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Abstract We consider an M/G/1 retrial queue where the service time distribution has
a regularly varying tail with index −β, β > 1. The waiting time distribution is shown
to have a regularly varying tail with index 1 − β, and the pre-factor is determined
explicitly. The result is obtained by comparing the waiting time in the M/G/1 retrial
queue with the waiting time in the ordinary M/G/1 queue with random order service
policy.
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1 Introduction

Retrial queues are queueing systems where arriving customers finding the server oc-
cupied may retry for service again after a random amount of time. Retrial queues
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have been widely used to model many problems in telephone systems, call centers,
and many telecommunication systems. Detailed overviews for retrial queues can be
found in the bibliographies [1–3], surveys [8, 17], and books [4, 9].

In this paper, we consider an M/G/1 retrial queueing system where customers ar-
rive from outside according to a Poisson process with intensity λ, and service times
B are independent and identically distributed with distribution function FB . If the
server is idle at the time of a customer arrival, the arriving customer begins to be
served immediately and leaves the system after service completion. Otherwise, i.e.,
if the server is busy, the arriving customer joins a retrial group (i.e., forms a source of
repeated customers), called an orbit. If an incoming repeated customer from the orbit
finds the server idle, this customer is served and leaves the system after service com-
pletion. Otherwise, i.e., if the repeated customer finds the server busy, the customer
comes back to the orbit immediately and repeats the retrial process. The inter-retrial
times of each customer in the orbit are assumed to be exponentially distributed with
mean ν−1. The arrival process, the service times, and the retrial times are assumed to
be mutually independent. The traffic load ρ is defined as ρ = λEB . We assume that
ρ < 1 for stability of the system.

Tail behaviors of the queue size and the waiting time distributions in retrial queues
began to be investigated recently. Light-tailed behaviors have been studied by Nobel
and Tijms [14] and Kim et al. [12, 13]. Nobel and Tijms [14] suggested a light-tailed
approximation of the waiting time distribution in the M/G/1 retrial queue when the
service time distribution has a finite exponential moment. Kim et al. [12] showed that
if the service time distribution has a finite exponential moment then the tail of the
queue size distribution is asymptotically given by a geometric function multiplied by
a power function in the M/G/1 retrial queue under an additional condition. The result
of [12] was generalized to the MAP/G/1 retial queue by Kim et al. [13].

The interest of our work is that we find the heavy-tailed asymptotics for the wait-
ing time distribution in the M/G/1 retrial queue. There are many references for the
heavy-tailed asymptotics in ordinary queues. See, for example, [5, 6, 11, 16] and ref-
erences therein. However, for the heavy-tailed asymptotics in retrial queues, it seems
that Shang et al. [15] is the only known result in the open literature. Shang et al. [15]
showed that the stationary distribution of the queue length in the M/G/1 retrial queue
is subexponential if the stationary distribution of the queue length in the correspond-
ing ordinary M/G/1 queue is subexponential. As a corollary of this property, they
proved that the stationary distribution of the queue length has a regularly varying tail
if the service time distribution has a regularly varying tail.

The main contribution of this paper is to show that if the service time distribution
has a regularly varying tail of index −β , β > 1, in the M/G/1 retrial queue, then the
waiting time distribution has a regularly varying tail of index 1 − β . More precisely,
we prove that if the distribution function FB of service times satisfies

1 − FB(x) ∼ x−βL(x) as x → ∞
with β > 1 and a slowly varying function L, then the distribution function FW for the
waiting time W of an arbitrary customer satisfies

1 − FW(x) ∼ cx1−βL(x) as x → ∞ (1)
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with a constant c > 0 that is given explicitly. Here and subsequently, f (x) ∼ g(x)

denotes limx→∞ f (x)
g(x)

= 1.

Boxma et al. [7] obtained the same result as (1) for the waiting time distribution
in the ordinary M/G/1 queue with random order service (ROS) policy. The main
result (1) is obtained by comparing the waiting time in the M/G/1 retrial queue with
the waiting time in the ordinary M/G/1 queue with ROS policy.

The remainder of this paper is organized as follows: In Sect. 2 we show that if
the service time distribution has a regularly varying tail of index −β , β > 1, then
tails of several first passage time distributions are bounded by a function that is of
regular variation with index −β . In Sect. 3 we present our main result. In Sect. 4
we compare the conditional waiting times between the M/G/1 retrial queue and the
ordinary M/G/1 queue with ROS policy. Section 5 is devoted to the derivation of the
tail asymptotics stated without proof in Sect. 3.

2 First passage time distributions

We consider the M/G/1 retrial queue where arrival rate is λ and service times have
the distribution function FB . Let us define

N(t) = the number of customers in the orbit at time t,

C(t) =
{

1 if the server is busy at time t,

0 if the server is idle at time t,

X(t) =
⎧⎨
⎩

the elapsed service time of the customer who is in service at time t

if C(t) = 1,

0 if C(t) = 0.

