
Queueing Syst (2011) 68:375–384
DOI 10.1007/s11134-011-9234-1

Optimal scaling of average queue sizes
in an input-queued switch: an open problem

Devavrat Shah · John N. Tsitsiklis · Yuan Zhong

Received: 9 May 2011 / Revised: 9 May 2011 / Published online: 30 June 2011
© Springer Science+Business Media, LLC 2011

Abstract We review some known results and state a few versions of an open problem
related to the scaling of the total queue size (in steady state) in an n×n input-queued
switch, as a function of the port number n and the load factor ρ. Loosely speaking, the
question is whether the total number of packets in queue, under either the maximum
weight policy or under an optimal policy, scales (ignoring any logarithmic factors) as
O(n/(1 − ρ)).

Keywords Input-queued switch · Average queue size · Maximum weight policy

Mathematics Subject Classification (2000) 60K25 · 90B36

1 Introduction

Stochastic processing networks, as formalized by Harrison [3], provide a general
model that captures a variety of dynamic resource allocation scenarios. Generally
speaking, in such a model there are several queues that need to be served, subject to
certain constraints. The performance of such a queuing network is strongly depen-
dent on the policy that determines which queues are to be served at each time slot.

D. Shah (�) · J.N. Tsitsiklis · Y. Zhong
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
e-mail: devavrat@mit.edu

J.N. Tsitsiklis
e-mail: jnt@mit.edu

Y. Zhong
e-mail: zhyu4118@mit.edu

mailto:devavrat@mit.edu
mailto:jnt@mit.edu
mailto:zhyu4118@mit.edu

376 Queueing Syst (2011) 68:375–384

The capacity region as well as throughput optimal1 policies for such queuing net-
works are reasonably well understood, cf. [11]. However, the development of general
performance analysis methods for estimating the distribution or the moments of the
queue sizes induced by throughput optimal scheduling policies remains an important
challenge.

In this note we put forth a particular performance analysis question. While the
development of general analytical results may be too difficult, we focus on a spe-
cial class of processing networks (input-queued switches) and on asymptotics. More
concretely, we are interested in the way that the total queue size (in steady state)
scales with the number of ports and with the load factor. Input-queued switches are,
in our opinion, the simplest non-trivial example of a stochastic processing network.
Over the years, it has served as a guiding example for designing as well as analyzing
scheduling policies (cf. [9, 10]). Thus, we hope that making progress on the questions
posed in this note will lead to further advances in the performance analysis of more
general stochastic processing networks.

2 Input-queued switch model

An input-queued switch is a popular, and commercially available, architecture for
switching packets in an Internet router. Abstractly, an n × n switch has n input ports
and n output ports. At each time slot, each input port (respectively, output port) can
be matched to at most one output port (respectively, input port) and packets are for-
warded according to this matching. See Fig. 1 for an illustration of a 3×3 switch and
some possible matchings.

The switch operates in discrete time, indexed by τ ∈ {0,1, . . .}. At each time step,
and for every port pair (i, j), unit-sized packets may arrive at input port i destined
for output port j , according to an exogenous arrival process. Let Ai,j (τ) denote the
cumulative number of such arriving packets until the beginning of time slot τ . We
assume that the processes Ai,j (·) are independent for different pairs (i, j). Further-
more, for every input–output pair (i, j), Ai,j (·) is a Bernoulli process with parameter
λi,j . In particular,

lim
τ→∞

1

τ
Ai,j (τ) = λi,j , with probability 1.

Let λ = [λi,j] ∈ [0,1]n×n denote the arrival rate vector. For every input–output pair
(i, j), the associated arriving packets are stored in separate queues, so that we have
a total of n2 queues. Let Qi,j (τ) be the number of packets waiting at input port i,
destined for output j , at the beginning of time slot τ ; let Q(τ) = [Qi,j (τ)].

In each time slot, the switch can transmit a number of packets from input ports to
output ports, subject to the following two constraints: (i) each input port can transmit
at most one packet; and, (ii) each output port can receive at most one packet. In other

1For our purposes, a (Markovian) policy is called throughput optimal if the resulting Markov chain is
positive recurrent whenever the network is underloaded.

