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Abstract We consider a production-inventory system where the production and de-
mand rates are modulated by a finite state Continuous Time Markov Chain (CTMC).
When the inventory position (inventory on hand – backorders + inventory on or-
der) falls to a reorder point r , we place an order of size q from an external sup-
plier. We consider the case of stochastic leadtimes, where the leadtimes are i.i.d.
exponential(μ) random variables, and orders may or may not be allowed to cross.
We derive the distribution of the inventory level, and analyze the long run holding,
backlogging, and ordering cost rate per unit time. We use simulation to study the
sensitivity of the system to the distribution of the lead times.
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1 Introduction

In this paper we study a production-inventory system that evolves in a random envi-
ronment. Let I (t) be the inventory level at time t . If I (t) > 0, it denotes the actual
inventory on hand at time t , and if I (t) < 0, −I (t) denotes the backorders at time t .
Let Z(t) be the state of the environment at time t . We assume that {Z(t), t ≥ 0} is
an irreducible CTMC on state space Ω = {1,2, . . . , n} with infinitesimal generator
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Q = [qij ]. The inventory level process {I (t), t ≥ 0} is modulated by the environment
as follows: when the environment is in state i, the production occurs continuously at
a constant rate ri , and demand occurs at rate di . Thus, while the environment is in
state i, the inventory level changes at rate Ri = ri − di . Let R be the diagonal ma-
trix defined as R = diag(R1,R2, . . . ,Rn). The demand that cannot be immediately
satisfied is backlogged.

We can place orders from outside suppliers to supplement the production and sat-
isfy the demand. We assume the lead times are nonnegative and stochastic. Thus, an
order placed at time zero is delivered after a random amount of time.

We define inventory position as the inventory on hand minus backorders plus the
inventory on order (which is the amount that has been ordered but not yet delivered).
Let P(t) be the inventory position at time t . We follow the standard (r, q) ordering
policy that operates as follows: when the inventory position decreases to a prespeci-
fied reorder point r , we place an order of size q , which arrives after a random period
of time. Note that the order size q is fixed and is independent of the environmental
state at the time of order placement. We may place a new order before a previous
order arrives if the inventory position reduces to r before the order is delivered. Let
O(t) denote the number of outstanding orders at time t . The inventory position at
time t is given by

P(t) = I (t) + qO(t).

Now define

X(t) = P(t) − r. (1)

Since the holding and back-order costs depend on I (t), our main interest is in com-
puting the limiting distribution of the inventory level process {I (t), t ≥ 0}. Since

I (t) = X(t) + r − qO(t), (2)

we need the limiting joint distribution of (X(t),O(t)) to compute the limit-
ing distribution of I (t). In order to compute this we study a trivariate process
{(X(t),O(t),Z(t)), t ≥ 0}. We consider two cases.

Serial case This case arises if the orders do not cross, that is, they are delivered in
the same sequence in which they are placed. We assume that if there is at least one
outstanding order, the next order will be delivered after an exp(ν) amount of time.

Parallel case This case arises if the orders can cross, that is, orders may be delivered
out of sequence. We assume that the lead times for the individual orders are i.i.d.
exp(ν). Thus, if there are m outstanding orders, the next order will be delivered after
an exp(mν) amount of time.

Both the above cases can be covered by a general model: when there are m out-
standing orders, the next order is delivered at rate νm. When νm = ν for m ≥ 1, we
get the serial case, and when νm = mν, we get the parallel case.

One can think of the trivariate process {(X(t),O(t),Z(t)), t ≥ 0} as a fluid pro-
cess {X(t), t ≥ 0} modulated by the extended environment process {(Z(t),O(t)),

t ≥ 0}. However, one cannot use the methods of Yan [28] to compute the limiting dis-
tribution of this trivariate process since the state space of the extended environment
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process is {(j, k) : j ∈ Ω,k ≥ 0}, which is infinite. Yan [27] circumvents this issue
by truncating the state space by assuming that there is a finite upper limit on the num-
ber of outstanding orders. In this paper we present an analysis under the assumption
that there is no upper limit on the number of outstanding orders.

In the analysis we shall need results from the transient and limiting behavior of
the standard fluid model (with no jumps), as well as the first passage times. One
method of deriving these results is the spectral method: derive a system of linear dif-
ferential equations and solve them by using standard techniques. This is the classical
approach taken in the seminal papers Anick et al. [2], and Mitra [14], and followed
by many others. More recently, Asmussen [4] has analyzed the same model (with
and without a Brownian motion component) using martingale methods, and by Ahn
and Ramaswami [1, 3] and Ramaswami [21] using matrix analytic methods. None
of these papers include the analysis of the model with jumps, which is studied by
Kulkarni and Yan [11], using the spectral method.

We shall follow the spectral method in this paper. Clearly, the same analysis can
be done by these other methods as well. The solutions by the spectral method become
particularly concise when the rates Ri are nonzero in each state, as reported by Tanaka
et al. [25]. It is tempting to argue that the states with zero rates do not matter, since
we can always “skip over” them without affecting the (X,Z) process. However, this
argument works only in the study of the limiting behavior of the process. In our
case, however, we need to study the transient behavior of the process, and hence we
will need to explicitly account for the states with zero rate. The added generality of
allowing zero rate states does not shed any new light on the behavior of the system,
and is more distracting than useful. Hence, strictly for simplicity, we shall assume
in this paper that there are no zero-rate states. This allows us to present many of the
results in a closed form.