Then {(N(t),C(t),X(t)) : t ≥ 0} is a Markov process. We assume that every sample
path of the Markov process is right-continuous. Let

τn = inf
{
t > 0 : N(t) = n,C(t) = 1,X(t) = 0

}
, n = 0,1,2, . . . ,

σn = inf
{
t > 0 : N(t) = n,C(t) = 0

}
, n = 0,1,2, . . . ,

Gn(x) = P
(
σn ≤ x

∣∣N(0) = n,C(0) = 1,X(0) = 0
)
, n = 0,1,2, . . . ,

Hn(x) = P
(
τn−1 ≤ x

∣∣N(0) = n,C(0) = 1,X(0) = 0
)
, n = 1,2,3, . . . ;

that is, τn is the first time a service starts with n customers in the orbit, σn is the first
time a service ends with n customers in the orbit, Gn(x) is the distribution function of
the time interval that starts when a service starts with n customers in the orbit and ends
when a service completes with n customers in the orbit, and Hn(x) is the distribution
function of the time interval that starts when a service starts with n customers in the
orbit and ends when a service starts with n − 1 customers in the orbit. See Fig. 1 for
an illustration of a sample path of {N(t) : t ≥ 0} with σn and τn−1.

Clearly,

Gn(x) ≥ Hn(x), n = 1,2,3, . . . . (2)



368 Queueing Syst (2010) 65: 365–383

Fig. 1 A sample path of {N(t) : t ≥ 0}

We also have that

Gn(x) ≤ Gm(x), x ∈ R, if 0 ≤ n ≤ m, (3)

Hn(x) ≤ Hm(x), x ∈ R, if 0 ≤ n ≤ m, (4)

which will be used later. Even though (3) and (4) are intuitively obvious, we give a
brief verification of this below.

Suppose that 0 ≤ n ≤ m and N(0) = n,C(0) = 1,X(0) = 0. We introduce a new
term, ‘k-period’. k-period is the duration that starts when a customer from outside
begins service with k customers in the orbit and ends when the server becomes idle
with k customers in the orbit. Now we construct a modified system by two proce-
dures. First, whenever a customer arrives and initiates a k-period, we remove the
k-period with probability m−n

k+m−n
. Then for the resulting system, if a service ends

with k customers in the orbit, then (i) the next service starts by a customer from the
orbit with probability (k+m−n)ν

(k+m−n)ν+λ
and by a customer from outside with probability

λ
(k+m−n)ν+λ

, and (ii) the idle time until the next service is exponentially distributed

with parameter k
k+m−n

((k + m − n)ν + λ). Secondly, during each idle time with k

customers in the orbit we shorten the time horizon so that the idle time is exponen-
tially distributed with parameter (k +m−n)ν +λ. After the two procedures, the time
to the first service completion with n customers in the orbit has the distribution func-
tion Gm. Obviously, after the two procedures, the time to the first service completion
with n customers in the orbit is smaller than that in the original system, which has the
distribution function Gn. Thus (3) is verified. Equation (4) can be shown by a similar
argument.

For a distribution function F , the complementary distribution function is denoted
by F , i.e., F(x) = 1 − F(x), x ∈ R. In this section, we assume that the service time
distribution has a regularly varying tail with index −β , β > 1, i.e., FB(x) ∼ x−βL(x)

as x → ∞ with a slowly varying function L. The following proposition asserts that,
for all n, Gn(x) and Hn(x) are bounded by a function that is of regular variation with
index −β . This proposition will be used in the proof of our main result.



Queueing Syst (2010) 65: 365–383 369

Proposition 1 We have

Gn(x) � x−βL(x), n = 0,1,2, . . . ,

and

Hn(x) � x−βL(x), n = 1,2,3, . . . ,

where f (x) � g(x) denotes lim supx→∞
f (x)
g(x)

< ∞.

To prove this, we need a series of lemmas.

Lemma 1 For n ≥ 1,

Gn(x) � FB(x) if and only if Hn(x) � FB(x).

Proof By (2), Hn(x) � FB(x) implies Gn(x) � FB(x). Now we show the converse,
that is,

Gn(x) � FB(x) implies Hn(x) � FB(x).

Suppose that Gn(x) � FB(x). Letting

Jn(x) = P
(
τn−1 ≤ x

∣∣N(0) = n,C(0) = 0
)
,

we have

Hn(x) = Gn ∗ Jn(x), (5)

where ∗ denotes the convolution of distributions. We observe that

Jn(x) = nν

nν + λ
Enν+λ(x) + λ

nν + λ
Enν+λ ∗ Hn(x), (6)

where Eα denotes the exponential distribution function with mean α−1. Substituting
(6) into (5) leads to

Hn(x) = nν

nν + λ
Gn ∗ Enν+λ(x) + λ

nν + λ
Gn ∗ Enν+λ ∗ Hn(x).