Queueing Syst (2011) 68:375–384 377

Fig. 1 An input-queued switch, and two example matchings of inputs to outputs

words, the actions of a switch at a particular time slot constitute a matching between
input and output ports.

A matching, or schedule, can be described by a vector π ∈ {0,1}n×n, where
πi,j = 1 if input port i is matched to output port j , and πi,j = 0 otherwise. Thus,
the set of all feasible schedules is

S =
{

π ∈ {0,1}n×n :
∑

k

πi,k ≤ 1,
∑

k

πk,j ≤ 1, ∀(i, j) with 1 ≤ i, j ≤ n

}
.

A scheduling policy (or simply policy) is a rule that, at any given time τ , chooses a
schedule σ (τ) = [σi,j (τ)] ∈ S , based on the current queue vector Q(τ). If σi,j (τ) = 1
and Qi,j (τ) > 0, then one packet is removed from the queue associated with the pair
(i, j). For simplicity we have restricted to so-called stationary Markovian policies.
Under our restriction, for any given policy, Q(·) is a Markov chain.

Regarding the details of the model, we adopt the following conventions. At the be-
ginning of time slot τ , the queue vector Q(τ) is observed by the policy. The schedule
σ (τ) is applied in the middle of the time slot. Finally, at the end of the time slot, the
new arrivals occur. Mathematically, for all i, j , and τ ≥ 0, we have

Qi,j (τ + 1) = Qi,j (τ) − σi,j (τ)1{Qi,j (τ)>0} + Ai,j (τ + 1) − Ai,j (τ). (1)

Without loss of generality, we can assume that Qi,j (0) = 0, for all i, j .

2.1 Performance metrics

The overall performance goal of a scheduling policy is to keep the queue sizes small.
The primary objective is usually to ensure the positive recurrence of the resulting
Markov chain, for the largest possible set of arrival rates. This is because positive
recurrence guarantees the existence of a unique stationary distribution and ergodicity
(so that the queue sizes are prevented from drifting to ever increasing values).

To understand the nature of this primary objective, we note that since any schedul-
ing policy must choose schedules or actions from S , the resulting (time-average) ser-
vice rate vector μ = [μi,j] must belong to the convex hull of S . By the Birhoff–von

378 Queueing Syst (2011) 68:375–384

Neumann theorem [1, 12], this convex hull is the same as the set

Λ =
{

π ∈ [0,1]n×n :
∑

k

πi,k ≤ 1,
∑

k

πk,j ≤ 1, ∀(i, j) with 1 ≤ i, j ≤ n

}
.

We define the load factor2 associated with a given arrival rate vector λ to be

ρ(λ) = max
1≤i,j≤n

{∑
k

λi,k,
∑

k

λk,j

}
.

Clearly, if ρ(λ) > 1, then the arrival rate vector λ does not belong to the set Λ of fea-
sible service rate vectors. Thus, services cannot keep up with arrivals, and the system
cannot be positive recurrent. On the other hand, if ρ(λ) < 1, then the arrival rate vec-
tor λ can be accommodated by a suitable combination of matchings (with some extra
margin to accommodate stochastic fluctuations). As a result, for every λ for which
ρ(λ) < 1, there exists a policy that results in a positively recurrent Markov chain.
Interestingly, it turns out that one can find a single policy (independent of λ) that
guarantees this positive recurrence property [4, 11]. We call such policies throughput
optimal.

Besides throughput optimality, an important secondary performance metric is the
average queue size in steady state. Specifically, for any given λ with ρ(λ) < 1, we are
interested in the least possible value of Q = E[∑i,j Qi,j]. Here, the expectation is
with respect to the steady-state distribution of the queue-size vector Q, which is well
defined for policies that result in a positive recurrent Markov chain. (For a Markov
chain which is not positive recurrent, we just let Q = ∞.) We let Q∗(n,λ) denote the
optimal (over all policies) value of Q, for given n and λ.