Stochastic lead times are a well studied aspect of inventory systems. There are
many ways to model stochastic lead times that lead to tractable analysis. See Ka-
plan [10], Nahmias [15], and Zipkin [29]. In general, one assumes that the stochastic
lead times are i.i.d. non-negative random variables, and researchers have looked at
two cases: orders can cross (as if they are coming from different sources), or that
they cannot cross (as if they are coming from a single source that processes the or-
ders sequentially). In this paper, we call them the parallel case and the serial case.
Zipkin [29] contains a good description of how these two lead time models can arise.
In the inventory literature, the (r, q) policy was first introduced in the classical paper
by Galliher et al. [8] when lead times are present. Since then, it has become stan-
dard policy to analyze, since an optimal policy can often be found with that form.
Zipkin [29] shows that this policy can be optimal under quite general settings. An-
other stream of inventory literature investigates different demand models. There is
a large literature where demand rate is assumed to be constant (as in the standard
EOQ model, see Hadley and Whitin [9] and Zipkin [30]), or Poisson (see Galliher et
al. [8]), or possess independent increments (see Stidham [24] and Whitt [26]). More
recently, researchers have studied more complicated demand processes. For example,
Browne and Zipkin [7] have considered a demand process modulated by a continu-
ous time stochastic process, and Song and Zipkin [23] consider a Markov modulated
discrete demand process. The recent book by Beyer et al. [6] discusses Markovian
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demand models in discrete time and provides a good reference for the history of such
demand models. Yan and Kulkarni [28] and Berman and Perry [5] consider a Markov
modulated fluid model of demands and productions, but without the lead times.

The key contribution of this work is to combine Markov modulated fluid models
for demands, and stochastic lead times. As far as we know, this is the first time a
fluid model of a production-inventory system with stochastic lead times and random
environment has been considered in the literature. The main insight is to identify
the process of outstanding orders as an SM/M/1 queue in the serial case and an
SM/M/∞ queue in the parallel case, where the notation SM represents an arrival
process that generates a single arrival whenever a prespecified semi-Markov process
undergoes a transition. Then we use the well-known results by Neuts [17, 18] and
Ramaswami [20] to compute the limiting distributions. It is useful to point out here
that if we “skip over” the zero-rate states and construct an environmental state with
reduced state space, the process of outstanding orders can no longer be analyzed as
an SM/M/1 or SM/M/∞ queue.

The paper is organized as follows: In the next section we collect all the relevant
results about the standard fluid model in one place for ready reference. We mention
which are known and which are new at appropriate places. In Sect. 3 we study the
process of outstanding orders as an SM/M/1 or an SM/M/∞ queue. We use these
results to compute the limiting distribution of the {(X(t), O(t), Z(t)), t ≥ 0} process
in Sect. 4. We compute the optimal reorder point in Sect. 5. All the material developed
here is then illustrated with a numerical example in Sect. 6. Finally, in Sect. 7, we
summarize our conclusions and discuss several possible extensions.

2 The process {(X(t),Z(t)), t ≥ 0}
We can see that the {X(t), t ≥ 0} process is the same as the inventory process studied
in Kulkarni and Yan [11] and Yan and Kulkarni [28], modulated by the environment
process {Z(t), t ≥ 0}, and with upward jumps of size q whenever the inventory pro-
cess hits zero. We need to study this process starting in state (X(0),Z(0)) = (q, i)

over the interval [0, T ), where

T = min
{
t > 0 : X(t) = 0

}
. (3)

Thus, the upward jump behavior at T plays no role in this analysis. Hence, in this sec-
tion, we assume that {(X(t),Z(t)), t ≥ 0} is the standard fluid process with no jumps.
Here, we state some relevant results for completeness. Some are known previously,
while some are new. We clearly state it when the results are new.

Stability The process {(X(t),Z(t)), t ≥ 0} is stable (i.e., it has a nondefective lim-
iting distribution) if

Δ = −
∑

i∈Ω

piRi > 0, (4)

where

pi = lim
t→∞ P

{
Z(t) = i

}
, i ∈ Ω. (5)
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As discussed before, we shall assume that Ri �= 0 for all i ∈ Ω , that is, the diagonal
matrix R is invertible. Note that the differential equations (6), (12), and (25) that
appear below are valid for all R, but the closed form solution is valid only when R is
invertible.

Transient analysis Here, we state the main result about the transient distribution
of (X(t), Z(t)) from Tanaka et al. [25]. Suppose the bivariate process starts in state
(X(0),Z(0)) = (q, i) where q > 0. Let

πij (t, x) = P
(
X(t) ≤ x,Z(t) = j |X(0) = q,Z(0) = i

)
,

and π(t, x) = [πij (t, x)]. Define the Laplace Transform (LT) as

π∗
ij (s, x) =

∫ ∞

0
e−stπij (t, x) dt.

Then, for a given s with Re(s) > 0, the matrix π∗(s, x) = [π∗
ij (s, x)] satisfies the

equation

dπ∗(s, x)

dx
R = −π∗(s, x)(sI − Q) + π(0, x), (6)

with boundary conditions

πij (0, x) =
{

δij if x ≥ q,

0 if x < q,
(7)

and

πij (t,0) = 0 if Rj > 0, t > 0. (8)

Here, δij = 1 if i = j , and 0 otherwise. We need the following notation to write the
solution of (6). Assume that (sI − Q)R−1 is diagonalizable, and write

(sI − Q)R−1 = V ΘV −1, (9)

where the right eigenvectors V , and the eigenvalues Θ = diag(θ1, θ2, . . . , θn) of (sI −
Q)R−1 depend on s, but we suppress the dependence to simplify the notation. We
assume, without loss of generality, that the states and the eigenvalues θ are numbered
so that Ri ’s and Re(θi)’s both increase in i ∈ Ω . Let n+(n−) be the number of states
i with Ri > 0 (Ri < 0). For Re(s) > 0, we know that (See Anick et al. [2]) n+(n−)

θj ’s have positive (negative) real part. The solution π∗(s, x) can now be written as

π∗(s, x) =

⎧
⎪⎨

⎪⎩

(sI − Q)−1[I − exp(−(sI − Q)R−1(x − q))]
+ φ∗(s) exp(−(sI − Q)R−1x) if x ≥ q

φ∗(s) exp(−(sI − Q)R−1x) if x < q,

(10)

where

φ∗(s) = R−1V I−Θ−1 exp(Θq)
(
I−V I− + I+)−1

I−, (11)
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where I+ is a diagonal matrix with 1 in the (i, i)th place if Ri > 0 and zero otherwise,
and I− = I − I+.