This implies

Hn(x) =
∞∑

k=1

nν

nν + λ

(
λ

nν + λ

)k−1

(Gn ∗ Enν+λ)
∗k(x),

where the superscript ∗k on the right-hand side denotes the k-fold convolution. Since
Gn(x) � FB(x), we have Gn ∗ Enν+λ(x) � FB(x). By Proposition 2.9 in [16], we
obtain Hn(x) � FB(x). �

Now we define

A(t) = the number of exogenous arrivals during (0, t],
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q = 1 −
∫ ∞

0
e−λt dFB(t),

θ = inf
{
t > 0 : C(t) = 0

}
.

Note that q is the probability that at least one exogenous arrival occurs during a
service time. Let

Gn,0(x) = P
(
σn ≤ x

∣∣N(0) = n,C(0) = 1,X(0) = 0,A(θ) = 0
)
,

Kn(x) = P
(
τn ≤ x

∣∣N(0) = n,C(0) = 1,X(0) = 0,A(θ) ≥ 1
)
,

i.e., Gn,0(x) is the distribution function of a service time given that there is no exoge-
nous arrival during the service time, and Kn(x) is the distribution function of the time
interval between two consecutive epochs at which services start with n customers in
the orbit, given that at least one exogenous arrival occurs during the first service time
in the interval.

Lemma 2 We have

(a) For n = 0,1,2, . . . ,

Gn(x) = (1 − q)Gn,0(x) + q(Kn ∗ Gn)(x). (7)

(b) For n = 0,1,2, . . . ,

Gn,0(x) ≤ e−λx

1 − q
FB(x),

Kn(x) ≤ 1

q
Hn+1(x).

Proof (a) We decompose Gn(x) as

Gn(x) = (1 − q)Gn,0(x) + qP
(
σn ≤ x

∣∣N(0) = n,C(0) = 1,X(0) = 0,A(θ) ≥ 1
)
,

(8)
which can be obtained by conditioning on whether an exogenous arrival occurs during
a service time or not. Given {N(0) = n,C(0) = 1,X(0) = 0,A(θ) ≥ 1}, we have
τn < σn, i.e.,

σn = τn + (σn − τn) with σn − τn > 0.

Furthermore, given {N(0) = n,C(0) = 1,X(0) = 0,A(θ) ≥ 1}, we have that

• τn and σn − τn are independent,
• τn has the distribution function Kn(x),
• σn − τn has the distribution function Gn(x).

Therefore,

P
(
σn ≤ x

∣∣N(0) = n,C(0) = 1,X(0) = 0,A(θ) ≥ 1
) = Kn ∗ Gn(x). (9)
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Substituting (9) into (8) leads to (7).
(b) Since 1 − q = P(A(θ) = 0 | N(0) = n,C(0) = 1,X(0) = 0), we have

(1 − q)Gn,0(x) = P
(
θ > x,A(θ) = 0

∣∣N(0) = n,C(0) = 1,X(0) = 0
)
,

which is less than or equal to P(θ > x,A(x) = 0 | N(0) = n,C(0) = 1,X(0) = 0).
This proves that

(1 − q)Gn,0(x) ≤ FB(x)e−λx.

On the other hand, since q = P(A(θ) ≥ 1 | N(0) = n,C(0) = 1,X(0) = 0), we
have

qKn(x) = P
(
τn > x,A(θ) ≥ 1

∣∣N(0) = n,C(0) = 1,X(0) = 0
)

=
∞∑

k=1

P
(
τn > x,A(θ) = k

∣∣N(0) = n,C(0) = 1,X(0) = 0
)

≤
∞∑

k=1

P
(
τn > x,A(θ) = k

∣∣N(0) = n + 1,C(0) = 1,X(0) = 0
)

≤ P
(
τn > x

∣∣N(0) = n + 1,C(0) = 1,X(0) = 0
)

= Hn+1(x),

which completes the proof. �

Now, for n ≥ 1, we consider an ordinary M/G/1 queue where arrival rate is λ and
service times have a distribution function FB(n) :

FB(n)(x) =
∞∑

k=1

nν

nν + λ

(
λ

nν + λ

)k−1

(FB ∗ Enν+λ)
∗k(x). (10)

We note that FB(n) is the distribution function of B(n) defined as

B(n) =
I∑

k=1

(Bk + Ek),

where Bk, Ek, k = 1,2,3, . . . , and I are independent random variables with distribu-
tion functions

P(Bk ≤ x) = FB(x), x ∈ R, (11)

P(Ek ≤ x) = Enν+λ(x), x ∈ R, (12)

P(I = k) = nν

nν + λ

(
λ

nν + λ

)k−1

, k = 1,2,3, . . . . (13)
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The mean of B(n) is given by

EB(n) = (EB1 + EE1)EI =
(

EB + 1

nν + λ

)(
1 + λ

nν

)
.

