
Queueing Syst (2010) 64: 203–225
DOI 10.1007/s11134-009-9163-4

Analyzing retrial queues by censoring

Bin Liu · Yiqiang Q. Zhao

Received: 23 March 2008 / Revised: 6 November 2009 / Published online: 22 January 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper we analyze the M/M/c retrial queue using the censoring
technique. This technique allows us to carry out an asymptotic analysis, which leads
to interesting and useful asymptotic results. Based on the asymptotic analysis, we de-
velop two methods for obtaining approximations to the stationary probabilities, from
which other performance metrics can be obtained. We demonstrate that the two pro-
posed approximations are good alternatives to existing approximation methods. We
expect that the technique used here can be applied to other retrial queueing models.
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1 Introduction

Retrial queues are a type of classical queue with many interesting applications. Ref-
erences on this topic are numerous. The monograph [8] collected many important
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results and references published up to the late 1990s. Readers are also referred to sur-
veys in this area, including [1, 7, 17], and [22]. A more recent list of references can be
found in [10] and in the new book [2], which focuses on computational approaches.

It is well known that explicit expressions for the stationary joint distribution πn,k

of the number of retrial customers in the orbit and the number of busy servers are
available for the standard M/M/1 and M/M/2 retrial queues (see, for example, [8]).
However, it was widely believed that an explicit expression for the joint probability
distribution πi,j when c > 2 does not exist (see, for example, p. 25 of [17] and also
p. 288 of [8]). When c > 2, besides various closed-form properties, several method-
ologies have been proposed to approximate multiserver retrial queues since the pa-
per [6]. Among them are a finite approach based on truncated models (Sect. 2.4 of [8]
and [20]); generalized truncated models (Sect. 2.5 of [8, 19] and [3]); limit theorems,
loss models, and interpolation (Sect. 2.8 of [8]); censoring in level-dependent QBD
processes [4]; the retrial see time average (RTA) assumption [21]; and the Fredericks–
Reisner approximation [9].

Various limit theorems often provide insightful properties, among which are ap-
proximations for high-rate retrials and low-rate retrials, respectively, and heavy-
traffic approximations (Sect. 2.7 of [8]). Tail asymptotic analysis for the station-
ary distribution of a retrial queue has been reported recently on an M/G/1 retrial
queue [15] and its discrete time counterpart model Geo/G/1 retrial queue [13] and
also on a discrete-time D-BMAP/G/1 retrial queue [14].

In this paper, we use the censoring technique to analyze the M/M/c multiserver
retrial queue. Compared to the analysis using other methods, not only does the cen-
soring method lead us to the same explicit expressions for the standard M/M/1 and
M/M/2 retrial queues, but also offers an approach for asymptotic analysis of the sta-
tionary tail probabilities of the M/M/c retrial queue for a general value of c. Based
on asymptotic results, we propose two alternative approximations for computing the
stationary distribution of the M/M/c retrial queue. A numerical comparison to ex-
isting computational methods suggests that our algorithm is comparable to the best
available methods.

The rest of the paper is organized as follows. In Sect. 2, we provide an analysis
of the M/M/c retrial queue based on the censoring technique and obtain some in-
teresting properties about the model. We also demonstrate how the system can be
explicitly solved for the cases of c = 1 and c = 2. A tail asymptotic analysis is done
in Sect. 3, in which we obtain the exact decay function for the M/M/c retrial queue
as well as other asymptotic properties. Based on asymptotic results and the censored
equations, two new approximation methods are proposed in Sect. 4 for computing the
joint stationary distribution, which are good alternatives to the best available meth-
ods according to a numerical comparison. Concluding remarks are made in the final
section.

2 The M/M/c retrial queue

This section serves two purposes: (1) providing a self-contained analysis process for
the M/M/c retrial queue in terms of the censoring technique; and (2) obtaining some
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basic and interesting properties about the retrial queue, some of which will be used
throughout the paper. We also demonstrate that based on our analysis, existing ex-
plicit expressions for the stationary probability distribution for c = 1 and c = 2, re-
spectively, can be easily constructed.

We first recall the description of the M/M/c retrial queueing model. Consider a
queueing system with c identical servers in which primary customers arrive according
to a Poisson process with rate λ. If at least one server is free upon the arrival of a
primary customer, the customer enters service immediately and leaves the system
after the service completion. Otherwise, if all servers are busy upon the arrival of
a primary customer, the customer joins the orbit and becomes a retrial customer.
Each of the retrial customers in the orbit independently repeatedly tries for receiving
service according to a Poisson process with rate θ until it finds an idle server upon
retrial, and then starts its service immediately and leaves the system after the service
completion. For each of the primary or retrial customers, the service time with any
of the c servers follows an exponential distribution with common service rate μ. All
service times are independent and are also independent of the arrival and the retrial
processes.

