
Queueing Syst (2011) 68:133–163
DOI 10.1007/s11134-011-9220-7

Optimal resource allocation for multiqueue systems
with a shared server pool

Ran Yang · Sandjai Bhulai · Rob van der Mei

Received: 8 July 2010 / Revised: 1 March 2011 / Published online: 30 March 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We study optimal allocation of servers for a system with multiple service
facilities and with a shared pool of servers. Each service facility poses a constraint
on the maximum expected sojourn time of a job. A central decision maker can dy-
namically allocate servers to each facility, where adding more servers results in faster
processing speeds but against higher utilization costs. The objective is to dynamically
allocate the servers over the different facilities such that the sojourn-time constraints
are met at minimal costs. This situation occurs frequently in practice, for example,
in Grid systems for real-time image processing (iris scans, fingerprints). We model
this problem as a Markov decision process and derive structural properties of the
relative value function. These properties, which are hard to derive for multidimen-
sional systems, give a full characterization of the optimal policy. We demonstrate the
effectiveness of these policies by extensive numerical experiments.

Keywords Constrained Markov decision problems · Monotonicity · Optimal
resource allocation · Shared server pool · Queueing theory

Mathematics Subject Classification (2000) Primary: 90C40 · Secondary: 90B22

1 Introduction

In recent years new real-time multimedia services have triggered a tremendous
growth in data volumes and computational demand. Typical services include iris-
scan and fingerprint systems that make high-resolution scans and require processing

R. Yang · S. Bhulai (�) · R. van der Mei
VU University, Amsterdam, The Netherlands
e-mail: sbhulai@few.vu.nl

R. Yang · S. Bhulai · R. van der Mei
CWI, Amsterdam, The Netherlands

mailto:sbhulai@few.vu.nl

134 Queueing Syst (2011) 68:133–163

of the data to identify a person; these services operate in a real-time environment and
run under very strict time constraints. To adhere to such constraints, these large-scale
services typically use centralized computing clusters to execute on. In these service-
based scenarios, a central decision maker then allocates a number of processing re-
sources to different service facilities to process the data. This gives rise to a class of
models in which the central decision maker has to allocate the number of resources
to ensure that all Quality of Service (QoS) constraints of the different facilities can
be met.

In this decision making problem there is a trade-off between the processing time
on the one hand and the utilization costs (lease costs, operating costs, etc.) on the
other hand. Having too many resources at the server side leads to high costs and also
to inefficiency, since only a part of the resources are needed to ensure that the QoS-
constraint is satisfied. However, having too few resources leads to a long processing
time so that the QoS-constraint of jobs can be violated. Hence, the objective is to
find the allocation of the number of resources for the different facilities such that all
QoS-constraints are met against minimal costs.

A few papers have been devoted to resource allocation problems closely related
to our setting. Perry and Nilson [8] have studied a system in which two types of jobs
are served by a single pool of resources. They associate priorities, based on an aging
factor that grows proportionally with the waiting time, to these jobs and give an ana-
lytical model for computing the expected waiting. This heuristic was first analyzed by
Kleinrock [5, 6]. Borst and Seri [3] apply more complex heuristics in a multiskilled
queueing system with as performance metric the tail probabilities of the waiting time.
They compare the number of jobs in each facility that actually has been served to the
number that, nominally, should have been served under a long-run average allocation
scheme. The “further behind” the actual number of services, the higher the result-
ing priority. Bhulai and Koole [2] and Gans and Zhou [4] study a variant with fully
cross-trained servers in which only one queue has a QoS-constraint. They use Markov
decision processes and Linear Programming to obtain (nearly) optimal control strate-
gies. Stanford and Grassmann [11] simplify the problem by using fixed, static priority
policies using matrix-geometric methods. Shumsky [10] divides the state space into
regions and uses an approximate analysis for the conditional system performance
within each region.

In this paper we study and compare the optimal server allocation for the following
three related models: (1) each service facility is viewed in isolation having their ded-
icated servers, (2) a system in which a chosen allocation cannot be changed during
a service of a job, and (3) a fully flexible system in which changing the allocation
during the service of a job is allowed. The main difference between the existing lit-
erature and our work is that we show by studying monotonicity properties of the
dynamic programming relative value function that the optimal strategy has appealing
structural properties; it is the multidimensional analog of a nondecreasing step func-
tion. This structure enables one to find optimal policies relatively easily as compared
to solving the dynamic program which suffers from computational tractability. These
methods will be illustrated in extensive numerical experiments.

The contributions of the paper are twofold. First, on the methodological side, we
provide a full characterization of the optimal policy of a high-dimensional system,

Queueing Syst (2011) 68:133–163 135

which is numerically intractable. This is quite exceptional, since there is no standard
approach to derive monotonicity properties of the relative value function for mul-
tidimensional systems other than componentwise and directional monotonicity (see
[12, 13] for examples and [7] for an overview of monotonicity results using event-
based DP). This is the reason why the literature overview mainly deals with models
having only two service facilities [2, 4, 8], or use heuristics [3, 5, 6, 10, 11] (some-
times even without constraints). Secondly, on the application side, we have readily
available policies that are easy to implement in systems that are highly relevant in
practice. The comparison of the different models provides fundamental insights into
the operational flexibility that is needed in the design of these systems.

The paper is organized as follows. In Sect. 2 we formulate the models for the
different cases. Next, we derive the structure of the optimal policy in Sect. 3. In
Sect. 4 we illustrate these results by numerical experiments. Finally, in Sect. 5 we
conclude the paper and discuss topics for further research.

2 Model formulation

Consider N parallel service facilities at which jobs arrive according to a Poisson
process with rate λi for facility i, i = 1, . . . ,N . There is a common pool of A ≥ 1
resources to serve the jobs in the system. When upon arrival of a job at facility i there
are no other jobs present, the arriving job is taken into service. However, if there
are other jobs present, then the arriving job joins an infinite-capacity queue at facil-
ity i and awaits its service in an FCFS manner. When facility i has been allocated
ai resources, the job that is in service has a service duration that is exponentially
distributed with parameter μ(ai), where μ(·) is an increasing function. In the ideal
case, one would have μ(ai) = μai for some fixed service rate μ. However, in prac-
tice, there is communication overhead between multiple resources, and therefore the
function μ is typically sublinear. In some cases, resources can cache results so that
its effect is that the function μ is superlinear. After a job has received its service, it
leaves the system.

Each facility provides a QoS-guarantee on the mean delay to the jobs served at that
facility. Although, in practice, the QoS-constraints are usually expressed in terms of
tail probabilities, we choose to express the constraints in terms of the mean sojourn
time. This choice keeps the already complex model tractable for analysis and serves
as a first step toward the analysis with tail probabilities as QoS-constraints. For this
purpose, let Si denote the steady-state sojourn time of an arbitrary job at facility i.
Then facility i is constrained by ESi ≤ αi for a preset value of αi . There is a central
decision maker that needs to allocate the resources to the different facilities such that
the QoS-constraints are met. This gives rise to a problem in which the optimal allo-
cation strategy needs to be determined. However, when facility i uses ai resources, a
cost of ci(ai) is incurred by the system with ci an increasing function in ai . There-
fore, we are simultaneously interested in meeting the N constraints against lowest
average costs. The optimal solution provides the value of A for which the optimal
allocation strategy meets all the constraints but fails to meet them when the optimal
allocation strategy under A − 1 resources is used.

136 Queueing Syst (2011) 68:133–163

We study the optimal number of resources A∗ from three different viewpoints.
First, we consider the case in which all service facilities operate independently of
each other. In this case, the resources are not shared between the different facilities
but are dedicated to each facility. Secondly, we study the case in which the resource
pool is shared between different facilities. However, we make the assumption that the
resource allocation cannot be changed when a job is served; only upon the start of
the service of the next job the resource allocation can be changed. This is typically
the case in systems where resources need to be reserved in advance. The third case
deals with the fully flexible case in which the system can take full advantage of the
economies of scale by allowing the resource allocation to change even during the ser-
vice of a job. Since we can directly observe that going from case 1 to case 3 increases
the flexibility, we can expect that A∗

1 ≥ A∗
2 ≥ A∗

3, with A∗
i the optimal number of

resources needed in case i for i = 1,2,3. However, it is of interest to determine how
big the gap between the three cases is and to study how the policy changes from case
to case.

2.1 Service facilities with dedicated resources

In this subsection, we assume that the service facilities do not share the resources
between each other and thus have their own dedicated resources. This makes ser-
vice facility i independent of the other facilities and turns the facility into a regular
M/M/1 queue with arrival rate λi and service rate μ(Ai) when Ai servers have been
allocated. In that case, it is well known that the expected sojourn time is given by
1/(μ(Ai) − λi). Hence,

A∗
1 =

N∑

i=1

A∗
i =

N∑

i=1

⌈
μ−1(λi + 1/αi)

⌉
,

where �x� denotes the smallest integer greater than or equal to x.