Let

ρ(n) ≡ λEB(n) =
(

ρ + λ

nν + λ

)(
1 + λ

nν

)
(14)

denote the offered load in the ordinary M/G/1 queue with the service time distribution
function FB(n) .

Lemma 3 Suppose that ρ(n) < 1. The distribution function G(n) of a busy period in
the M/G/1 queue satisfies

G(n)(x) ∼ (
1 − ρ(n)

)−β−1
(

1 + λ

nν

)
x−βL(x) as x → ∞.

Proof By Proposition 2.9 in [16],

FB(n) (x) ∼
(

1 + λ

nν

)
x−βL(x) as x → ∞. (15)

Combining (15) and the main theorem in [10] completes the proof. �

We now prove Proposition 1.

Proof of Proposition 1 Choose n such that ρ(n) < 1. According to Lemma 3, we have

G(n)(x) � x−βL(x). (16)

By the stochastic comparison of the M/G/1 retrial queue and the ordinary M/G/1
queue with the service time distribution function FB(n) , it can be easily shown that

Gk(x) ≤ G(n)(x), k ≥ n. (17)

We have, by (16) and (17),

Gk(x) � x−βL(x), k ≥ n, (18)

and by (7),

Gk(x) = Gk,0 ∗
∞∑
i=0

(1 − q)qiK∗i
k (x), k = 0,1,2, . . . .

By Lemma 2(b) and Proposition 2.9 in [16],

Gk(x) � x−βL(x) if Hk+1(x) � x−βL(x), k = 0,1,2, . . . . (19)

The proof is completed by Lemma 1, (18) and (19). �
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3 The main result

In this section, we present our main result. The result is proved by comparing the
waiting time distribution in the M/G/1 retrial queue with the waiting time distribution
in the ordinary M/G/1 ROS queue.

We consider the corresponding ordinary M/G/1 ROS queue where arrival rate is
λ and service times have the distribution function FB . Under the ROS policy, at the
completion of a service, the server randomly takes one of the waiting customers into
service. Let WROS denote a generic random variable for the waiting time of an ar-
bitrary customer in the ordinary M/G/1 ROS queue and let FWROS be its distribution
function.

We state a result of Boxma et al. [7] on the regularly varying tail of the waiting
time distribution in the ordinary M/G/1 queue with ROS. We assume that for β > 1,
and a slowly varying function L,

FB(x) ∼ x−βL(x) as x → ∞. (20)

Lemma 4 [7] If (20) holds for β > 1, and a slowly varying function L, then

FWROS(x) ∼ cx1−βL(x) as x → ∞,

where

c = ρ

1 − ρ
h(ρ,β)

1

β − 1

1

EB
, (21)

with

h(ρ,β) =
∫ 1

0
f (u,ρ,β)du,

f (u,ρ,β) = ρ

1 − ρ

(
ρu

1 − ρ

)β−1

(1 − u)
1

1−ρ +
(

1 + ρu

1 − ρ

)β

(1 − u)
1

1−ρ
−1

.

Remark Theorem 4.1 of Boxma et al. [7] provides the result of Lemma 4 for 1 < β <

2. They don’t mention the case of β ≥ 2 explicitly. However, we can see that Lemma 4
still holds for β ≥ 2 by following the argument of Sect. 5 in [7]. We confirmed this
by personal communication with one of the authors of [7].

We now present our main result. The proof is deferred to Sect. 5.

Theorem 1 Let W be the waiting time of an arbitrary customer in the M/G/1 retrial
queue. If (20) holds for β > 1, and a slowly varying function L, then the distribution
function FW of W satisfies

FW(x) ∼ FWROS(x) as x → ∞,

i.e.,

FW(x) ∼ cx1−βL(x) as x → ∞,

where c is given by (21).
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Remark Theorem 1 shows that, if the service time distribution has a regularly varying
tail, then the waiting time distribution of the M/G/1 retrial queue has the same tail
asymptotics as the waiting time distribution of the ordinary M/G/1 queue with ROS.
This is proved in Sect. 5 by using the stochastic comparison of the waiting time in
the retrial queue with the waiting time in the ordinary ROS queue.

A similar argument can be applied to the number of customers. More precisely,
we can show that, if the service time distribution has a regularly varying tail, then
the number of customers in the orbit of the M/G/1 retrial queue has the same tail
asymptotics as the queue size in the ordinary M/G/1 queue. For the ordinary M/G/1
queue with arrival rate λ and service time distribution function FB , it is well known
(see, for example, Asmussen et al. [6]) that, if (20) holds for β > 1, then the stationary
queue size Ñ satisfies

P(Ñ > x) ∼ λβ

(β − 1)(1 − ρ)
x1−βL(x) as x → ∞.