Obtaining analytical expressions or somewhat detailed bounds on Q∗(n,λ) seems
to be very difficult. For this reason, we will focus on the asymptotics of Q∗(n,λ), in
the limit as n → ∞ and ρ(λ) → 1.

2.2 The maximum weight scheduling policy

The maximum weight (MW, for short) scheduling policy was introduced in [11] and
then studied in the context of input-queued switches in [4]. Under this policy, the
schedule σ (τ) chosen at time slot τ satisfies

σ (τ) ∈ arg max
π∈S

∑
i,j

πi,jQi,j (τ),

breaking ties according to some prespecified rule. We note that the MW policy is sta-
tionary and Markovian, and does not require knowledge of the value of λ. It is known
to result in a positive recurrent Markov chain whenever ρ(λ) < 1, and is therefore
throughput optimal.

2This definition coincides with the natural definition of the load factor when the arrival streams are deter-
ministic, as in the “static planning problem” in [3].

Queueing Syst (2011) 68:375–384 379

3 Problem statement

The basic problem of interest is to identify the best possible simultaneous depen-
dence of Q on n and ρ = ρ(λ). Loosely speaking, the issue is the following.3 As
discussed in the next section, there exist policies that attain Q = O(n2/(1 − ρ)) and
Q = O(n logn/(1 − ρ)2). The question is whether there exist policies that combine
the best features of the above two bounds, i.e., with Q = O(n1+ε/(1 − ρ)) for arbi-
trarily small ε > 0, and whether this is achieved by the MW policy. A slightly differ-
ent way of framing the question is to ask for the best possible scaling as a function of
n, when we restrict to policies for which the dependence on ρ scales as 1/(1 − ρ).

There are a variety of ways of formalizing the above questions. We state a few
below.

1. Find β∗
0 , the infimum over all positive numbers β for which there exists a constant

c > 0 such that

Q∗(n,λ) ≤ c · nβ

1 − ρ(λ)
, (2)

for all n and all λ with ρ(λ) ∈ (0,1).
2. Find β∗

1 , the infimum over all positive numbers β for which there exists a constant
c > 0 such that

lim sup
ρ(λ)→1

(
1 − ρ(λ)

) · Q∗(n,λ) ≤ c · nβ, (3)

for all n. In the above, the limit superior is taken along sequences of λ that satisfy
ρ(λ) < 1.

3. Find β∗
2 , the infimum over all positive numbers β for which there exists a constant

c > 0 such that

lim sup
n→∞

1

nβ
· Q∗(n,λ) ≤ c

1 − ρ(λ)
, (4)

for all λ that satisfy ρ(λ) < 1.

It can be seen that (2) is a stronger requirement than (and thus implies) (3) and (4).
For this reason, β∗

1 ≤ β∗
0 and β∗

2 ≤ β∗
0 . As will be discussed shortly, all of these coef-

ficients lie in the interval [1,2]. We conjecture that β∗
0 = 1, which would also imply

that β∗
1 = 1 and β∗

2 = 1. The reason for introducing β∗
1 and β∗

2 is that an intermediate
(weaker) conjecture, such as β∗

1 = 1, may be easier to prove.
We also have the much stronger conjecture that β∗

0 is equal to one even if we
restrict to the MW policy (as opposed to considering optimal policies). In a further
variation, the same questions can be posed for the case of uniform traffic, where
λi,j = ρ/n, for all i and j .

3The reason why this discussion is loose is that the O(·) notation, for a function of two parameters, can
admit different interpretations.

380 Queueing Syst (2011) 68:375–384

4 Known results

In this section we review the most relevant available results. We first discuss the
reason why 1 ≤ β∗

i ≤ 2. Then, in Sect. 4.3, we explain the reason why the exponents
of interest are expected to be equal to one if the dependence on ρ(λ) were to be
ignored. To keep the notation simple, we will write ρ instead of ρ(λ).