2.2 Service facilities with limited resource sharing

In this subsection we focus on the case in which service facilities are allowed to
share resources between each other. However, resources become free to be reassigned
only at service completion instants. Hence, we make the assumption that the resource
allocation for a service facility can only be changed upon the start of the service of a
new job. Hence adding/removing resources during a service is not allowed. To study
this case, we cast the problem as a Markov decision problem.

Define the state space X = {(x1, . . . , xN , a1, . . . , aN) ∈ N
N
0 ×N

N
0 | ∑N

i=1 ai ≤ A},
where (x, a) ∈ X means that there are xi customers at facility i with ai resources
allocated to it for i = 1, . . . ,N , where ai > 0 also means that a service is ongo-
ing, and ai = 0 means that no job is in service at facility i. When the system is
in state (x, a) ∈ X , the decision maker can choose actions from the action space
A(x,a) = {(b1, . . . , bn) ∈ N

N
0 | ∑N

i=1(ai + bi) ≤ A and aibi = 0 for i = 1, . . . ,N},
where action b ∈ A(x,a) denotes the number of resources that one can allocate. Here,
the restriction aibi = 0 models the fact that when a service is ongoing (i.e., ai > 0),

Queueing Syst (2011) 68:133–163 137

the service allocation cannot be changed (i.e., bi = 0). However, after a service com-
pletion at facility i, we have that ai = 0 and hence an allocation bi > 0 is allowed.
The transition rates when the system is in state (x, a) ∈ X and action b ∈ A(x,a) is
chosen are given by

p
(
(x, a), b, (x′, b′)

)

=

⎧
⎪⎪⎨

⎪⎪⎩

λi, x′ = x + ei, b
′ = a + b for i = 1, . . . ,N,

μ(ai + bi), x′ = [x − ei]+, b′ = a + b − aiei − biei for i = 1, . . . ,N,

0 otherwise,

with ei the zero vector with a one at the ith entry, and [x]+ the componentwise
maximum (max{x1,0}, . . . ,max{xN,0}). The first line in the expression above mod-
els arrivals, the second line models service completions, and the third line prohibits
any other state transitions. Note that when a service completion takes place, the re-
source allocation for that facility is set to zero. Finally, when the system is in state
(x, a) ∈ X and action b ∈ A(x,a) has been chosen, the direct costs c((x, a), b) =∑N

i=1 ci(ai + bi). The quadruple (X , A,p, c) completely describes the Markov de-
cision process.

Define a decision rule π(x,a) as a probability distribution on A(x,a), i.e., when
the system is in state (x, a) ∈ X , the decision maker chooses action b ∈ A(x,a) with
probability π(x,a)(b). Let the policy π denote the collection of decision rules for all
states. Let uπ

t (x, a) denote the total expected costs up to time t when the system starts
in state (x, a) under policy π . Note that for any stable and work-conserving policy,
the Markov chain satisfies the unichain condition, so that the average expected costs
g(π) = limt→∞ uπ

t (x, a)/t are independent of the initial state (x, a) (see Proposi-
tion 8.2.1 of Puterman [9]). The goal is to find a policy π∗ that minimizes the long-
term average costs under the constraints, that is,

min
π

g(π) subject to ESi ≤ αi for i = 1, . . . ,N.

Note that due to Little’s Law the number of jobs Li in facility i can be related
to the sojourn time Si in facility i by ELi = λiESi . Using this knowledge, the con-
strained Markov decision problem can be rewritten as an unconstrained Markov de-
cision problem using Lagrange multipliers (see Sect. 12.6 of Altman [1]). To this
end, we uniformize the system (see Sect. 11.5 of Puterman [9]). Therefore, assume
that the uniformization constant

∑N
i=1 λi + Nμ(A) = 1; we can always get this by

scaling. Uniformizing is equivalent to adding dummy transitions (from a state to it-
self) such that the rate out of each state is equal to 1; then we can consider the rates
to be transition probabilities. Now, let V (x, a) be a real-valued function defined on
the state space. This function will play the role of the relative value function, i.e.,
the asymptotic difference in total costs that results from starting the process in state
(x, a) instead of some reference state. The long-term average optimal actions are a
solution of the optimality equation (in vector notation) g + V = T V , where T is the
dynamic programming operator acting on V defined as follows:

138 Queueing Syst (2011) 68:133–163

T V (x, a) =
N∑

i=1

τi

xi

λi

+
N∑

i=1

ci(ai) +
N∑

i=1

λiH(x + ei, a)

+
N∑

i=1

μ(ai)H
([x − ei]+, a − aiei

)

+
(

1 −
N∑

i=1

λi −
N∑

i=1

μ(ai)

)
V (x, a)

=
N∑

i=1

τi

xi

λi

+
N∑

i=1

ci(ai) +
N∑

i=1

λiH(x + ei, a)

+
N∑

i=1

μ(ai)H
([x − ei]+, a − aiei

)

+
(

Nμ(A) −
N∑

i=1

μ(ai)

)
V (x, a), (1)

where τi are Lagrange multipliers, and the function H is given by

H(x,a) = min
b∈A(x,a)

{
V (x, a + b)

}
.

The first term in the dynamic programming operator corresponds to the QoS-
constraints of the several facilities. The second term represents the cost of using a

resources. The third term is involved with the decision making upon arrival of a job.
The fourth term deals with the decision making when a job has finished its service.
The final term is the dummy term due to uniformization. Note that the decision mak-
ing is modeled uniformly through the function H .

Note that when facility i has no holding costs xi/λi , then no resources will be
allocated to facility i, since it does not incur any costs from the buildup in jobs.
Therefore, when τ = ei , i.e., τi = 1 and τj = 0 for j �= i, the optimal strategy will
not allocate any resources to service facility j �= i. Hence, one can find a value zi such
that the QoS-constraint for facility i with τ = ziei is met under the assumption that
there are infinitely many resources. By repeating this procedure for all facilities, one
finds a box

∏n
i=1[0, zi] in which the value of τ should lie under the optimal allocation

that satisfies all constraints. Now, we can divide this box into a grid G which serves
as our search space for τ . Then the following approach will find A∗

2.

1. Set A := A∗
1.

2. Solve the Markov decision process for all values of τ ∈ G until all QoS-constraints
are met or all grid points have been searched.

3. If for the value of τ , all constraints are met, set A := A − 1 and return to step 2.
4. Return A∗

2 := A + 1.

Queueing Syst (2011) 68:133–163 139

Note that in step 2 of the algorithm one needs to solve an infinite-dimensional
Markov decision problem. In our numerical experiments we truncate the state space
such that we get a finite-dimensional problem that is numerically tractable. In do-
ing so, the truncation is done such that the difference in the outcomes do not differ
significantly when the state space is somewhat enlarged by shifting the truncation
boundary. We will illustrate this algorithm in Sect. 4.

The algorithm to find A∗
2 relies on evaluating the Markov decision problem for all

τ ∈ G . One might formulate an unconstrained Markov decision problem, in which
costs are associated with the queue length, in order to circumvent these evaluations.
However, this would lead to formulation (1) with τi = λi for all i. Since the alter-
native unconstrained model is a special case of (1), the structural results that are
obtained in the next section for the constrained Markov decision problem also hold
for the unconstrained problem.

2.3 Service facilities with full flexibility in resource sharing

In this subsection we study the case in which service facilities have full flexibility in
the resource allocation policies. Thus, the resource facilities can change the resource
allocation during a service of a job and do not have to wait for the job to finish.
Since our system has Poisson arrivals and exponential service times, such a situation
need only occur at moments an event occurs. Therefore, the only difference with
the previous case is that this system allows one to change the allocation at arrival
instants.

In this case, the state space is given by X = N
N
0 , where x ∈ X denotes that there

are xi customers at facility i for i = 1, . . . ,N . The action space is given by Ax =
{a ∈ N

N
0 | ∑N

i=1 ai ≤ A}, where action a ∈ Ax denotes the number of resources that
one can allocate in state x ∈ X . The transition rates when the system is in state x ∈ X
and action a ∈ Ax is chosen are given by

p(x, a, x′) =

⎧
⎪⎪⎨

⎪⎪⎩

λi, x′ = x + ei for i = 1, . . . ,N,

μ(ai), x′ = [x − ei]+ for i = 1, . . . ,N,

0 otherwise.

Finally, when the system is in state x ∈ X and action a ∈ Ax has been chosen, the
direct costs are c(x, a) = ∑N

i=1 ci(ai). The tuple (X , A,p, c) completely describes
the Markov decision process for this problem.