Therefore, following a similar argument to the stochastic comparison of this paper,
we can conclude that, if (20) holds for β > 1, then the stationary number of customers
in the orbit of the retrial queue satisfies

P(N > x) ∼ λβ

(β − 1)(1 − ρ)
x1−βL(x) as x → ∞. (22)

Here, by a little abuse of notation, N denotes the number of customers in the orbit of
the retrial queue at steady state. We note that (22) is consistent with a result of Shang
et al. [15].

4 Comparison between the retrial queue and the ordinary queue

In this section, we compare the retrial queue with the ordinary queue. In Sect. 4.1
we compare the conditional waiting time between the M/G/1 retrial queue and the
ordinary M/G/1 queue with ROS. In Sect. 4.2 we compare the number of customers
between the M/G/1 retrial queue and the ordinary M/G/1 queue.

4.1 Comparison of the conditional waiting time between the retrial queue and
the ordinary ROS queue

We consider the M/G/1 retrial queue. When N(0) ≥ 1, choose an arbitrary customer
in the orbit and call it the tagged customer. Let φ be the service initiation epoch of
the tagged customer. Let

Φk(t) =
{

P(φ ≤ t | N(0) = k,C(0) = 1,X(0) = 0), k = 1,2, . . . ,

U(t), k = 0,
(23)

where

U(t) =
{

1, t ≥ 0,

0, t < 0.
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Now, for each n with ρ(n) < 1, where ρ(n) is defined as (14), we consider an ordi-
nary M/G/1 ROS queue where arrival rate is λ and service times have the distribution
function FB(n) in (10). Let N(n)(t) be the number of customers in the queue at time t ,
excluding the one in service, if any. If there is a customer in service at time t , let
X(n)(t) be the elapsed service time of the customer in service at that time. If the
server is idle at t , X(n)(t) is set to be zero. When N(n)(0) ≥ 1, choose an arbitrary
customer waiting in the queue for service and call it the tagged customer. Let φ(n) be
the service initiation epoch of the tagged customer. Let

Φ
(n)
k (t) =

{
P(φ(n) ≤ t | N(n)(0) = k,X(n)(0) = 0), k > n,

U(t), k ≤ n.
(24)

Lemma 5 We have

(a) For k ≥ 0,

Φk(t) ≥ Φ
(n)
k ∗ H ∗n

1 (t). (25)

(b) For k ≥ 0 and n ≥ 0,

Φk+n(t) ≥ H ∗n
1 ∗

(
n

k + n
U + k

k + n
Φk

)
(t), (26)

Φk+n(t) ≥ H ∗2n
1 ∗

(
n

k + n
U + k

k + n
Φ

(n)
k

)
(t). (27)

Proof (a) Letting

Φk,n(t) =
{

P(min{φ, τn} ≤ t | N(0) = k,C(0) = 1,X(0) = 0), k > n,

U(t), k ≤ n,

we have

Φk,n(t) ≥ Φ
(n)
k (t). (28)

Clearly,

Φk(t) ≥ Φk,n ∗ Hn ∗ Hn−1 ∗ · · · ∗ H1(t). (29)

Substituting (28) and Hm(t) ≥ H1(t), m = 1,2, . . . , n, into (29) yields (25).
(b) We prove (26) by induction on n. If n = 0, then (26) is trivial. Suppose that

(26) holds for n = m ≥ 0. Then

Φk+m+1(t) ≥ Hk+m+1 ∗
(

1

k + m + 1
U + k + m

k + m + 1
Φk+m

)
(t)

≥ Hk+m+1 ∗
(

1

k + m + 1
U + k + m

k + m + 1
H ∗m

1

∗
(

m

k + m
U + k

k + m
Φk

))
(t)

≥ H
∗(m+1)
1 ∗

(
m + 1

k + m + 1
U + k

k + m + 1
Φk

)
(t).
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Thus (26) holds for n = m+1, which completes the proof of (26). Substitution of (25)
into (26) yields (27). �

4.2 Comparison of the number of customers in the retrial queue and the ordinary
queue

For each n with ρ(n) < 1, we consider the embedded Markov chains in the M/G/1
retrial queue and in the ordinary M/G/1 queue with the service time distribution func-
tion FB(n) . First, we describe the embedded Markov chain in the M/G/1 retrial queue.
For k = 1,2,3, . . . , let Mk be the number of customers in the orbit immediately af-
ter the beginning of the kth service for the M/G/1 retrial queue. We observe that
{Mk : k = 1,2,3, . . .} is a Markov chain. For an illustration, embedded points are
marked with dots in Fig. 2.

Next we describe the embedded Markov chain in the ordinary M/G/1 queue with
the service time distribution function FB(n) . Recall that the generic service time B(n)

is written as

B(n) =
I∑

i=1

(Bi + Ei ),

where Bi, Ei , i = 1,2,3, . . . , and I are independent random variables with distribu-
tion functions given by (11)–(13). We call each Bi + Ei a subservice. Thus a service
time in the M/G/1 queue consists of a geometric number of subservices. Furthermore,
a subservice consists of two periods, namely B-period and E -period. The lengths of
B-period and E -period have distribution functions FB and Enν+λ, respectively. Fig-
ure 3 illustrates the structure of a service time.