Let N(t) be the number of retrial customers in the orbit at time t , and let C(t) be
the number of busy servers at time t . Then, (N(t),C(t)) is a continuous-time Markov
chain with the state space

S = {(n, k);n = 0,1, . . . and k = 0,1, . . . , c
}
,

where n and k are referred to as the level and phase variables, respectively. If the
infinitesimal generator Q of the Markov chain is partitioned according to the level,
then it is of the type of level-dependent quasi-birth-and-death (QBD):

Q =

⎡

⎢⎢⎢
⎣

B0 A

C1 B1 A

C2 B2 A

.. .
. . .

. . .

⎤

⎥⎥⎥
⎦

, (2.1)

where

Bn =

⎡

⎢⎢⎢
⎢⎢
⎣

−(λ + nθ) λ

μ −(λ + μ + nθ) λ

. . .
. . .

. . .

(c − 1)μ −[λ + (c − 1)μ + nθ ] λ

cμ −(λ + cμ)

⎤

⎥⎥⎥
⎥⎥
⎦

,

A =

⎡

⎢⎢⎢⎢⎢
⎣

0
0

. . .

0
λ

⎤

⎥⎥⎥⎥⎥
⎦

and Cn =

⎡

⎢⎢⎢⎢⎢
⎣

0 nθ

0 nθ

. . .
. . .

0 nθ

0

⎤

⎥⎥⎥⎥⎥
⎦

.
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For the infinitesimal generator Q in (2.1), define Q0 = Q, and for n = 1,2, . . . ,

define the submatrix Qn by deleting the first n block rows and columns in Q, that is,

Qn =

⎡

⎢
⎢⎢
⎣

Bn A

Cn+1 Bn+1 A

Cn+2 Bn+2 A

.. .
. . .

. . .

⎤

⎥
⎥⎥
⎦

. (2.2)

By Q̂n =∑∞
k=0 Qk

n = (I − Qn)
−1 denote the fundamental matrix of Qn. Let Q̂n

be partitioned according to the level, and let the (1,1)st block entry of Q̂n be
denoted by Q̂n(1,1). Assume that the system is stable, that is, ρ = λ/(cμ) < 1.
Let π = (π0,π1,π2, . . .) be the stationary probability vector of the Markov chain
partitioned correspondingly, where πn = (πn,0,πn,1, . . . , πn,c). Then, according to
matrix-analytic theory (for example, referring to p. 260 of [18]), πn has a matrix-
product form solution given by

πn = π0R1R2 · · ·Rn, n = 1,2, . . . , (2.3)

where π0 is the solution (unique up to multiplication by a constant) to

π0(B0 + R1C1) = 0, (2.4)

where

R� = AQ̂�(1,1), � = 1,2, . . . . (2.5)

Remark 2.1 The matrices {R�}�≥1 have the following probabilistic interpretation
(see [5]). The (i, j)th entry (R�)i,j of R� is the expected sojourn time in the state
(� + 1, j) per unit sojourn in the state (�, i) before returning to level �, given the
process started in state (�, i).

Since only the last row in A is nonzero, the same is true for R�, i.e.,

R� =

⎡

⎢⎢⎢⎢⎢
⎣

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
r�,0 r�,1 · · · r�,c

⎤

⎥⎥⎥⎥⎥
⎦

. (2.6)

In accordance to Remark 2.1, this structure is a direct outcome of the following in-
terpretation: given that at least one server is idle (or the system starts in a state (�, i)

with 0 ≤ i ≤ c − 1), the number of customers in the orbit can never increase without
making all servers busy first.

Along with (2.3), the special structure (2.6) of R� leads to the following theorem.

Theorem 2.1 For the M/M/c retrial queue given in (2.1), the stationary probability
vector π can be expressed as

πn = π0,cr1,cr2,c · · · rn−1,c(rn,0, rn,1, . . . , rn,c), n = 1,2, . . . , (2.7)

and π0 is uniquely determined by (2.4) and the normalizing condition.
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Remark 2.2 The special structure in the M/M/c retrial queue makes the matrix-
product solution for πn much simpler, only depending on the largest eigenvalue r�,c
of R� for � = 1,2, . . . , n − 1 and the last row of Rn.

In the following, we use the censoring technique to obtain properties for the
M/M/c retrial queue and to demonstrate how it can lead to an explicit determina-
tion of the matrices R� when c = 1 and 2. Let the state space S be partitioned as
S = S0 ∪ S1, where both S0 and S1 are nonempty, and let Q be partitioned accord-
ingly:

Q = S0
S1

S0 S1[
T U

L D

]
.