Remark 1 When can we expect (sI − Q)R−1 to be diagonlizable? One simple but
useful example is the birth and death processes. We can use the results in Leder-
mann [13] to show that this is the case (when Re(s) ≥ 0) if Q is the infinitesimal
generator of a birth and death process. In production-inventory applications, a birth
and death process can represent an environment that is slowly improving or deterio-
rating, such as a set of production facilities that come on and off one at a time. We
shall use such a system to do numerical computations in Sect. 6.

Remark 2 When (sI − Q)R−1 is not diagonalizable, the analysis can still be done
using Jordan form. However, the concise representation of the solution disappears.
This case does not shed any new light on the system behavior, and hence we shall not
treat such a case here.

Special case Suppose Ri < 0 for all 1 ≤ i ≤ n. Then X(0) = q implies that 0 ≤
X(t) ≤ q for all t ≥ 0. In this case, the above result simplifies to

π∗(s, x) = R−1V Θ−1 exp
(
Θ(q − x)

)
V −1, 0 ≤ x ≤ q.

The absorbing case In the sequel we will need the extension of the above transient
analysis to the case where the first component of the bivariate stochastic process
{(X(t),Z(t)), t ≥ 0} stays zero once it reaches zero, while the second component
continues to evolve as before. We call this the absorbing case and denote the corre-
sponding stochastic process by {(Xa(t),Z(t)), t ≥ 0}. Thus, Xa(t) = 0 ⇒ Xa(t ′) =
0 for all t ′ ≥ t . Let

πa
ij (t, x) = P

(
Xa(t) ≤ x,Z(t) = j |Xa(0) = q,Z(0) = i

)
,

and πa∗
ij (s, x) be its LT. Then the matrix πa∗(s, x) = [π∗

ij (s, x)] satisfies the equation

dπa∗(s, x)

dx
R = −πa∗(s, x)(sI − Q) + πa(0, x), (12)

which is same as (6). The boundary conditions are given by

πa
ij (0, x) =

{
δij if x ≥ q,

0 if x < q,
(13)

which is same as (7), and

dπa
ij (t, x)

dx

∣∣∣∣{x=0}
= 0 if Rj > 0, t ≥ 0, (14)
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which differs from (8), and reflects the absorbing nature of the Xa process. The solu-
tion πa∗(s, x) can now be written as

πa∗(s, x) =

⎧
⎪⎨

⎪⎩

(sI − Q)−1[I − exp(−(sI − Q)R−1(x − q))]
+ φa∗(s) exp(−(sI − Q)R−1x) if x ≥ q

φa∗(s) exp(−(sI − Q)R−1x) if x < q,

(15)

where

φa∗(s) = R−1V I−(Θ)−1 exp(Θq)
[
V ΘV −1I+ + V I−]−1

I−. (16)

Equation (15) is identical to (10), but (16) differs from (11), reflecting the changed
absorbing behavior. The results in (15) and (16) are new.

Special case Suppose Ri < 0 for all 1 ≤ i ≤ n. Then X(0) = q implies that 0 ≤
X(t) ≤ q for all t ≥ 0. In this case the bivariate process {(Xa(t),Z(t)), t ≥ 0} is
identical to {(X(t),Z(t)), t ≥ 0} and the above result simplifies to

πa∗(s, x) = π∗(s, x), 0 ≤ x ≤ q,

as expected.

First passage times Let T be the first passage time into the state 0, as defined by
(3). For a fixed q > 0, define

Hij (t, x) = P
(
T > t,X(t) ≤ x,Z(t) = j |X(0) = q,Z(0) = i

)
,

t ≥ 0, x ≥ 0, i, j ∈ Ω,

and let

H(t, x) = [
Hij (t, x)

]
. (17)

Since Xa(t) > 0 is equivalent to T > t , we get

Hij (t, x) = P
(
0 < Xa(t) ≤ x,Z(t) = j |Xa(0) = q,Z(0) = i

) = πa
ij (t, x)−πa

ij (t,0).

(18)
Thus, we can use the analysis of the absorbing case to derive an expression for the
LT H ∗(s, x) of H(t, x) as follows:

H ∗(s, x) =

⎧
⎪⎨

⎪⎩

(sI − Q)−1[I − exp(−(sI − Q)R−1(x − q))]
+ φa∗(s)[exp(−(sI − Q)R−1x) − I ] if x ≥ q

φa∗(s)[exp(−(sI − Q)R−1x) − I ] if x < q,

(19)

where φa∗(s) is given by (16). These results are new.
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An embedded Markov renewal sequence Next, define

Dij (t, x) = P
(
T ≤ t,Z(T ) = j |X(0) = x,Z(0) = i

)
, x ≥ 0, (20)

D̃ij (s, x) = E
(
e−sT 1{Z(T )=j}

∣∣X(0) = q,Z(0) = i
)

=
∫ ∞

0
e−st dDij (t), x ≥ 0. (21)