4.1 Lower bound: β∗
i ≥ 1

Consider uniform loading λ = [ρ(λ)/n] with ρ = ρ(λ) ∈ (1/2,1]. Consider the ag-
gregate queue size at input port i: Qi = ∑

k Qi,k . It follows from (1) that, for any
τ ≥ 1,

Qi(τ) ≥ Ai(τ) − τ, (5)

where Ai(τ) = ∑
k Ai,k(τ) is the aggregate arrival process at input port i. The ran-

dom variable Ai(τ) is binomial with parameters nτ and ρ/n. It can be checked (either
using Stirling’s approximation or an argument along the lines of Lemma 2.1 in [8])
that there exists a positive constant β > 0 (independent of n and ρ) such that for any
ρ ≥ 1/2, any n, and any τ ≥ 1,

P
(
Ai(τ) ≥ ρτ + √

ρτ
) ≥ β. (6)

From (5) and (6), by setting τ = ρ(1 − ρ)−2/4, it follows that

P

(
Qi(τ) ≥ ρ

4(1 − ρ)

)
≥ β. (7)

Furthermore, for any τ ′ ≥ ρ(1−ρ)−2/4, the exact same bound holds for Qi(τ
′) (due

to the stationarity of the Bernoulli process). Therefore, the steady-state expectation
of Qi (if well defined) must be at least βρ(1 − ρ)−1/4. Due to the symmetry of
the uniform traffic, it follows that the steady-state expectation of

∑
i,j Qi,j is lower

bounded:

E

[∑
i,j

Qi,j

]
≥ CL

n

1 − ρ
, (8)

whenever ρ ≥ 1/2 and for all n, where CL > 0 is a universal constant.

4.2 Upper bound: β∗
i ≤ 2

In order to obtain an upper bound, it suffices to establish an upper bound under a
particular policy. The following result is well known; cf. [4, 11]. We include a proof
for completeness.

Theorem 1 Under the maximum weight policy, we have

Q ≤ n2

1 − ρ
,

for all n and all λ with ρ < 1.

Queueing Syst (2011) 68:375–384 381

Proof The proof makes use of the Foster–Lyapunov moment bound (cf. [5]). We con-
sider a quadratic Lyapunov function and define F(τ) = 1

2

∑
i,j Q2

i,j (τ). A standard
calculation [4, 11] shows that under the MW policy

E
[
F(τ + 1) − F(τ) | Q(τ)

] ≤ −1 − ρ

n

(∑
i,j

Qij (τ)

)
+ n. (9)

Therefore,

E
[
F(τ + 1) − F(τ)

] ≤ −1 − ρ

n
E

[∑
i,j

Qi,j (τ)

]
+ n. (10)

By summing both sides of (10), for τ = 0, . . . , T , and with Q(0) = 0, we obtain

1 − ρ

nT

T −1∑
τ=0

E

[∑
i,j

Qi,j (τ)

]
≤ n. (11)

Therefore,

lim inf
T →∞

1

T

T −1∑
τ=0

E

[∑
i,j

Qi,j (τ)

]
≤ n2

1 − ρ
. (12)

Equation (9) and the Foster–Lyapunov criterion imply that Q(·) is a positive recur-
rent Markov chain. It is also irreducible and aperiodic. Therefore, Q(τ) converges
in distribution to a random variable Q(∞) that has the steady-state distribution. By
Skorohod’s representation theorem, Q(τ) and Q(∞) can be embedded in a common
probability space on which Q(τ) → Q(∞) almost surely, as τ → ∞. Then, using
Fatou’s lemma,

Q = E

[∑
i,j

Qij (∞)

]

≤ lim inf
T →∞

1

T

T −1∑
τ=0

E

[∑
i,j

Qi,j (τ)

]
≤ n2

1 − ρ
. (13)

�

Theorem 1 readily implies that β∗
i ≤ 2, for i = 0,1,2.