Let V (x) denote the relative value function in this case. Then, the dynamic pro-
gramming operator acting on V is defined as follows:

T V (x) =
N∑

i=1

τi

xi

λi

+
N∑

i=1

λiV (x + ei) + min
a∈Ax

[
N∑

i=1

μ(ai)V
([x − ei]+

)

+
(

1 −
N∑

i=1

λi −
N∑

i=1

μ(ai)

)
V (x) +

N∑

i=1

ci(ai)

]

140 Queueing Syst (2011) 68:133–163

=
N∑

i=1

τi

xi

λi

+
N∑

i=1

λiV (x + ei) + min
a∈Ax

[
N∑

i=1

μ(ai)V
([x − ei]+

)

+
(

Nμ(A) −
N∑

i=1

μ(ai)

)
V (x) +

N∑

i=1

ci(ai)

]
. (2)

Note that the algorithm described in the previous subsection also applies to this case
to obtain A∗

3. In fact, in step 1 one can choose A := A∗
2 for faster convergence.

3 Structural properties of the optimal policy

In the previous section we described the three models and a solution technique to ob-
tain the optimal policy. However, the optimal policy also possesses structural prop-
erties that can speed up the solution technique. Instead of searching a full grid for
the optimal solution, the structural properties can reduce the search space consider-
ably. Therefore, in this section, we focus on the structural properties of the described
systems.

3.1 Allocation strategy for service facilities with dedicated resources

In the case when the service facilities have their own dedicated servers, each facil-
ity i should be equipped with A∗

i servers (as defined in Sect. 2.1) to meet the QoS
constraint. Since the servers are not shared, the optimal resource allocation strategy
is quite simple. When there are x > 0 customers at the facility, A∗

i servers are allo-
cated, and when x = 0, then no servers are allocated. This policy is also known as a
bang-bang control policy (i.e., everything or nothing).

3.2 Allocation strategy for service facilities with limited resource sharing

The structure of the optimal policy for a service facility with limited resource shar-
ing is more intricate than the case with dedicated resources. In order to study the
structure, in principle, one needs to solve the optimality equation g + V = T V with
T V given by (1). However, the optimality equation is hard to solve analytically in
practice. Alternatively, the optimal actions can also be obtained by recursively defin-
ing Vl+1 = T Vl for arbitrary V0. As l → ∞, the maximizing actions converge to the
optimal ones (for the existence and convergence of solutions and optimal policies,
we refer to Chap. 8 of Puterman [9]). Therefore, we consider the backward recursion
equation that is given by

Vn+1(x, a) =
N∑

i=1

τi

xi

λi

+
N∑

i=1

ci(ai) +
N∑

i=1

λiHn(x + ei, a)

+
N∑

i=1

μ(ai)Hn

([x − ei]+, a − aiei

)

+
(

Nμ(A) −
N∑

i=1

μ(ai)

)
Vn(x, a), (3)

Queueing Syst (2011) 68:133–163 141

where the function Hn is given by

Hn(x, a) = min
b∈A(x,a)

{
Vn(x, a + b)

}
.

For ease of notation in the proofs in the sequel, we also define argHn(x, a) by

argHn(x, a) = arg min
b∈A(x,a)

{
Vn(x, a + b)

}
.

The backward recursion equation allows us to prove structural properties of the rel-
ative value function V through induction on n in Vn. It is clear that the objective
of the system is to strive for the fewest number of customers in the system as more
customers mean higher waiting costs. Therefore, it is intuitive that V is increasing in
each component of x, i.e., adding customers to facility i results in higher costs for
the system. The following lemma makes this statement more precise.

Lemma 1 (Increasingness) The relative value function V is increasing in the number
of customers, i.e.,

V (x + ej , a) − V (x, a) ≥ 0

for all x ∈ X , for some a with
∑N

i=1 ai ≤ A, and for j = 1, . . . ,N .

Proof The proof is by induction on n in Vn. Define V0(x, a) = 0 for all states x

and actions a. Then, clearly, V0(x, a) is increasing in all components of x. Now,
assume that Vn(x + ej , a)−Vn(x, a) ≥ 0 for some n ∈ N and for j = 1, . . . ,N . Now,
we prove that Vn+1(x, a) satisfies the increasingness property as well. Therefore, fix
j ∈ {1, . . . ,N}; then

Vn+1(x + ej , a) − Vn+1(x, a)

= τj

λj

+
N∑

i=1

λi

[
Hn(x + ej + ei, a) − Hn(x + ei, a)

]

+
N∑

i=1

μ(ai)
[
Hn

([x + ej − ei]+, a − aiei

) − Hn

([x − ei]+, a − aiei

)]

+
[
Nμ(A) −

N∑

i=1

μ(ai)

]
[
Vn(x + ej , a) − Vn(x, a)

]
. (4)

Note that the first term (τj /λj) and the last term with Vn(x + ej , a) − Vn(x, a) are
positive. Hence, based on the induction hypothesis, we have

Vn+1(x + ej , a) − Vn+1(x, a)

≥
N∑

i=1

λi

[
Hn(x + ej + ei, a) − Hn(x + ei, a)

]

+
N∑

i=1

μ(ai)
[
Hn

([x + ej − ei]+, a − aiei

) − Hn

([x − ei]+, a − aiei

)]
. (5)

142 Queueing Syst (2011) 68:133–163

Let b = argHn(x + ej + ei, a) and c = argHn([x + ej − ei]+, a − aiei). Then,

Vn+1(x + ej , a) − Vn+1(x, a)

≥
N∑

i=1

λi

[
Vn(x + ej + ei, a + b) − Vn(x + ei, a + b)

]

+
N∑

i=1

μ(ai)
[
Vn

([x + ej − ei]+, a − aiei + c
) − Vn

([x − ei]+, a − aiei + c
)]

≥ 0. (6)

Clearly, the inequality above holds because of the induction hypothesis. Hence, we
conclude, by taking the limit as n → ∞, that V (x, a) is increasing in xj for all j =
1, . . . ,N . �

Lemma 1 shows that the costs that the system incurs increase as the number of
customers in the system increases. In fact, more can be said about the rate at which
the costs increase; the increase in costs is higher when more customers are in the
system. Hence, this implies that the relative value function is a convex function. In
the sequel we will show that this is indeed true. We do this by first studying the case
with one dimension, e.g., N = 1. Note that we will adjust the notation for N = 1
straightforwardly by omitting the indices of all variables. However, before doing so,
we need two preparative lemmas.

Lemma 2 The value function satisfies the following property:

H(x + 1,0) − H(x,0) − V (x,0) + V (x − 1,0) < 0

for all x ≥ 1.

Proof Let x ≥ 1. Then

V (x,0) − V (x − 1,0)

= τ

λ
+ λ

[
H(x + 1,0) − H(x,0)

] + μ(A)
[
V (x,0) − V (x − 1,0)

]
.

Since λ + μ(A) = 1, the equation above implies that

λ
[
V (x,0) − V (x − 1,0)

] = τ

λ
+ λ

[
H(x + 1,0) − H(x,0)

]
.

Therefore,

λ
[
H(x + 1,0) − H(x,0) − V (x,0) + V (x − 1,0)

] = −τ

λ
.

Thus, H(x + 1,0) − H(x,0) − V (x,0) + V (x − 1,0) < 0, since −τ/λ < 0. �

Queueing Syst (2011) 68:133–163 143

Lemma 2 is almost the inequality that represents convexity of the value function.
This would be the case if H were to be replaced by V . However, for the proof of
convexity, we need three additional properties to hold as well. The following lemma
makes these properties explicit.

Lemma 3 (Convexity) For N = 1, the following properties hold:

(i) V (x + 1, a) − 2V (x, a) + V (x − 1, a) ≥ 0 for all x ≥ 1 and a ≥ 0.
(ii) V (x, a) − V ([x − 1]+, a) − H([x − 1]+,0) + H([x − 2]+,0) ≥ 0 for all x ≥ 0

and a > 0.
(iii) argH(x,0) > 0 for all x ≥ 2.
(iv) H(x + 1,0) − 2H(x,0) + H(x − 1,0) ≥ 0 for all x ≥ 1.

Proof The proof is by induction on n in Vn. Define V0(x, a) = 0 for all states x

and actions a. Then, clearly, V0(x, a) satisfies all properties (in case (iii), there is an
optimal action that satisfies the property). Now suppose that the properties hold for
some n ∈ N. We prove that the properties also hold for n+1. Therefore, we start with
convexity first.

Property (i) Let x ≥ 1 and suppose that a = 0. Then,

Vn+1(x + 1,0) − 2Vn+1(x,0) + Vn+1(x − 1,0)

= λ
[
Hn(x + 2,0) − 2Hn(x + 1,0) + Hn(x,0)

]

+ μ(A)
[
Vn(x + 1,0) − 2Vn(x,0) + Vn(x − 1,0)

]

≥ λ
[
Hn(x + 2,0) − 2Hn(x + 1,0) + Hn(x,0)

]

≥ 0. (7)

The equality follows by expanding Vn+1 into Vn. The first inequality follows by using
property (i) of the induction hypothesis. The last inequality follows by using property
(iv) of the induction hypothesis.

Now let x ≥ 1 and suppose that a > 0. Then,

Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1(x − 1, a)

= λ
[
Vn(x + 2, a) − 2Vn(x + 1, a) + Vn(x, a)

]

+ μ(a)
[
Hn(x,0) − 2Hn

([x − 1]+,0
) + Hn

([x − 2]+,0
)]

+ [
μ(A) − μ(a)

][
V (x + 1, a) − 2V (x, a) + V (x − 1, a)

]

≥ μ(a)
[
Hn(x,0) − 2Hn

([x − 1]+,0
) + Hn

([x − 2]+,0
)]

≥ 0. (8)

The equality follows by expanding Vn+1 into Vn. The first inequality follows by using
property (i) of the induction hypothesis. The last inequality follows by using property
(iv) of the induction hypothesis. Thus, for all x ≥ 1 and a ≥ 0, Vn+1(x + 1, a) −
2Vn+1(x, a) + Vn+1(x − 1, a) ≥ 0.