Also define

Dij (t) = Dij (t, q), (22)

D̃ij (s) = D̃ij (s, q). (23)

Let D(t) = [Dij (t)] and D̃(s) = [D̃ij (s)]. Clearly D(∞) = D̃(0) is a transition
probability matrix of an irreducible Discrete Time Markov Chain (DTMC). Let
π̂ = [π̂1, π̂2, . . . , π̂n] be the unique solution to

π̂ = π̂D̃(0),

n∑

i=1

π̂i = 1. (24)

These quantities have been analyzed by Ramaswami [21] and Narayanan [16]. We
recapitulate the main results of Narayanan [16]. The matrix D̃(s, x) = [D̃ij (t, x)]
satisfies the following differential equation:

R
dD̃(s, x)

dx
= (sI − Q)D̃(s, x), (25)

with initial conditions

D̃ij (s, x) = 0 if Rj > 0, x > 0,

D̃ij (s,0) = δij if Ri < 0.

From (9), it follows that

R−1(sI − Q) = R−1V ∗ Θ ∗ V −1R (26)

The solution to (25) can now be written as

D̃(s, x) = R−1V I−eΘxI−V −1R
(
I+V −1R + I−)−1

I−. (27)

In particular, we get

D̃(s) = R−1V I−eΘqI−V −1R
(
I+V −1R + I−)−1

I−. (28)

Now, suppose X(0) = q , and Sk be the kth time the X process hits zero (S0 = 0).
Define Zk = Z(Sk). Due to the Markov nature of the {(X(t),Z(t)), t ≥ 0} process,
and since X(Sk+) = q for all k ≥ 0, it follows that {(Sk,Zk), k ≥ 0} is a Markov
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renewal sequence (MRS, see Kulkarni [12] for definition) with kernel D(·) whose
LST is given by D̃(s). These results are new.

Limiting distribution, no jumps Suppose the stability condition of (4) is satisfied.
Then the limiting distribution defined by

πj (x) = lim
t→∞πij (t, x)

exists and is unique. Let π(x) = [π1(x),π2(x), . . . , πn(x)]. Let Θ and V be as given
by (9) with s = 0. Again, when there are no jumps, the results of Tanaka et al. [25]
can be written in matrix forms as follows:

π(x) = p − pI+(
I+V −1I+ + I−)−1 exp(Θx)I+V −1

where p = [p1,p2, . . . , pn] is the limiting distribution of the CTMC {Z(t), t ≥ 0}.

Limiting distribution, with jumps Now consider the case when the X process jumps
to q whenever it hits zero. The jumps have no effect on the Z process. Let the limiting
distribution be defined by

π
q
j (x) = lim

t→∞ P
(
X(t) ≤ x,Z(t) = j

)
.

Let πq(x) = [πq

1 (x),π
q

2 (x), . . . , π
q
n (x)]. Let Θ and V be as given by (9) with s = 0.

The result of Kulkarni and Yan [11] can be written in a matrix form as follows:

πq(x) = p min(x/q,1) − pI+(
I+V −1I+ + I−)−1

E(x)I+V −1 (29)

where E(x) is a diagonal matrix with

Eii(x) =
{

(exp(−θi max(x − q,0)) − exp(−θix))/(θiq) if θi > 0

0 if θi ≤ 0.

With these results in place we are ready to analyze the {O(t), t ≥ 0} process in the
next section.

3 The process {O(t), t ≥ 0}

In this section we consider the process {O(t), t ≥ 0}. The (r, q) policy implies that
an order of size q is placed with the supplier at times Sk , k ≥ 0. Thus, O(t) increases
by one at every Sk , and if O(t) = m it decreases by one at an exponential rate νm.
Since {(Sk,Zk), k ≥ 0} is an MRS, we can think of {O(t), t ≥ 0} as the queue length
process in a queue with arrivals modulated by a semi-Markov process (SM). In the
serial order-processing case, we have νm = ν for all m ≥ 1, and hence {O(t), t ≥ 0}
is the queue-length process in an SM|M|1 queue. Similarly, in the parallel order-
processing case, we have νm = mν for all m ≥ 0, and hence {O(t), t ≥ 0} is the
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queue-length process in an SM|M|∞ queue. We use this structure to compute the
limiting distribution of the outstanding orders in the next two subsections.

Define Ok = O(Sk−). Assuming the limits exist, define

gm,i = lim
k→∞ P(Ok = m,Zk = i), i ∈ Ω, m ≥ 0,

and

gm = [gm,1, gm,2, . . . , gm,n].
3.1 The serial case

In this case, {(Ok,Zk), k ≥ 0} is the embedded chain in an SM|M|1 queue and its
limiting distribution can be computed using the results of Neuts [18], or from Theo-
rem 4.2.1 of Neuts [19]. First, we study the stability condition.

Let τ be the mean time between two consecutive orders in steady state. Since the
steady state rate of demands is Δ of (4), and the size of each order is q , a simple
conservation of inventory argument implies that

τΔ = q. (30)

An SM|M|1 queue is stable (i.e., it has a non-defective limiting distribution) if ντ >

1, hence the condition of stability for the {O(t), t ≥ 0} process can be written as

Δ > 0 and
Δ

νq
< 1. (31)

The next theorem gives the result about the limiting distribution of the bivariate
process {(Ok,Zk), k ≥ 0}.

Theorem 3.1 Suppose the stability condition (31) i s satisfied. Let M be the smallest
non-negative solution to

M =
∫ ∞

0
exp

(−νt (I − M)
)
dD(t), (32)

where D is from (22). Then the limiting distribution is given by

gm = π̂ (I − M)Mm, m ≥ 0, (33)

where π̂ is from (24).