4.3 A batching policy

By comparing the results in the last two subsections, a natural question is whether
the dependence of Q∗ on n is of order n or n2. In this subsection, we indicate that
a O(n logn) scaling is possible, using a certain non-Markovian policy. On the other
hand, the particular policy that leads to an O(n logn) bound has an undesirable de-
pendence on ρ. In light of this, our open problem is essentially whether some other

382 Queueing Syst (2011) 68:375–384

policy can achieve an O(n1+ε) scaling (for arbitrarily small ε > 0), without causing
an undesirable dependence on ρ.

We will derive an upper bound by using a batching policy. Such a policy was first
considered by Neely, Modiano, and Cheng [7], who established an O(n logn) upper
bound for any fixed ρ, but without studying explicitly the detailed dependence of
the upper bound on ρ. Here, we present a slight variant of the policy in [7], with
a somewhat tighter analysis of the dependence on ρ. Without loss of generality, we
assume that 1/2 ≤ ρ < 1.

The batching policy operates as follows. Given λ, choose a batching interval length
equal to

T = 25ρ logn

(1 − ρ)2
. (14)

The policy serves all the packets that arrive during the interval [kT , (k + 1)T) (the
“kth batch”) separately for each k ≥ 0. That is, the policy collects the packets in the
kth batch; it starts serving them after the batching interval has elapsed (that is, after
time (k + 1)T), and after having served all packets in the (k − 1)st batch. To keep the
proof simple, we shall also require that each batch is served for at least Z time slots,
where

Z = ρT + 3
√

T logn. (15)

Let L(k) = [Li,j (k)] be a matrix whose typical entry, Li,j (k), equals the number
of packets that arrived at input i, destined for output j , during the kth batch. For every
i and j , let Ri(k) = ∑

j Li,j (k) and Cj(k) = ∑
i Li,j (k). Then, Ri(k) (respectively,

Cj (k)) is the sum of nT Bernoulli random variables, with mean μi ≤ ρT (resp.
μj ≤ ρT). Using a suitable variant of the Chernoff bound (see [6]), it follows that

P
(
Ri(k) ≥ μi + √

μi(
√

4 logn + K)
) ≤ 1

n2
exp

(
−K2

2

)
, (16)

for any K ≥ 1. Using (16) and the union bound, we obtain that

P

(
max
i,j

{
Ri(k),Cj (k)

} ≥ ρT + √
ρT (

√
4 logn + K)

)
≤ 2

n
exp

(
−K2

2

)
, (17)

for all K ≥ 1.
A well known corollary of the Birkhoff–von Neumann theorem [1, 12] asserts

that the total time required to serve all of the packets in the kth batch, is equal to
L∗(k) = maxi,j {Ri(k),Cj (k)} (cf. [2]). Therefore, the service time S(k) of the kth
batch is S(k) = max{L∗(k),Z}.

Using (17), an elementary calculation, and the assumption ρ < 1, it follows that
for large enough n, there exist universal positive constants c1, c2 (independent of λ,
n, and T) such that

ρT + 4
√

T logn ≤ T − c1(1 − ρ)T , (18)

E
[
S(k)

] ≤ ρT + 4
√

T logn, (19)

E
[
S2(k)

] ≤ (
ρT + 3

√
T logn

)2 + c2T . (20)

Queueing Syst (2011) 68:375–384 383

The inequality in (18), which is critical in the development that follows, made use of
the definition of T , in (14). By definition S(k) ≥ Z = ρT + 3

√
T logn. Using this

inequality, together with (20), we obtain

var
(
S(k)

) ≤ c2T . (21)

Note that to obtain this particular variance bound of S(k), we used the convenient
requirement of service time being at least Z.