144 Queueing Syst (2011) 68:133–163

Property (ii) Let x ≥ 0 and suppose that a > 0. Then, based on the optimality equa-
tion, we have

Vn+1(x, a) − Vn+1
([x − 1]+, a

)

= τ

λ
+ λ

[
Vn+1(x + 1, a) − Vn+1(x, a)

]

+ μ(a)
[
Hn+1

([x − 1]+,0
) − Hn+1

([x − 2]+,0
)]

+ [
μ(A) − μ(a)

][
Vn+1(x, a) − Vn+1

([x − 1]+, a
)]

.

Recall that the uniformization constant λ + μ(A) = 1. Thus, the equation above is
equivalent to

λ
[
Vn+1(x, a) − Vn+1

([x − 1]+, a
)]

= τ

λ
+ λ

[
Vn+1(x + 1, a) − Vn+1(x, a)

]

+ μ(a)
[
Hn+1

([x − 1]+,0
) − Hn+1

([x − 2]+,0
)]

− μ(a)
[
Vn+1(x, a) − Vn+1

([x − 1]+, a
)]

.

The equation above implies that

μ(a)
[
Vn+1(x, a) − Vn+1

([x − 1]+, a
) − Hn+1

([x − 1]+,0
) + Hn+1

([x − 2]+,0
)]

= τ

λ
+ λ

[
Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1

([x − 1]+, a
)]

.

Hence, by using property (i) of the induction hypothesis, the righthand side of
the equation is nonnegative. Hence, Vn+1(x, a) − Vn+1([x − 1]+, a) − Hn+1([x −
1]+,0) + Hn+1([x − 2]+,0) ≥ 0.

Property (iii) We prove the property by means of contradiction. Assume that
there exists an x ≥ 2 such that argH(x,0) = 0. This, by definition, implies that
Vn+1(x,0) = Hn+1(x,0). Therefore,

Hn+1(x,0) − Hn+1(x − 1,0) − Vn+1(x − 1,0) + Vn+1(x − 2,0)

≥ Vn+1(x,0) − 2Vn+1(x − 1,0) + Vn+1(x − 2,0)

≥ 0.

The first inequality follows by taking action a = 0 in the second term Hn+1(x −1,0).
The second inequality follows by property (i) of the induction hypothesis. However,
based on Lemma 2, we know that Hn+1(x,0) − Hn+1(x − 1,0) − Vn+1(x − 1,0) +
Vn+1(x − 2,0) < 0. Therefore, we conclude that argH(x,0) > 0 for x ≥ 2.

Property (iv) Let x ≥ 1. Since x−1 ≥ 0, we have x+1 ≥ 2. Thus, by using property
(iii) of the induction hypothesis, we have a∗(x) := argH(x,0) > 0. Therefore,

Queueing Syst (2011) 68:133–163 145

Hn+1(x + 1,0) − 2Hn+1(x,0) + Hn+1(x − 1,0)

≥ Vn+1
(
x + 1, a∗(x + 1)

) − Vn+1
(
x, a∗(x + 1)

) − Hn+1(x,0) + Hn+1(x − 1,0)

≥ 0.

The first inequality follows by taking action a∗(x + 1) in Hn+1(x,0). The second
inequality follows by property (ii) of the induction hypothesis.

We conclude the proof by taking the limit as n → ∞. �

Lemma 3 shows that the relative value function is convex. However, in proving
this, one needed three additional properties simultaneously in the proof by induction
(property (i) depends on (iv), which depends on (ii) and (iii)). Now we are ready to
study monotonicity properties of the optimal policy. The convexity of the relative
value function is crucial in this step. Due to the convexity, we have that the optimal
policy is a step function. The following theorem formalizes this statement.

Theorem 4 (Monotonicity) For N = 1, let a∗(x) := argH(x,0) for all x ≥ 0. If the
service rate μ(a) and cost function c(a) are increasing functions in a, then a∗(x) is
an increasing function in x.

Proof For x = 0, it is clear that a∗(0) = 0, since there are no customers to serve. For
x = 1, we know that when a∗(1) = 0, then a∗(2) > 0 [property (iii) of Lemma 3].
Hence, a∗(2) > a∗(1) ≥ a∗(0). Now, for x ≥ 1 and a > 0, it suffices to show that the
relative value function satisfies an extension of submodularity, namely

[
V (x, a + k) − V (x, a)

] − [
V (x + 1, a + k) − V (x + 1, a)

] ≥ 0 (9)

for all k ≥ 0. If this property holds, then since V (x + 1, a∗(x + 1) + k) − V (x +
1, a∗(x + 1)) ≥ 0, we have that V (x, a∗(x + 1) + k) − V (x, a∗(x + 1)) ≥ V (x +
1, a∗(x + 1)+ k)−V (x + 1, a∗(x + 1)) ≥ 0. Hence, this implies that the minimizing
action a∗(x) in state x satisfies a∗(x) ≤ a∗(x + 1).

We prove the submodularity property by induction on n in Vn. Let V0(x, a) = 0.
Clearly, the submodularity property holds. Now assume that the property holds for
some n ∈ N and for all x ≥ 0. We proceed to prove that Vn+1(x, a) satisfies the
property as well. Therefore, fix x ≥ 1 and a > 0; then

Vn+1(x, a + k) − Vn+1(x, a) − Vn+1(x + 1, a + k) + Vn+1(x + 1, a)

= λ
[
Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)

]

+ [
μ(a + k) − μ(a)

][
Hn(x − 1,0) − Hn(x,0)

]

+ μ(A)
[
Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)

]

− μ(a + k)Vn(x, a + k) + μ(a)Vn(x, a)

+ μ(a + k)Vn(x + 1, a + k) − μ(a)Vn(x + 1, a)

= λ
[
Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)

]

+ [
μ(a + k) − μ(a)

][
Hn(x − 1,0) − Hn(x,0)

]

146 Queueing Syst (2011) 68:133–163

+ μ(A)
[
Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)

]

− [
μ(a + k) − μ(a)

]
Vn(x, a + k) − μ(a)Vn(x, a + k) + μ(a)Vn(x, a)

+ [
μ(a + k) − μ(a)

]
Vn(x + 1, a + k) + μ(a)Vn(x + 1, a + k)

− μ(a)Vn(x + 1, a)

= λ
[
Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)

]

+ [
μ(A) − μ(a)

][
Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k)

+ Vn(x + 1, a)
]

+ [
μ(a + k) − μ(a)

][
Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x,0)

+ Hn(x − 1,0)
]
. (10)

The first equality follows from expanding Vn+1 into Vn. The second equality fol-
lows from adding and subtracting μ(a)Vn(x, a + k) and μ(a)Vn(x + 1, a + k). The
third equality follows from standard algebraic manipulations. Based on the induction
hypothesis, we have

Vn+1(x, a + k) − Vn+1(x, a) − Vn+1(x + 1, a + k) + Vn+1(x + 1, a)

≥ [
μ(a + k) − μ(a)

]

× [
Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x,0) + Hn(x − 1,0)

]
. (11)

By using property (ii) of Lemma 3, we obtain

Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x,0) + Hn(x − 1,0) ≥ 0. (12)

Thus, we have shown that [V (x, a+k)−V (x, a)]−[V (x+1, a+k)−V (x+1, a)] ≥
0. Consequently, this completes the proof as this property implies that a∗(x) is an
increasing function in x. �

Theorem 4 shows that in the one-dimensional case, i.e., N = 1, the optimal policy
a∗(x) is a step function in the variable x. The multidimensional case with arbitrary
N has the same structure. The proof of this statement fundamentally boils down to
the one-dimensional case. The following theorem shows the argument.

Theorem 5 (Step function) Consider an arbitrary number N ∈ N of queues, and let
a∗
i (x, a) := [argH(x,a)]i = [arg minb∈A(x,a)

{Vn(x, a +b)}]i . If the service rate μ(a)

and cost function c(a) are increasing functions in a, then a∗
i (x, a) is an increasing

function in xi .

Proof Fix (x, a) ∈ X and suppose that (x + ei, a) ∈ X as well. If a∗(x, a) is such
that

∑N
n=1(an + a∗

n(x, a)) < A, then there is spare capacity to assign. Hence, in state
(x + ei, a), all queues except queue i need no more capacity, since the number of
customers in their system did not increase. Hence, queue i can be viewed in isolation
due to the spare capacity. Therefore, Theorem 4 applies, and a∗

i (x, a) ≤ a∗
i (x +ei, a).