For k = 1,2,3, . . . , let M
(n)
k be the number of customers waiting in the queue

for service, excluding the one starting subservice, immediately after the beginning of
the kth subservice for the M/G/1 queue with the service time distribution function
FB(n) . We observe that {M(n)

k : k = 1,2,3, . . .} is a Markov chain. For an illustration,
embedded points are marked with dots in Fig. 4.

The following lemma provides the relation between the stationary distribution of
{Mk : k = 1,2,3, . . .} and the stationary distribution of {M(n)

k : k = 1,2,3, . . .}.

Fig. 2 Embedded points in the M/G/1 retrial queue

Fig. 3 Structure of a service time for the ordinary M/G/1 queue
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Fig. 4 Embedded points in the ordinary M/G/1 queue with service time distribution function F
B(n)

Lemma 6 Let M and M(n) denote random variables having stationary distributions
of {Mk : k = 1,2,3, . . .} and {M(n)

k : k = 1,2,3, . . .}, respectively. Then

(M − n)+ ≤ M(n) in distribution,

where (a)+ = max{a,0}.

Proof Suppose that M1 = 0 and M
(n)
1 = 0. Then induction on k shows that, for k =

1,2,3, . . . ,

(Mk − n)+ ≤ M
(n)
k in distribution.

Letting k → ∞ completes the proof. �

5 Proof of main result

In this section, we prove Theorem 1, which means FW(x) ∼ FWROS(x) ∼ cx1−βL(x)

as x → ∞. Since W ≥ WROS in distribution, we have

FW(x) ≥ FWROS(x) for all x ∈ R.

This and Lemma 4 yield

lim inf
x→∞

FW(x)

x1−βL(x)
≥ c.

Therefore, Theorem 1 is proved if we show

lim sup
x→∞

FW(x)

x1−βL(x)
≤ c. (30)

We break the proof of (30) into 4 steps.

Step 1 Define distribution functions Ak , k = 0,1,2, . . . , by

Ak = ν

(k + 1)ν + λ
U + kν

(k + 1)ν + λ
Φk + λ

(k + 1)ν + λ
Φk+1,
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where Φk is given by (23). Let Ψ be a distribution function defined as

Ψ (x) =
∞∑

k=0

∞∑
l=0

∫ x

0
P(M = k)al(y)Ak+l (x − y)dy,

where

al(y) = 1

EB

∫ ∞

y

e−λt (λt)l

l! dFB(t). (31)

Then

FW(x) ≤ ρΨ ∗ Eν+λ(x), x > 0. (32)

Proof We consider the M/G/1 retrial queue. We choose an arbitrary customer who
arrives at the queue and call it the tagged customer. Let

I =
{

1 if the tagged customer arrives while the server is busy,
0 otherwise.

By the ‘Poisson arrivals see time averages’ (PASTA) property,

P(I = 1) = ρ. (33)

When I = 1, let us define the following epochs; see Fig. 5:

t∗ = the arrival epoch of the tagged customer,

t1 = the beginning epoch of the service period during which the tagged

customer arrives,

t2 = the end epoch of the service period during which the tagged customer arrives,

t3 = the beginning epoch of the next service after time t2,

t4 = the service initiation epoch of the tagged customer.

When I = 1, let A denote the number of exogenous arrivals during the time inter-
val (t1, t2) excluding the tagged customer. Given I = 1, N(t1) and (A, t2 − t∗) are

Fig. 5 Arrival epoch and service initiation epoch of the tagged customer in the M/G/1 retrial queue
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independent. Further N(t1) has the same distribution as M . Therefore,

P
(
N(t1) = k, A = l, t2 − t∗ ≤ y

∣∣ I = 1
) = P(M = k)P(A = l, t2 − t∗ ≤ y | I = 1).

(34)
Given I = 1, the joint distribution of A and t2 − t∗ is given by

d

dy
P(A = l, t2 − t∗ ≤ y | I = 1) = al(y), l = 0,1,2, . . . , y ≥ 0, (35)

where al(y) is defined as (31). By (33), (34) and (35), we have

d

dy
P
(
I = 1,N(t1) = k, A = l, t2 − t∗ ≤ y

) = ρP(M = k)al(y),

l = 0,1,2, . . . , y ≥ 0. (36)

If I = 1, N(t1) = k, A = l and t2 − t∗ = y, then N(t2) = k + l + 1; the k + l + 1
customers in the orbit at time t2 consists of the tagged customer and the other k + l

customers. Hence, given {I = 1, N(t1) = k, A = l, t2 − t∗ = y}, t3 − t2 and t4 − t3
have distribution functions E(k+l+1)ν+λ and Ak+l , respectively. Furthermore, given
{I = 1, N(t1) = k, A = l, t2 − t∗ = y}, t3 − t2 and t4 − t3 are independent. Therefore,

