triplet (W,X,Y ) inherits properties (i), (ii)
and (iv) of Definition 2 from properties (i)′, (ii)′, and (iv)′, except for

∫ +∞

0
1{Wj (s)>0}dYj (s) = 0,

whose proof is technically more complicated and can be seen on pages 21 and 22 of
[14]. Now, instead of using Theorem 3.1 [14] to ensure that all (weak) limit points of
{(Wn,Xn,Y n)}n have the same law, as is done in the proof of Theorem 4.1 [14], we
use that by assumption (HR) on matrix R, the law of the pair (W,Y ) is unique (see
Remark 2), which gives the desired result. Combining this uniqueness with tightness,
it follows that the whole sequence {(Wn,Xn,Y n)}n converges in distribution to a
triplet (W,X,Y ) which satisfies conditions (i), (ii), and (iv) of Definition 2 (with
W(0) = X(0) = Y(0) = 0). �
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