Under the batching policy, the resulting queue sizes are the same as if all of the
arrivals in the kth batch were to arrive simultaneously at time (k + 1)T . Thus, we can
aggregate the arrivals in a batch and view them as an arrival of a single job, with a
random processing time of S(k). We are then faced with a D/G/1 queue, with interar-
rival times equal to T . We can now apply Kingman’s upper bound on the waiting time
of a batch, in steady state. (The waiting time is the time it takes between the arrival
of the batch, until the beginning of the service of the batch.) Because the interarrival
times have zero variance, Kingman’s bound takes the form

var(S(k))

2(T − E[S(k)]) ≤ c2T

2c1(1 − ρ)T
≤ c4T , (22)

for some new absolute constant c4.
Now, the waiting time of a packet is the sum of three contributions: (i) the time

from the arrival of the packet until the end of the interval [kT , (k+1)T) during which
the packet arrived (and when the batch arrival gets recorded); (ii) the waiting time of
the batch; (iii) the time from the beginning of the service of the batch until the packet
gets served. The first contribution is bounded above by T . The second contribution is
bounded above (in expectation) by c4T (cf. (22)). The third contribution is somewhat
more subtle, because a “typical” packet is more likely to belong to an uncharacteristi-
cally larger batch. Renewal theory (or the so-called random incidence formula) show
that the expected service time of the batch that a typical arriving packet belongs to is
equal to E[S(k)2]/E[S(k)]. Using S(k) ≥ ρT + 3

√
T logn and (20), this term is also

bounded above by a constant time T . We conclude that the waiting time of a typical
packet is bounded above by cT , for some absolute constant c. Using Little’s law, and
the fact that the total arrival rate is bounded above by n, we obtain

Q ≤ cnT ≤ c′ n logn

(1 − ρ)2
,

for some new absolute constant c′.
Note that the batching policy is not Markovian: its action at each time depends in

a complicated manner on all of the past history, not just the current queue vector. On
the other hand, it is often the case in dynamic programming theory that Markovian
policies are no inferior to general policies. We are not aware of existing results of this
kind that would apply directly to the problem at hand, but we conjecture this property
to be true, so that Markovian policies can also deliver O(n1+ε) performance (for any
ε > 0) when ρ is held fixed.

Acknowledgements D. Shah would like to acknowledge numerous conversations on this topic with
D. Wischik and B. Prabhakar over a period of several years. This research was partially supported by the
NSF under grant CCF-0728554.

384 Queueing Syst (2011) 68:375–384

References

1. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán. Rev, Ser. A 5, 147–151
(1946)

2. Hajek, B., Sasaki, G.: Link scheduling in polynomial time. IEEE Trans. Inf. Theory 34(5), 910–917
(1988)

3. Harrison, J. Michael: Brownian models of open processing networks: canonical representation of
workload. Ann. Appl. Probab. 10, 75–103 (2000)

4. McKeown, N., Anantharam, V., Walrand, J.: Achieving 100% throughput in an input-queued switch.
In: Proceedings of IEEE Infocom, pp. 296–302 (1996)

5. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, New York (1993)
6. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
7. Neely, M., Modiano, E., Cheng, Y.-S.: Logarithmic delay for n × n packet switches under the cross-

bar constraint. IEEE/ACM Trans. Netw. 15(3) (2007)
8. Shah, D., Tsitsiklis, J.N.: Bin packing with queues. J. Appl. Probab. 45, 922–939 (2008)
9. Shah, D., Wischik, D.J.: Optimal scheduling algorithms for input-queued switches. In: Proceedings

of IEEE Infocom (2006)
10. Shah, D., Wischik, D.J.: Switched networks with maximum weight policies: fluid approximation and

multiplicative state space collapse. Ann. Appl. Probab. (2011, to appear)
11. Tassiulas, L., Ephremides, A.: Stability properties of constrained queuing systems and scheduling

policies for maximum throughput in multihop radio networks. IEEE Trans. Autom. Control 37, 1936–
1948 (1992)

12. von Neumann, J.: A certain zero-sum two-person game equivalent to the optimal assignment problem.
Contrib. Theory Games 2, 5–12 (1953)

	Optimal scaling of average queue sizes in an input-queued switch: an open problem
	Abstract
	Introduction
	Input-queued switch model
	Performance metrics
	The maximum weight scheduling policy

	Problem statement
	Known results
	Lower bound: betai* >=1
	Upper bound: betai* <=2
	A batching policy

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