P
(
t4 − t2 ≤ x

∣∣ I = 1,N(t1) = k, A = l, t2 − t∗ = y
) = E(k+l+1)ν+λ ∗ Ak+l (x)

≥ Eν+λ ∗ Ak+l (x). (37)

By (36) and (37), the complementary distribution function FW of the waiting time in
the retrial queue satisfies the following: For x > 0,

FW(x) = P(I = 1, t4 − t∗ > x)

≤ ρ

∞∑
k=0

∞∑
l=0

∫ ∞

0
P(M = k)al(y)Eν+λ ∗ Ak+l (x − y)dy

= ρEν+λ ∗ Ψ (x),

which means (32). �

Step 2 For each n with ρ(n) < 1, let

A
(n)
k = nν

nν + λ

1

k + 1
U + nν

nν + λ

k

k + 1
Φ

(n)
k + λ

nν + λ
Φ

(n)
k+1, k = 0,1,2, . . . ,

where Φ
(n)
k is given by (24). Define a distribution function Ψ (n) as

Ψ (n)(x) =
∞∑

k=0

∞∑
l=0

∫ x

0
P
(
M(n) = k

)
al(y)A

(n)
k+l (x − y)dy.

Let W(n) be the waiting time of an arbitrary customer in the ordinary M/G/1 ROS
queue with the service time distribution function FB(n) . Then

FW(n)(x) ≥ ρΨ (n)(x). (38)
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Proof We consider the ordinary M/G/1 ROS queue with the service time distribution
function FB(n) . We choose an arbitrary customer who arrives at the queue and call it
the tagged customer. Recall the structure of a service in Fig. 3. Let

I (n) =
⎧⎨
⎩

1 if the tagged customer arrives in a B-period,
2 if the tagged customer arrives in a E -period,
0 otherwise.

By the PASTA property, we have

P
(
I (n) = 1

) = ρ; P
(
I (n) = 2

) = ρ(n) − ρ; P
(
I (n) = 0

) = 1 − ρ(n). (39)

When I (n) = 1, let us define the following epochs; see Fig. 6:

t (n)∗ = the arrival epoch of the tagged customer,

t
(n)
1 = the beginning epoch of the B-period during which the tagged

customer arrives,

t
(n)
2 = the end epoch of the B-period during which the tagged customer arrives,

t
(n)
3 = the beginning epoch of the next subservice after time t

(n)
2 ,

t
(n)
4 = the service initiation epoch of the tagged customer.

When I (n) = 1, let A(n) denote the number of exogenous arrivals during the time
interval (t

(n)
1 , t

(n)
2 ) excluding the tagged customer. Given I (n) = 1, N(n)(t

(n)
1 ) and

(A(n), t
(n)
2 − t

(n)∗ ) are independent. Furthermore, N(n)(t
(n)
1 ) has the same distribution

as M(n). Therefore,

P
(
N(n)

(
t
(n)
1

) = k, A(n) = l, t
(n)
2 − t (n)∗ ≤ y

∣∣ I (n) = 1
)

= P
(
M(n) = k

)
P
(

A(n) = l, t
(n)
2 − t (n)∗ ≤ y

∣∣ I (n) = 1
)
. (40)

Given I (n) = 1, the joint distribution of A(n) and t
(n)
2 − t

(n)∗ is given by

d

dy
P
(

A(n) = l, t
(n)
2 − t (n)∗ ≤ y

∣∣ I (n) = 1
) = al(y), l = 0,1,2, . . . , y ≥ 0. (41)

Fig. 6 Arrival epoch and service initiation epoch of the tagged customer in the ordinary M/G/1 ROS
queue with service time distribution F

B(n)
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By (39), (40) and (41), we have

d

dy
P
(
I (n) = 1, N(n)

(
t
(n)
1

) = k, A(n) = l, t
(n)
2 − t (n)∗ ≤ y

) = ρP
(
M(n) = k

)
al(y).