Then, the censored matrix Q(S0) with the censoring set S0 is also an infinitesimal
generator given by

Q(S0) = T + UD̂L, (2.8)

where D̂ =∑∞
k=0 Dk . Similarly,

Q(S1) = D + LT̂ U, (2.9)

where T̂ =∑∞
k=0 T k (referring to pp. 133–134 of [12] for details). For two subsets

S1 and S2 of S with S1 ⊆ S2, we have the property that Q(S1) = (Q(S2))(S1), which
means that the censored matrix Q(S1) can be obtained by censoring the censored
matrix Q(S2) again with the censoring set S1. For a recurrent Markov chain Q, every
censored matrix is again an infinitesimal generator and also recurrent. In this case,
the unique invariant measure of the censored matrix (censored Markov chain), up
to multiplication by a constant, is the same as the invariant measure of the original
Markov chain restricted to the censoring set. If, furthermore, the Markov chain is
positive recurrent with the stationary probability vector π = (πk), then the stationary
probability vector π (S1) = (π

(S1)
k ) of the censored Markov chain with the censoring

set S1 is given by π
(S1)
k = πk/

∑
j∈S1

πj (for example, referring to [23] for details).

Remark 2.3 According to the above argument, π0 is the solution to π0Q
(0) = 0 sub-

ject to the normalization condition, where

Q(0) = B0 + (A,0, . . .) Q̂1

⎛

⎜
⎝

C1
0
...

⎞

⎟
⎠= B0 + R1C1

(
by (2.8) and (2.5)

)

is the censored Markov chain to level 0, which is the same matrix given in (2.4).

It follows from the skip-free property in both directions in block-sense in (2.1),
(2.8), and (2.5) that for n ≥ 1, the censored matrix Q≤(n−1) with the censoring set
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L≤(n−1) = {(�, k);� = 0,1, . . . , n − 1 and k = 0,1, . . . c} can be expressed as

Q≤(n−1) =

⎡

⎢⎢
⎢⎢⎢
⎣

B0 A

C1 B1 A

.. .
. . .

. . .

Cn−2 Bn−2 A

Cn−1 Bn−1

⎤

⎥⎥
⎥⎥⎥
⎦

+

⎡

⎢⎢⎢
⎣

0 0 · · ·
...

...

0 0 · · ·
A 0 · · ·

⎤

⎥⎥⎥
⎦

Q̂n

⎡

⎢
⎣

0 0 · · · Cn

0 0 · · · 0
...

...
...

⎤

⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢
⎣

B0 A

C1 B1 A

.. .
. . .

. . .

Cn−2 Bn−2 A

Cn−1 Bn−1 + RnCn

⎤

⎥⎥
⎥⎥⎥
⎦

, (2.10)

where

RnCn =

⎡

⎢⎢
⎢
⎣

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0
0 nθrn,0 nθrn,1 · · · nθrn,c−1

⎤

⎥⎥
⎥
⎦

. (2.11)

Based on this structure, we immediately have the following property.

Lemma 2.1 (Key Lemma) For the M/M/c retrial queue, we have

rn,0 + rn,1 + · · · + rn,c−1 = λ

nθ
, n = 1,2, . . . . (2.12)

Proof Since Q is assumed to be recurrent, the censored matrix Q≤(n−1) is also re-
current. Therefore, each row sum of Q≤(n−1) is zero. The fact that the sum of the last
row is zero leads to (2.12). �

Remark 2.4 This is a key property, which, together with other properties, plays an
important role in the asymptotic analysis.

For n = 0,1,2, . . . , we further consider the censored matrix Q(n), which is also
an infinitesimal generator, obtained by censoring the censored matrix Q≤n again with
the censoring set L(n) = {(n, k); k = 0,1, . . . c}:

Q(n) = Bn + Rn+1Cn+1 + CnÊ(n,n)A, (2.13)
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where Ê(n,n) is the (n,n)th block entry of the fundamental matrix Ê of

E =

⎡

⎢⎢
⎢⎢⎢
⎣

B0 A

C1 B1 A

.. .
. . .

. . .

Cn−2 Bn−2 A

Cn−1 Bn−1

⎤

⎥⎥
⎥⎥⎥
⎦

. (2.14)

Due to the special sparse structure of matrix Cn and A, we immediately have

Q(n) = Bn + Rn+1Cn+1 +

⎡

⎢⎢⎢
⎣

0 · · · 0 ∗
...

...
...

...

0 · · · 0 ∗
0 · · · 0 0

⎤

⎥⎥⎥
⎦

, (2.15)

where ∗ stands for a nonzero element. Since Q(n) is an infinitesimal generator, all
rows in Q(n) should sum to zero, which, together with (2.11), determines all elements
∗ and leads to

Q(n) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

−σn,0 λ βn

μ −σn,1 λ βn

. . .
. . .