Queueing Syst (2011) 68:133–163 147

In the case where
∑N

n=1(an + a∗
n(x, a)) = A, there is no spare capacity left. Now,

there are two cases. Either the performance of queue i becomes so stringent that
capacity is taken away from a different queue, or the capacity allocation does not
change at all. In both cases, we have a∗

i (x, a) ≤ a∗
i (x + ei, a). �

3.3 Allocation strategy for service facilities with full flexibility in resource sharing

In this subsection we shall adopt the same techniques in deriving the structure of the
optimal policy as in the previous section, but now for the case of service facilities
with full flexibility in resource sharing. Therefore, we focus on the main theorems
that characterize the structure of the policy, while we move the lengthiest proof to
Appendix.

We start by rewriting (2) for the fully flexible system as a set of backward recursion
equations. This set of equations is given by

Vn+1(x) =
N∑

i=1

τi

xi

λi

+
N∑

i=1

λiVn(x + ei) + min
a∈Ax

T n
a (x), (13)

where T n
a (x) is given by

T n
a (x) =

N∑

i=1

μ(ai)Vn

([x − ei]+
) +

[
Nμ(A) −

N∑

i=1

μ(ai)

]
Vn(x) +

N∑

i=1

ci(ai).

Rewriting the optimality equations in this way has its advantage in showing struc-
tural properties of the relative value function V . We start by showing that the relative
value function is increasing in all components of the state. The following lemma
makes this statement more precise.

Lemma 6 (Increasingness) The relative value function V (x) is increasing in all com-
ponents of the state x, i.e., V (x + ej) − V (x) ≥ 0 for j = 1, . . . ,N .

Proof The proof is by induction on n in Vn(x). Let V0(x) = 0 for all states x ∈ X .
Then, clearly, V0(x) satisfies the increasingness property. Now, assume that Vn(x) is
an increasing function in x. We proceed to prove that Vn+1(x) is also increasing in x.
First, we have

Vn+1(x + ej) − Vn+1(x) = τj

λj

+
N∑

i=1

λi

[
Vn(x + ei + ej) − Vn(x + ei)

]

+ min
a∈Ax

{
T n

a (x + ej)
} − min

a∈Ax

{
T n

a (x)
}

≥ min
a∈Ax

{
T n

a (x + ej)
} − min

a∈Ax

{
T n

a (x)
}
.

The inequality holds because the first term is nonnegative, and the second expression
between the brackets is also nonnegative due to the induction hypothesis. Let a∗ =

148 Queueing Syst (2011) 68:133–163

arg mina∈Ax
{T n

a (x + ej)}. Then we have

Vn+1(x + ej) − Vn+1(x) ≥ T n
a∗(x + ej) − min

a∈Ax

{
T n

a (x)
}

≥ T n
a∗(x + ej) − T n

a∗(x)

=
N∑

i=1

μ
(
a∗
i

)[
Vn(x − ei + ej) − Vn(x − ei)

]

+
[
Nμ(A) −

N∑

i=1

μ
(
a∗
i

)
]
[
Vn(x + ei) − Vn(x)

]

≥ 0.

Therefore, by induction, we have shown that Vn+1(x + ej) − Vn+1(x) ≥ 0. Hence,
by taking the limit as n approaches infinity, we get that V (x) is increasing in xj for
j = 1, . . . ,N . �

We are now ready to pose our main theorem for the model with full flexibility.
The theorem characterizes the structure of the optimal policy to be a nondecreasing
function in the components of the state, i.e., if the number of customers in queue i

increases, then the allocation of the number of servers to queue i is nondecreasing.
The following theorem provides a rigorous proof to this statement.

Theorem 7 Consider an arbitrary number N ∈ N of queues, and let

a∗
i (x) :=

[
arg min

a∈Ax

{
Ta(x)

}]

i

=
[

arg min
a∈Ax

{
N∑

i=1

μ(ai)V
([x − ei]+

) +
[
Nμ(A) −

N∑

i=1

μ(ai)

]
V (x)

+
N∑

i=1

ci(ai)

}]

i

.

If the service rate μ(a) and cost function c(a) are increasing functions in a, then
a∗
i (x) is an increasing function in xi , while a∗

j (x) is nonincreasing in xi for j �= i.

Proof Fix x ∈ X and suppose that x + ei ∈ X as well. If a∗(x) is such that∑N
i=1 a∗

i (x) < A, then there is sufficient spare capacity to assign. Hence, in state
x + ei , all queues except queue i need no more capacity, since the number of cus-
tomers in their system did not increase. Hence, queue i can be viewed in isolation due
to the spare capacity. The queue in isolation satisfies that conditions of Theorem 1
of [14]. From this theorem it follows that a∗

i (x + ei) ≥ a∗
i (x) and a∗

j (x + ei) = a∗
j (x)

for j �= i.
Now suppose that

∑N
i=1 a∗

i (x) = A, i.e., all servers have been allocated. Denote
a = a∗(x + ei) and b = a∗(x). Note that Ta(x) − Tb(x) ≥ 0 and Ta(x + ei) − Tb(x +

Queueing Syst (2011) 68:133–163 149

ei) ≤ 0. Therefore, Z = Ta(x) − Tb(x) − Ta(x + ei) + Tb(x + ei) ≥ 0. Since

Ta(x) − Tb(x)

=
[

N∑

j=1

cj (aj) −
N∑

j=1

cj (bj)

]
+ [

μ(bi) − μ(ai)
][

V (x) − V (x − ei)
]

+
N∑

j �=i

[
μ(bj) − μ(aj)

][
V (x) − V (x − ej)

]
(14)

and

Ta(x + ei) − Tb(x + ei)

=
[

N∑

j=1

cj (aj) −
N∑

j=1

cj (bj)

]
+ [

μ(bi) − μ(ai)
][

V (x + ei) − V (x)
]

+
N∑

j �=i

[
μ(bj) − μ(aj)

][
V (x + ei) − V (x + ei − ej)

]
, (15)

we have

Z = Ta(x) − Tb(x) − Ta(x + ei) + Tb(x + ei)

= [
μ(ai) − μ(bi)

][
V (x − ei) − 2V (x) + V (x + ei)

]

+
N∑

j �=i

[
μ(aj) − μ(bj)

][
V (x + ei) − V (x + ei − ej) − V (x) + V (x − ej)

]
.

(16)

Now, we proceed to prove the structure of the policy. We distinguish between four
cases:

(1) aj > bj for j = 1, . . . ,N .
(2) ai < bi and aj > bj for j �= i.
(3) aj < bj for j = 1, . . . ,N .
(4) ai ≥ bi and aj ≤ bj for j �= i.

Note that case 1 cannot occur, since we assumed that our starting point was a state in
which all capacity was assigned already. Hence, one cannot assign even more capac-
ity. Cases 2 and 3 do not occur either. Intuitively, assigning fewer servers to queue i,
while increasing the number of jobs in queue i leads to degraded performance. To im-
prove readability, the rigorous proofs are given by Lemmas 8 and 9 in the Appendix.
The proofs are by contradiction: assuming that the statements of cases 2 or 3 are
true, we derive that Z ≤ 0. However, above we have shown that Z ≥ 0. Knowing that
Z = 0 cannot occur, we are left with case 4, which completes the proof. �

150 Queueing Syst (2011) 68:133–163

4 Numerical experiments

In this section we will illustrate the monotonicity results of the previous sections.
First, we will show how variability in the time constraints affects the processor allo-
cation for the three different models: (I) service facilities with dedicated resources,
(II) service facilities with limited resource sharing, and (III) service facilities with full
flexibility in resource sharing. Then, we will study the differences between the opti-
mal policies for the three different models; in particular, we will study the effect of
having more flexibility in the system versus the reduction in the number of allocated
processors. We will run our experiments under two systems that consist of 2 and 3
facilities, respectively. The parameters used in the experiment are defined as follows:

• λi : the arrival rate at facility i.
• μ(ai): the service rate of using ai processors at facility i.
• ci(ai): the costs of using ai processors at facility i.
• αi : the time constraint of facility i.

First, we show the experimental results of the system consisting of two facilities. The
parameter values are set as follows:

• λ1 = λ2 = 0.5.
• μ(ai) = √

aiμ and μ(ai) = a2
i μ/5 with μ = 1.2.

• ci(ai) = ai , ci(ai) = a2
i , and ci(ai) = √

ai .
• α1 = 0.5 and α2 ∈ {0.25,0.35,0.5,0.75,1,1.25,1.5}.
Based on these values, the minimum number of processors required by the system
to meet all time constraints of the different facilities are illustrated in Tables 1(a)
and (b). From these tables we observe that (1) when the time constraint is less strict,
the minimum number of processors required is nonincreasing, and (2) as the system
is more flexible, the number of processors needed decreases.

The properties stated above also hold for the experiment with three facilities, and
its results are shown in Tables 1(c) and (d). The results of the system with three
facilities are based on the parameter values below.

• λ1 = λ2 = λ3 = 0.5.
• μ(ai) = √

aiμ and μ(ai) = a2
i μ/5 with μ = 1.2.