(42)
On the other hand,

P
(
t
(n)
4 − t (n)∗ ≤ x

∣∣ I (n) = 1,N(n)
(
t
(n)
1

) = k, A(n) = l, t
(n)
2 − t (n)∗ = y

)
= P

(
t
(n)
4 − t

(n)
2 ≤ x − y

∣∣ I (n) = 1,N(n)
(
t
(n)
1

) = k, A(n) = l, t
(n)
2 − t (n)∗ = y

)
≤ P

(
t
(n)
4 − t

(n)
3 ≤ x − y

∣∣ I (n) = 1,N(n)
(
t
(n)
1

) = k, A(n) = l, t
(n)
2 − t (n)∗ = y

)
= P

(
t
(n)
4 − t

(n)
3 ≤ x − y

∣∣ I (n) = 1,N(n)
(
t
(n)
2

) = k + l + 1
)

≤ P
(
t
(n)
4 − t

(n)
3 ≤ x − y

∣∣ I (n) = 1,N(n)
(
t
(n)
3 −) = k + l + 1

)
, (43)

where the first inequality follows from t
(n)
4 − t

(n)
2 ≥ t

(n)
4 − t

(n)
3 and the last inequality

follows from N(n)(t
(n)
2 ) ≤ N(n)(t

(n)
3 −). When I (n) = 1 and N(n)(t

(n)
3 −) = k + l + 1,

the tagged customer and the other k+ l customers are waiting for service immediately
before time t

(n)
3 . Therefore, when I (n) = 1 and N(n)(t

(n)
3 −) = k + l + 1, we have the

following at time t
(n)
3 :

• a B-period begins without service completion with probability λ
nν+λ

,
• a service is completed and the tagged customer starts service with probability

nν
nν+λ

1
k+l+1 ,

• a service is completed and a customer among the other k + l customers starts
service with probability nν

nν+λ
k+l

k+l+1 .

Thus

P
(
t
(n)
4 − t

(n)
3 ≤ x

∣∣ I (n) = 1,N(n)
(
t
(n)
3 −) = k + l + 1

) = A
(n)
k+l (x). (44)

Substituting (44) into (43) leads to

P
(
t
(n)
4 − t (n)∗ ≤ x

∣∣ I (n) = 1,N(n)
(
t
(n)
1

) = k, A(n) = l, t
(n)
2 − t (n)∗ = y

) ≤ A
(n)
k+l (x − y).

(45)
By (42) and (45),

FW(n)(x) ≥ P
(
I (n) = 1, t

(n)
4 − t (n)∗ > x

)

≥ ρ

∞∑
k=0

∞∑
l=0

∫ ∞

0
P
(
M(n) = k

)
al(y)A

(n)
k+l (x − y)dy

= ρΨ (n)(x),

which means (38). �
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Step 3 For each n with ρ(n) < 1,

Ak+n(x) ≥ A
(n)
k ∗ H ∗2n

1 (x), k = 0,1,2, . . . . (46)

Proof By (27), we have

Ak+n(x) ≥
[(

1 − kν

(k + n + 1)ν + λ
− λ

(k + n + 1)ν + λ

k + 1

k + n + 1

)
U

+ kν

(k + n + 1)ν + λ
Φ

(n)
k

+ λ

(k + n + 1)ν + λ

k + 1

k + n + 1
Φ

(n)
k+1

]
∗ H ∗2n

1 (x). (47)

By a rather tedious calculation, it can be verified that

λ

(k + n + 1)ν + λ

k + 1

k + n + 1
≤ λ

nν + λ
,

kν

(k + n + 1)ν + λ
+ λ

(k + n + 1)ν + λ

k + 1

k + n + 1
≤ nν

nν + λ

k

k + 1
+ λ

nν + λ
.

According to these equations, (47) leads to

Ak+n(x) ≥
(

nν

nν + λ

1

k + 1
U + nν

nν + λ

k

k + 1
Φ

(n)
k + λ

nν + λ
Φ

(n)
k+1

)
∗ H ∗2n

1 (x),

which means (46). �

Step 4 The assertion (30) holds.

Proof For x ≥ 0,

Ψ (x) =
∞∑

k=0

∞∑
l=0

∫ x

0
P(M = k)al(y)Ak+l (x − y)dy

≥
∞∑

k=0

∞∑
l=0

∫ x

0
P
(
(M − n)+ = k

)
al(y)Ak+l+n(x − y)dy.

According to Lemma 6 and (46), the above equation leads to

Ψ (x) ≥
∞∑

k=0

∞∑
l=0

∫ x

0
P
(
M(n) = k

)
al(y) A

(n)
k+l ∗ H ∗2n

1 (x − y)dy

= Ψ (n) ∗ H ∗2n
1 (x). (48)

According to (32), (48) and (38),

FW(x) ≤ FW(n) ∗ Eν+λ ∗ H ∗2n
1 (x). (49)



Queueing Syst (2010) 65: 365–383 383

Lemma 4 together with (15) yields

FW(n)(x) ∼ cnx
1−βL(x) as x → ∞, (50)

where

cn =
(

1 + λ

nν

)
ρ(n)

1 − ρ(n)
h
(
ρ(n), β

) 1

β − 1

1

EB(n)
.

By (50) and Proposition 1, we have

FW(n) ∗ Eν+λ ∗ H ∗2n
1 (x) ∼ cnx

1−βL(x) as x → ∞,

which together with (49) leads to

lim sup
x→∞

FW(x)

x1−βL(x)
≤ cn. (51)

Finally, we obtain (30) by letting n → ∞ in (51). �
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