Proof Follows from Neuts [18], or from Theorem 4.2.1 of Neuts [19]. We omit the
details. �

The simplest method of obtaining M in (32) is to use the recursion: M(0) = 0 (an
n by n matrix of zeroes),

M(k + 1) =
∫ ∞

0
exp

(−νt
(
I − M(k)

))
dD(t), k ≥ 0. (34)
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Then it is known that (see Neuts [19]) M(k) (rapidly) converges to M as k → ∞. The
simplest method of evaluating the above integral is to diagonalize M(k) and write

M(k) = V (k)Θ(k)U(k),

where Θ(k) = diag(θ1(k), θ2(k), . . . , θn(k)), and U(k) = (V (k))−1. Now let Vi(k)

be the ith column of V (k) and Ui(k) be the ith row of U(k). Then, assuming the
eigenvalues are distinct, we have

exp
(−νt

(
I − M(k)

)) =
n∑

i=1

e−ν(1−θi (k))tVi(k)Ui(k).

Substituting in (34) we get

M(k + 1) =
n∑

i=1

Vi(k)Ui(k)D̃
(
ν
(
1 − θi(k)

))
, k ≥ 0.

Thus, M(k + 1) can be easily computed from M(k) using the LT D̃(s) given in (28).
If the eigenvalues are not distinct, the above method can still be used, but we have
to use Jordan normal forms, and we need to use derivatives of D̃(s) matrix. This
makes the method more complicated to implement, and numerically delicate. In our
examples, the eigenvalues are observed to be distinct.

3.2 The parallel case

In this case, {(Ok,Zk), k ≥ 0} is the embedded chain in an SM|M|∞ queue, and its
limiting distribution can be computed using the results of Neuts [17]. This queue is
stable (i.e., has nondefective limiting distribution) if the condition in (4) is satisfied.
(Note that, we need this to make the semi-Markov process positive recurrent.) We
also need ν > 0. We find it useful to define the binomial moments of Ok in steady
state as follows:

bm,j = lim
k→∞ E

((
Ok

m

)
1{Zk=j}

)
.

Then

bm = [bm,1, bm,2, . . . , bm,n] =
∞∑

r=m

(
r

m

)
gr .

We give the main result below:

Theorem 3.2 The limiting distribution vectors gm exist if the stability condition in
(4) is satisfied and ν > 0, and their binomial moments are given by

bm = π̂

m∏

k=1

D̃(kν)
(
I − D̃(kν)

)−1
, m ≥ 0. (35)
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where D̃ is from (23) and π̂ is from (24). Also,

gm = π̂

∞∑

k=0

(−1)k
(

m + k

m

)
bm+k. (36)

Armed with Theorems 3.1 and 3.2, we can now analyze the limiting distribution of
the trivariate process {(X(t),O(t),Z(t)), t ≥ 0} in the next section.

4 The process {(X(t),O(t),Z(t)), t ≥ 0}

In this section we derive the limiting distribution of the trivariate process {(X(t),

O(t),Z(t)), t ≥ 0} by utilizing the fact that it is a Markov regenerative process
(MRGP) with embedded Markov renewal sequence (MRS) {(Sk, (Ok,Zk)), k ≥ 0}.
(See Kulkarni [12] for the relevant definitions.) This is similar to the procedure fol-
lowed by Ramaswami in [20].

Let

p(x,m, j) = lim
t→∞ P

(
X(t) ≤ x,O(t) = m,Z(t) = j

)
,

x ≥ 0, m = 0,1,2, . . . , j ∈ Ω. (37)

We state the results for the serial and the parallel cases separately.

Theorem 4.1 (The serial case) Suppose the stability conditions in (31) holds. Then
the vectors

pm(x) = [
p(x,m,1), p(x,m,2), . . . , p(x,m,n)

]
, m ≥ 0

are given by

p0(x) = πq(x) − π̂Ψ (x),

pm(x) = gm−1Ψ (x), m ≥ 1,

where

Ψ (x) = Δ

q

∫ ∞

0
exp

{−νt (I − M)
}
H(t, x) dt,

where M is as in (32), H(t, x) is as defined in (17), and πq(x) is as given by (29).

Proof We use the key renewal theorem for the Markov regenerative processes from
Kulkarni [12]. Let

S(x,m, j) = {
(y,m, j) : 0 ≤ y ≤ x

}
,

and let αq,k,i (x,m, j) be the expected time spent by the trivariate process in the set
S(x,m, j) over [0, T ) starting with X(0) = q , O(0) = k, and Z(0) = i, where T is
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as defined in (3). Now, over the interval [0, T ), the O(t) process is independent of
the bivariate process (X(t),Z(t)). Using this fact we get, for k ≥ m ≥ 1,

αq,k,i (x,m, j) =
∫ ∞

0
e−νt (νt)k−m

(k − m)!Hij (t, x) dt.

Using τ from (30) in the key renewal theorem for Markov regenerative processes, we
get

p(x,m, j) = Δ

q

∞∑

r=m−1

n∑

i=1

gr,iαq,r+1,i . (38)

In matrix form, we get

pm(x) = Δ

q

∞∑

r=m−1

∫ ∞

0
e−νt (νt)r+1−m

(r + 1 − m)!grH(t, x) dt

= Δ

q

∫ ∞

0
e−νt

∞∑

r=m−1

(νt)r+1−m

(r + 1 − m)! π̂(I − M)MrH(t, x) dt

(From Theorem 3.1)

= π̂ (I − M)Mm−1 Δ

q

∫ ∞

0
e−νt

∞∑

r=m−1

(νtM)r+1−m

(r + 1 − m)!H(t, x) dt

= gm−1
Δ

q

∫ ∞

0
e−νt (I−M)H(t, x) dt.