• ci(ai) = ai , ci(ai) = a2
i , ci(ai) = √

ai .
• α1 = α2 = 0.5, and α3 ∈ {0.25,0.35,0.5,0.75,1,1.25,1.5}.
From Table 1 we observe that the difference in the required number of processors be-
tween the system with dedicated servers and the system with limited resource sharing
is quite large (models I versus model II). However, the system with limited and full
resource sharing have quite similar performance (model II versus model III). Note
that we did not specify the cost functions that have been used in these experiments.
This is due to the fact that the calculation of the minimum required number of pro-
cessors A∗

i , such that the time constraints are satisfied, is independent of the cost
functions.

Now we focus our attention to the structure of the optimal resource allocation
policy for a system consisting of two and three facilities, respectively. To illustrate

Queueing Syst (2011) 68:133–163 151

Table 1 Minimum number of processors required to meet service level constraints

(a) System with two facilities and μ(ai) = √
aiμ with μ = 1.2

α2 0.25 0.35 0.5 0.75 1 1.25 1.5

dedicated resources 20 13 10 8 7 7 6

limited resource sharing 16 10 6 6 6 6 5

full resource sharing 15 9 6 5 5 5 5

(b) System with two facilities and μ(ai) = a2
i
μ/5 with μ = 1.2

α2 0.25 0.35 0.5 0.75 1 1.25 1.5

dedicated resources 9 8 8 7 7 7 7

limited resource sharing 5 4 4 4 4 4 4

full resource sharing 5 4 4 4 4 4 4

(c) System with three facilities and μ(ai) = √
aiμ with μ = 1.2

α3 0.25 0.35 0.5 0.75 1 1.25 1.5

dedicated resources 25 18 15 13 12 12 11

limited resource sharing 17 11 8 7 7 7 7

full resource sharing 15 9 6 6 6 6 6

(d) System with three facilities and μ(ai) = a2
i
μ/5 with μ = 1.2

α3 0.25 0.35 0.5 0.75 1 1.25 1.5

dedicated resources 13 12 12 11 11 11 11

limited resource sharing 5 5 4 4 4 4 4

full resource sharing 5 5 4 4 4 4 4

Table 2 Parameter choices for
ci (·) and μ(·) with μ = 1.2 Experiment 1 ci (ai) = ai μ(ai) = √

aiμ

Experiment 2 ci (ai) = a2
i

μ(ai) = √
aiμ

Experiment 3 ci (ai) = √
ai μ(ai) = a2

i
μ/5

the structure of the policies, we vary the structure of the functions for ci(·), and μ(·)
as given in Table 2. We start by showing the experimental results of the system with
two facilities. The parameter values used in the three experiments are set as follows.

• λ1 = λ2 = 0.5.
• α1 = 0.5 and α2 = 0.25.

In model I of service facilities with dedicated resources, the number of resources A∗
i

allocated to facility i in the system is a constant given by A∗
i = �μ−1(λi + 1/αi)�.

For example, for experiment 1, the expression gives that 5 processors should be used
for facility 1 and 15 for facility 2.

We now turn our attention to model II of service facilities with limited resource
sharing. Based on Theorem 7, if both μ(ai) and ci(ai) are increasing functions in the

152 Queueing Syst (2011) 68:133–163

Fig. 1 Experiments of the system with two facilities: optimal policy of facility 1 for the limited resource
sharing model, given (x2, a2) = (2,1)

number of allocated resources ai , then the optimal allocation policy to any facility j

is a nondecreasing function in the number of customers at that facility, given that the
number of customers at all other facilities and the number of resources allocated to all
other facilities are fixed. Given that the number of customers at facility 2 is 2 and the
number of resources assigned to facility 2 is 1, Fig. 1 illustrates the structure of the
optimal policy for facility 1. These three figures correspond to the three experiments
shown in Table 2.

We finally discuss model III with full flexibility in resource sharing. The structure
of the optimal policy is quite similar to that of the previous model (with limited
resource sharing). Consider again the optimal policy for facility 1. The corresponding
experimental results are shown in Fig. 2. All figures illustrate that the optimal policy
is a nondecreasing function in number of customers at the facility, given that the
number of customers at facility 2 is x2 = 2.

Figures 1 and 2 show the structure of the optimal policy for the system with two
facilities. The experiments with three (and more) facilities show a similar structure.
Combining the experimental results of the system with two and three facilities, we

Queueing Syst (2011) 68:133–163 153

Fig. 2 Experiments of the system with two facilities: optimal policy to facility 1 in case of service facility
with full flexibility in resource sharing

conclude that the optimal policy for an arbitrary facility in model I with dedicated
resources is a constant, since there is no resource sharing; in case of model II with
limited resource sharing and model III with full flexibility in resource sharing, the op-
timal policy for each facility is a nondecreasing function in the number of customers
at that facility.

5 Conclusion and further discussion

In this paper we have derived a characterization of the optimal policy in three differ-
ent models. We have shown that directional monotonicity is not sufficient to derive
the structure of the optimal policy. In addition to directional convexity, the structure
of the problem also requires submodularity of the relative value function. In gen-
eral, this is hard to derive for multidimensional systems, since one needs to compare
different states that differ in multiple components simultaneously. The extensive nu-

154 Queueing Syst (2011) 68:133–163

merical experiments reveal several fundamental insights of the relative effectiveness
the optimal policies.

There are several interesting avenues for further research. First, one may suspect
that the Poisson assumption of the arrival process can be relaxed. The proof of sub-
modularity shows that the service rates are the dominant factor for the properties of
the relative value function. This suggests that there is room for more generality in the
arrival process for which the structure of the policies remain valid. Secondly, from
an application point of view, generalization to nonexponential service times is prac-
tically relevant. It is an open question to what extent the policies are still optimal for,
for example, phase-type service distributions. Finally, user-perceived service quality
often requires more detailed information than the mean processing time only. The
level of quality can be highly dependent on, for example, variance and/or tail proba-
bilities in the processing times. This requires a new approach to handle such service
requirements, opening up new challenging areas in research.

Acknowledgements The authors would like to thank Dennis Roubos for fruitful discussions which have
helped in the details of the proofs and for help in the simulation code.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: Proofs of Sect. 3.3

In this section we provide proofs of statements made on two cases that appear in The-
orem 7. The first case deals with the situation in which ai < bi and aj > bj for j �= i,
i.e., the case in which the queue with one additional customer is allocated strictly
fewer processors, whereas the other queues are potentially allocated more proces-
sors. The other case concerns aj < bj for j = 1, . . . ,N , i.e., all queues, including
the one with an additional customer, are allocated strictly fewer processors. In The-
orem 7, the claim is that neither case can occur (which is intuitively plausible). In
Lemmas 8 and 9, we show that this claim indeed holds.

Lemma 8 Let a = a∗(x + ei) and b = a∗(x). If ai < bi and aj > bj for j �= i, then
the following properties hold:

1. V (x) is convex in i:

V (x + ei) − 2V (x) + V (x − ei) ≥ 0.

2. V (x) is submodular in (xi, xj):

V (x) − V (x − ej) − V

(
x + ei −

N∑

p=1,p �=j,p �=i

dp · ep

)

+ V

(
x + ei − ej −

N∑

p=1,p �=j,p �=i

dp · ep

)
≥ 0

for j ∈ {1,2, . . . ,N} \ {i} and dp ≥ 0.

Queueing Syst (2011) 68:133–163 155

Proof The proof is by induction on Vn. First, for n = 0, define V0(x) = 0 for all
x. Clearly, the function V0(x) is convex in xi and submodular in (xi, xj). Secondly,
assume that the two properties hold for n = k. Then, we proceed to prove that Vn+1(x)

is also convex in xi and submodular in (xi, xj) under the conditions stated in the
theorem. Let c = a∗(x − ei) and recall that a = a∗(x + ei) and b = a∗(x). By the
conditions of the theorem, we have that ai < bi < ci and aj > bj > cj for all j �= i.
Now, we are ready to prove the convexity.

Convexity

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei)

=
[

N∑

l=1

λlVn(x + el + ei) − 2
N∑

l=1

λlVn(x + el) +
N∑

l=1

λlVn(x + el − ei)

]

+
[

min
a∈Ax

{
T k

a (x + ei)
} − 2 min

a∈Ax

{
T k

a (x)
} + min

a∈Ax

{
T k

a (x − ei)
}]

=
N∑

l=1

λl

[
Vn(x + el + ei) − 2Vn(x + el) + Vn(x + el − ei)

]

+
[

min
a∈Ax

{
T k

a (x + ei)
} − 2 min

a∈Ax

{
T k

a (x)
} + min

a∈Ax

{
T k

a (x − ei)
}]

≥ min
a∈Ax

{
T k

a (x + ei)
} − 2 min

a∈Ax

{
T k

a (x)
} + min

a∈Ax

{
T k

a (x − ei)
}
.