This yields the theorem. �

Next, we give a computationally useful method of computing Ψ (x) when M is
diagonalizable. Assume this is the case and write

M = ABA−1,

where B = diag(b1, b2, . . . , bn) and A = [A1, A2, . . . , An], where bi is an eigen-
value of M and Ai is the right eigenvector of M . Let Ci be the ith row of C = A−1.
Then

Theorem 4.2

Ψ (x) = Δ

q

n∑

i=1

AiCiH
∗(ν(1 − bi), x

)
. (39)

Proof Using

exp(M) =
n∑

i=1

ebi AiCi
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we get

Ψ (x) = Δ

q

∫ ∞

0
e−νt (I−M)H(t, x) dt

= Δ

q

∫ ∞

0
e−νt

n∑

i=1

eνbi tAiCiH(t, x) dt

= Δ

q

n∑

i=1

∫ ∞

0
e−ν(1−bi )tAiCiH(t, x) dt

= Δ

q

n∑

i=1

∫ ∞

0
e−ν(1−bi )tAiCiH(t, x) dt

= Δ

q

n∑

i=1

AiCiH
∗(ν(1 − bi), x

)

as desired. �

Since H ∗ is explicitly given by (19), the above theorem yields a simple method of
computing Ψ (x). If M is not diagonalizable (has repeated eigenvalues) the computa-
tion of Ψ (x) requires the use of Jordan forms, and derivatives of the H ∗ matrix. This
makes computation more involved and numerically delicate.

Next, we study the parallel case. Again, we denote the binomial moments as fol-
lows:

βm(x) =
∞∑

r=m

(
r

m

)
pr(x).

The main result is given in the following theorem.

Theorem 4.3 (Parallel case) Suppose the stability condition in (4) holds and ν > 0.
Then the binomial moment vectors are given by

βm(x) = (bm + bm−1)H
∗((m + 1)ν, x

)
, m ≥ 0,

where b−1 = 0 and bm, m ≥ 0, are as given in (35) and H ∗ is as in (19). Also,

pm(x) = π̂

∞∑

k=0

(−1)k
(

m + k

m

)
βm+k(x), m ≥ 0. (40)

Proof We use the key renewal theorem for the Markov regenerative processes from
Kulkarni [12]. Let S(x,m, j) be as in the proof of Theorem 4.1 and let

α∗
q,k,i (x,m, j)

= E

(∫ T

0

(
O(t)

m

)
1{X(t)≤x}1{Z(t)=j}|X(0) = q,O(0) = k,Z(0) = i

)
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where T is as defined in (3). Now, over the interval [0, T ), the O(t) process is inde-
pendent of the bivariate process (X(t),Z(t)). Also, given O(0) = k, and T > t , O(t)

is a Bin(k, e−νt ) random variable. It is easy to show that

E

((
Bin(k,p)

m

))
=

(
k

m

)
pm.

Using these facts we get, for k ≥ m ≥ 1,

α∗
q,k,i (x,m, j) =

∫ ∞

0

(
k

m

)
e−mνtHij (t, x) dt =

(
k

m

)
H ∗

ij (mν, x).

Using τ from (30),

βm(x) = Δ

q

∞∑

r=m−1

∫ ∞

0

(
r + 1

m

)
e−mνtgrH(t, x) dt

= Δ

q

∞∑

r=m−1

(
r + 1

m

)
grH

∗(mν,x)

= Δ

q

∞∑

r=m−1

[(
r

m

)
+

(
r

m − 1

)]
grH

∗(mν,x)

= Δ

q
[bm + bm−1]H ∗(mν,x).

This yields the theorem. The relation holds even at m = 0 if we define b−1 = 0. �

Since H ∗ is explicitly given by (19), the above theorem yields a simple method
of computing the limiting joint distribution of (X(t),O(t),Z(t)). Using this limiting
distribution and (2), we can compute the limiting distribution of I (t) as given in the
next theorem.

Theorem 4.4 Let

G(x) =
∞∑

m=0

pm(x + mq) · e, −∞ < x < ∞, (41)

where e is an n by 1 vector of ones. Then

lim
t→∞P

(
I (t) ≤ x

) = G(x − r). (42)

Proof Using (37), we see that

lim
t→∞P

(
X(t) − qO(t) ≤ x

)

=
∞∑

m=0

n∑

j=1

P
(
X(t) ≤ x + qm,O(t) = m,Z(t) = j

)
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=
∞∑

m=0

n∑

j=1

p(x,m, j) = G(x).

The theorem then follows by using (2). Note that we use the results of Theorem 4.1
if we are in the serial case and those of Theorem 4.3 in the parallel case to compute
pm(x) for x ≥ 0. For x < 0, we set pm(x) = 0. �

Using this limiting distribution of I (t) and an appropriate cost model, we can
compute the optimal r and q that minimize the long run average cost per unit time.
The details are given in the next section.

5 The cost model

Using the limiting distribution of I (t) in Theorem 4.4, we see that the limiting ex-
pected amount of inventory on hand is given by

lim
t→∞E

(
I (t)+

) =
∫ ∞

0

(
1 − G(x − r)

)
dx,

and the limiting expected amount of inventory on back-order is given by

lim
t→∞E

(
I (t)−

) =
∫ ∞

0
G(r − x)dx.

Now, let α be the rate which orders are placed from the outside suppliers in steady
state. Since all orders are of size q , the rate at which items are received from the
outside suppliers is αq in steady state. Also, in steady state the in-house production
takes place at rate

∑
piri , and demand occurs at rate

∑
pidi , where pi is as given in

(5). The conservation of inventory implies that

αq +
n∑

i=1

piri =
n∑

i=1

pidi .