The inequality holds because the first expression between the brackets is nonnegative
due to the induction hypothesis. Now, by expanding the operator T , we derive

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei)

≥ T k
a (x + ei) − T k

a (x) − T k
c (x) + T k

c (x − ei)

≥
[

N∑

l=1

cl(al) −
N∑

l=1

cl(al) −
N∑

l=1

cl(cl) +
N∑

l=1

cl(cl)

]

+
[

N∑

l=1

μ(al)Vn(x − el + ei) −
N∑

l=1

μ(al)Vn(x − el)

−
N∑

l=1

μ(cl)Vn(x − el) +
N∑

l=1

μ(cl)Vn(x − el − ei)

]

+
[(

Nμ(A) −
N∑

l=1

μ(al)

)
Vn(x + ei) −

(
Nμ(A) −

N∑

l=1

μ(al)

)
Vn(x)

−
(

Nμ(A) −
N∑

l=1

μ(cl)

)
Vn(x) +

(
Nμ(A) −

N∑

l=1

μ(cl)

)
Vn(x − ei)

]
.

156 Queueing Syst (2011) 68:133–163

Note that the first expression between the brackets is equal to 0 (with a slight abuse
of notation, where we use cl(·) for the cost function and cl as variable for the optimal
allocation). Now, we rearrange the terms and put all terms together. Then we get

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei) ≥ Si +
N∑

l �=i,l=1

Sl,

where

Sl := [
μ(al)Vn(x − el + ei) − μ(al)Vn(x − el) − μ(cl)Vn(x − el)

+ μ(cl)Vn(x − el − ei)
]

+ (
μ(A) − μ(al)

)
Vn(x + ei) − (

μ(A) − μ(al)
)
Vn(x)

− (
μ(A) − μ(cl)

)
Vn(x) + (

μ(A) − μ(cl)
)
Vn(x − ei)

for l = 1, . . . ,N . Clearly, if all Sl ≥ 0, then Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x −
ei) ≥ 0. Thus, as the next step, we prove that this statement holds. We first discuss
this for Si , and then we deal with the case Sl for l �= i. We first add −μ(ci)[Vn(x) −
Vn(x − ei)]+ μ(ci)[Vn(x)− Vn(x − ei)] and [−μ(ai)+ μ(ai)][Vn(x)− Vn(x − ei)]
to Si . Then, we get

Si = [
μ(ai) − μ(ci)

][
Vn(x) − Vn(x − ei)

]

+ μ(ci)Vn(x) − 2μ(ci)Vn(x − ei) + μ(ci)Vn(x − 2ei)

+ [
μ(A) − μ(ai)

][
Vn(x + ei) − Vn(x)

]

− [
μ(A) − μ(ai) + μ(ai) − μ(ci)

][
Vn(x) − Vn(x − ei)

]

= [
μ(ai) − μ(ci)

][
Vn(x) − Vn(x − ei)

]

+ μ(ci)Vn(x) − 2μ(ci)Vn(x − ei) + μ(ci)Vn(x − 2ei)

+ [
μ(A) − μ(ai)

][
Vn(x + ei) − Vn(x)

]

− [
μ(A) − μ(ai)

][
Vn(x) − Vn(x − ei)

]

− [
μ(ai) − μ(ci)

][
Vn(x) − Vn(x − ei)

]

= μ(ci)
[
Vn(x) − 2Vn(x − ei) + Vn(x − 2ei)

]

+ [
μ(A) − μ(ai)

][
Vn(x + ei) − 2Vn(x) + Vn(x − ei)

]

≥ 0.

The second and third equalities above follow from the standard calculus. The last
inequality holds because of the induction hypothesis. Next, we proof that Sl ≥ 0 for
l �= i. By rearranging the terms of Sl , we derive

Sl = μ(al)
[
Vn(x) + Vn(x − el + ei) − Vn(x + ei) − Vn(x − el)

]

+ μ(cl)
[
Vn(x) + Vn(x − el − ei) − Vn(x − ei) − Vn(x − el)

]

+ μ(A)
[
Vn(x + ei) − 2Vn(x) + Vn(x − ei)

]
.

Queueing Syst (2011) 68:133–163 157

Recall that al > cl for l �= i. In addition, due to the induction hypothesis, Vn(x) is
submodular in (xi, xl) for all dp ≥ 0 and for l �= i. This implies that

Vn(x) − Vn(x − el) − Vn

(
x + ei −

N∑

p=1,p �=i,p �=l

dp · ep

)

+ Vn

(
x + ei − el −

N∑

p=1,p �=i,p �=l

dp · ep

)
≥ 0.

Set dp = 0 for all p ∈ {1, . . . ,N} \ {i, l}. Then it follows that Vn(x) + Vn(x − el +
ei) − Vn(x + ei) − Vn(x − el) ≥ 0 for l �= i. Therefore, using al > cl , we derive

Sl ≥ μ(cl)
[
Vn(x) + Vn(x − el + ei) − Vn(x + ei) − Vn(x − el)

+ Vn(x) + Vn(x − el − ei) − Vn(x − ei) − Vn(x − el)
]

+ μ(A)
[
Vn(x + ei) − 2Vn(x) + Vn(x − ei)

]

≥ μ(cl)
[
Vn(x − el + ei) − 2Vn(x − el) + Vn(x − el − ei)

]

+ [
μ(A) − μ(cl)

][
Vn(x + ei) − 2Vn(x) + Vn(x − ei)

]

≥ 0.

Hence, we conclude that Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei) ≥ 0. Now, we
proceed to prove that Vn+1(x) is submodular in (xi, xj). To this purpose, define P =
{1, . . . ,N} \ {i, j}.
Submodularity Let dp ≥ 0 for all p ∈ P . Then,

Vn+1(x) − Vn+1(x − ej) − Vn+1

(
x + ei −

∑

p∈P

dp · ep

)

+ Vn+1

(
x + ei − ej −

∑

p∈P

dp · ep

)

=
N∑

l=1

λl

[
Vn(x + el) − Vn(x − ej + el) − Vn

(
x + ei −

∑

p∈P

dp · ep + el

)

+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep + el

)]

+
[

min
a′∈Ax

{
T k

a′(x)
} − min

a′∈Ax

{
T k

a′(x − ej)
} − min

a′∈Ax

{
T k

a′

(
x + ei −

∑

p∈P

dp · ep

)}

+ min
a′∈Ax

{
T k

a′

(
x + ei − ej −

∑

p∈P

dp · ep

)}]

158 Queueing Syst (2011) 68:133–163

≥ min
a′∈Ax

{
T k

a′(x)
} − min

a′∈Ax

{
T k

a′(x − ej)
} − min

a′∈Ax

{
T k

a′

(
x + ei −

∑

p∈P

dp · ep

)}

+ min
a′∈Ax

{
T k

a′

(
x + ei − ej −

∑

p∈P

dp · ep

)}
.

The inequality holds because the first expression between the brackets is nonnegative

due to the induction hypothesis. Let ã = a∗(x + ei − ej − ∑
p∈P dp · ep) and recall

that b = a∗(x). Then, it follows that

Vn+1(x) − Vn+1(x − ej) − Vn+1

(
x + ei −

∑

p∈P

dp · ep

)

+ Vn+1

(
x + ei − ej −

∑

p∈P

dp · ep

)

≥ T k
b (x) − T k

b (x − ej) − T k
ã

(
x + ei −

∑

p∈P

dp · ep

)

+ T k
ã

(
x + ei − ej −

∑

p∈P

dp · ep

)

=
[

N∑

l=1

μ(bl)Vn(x − el) +
(

Nμ(A) −
N∑

l=1

μ(bl)

)
Vn(x)

]

−
[

N∑

l=1

μ(bl)Vn(x − ej − el) +
(

Nμ(A) −
N∑

l=1

μ(bl)

)
Vn(x − ej)

]

−
[

N∑

l=1

μ(ãl)Vn

(
x + ei −

∑

p∈P

dp · ep − el

)

+
(

Nμ(A) −
N∑

l=1

μ(ãl)

)
Vn

(
x + ei −

∑

p∈P

dp · ep

)]

+
[

N∑

l=1

μ(ãl)Vn

(
x + ei − ej −

∑

p∈P

dp · ep − el

)

+
(

Nμ(A) −
N∑

l=1

μ(ãl)

)
Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]
.

Queueing Syst (2011) 68:133–163 159

Now we rearrange the terms to simplify the inequality. Then,

Vn+1(x) − Vn+1(x − ej) − Vn+1

(
x + ei −

∑

p∈P

dp · ep

)

+ Vn+1

(
x + ei − ej −

∑

p∈P

dp · ep

)

≥
N∑

l=1

μ(bl)
[
Vn(x − el) − Vn(x) − Vn(x − ej − el) + Vn(x − ej)

]

−
N∑

l=1

μ(ãl)

[
Vn

(
x + ei −

∑

p∈P

dp · ep − el

)
− Vn

(
x + ei −

∑

p∈P

dp · ep

)

− Vn

(
x + ei − ej −

∑

p∈P

dp · ep − el

)
+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

+ Nμ(A)

[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

∑

p∈P

dp · ep

)

+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]
.