This implies

α = Δ

q
,

where Δ is as defined in (4). Note that, in steady state, the in-house production rate
or the amount ordered from the external suppliers per unit time do not depend on the
parameters r and q of the inventory management policy.

Now, assume that h is the cost to hold one item in the inventory for one unit
of time; b is cost to backlog one unit of demand for one unit of time; and k is the
fixed cost to place an order from an outside supplier. We do not consider production
costs, or the cost of externally ordered items, because as discussed above, they are
not affected by the parameters r and q . The long run cost rate is thus given by

c(r, q) = h

∫ ∞

−r

(
1 − G(x)

)
dx + b

∫ −r

−∞
G(x)dx + kΔ

q
.
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Following the standard analysis in inventory models, we see that for a given q , c(r, q)

is a convex function of r , and it is minimized at

r∗(q) = −G−1
(

h

h + b

)
. (43)

The problem of minimizing the function c(r, q) thus reduces to that of minimiz-
ing the function of a single variable c(r∗(q), q) to obtain the optimal order quantity
q∗. Then the optimal reorder point is given by r∗ = r∗(q∗). This needs to be done
numerically.

6 A numerical example

Consider a workshop with n independent and identical machines. Each machine stays
up for an exponential amount of time with parameter μ and then fails. The repairs
take an exponential amount time with rate λ. While a machine is up, it produces items
continuously at rate θ, and when it is down it produces nothing. The demands occur
continuously at rate nd , where d > 0, is a fixed parameter. Let Z(t) be the number
of working machines at time t . Then {Z(t), t ≥ 0} is a birth and death CTMC on
{0,1, . . . , n}, with birth rates

λi = (n − i)λ, 0 ≤ i ≤ n,

and death rates

μi = iμ, 0 ≤ i ≤ n.

The expected number of up machines is nλ/(λ + μ) in steady state, and hence

Δ = n

(
d − θ

λ

λ + μ

)
.

We assume the following values:

λ = 1, μ = 2, d = 1, q = 1, h = 1, b = 2, k = 1, ν = 2.

We study the series and parallel cases for the following cases:

(n, θ) = (1,1.2), (2,1.2), (3,1.2), (1,0.8), (2,0.8).

In the first three cases, Ri is positive in some states, and negative in the others; while
in the last two cases Ri < 0 in all states. Note that the parallel system (n, θ) is stable
for all n if 0 ≤ θ < 3. However, (n,1.2) is unstable for the series system if n ≥ 4,
and (n,0.8) is unstable for the series case for n ≥ 3. Hence, we do not include them
in our computational experiment. We also do not find the optimal q , since that is a
simple numerical optimization in one variable. We assume that q = 1, and compute

1. r : the optimal reorder point,
2. E(O): the expected number of outstanding orders in steady state,
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3. E(I+): the expected inventory on hand in steady state,
4. E(I−): the expected inventory on back order in steady state.

In order to gauge the sensitivity of the results to the assumption that the lead times are
exponentially distributed with mean 1/ν, we use simulation to estimate the four per-
formance measures mentioned above for three other distributions for the lead times:

1. Deterministic with mean 1/ν and variance zero,
2. Erlang(2,2ν) with mean 1/ν and variance 1/2ν2,
3. Hyper-exponential, a mixture of Exp(2ν) with probability 2/3, and Exp(ν/2) with

probability 1/3. This has mean 1/ν and variance 2/ν2.

Note that all these distributions are chosen to have the same mean, and their variances
are ordered as Var(Det) < Var(Erl) < Var(Exp) < Var(Hyp). Table 1 summarizes
the above performance measures for the series system, and Table 2 for the parallel
system. In each table, the performance measure for the exponential case is from the
numerical calculations, while the others are from simulation. For the exponential,
we do not report the simulation results since they are more or less the same as the
numerical (as expected) results.

We see that each of the performance measures increases as the number of ma-
chines increases for both the parallel and the series case. This is as expected. Also,
the parallel system performs better than the series system, also as expected.

Table 1 Series system

Lead-time n θ r E(O) E(I+) E(I−)

Det 1 1.2 −0.06 0.299 0.266 0.085

Erl 1 1.2 −0.06 0.310 0.282 0.114

Exp 1 1.2 −0.06 0.332 0.289 0.145

Hyp 1 1.2 −0.06 0.392 0.299 0.211

Det 2 1.2 0.29 0.601 0.296 0.094

Erl 2 1.2 0.49 0.836 0.422 0.256

Exp 2 1.2 0.67 1.051 0.532 0.401

Hyp 2 1.2 0.95 1.483 0.703 0.722

Det 3 1.2 1.74 2.013 0.714 0.485

Erl 3 1.2 4.20 4.270 1.808 1.372

Exp 3 1.2 6.06 5.811 2.673 1.899

Hyp 3 1.2 11.47 11.316 5.128 2.787

Det 1 0.8 0.03 0.366 0.228 0.070

Erl 1 0.8 0.03 0.382 0.254 0.112

Exp 1 0.8 0.04 0.393 0.273 0.154

Hyp 1 0.8 0.04 0.509 0.286 0.260

Det 2 0.8 0.40 0.733 0.242 0.079

Erl 2 0.8 0.85 1.179 0.495 0.329

Exp 2 0.8 1.34 1.657 0.756 0.578

Hyp 2 0.8 2.29 2.637 1.269 1.119
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Table 2 Parallel system

Lead-time n θ r E(O) E(I+) E(I−)

Det 1 1.2 −0.06 0.299 0.261 0.085

Erl 1 1.2 −0.07 0.300 0.275 0.110

Exp 1 1.2 −0.08 0.300 0.281 0.126

Hyp 1 1.2 −0.09 0.300 0.283 0.138

Det 2 1.2 0.29 0.601 0.295 0.094

Erl 2 1.2 0.28 0.598 0.344 0.151

Exp 2 1.2 0.29 0.600 0.372 0.170

Hyp 2 1.2 0.28 0.602 0.378 0.190

Det 3 1.2 0.62 0.898 0.327 0.104

Erl 3 1.2 0.64 0.896 0.422 0.176

Exp 3 1.2 0.66 0.900 0.458 0.197

Hyp 3 1.2 0.66 0.897 0.477 0.213

Det 1 0.8 0.03 0.366 0.228 0.070

Erl 1 0.8 0.02 0.368 0.252 0.105

Exp 1 0.8 0.01 0.367 0.264 0.126

Hyp 1 0.8 0.00 0.365 0.273 0.143

Det 2 0.8 0.40 0.733 0.242 0.079

Erl 2 0.8 0.43 0.734 0.338 0.148

Exp 2 0.8 0.45 0.733 0.382 0.170

Hyp 2 0.8 0.45 0.730 0.405 0.190

The simulation results point out that the series system is more sensitive to the lead
time distribution than the parallel system. In general, all performance measures in-
crease as the variance of the lead time increases. Thus, having a deterministic lead
time seems most beneficial. Also, the influence of the lead time distribution increases
as the number of machines increases. In the parallel case, the reorder point and the
expected number of outstanding orders seem to be highly insensitive. The insensi-
tivity of the outstanding orders may be a result of the fact that it forms an infinite
server queue. However, the arrival process is not Poisson, and the SM/G/∞ queue is
not known to be insensitive to the G. In fact, Neuts and Ramaswami [22] report that
PH/G/∞ queue is highly sensitive to the variability of the interarrival times. Our
simulation seems to indicate that the expected queue length in the SM/G/∞ queue
seems insensitive to the service time distribution. In general, we can recommend that
the exponential lead time analysis can be used safely in the parallel case, but in the
series case one needs to be more careful about the distribution of the lead time.

Next, we plot the limiting marginal cdf of the inventory level. Figure 1 shows this
for the serial case when n = 1,2,3 when θ = 1.2, and Fig. 2 shows the same for the
parallel case. Figures 3 and 4 show similar results for n = 1,2 and θ = 0.8. Note
that we use the appropriate r value from Tables 1 and 2 in plotting G(x − r) for
the different cases. Since r is chosen to be equal to −G−1(1/3), all the graphs pass
through the point (0,1/3) in these four figures.
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Fig. 1 Limiting cdf of the inventory level for the series case, with θ = 1.2

Fig. 2 Limiting cdf of the inventory level for the parallel case, with θ = 1.2

Finally, we show the limiting marginal pmf of the number of outstanding orders.
Figure 5 shows this for the serial case for n = 1,2,3, and θ = 1.2, and Fig. 6 shows
the same for the parallel case. Figures 7 and 8 show similar results for n = 1,2 and
θ = 0.8.
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Fig. 3 Limiting cdf of the inventory level for the series case, with θ = 0.8

Fig. 4 Limiting cdf of the inventory level for the parallel case, with θ = 0.8

7 Conclusions and extensions

In this paper we have developed procedures to compute the limiting joint distribution
of the inventory level and the number of outstanding orders for a fluid inventory
system when the production and demands are modulated by an external stochastic
environment and the lead times are stochastic. The analysis uses the SM|M|1 and
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Fig. 5 Limiting pmf of the outstanding orders for the series case, with θ = 1.2

Fig. 6 Limiting pmf of the outstanding orders for the parallel case, with θ = 1.2

SM|M|∞ queues as the building blocks. Our simulation results indicate that the serial
system is much more sensitive to the assumption of exponentially distributed lead
times than the parallel system. We discuss several possible extensions below.

State dependent order sizes One of the main restrictions of our analysis is that the
order size is always q . It would be interesting to extend this analysis to the case when
the order size is allowed to depend on the state of the environment at the time of
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Fig. 7 Limiting pmf of the outstanding orders for the series case, with θ = 0.8

Fig. 8 Limiting pmf of the outstanding orders for the parallel case, with θ = 0.8

order placement. Although it is possible to formulate this as a fluid process modulated
by a multidimensional environment process that keeps track of number of orders of
different sizes, the analysis promises to be challenging.

Continuous order filling Our model assumes that when we place an order of size q ,
it is delivered in its entirety after a random amount of time. What if the order delivery
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is continuous, rather than lumpsum? There are several ways to model this situation.
We shall consider the following. Suppose that we have a standby production facility
that can be used to add to the inventory at a fixed rate, say θ0. When the inventory
level hits a preset level r , we turn on this standby production facility, and keep it
running until the inventory level reaches r + q , where q > 0 is a fixed constant. Then
we turn the standby facility off until the inventory level falls to r . This (r, q) policy
will produce a stable system if θ0 > Δ, where Δ is given by (4). Note that there are
no lead times in this model. The steady state distribution of the (X,Z) process can
be computed by using the Markov regenerative process analysis by considering the
system as going though two alternating phases: in phase one the standby facility is
on, and in phase two it is off. All the required building blocks for this analysis are
already developed in Sect. 2, and the analysis promises to be straight forward.

Lost sales Our analysis assumes backlogging. It will be useful to do a similar anal-
ysis assuming lost sales. However, under the assumption of lost sales, the (X,Z) pro-
cess studied in this paper is no longer a fluid process with jumps, and we are forced
to study the trivariate process (X,O,Z) directly. This promises to be a challenging
extension.
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