As the next step, we write the final expression above as Si + Sj + ∑N
l=1,l �=i,l �=j Sl ,

where

Sk = μ(bk)
[
Vn(x − ek) − Vn(x) − Vn(x − ej − ek) + Vn(x − ej)

]

− μ(ãk)

[
Vn

(
x + ei −

∑

p∈P

dp · ep − ek

)
− Vn

(
x + ei −

∑

p∈P

dp · ep

)

− Vn

(
x + ei − ej −

∑

p∈P

dp · ep − ek

)
+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

+ μ(A)

[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

∑

p∈P

dp · ep

)

+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

for k = 1, . . . ,N . In the remainder of the proof, we will show that all Sk ≥ 0. First, we
focus on Si . Consider the first term between brackets in Si . By setting x′ = x − ei , we
see that this term is equal to Vn(x

′)−Vn(x
′ −ej)−Vn(x

′ +ei)+Vn(x
′ +ei −ej) ≥ 0,

160 Queueing Syst (2011) 68:133–163

since Vn(x) is submodular. In addition, because of the conditions of the theorem, we
have bi ≥ ãi . Therefore,

S3 ≥ μ(ãi)
[
Vn(x − ei) − Vn(x) − Vn(x − ej − ei) + Vn(x − ej)

]

− μ(ãi)

[
Vn

(
x −

∑

p∈P

dp · ep

)
− Vn

(
x + ei −

∑

p∈P

dp · ep

)

− Vn

(
x − ej −

∑

p∈P

dp · ep

)
+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

+ μ(A)

[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

∑

p∈P

dp · ep

)

+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

= μ(ãi)

[
Vn(x − ei) − V (x − ej − ei) − Vn

(
x −

N∑

p∈P

dp · ep

)

+ Vn

(
x − ej −

N∑

p∈P

dp · ep

)]

+ [
μ(A) − μ(ãi)

]
[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

N∑

p∈P

dp · ep

)

+ Vn

(
x + ei − ej −

N∑

p∈P

dp · ep

)]

≥ 0.

The second equality above follows from standard calculus, and the last inequality fol-
lows from submodularity of the induction hypothesis. Now, we proceed to study Sj .
Since Vn(x) is convex, the first expression between the brackets of Sj is nonpositive.
Combining this result with the condition of the theorem, ãj ≥ bj that is equivalent to
−bj ≥ −ãj , we get

Sj ≥ μ(ãj)
[
Vn(x − ej) − Vn(x) − Vn(x − 2ej) + Vn(x − ej)

]

− μ(ãj)

[
Vn

(
x + ei −

∑

p∈P

dp · ep − ej

)
− Vn

(
x + ei −

∑

p∈P

dp · ep

)

− Vn

(
x + ei − 2ej −

∑

p∈P

dp · ep

)
+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

Queueing Syst (2011) 68:133–163 161

+ μ(A)

[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

∑

p∈P

dp · ep

)

+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

≥ μ(ãj)

[
Vn(x − ej) − Vn(x − 2ej) − Vn

(
x + ei − ej −

N∑

p∈P

dp · ep

)

+ Vn

(
x + ei − 2ej −

N∑

p∈P

dp · ep

)]

+ [
μ(A) − μ(ãj)

]
[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

N∑

p∈P

dp · ep

)

+ Vn

(
x + ei − ej −

N∑

p∈P

dp · ep

)]

≥ 0.

Finally, we prove that Sl for l �= i and l �= j is also nonnegative. Let x′ = x −ej . Then
the first term of Sl is equal to Vn(x

′) − Vn(x
′ − el) − Vn(x

′ + ej) + Vn(x
′ + ej − el).

Since Vn(x) is submodular in all (xi, xj) with j �= i, Vn(x
′) is submodular in (xj , xl).

Therefore, using μ(A) ≥ μ(ãl), we derive that

Sl ≥ μ(bl)
[
Vn(x − ej) − Vn(x − ej − el) − Vn(x) + Vn(x − el)

]

− μ(ãl)

[
Vn

(
x + ei −

∑

p∈P

dp · ep − el

)
− Vn

(
x + ei −

∑

p∈P

dp · ep

)

− Vn

(
x + ei − ej −

∑

p∈P

dp · ep − el

)
+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

+ μ(ãl)

[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

∑

p∈P

dp · ep

)

+ Vn

(
x + ei − ej −

∑

p∈P

dp · ep

)]

≥ μ(ãl)

[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

N∑

p∈P

dp · ep − el

)

+ Vn

(
x + ei − ej −

N∑

p∈P

dp · ep − el

)]
.

162 Queueing Syst (2011) 68:133–163

Now, let d ′ = d + el . Then,

Sl ≥ μ(ãl)

[
Vn(x) − Vn(x − ej) − Vn

(
x + ei −

N∑

p∈P

d ′
p · ep

)

+ Vn

(
x + ei − ej −

N∑

p∈P

d ′
p · ep

)]

≥ 0.

Hence, Vn+1(x) is submodular in (xi, xj). Thus, by taking the limit as n → ∞, we
conclude that V (x) is convex and submodular under the conditions given in the the-
orem. �

Lemma 8 shows that the relative value function V satisfies convexity and submod-
ularity in case ai < bi and aj > bj for j �= i. Note that this leads to a contradiction in
Theorem 7, since this implies that Z = Ta(x)−Tb(x)−Ta(x + ei)+Tb(x + ei) ≤ 0.
However, it was shown in the theorem that Z ≥ 0. Hence, this case cannot occur.
Similarly, the case aj < bj for all j also cannot occur. The next lemma provides a
rigorous statement for this.

Lemma 9 Let a = a∗(x + ei) and b = a∗(x). If aj < bj for j = 1, . . . ,N , then the
following properties hold:

1. V (x) is convex in i:

V (x + ei) − 2V (x) + V (x − ei) ≥ 0.

2. V (x) is supermodular in (xi, xj):

V

(
x + ei −

N∑

p=1,p �=j,p �=i

dp · ep

)
− V

(
x + ei − ej −

N∑

p=1,p �=j,p �=i

dp · ep

)

− V (x) + V (x − ej) ≥ 0

for j ∈ {1,2, . . . ,N} \ {i} and dp ≥ 0.

Proof The proof of the lemma is by induction on Vn. Note that the proof of convexity
and supermodularity is completely analogous to the proof of convexity and submod-
ularity in Lemma 8. The only difference is that in Lemma 8 we have al > cl for l �= i,
whereas in this case, al < cl . However, with supermodularity (instead of submodu-
larity) the signs of the inequalities turn out to be correct for proving convexity and
supermodularity. �

References

1. Altman, E.: Constrained Markov Decision Processes. Chapman and Hall, London (1999)

Queueing Syst (2011) 68:133–163 163

2. Bhulai, S., Koole, G.M.: A queueing model for call blending in call centers. IEEE Trans. Autom.
Control 48, 1434–1438 (2003)

3. Borst, S.C., Seri, P.: Robust algorithms for sharing agents with multiple skills. Technical Report, Bell
Laboratories, Murray Hill, NJ (2000)

4. Gans, N., Zhou, Y.: A call-routing problem with service-level constraints. Oper. Res. 51, 255–271
(2003)

5. Kleinrock, L.: A delay-dependent queue discipline. Nav. Res. Logist. Q. 11, 59–73 (1964)
6. Kleinrock, L., Finkelstein, R.P.: Time dependent priority queues. Oper. Res. 15, 104–116 (1967)
7. Koole, G.: Monotonicity in Markov reward and decision chains: the theory and applications. Found.

Trends Stoch. Syst. 1 (2006)
8. Perry, M., Nilsson, A.: Performance modeling of automatic call distributors: Assignable grade of

service staffing. In: XIV International Switching Symposium, pp. 294–298 (1992)
9. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,

New York (1994)
10. Shumsky, R.A.: Approximation and analysis of a queueing system with flexible and specialized

servers. OR Spectrum 26 (2004)
11. Stanford, D.A., Grassmann, W.K.: Bilingual server call centres. In: McDonald, D.R., Turner, S.R.E.

(eds.) Call Centres, Traffic and Performance, vol. 28, pp. 31–48. Springer, Berlin (2000)
12. Veatch, M.H., Wein, L.M.: Monotone control of queueing networks. Queueing Syst. 12, 393–408

(1992)
13. Weber, R.R., Stidham, S.: Optimal control of service rates in networks of queues. Adv. Appl. Probab.

19(1), 202–218 (1987)
14. Yang, R., Bhulai, S., van der Mei, R., Seinstra, F.: Optimal resource allocation for time-reservation

systems. Technical report, VU University Amsterdam (2010)

	Optimal resource allocation for multiqueue systems with a shared server pool
	Abstract
	Introduction
	Model formulation
	Service facilities with dedicated resources
	Service facilities with limited resource sharing
	Service facilities with full flexibility in resource sharing

	Structural properties of the optimal policy
	Allocation strategy for service facilities with dedicated resources
	Allocation strategy for service facilities with limited resource sharing
	Property (i)
	Property (ii)
	Property (iii)
	Property (iv)

	Allocation strategy for service facilities with full flexibility in resource sharing

	Numerical experiments
	Conclusion and further discussion
	Acknowledgements
	Open Access
	Appendix: Proofs of Sect. 3.3
	Convexity
	Submodularity

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