. . .
...

. . .
. . .

. . .
...

(c − 2)μ −σn,c−2 λ βn

(c − 1)μ −σn,c−1 λ + βn

0 αn+1,0 · · · αn+1,c−4 αn+1,c−3 αn+1,c−2 + cμ αn+1,c−1 − ωc

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

(2.16)

where

σn,k = λ + kμ + nθ, k = 0,1, . . . , c − 1, (2.17)

ωc = λ + cμ, (2.18)

βn = nθ, (2.19)

αn+1,k = βn+1rn+1,k, k = 0,1, . . . , c − 1. (2.20)

Lemma 2.2 For the M/M/c retrial queue, we have

(πn,0,πn,1, . . . , πn,c)Q
(n) = 0, n = 0,1,2, . . . . (2.21)

Proof Since the stationary probabilities π
(n)
n,k of the censored matrix Q(n) with the

censoring set L(n) are proportional to the stationary probabilities πn,k of the original
Markov chain, the conclusion is immediate. �
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Lemma 2.3 (Censored Equations) For the M/M/c retrial queue, we have

(rn,0, rn,1, . . . , rn,c)Q
(n) = 0, n = 1,2, . . . . (2.22)

Proof The conclusion is a direct consequence of Theorem 2.1 and Lemma 2.2. �

Corollary 2.1 For the M/M/c retrial queue, we have

(λ + nθ)πn,0 = μπn,1, n = 0,1,2, . . . , (2.23)

(λ + nθ)rn,0 = μrn,1, n = 1,2, . . . . (2.24)

Proof The first conclusion can be made from the first equation in πnQ
(n) = 0, and

the second one from the first equation in (rn,0, rn,1, . . . , rn,c)Q
(n) = 0. �

For the M/M/c retrial queue, for each level n, two independent equations for rn,k

are characterized by Lemma 2.1 and Corollary 2.1. Therefore, when c = 1, these two
independent equations immediately lead to an explicit determination of rn,0 and rn,1,
which determines the stationary distribution as explained in detail in the first example
given below. When c = 2, we need another independent equation for determining all
three rn,k for k = 0,1, and 2 in order to completely determine the stationary distri-
bution. Luckily enough, the censored matrix Q(n) given by (2.16) only depends on
rn+1,0, . . . , rn+1,c−1 (not on rn+1,c). Therefore, the two independent relationships in
Lemma 2.1 and Corollary 2.1 provide an explicit determination of rn+1,0 and rn+1,1,
and then the censored matrix Q(n). The final unknown rn,2 can be explicitly deter-
mined by solving (rn,0, rn,1, rn,2)Q

(n) = 0 as detailed later in this section. However,
when c ≥ 3, we simply do not have enough independent equations for explicitly de-
termining all rn,k and then the probabilities πn,k .

To conclude this section, we demonstrate how the explicit solution of πn,k can be
obtained for c = 1 and 2.

The M/M/1 retrial queue In this case, according to Lemma 2.1 and Corollary 2.1,
for all n ≥ 1, rn,0 and rn,1 are given, respectively, as

rn,0 = λ

nθ
and rn,1 = λ + nθ

μ
rn,0 = λ(λ + nθ)

nθμ
.

Therefore, all components in Theorem 2.1 are explicitly determined, except π0,1,
which is determined by the normalization condition. We summarize the result in the
following corollary.

Corollary 2.2 For the standard M/M/1 retrial queue, the stationary distribution is
given by

πn = π0,1r1,1r2,1 · · · rn−1,1(rn,0, rn,1)

= π0,1
(λ/θμ)n

n!

(
n∏

k=1

(λ + kθ)

)(
μ

λ + nθ
,1

)
, n ≥ 1, (2.25)
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and

π0 = (π0,0,π0,1) = π0,1

(
μ

λ
,1

)
, (2.26)

where

π0,1 = λ

μ

(
1 − λ

μ

) λ
θ
+1

.

It is easy to check that the above result is consistent with that given on p. 3 in [8].

The M/M/2 retrial queue In this case, according to Lemma 2.1 and Corollary 2.1,
for all n ≥ 1, rn,0 and rn,1 are explicitly solved as

rn,0 = λ

nθ

μ

λ + μ + nθ
, rn,1 = λ

nθ

λ + nθ

λ + μ + nθ
. (2.27)

Hence, the censored matrix Q(n) is explicitly determined by (2.16). By replacing rn,0

and rn,1 into (rn,0, rn,1, rn,2) Q(n) = 0 and solving its last equation, we can explicitly
determine rn,2 as

rn,2 = βnrn,0 + (λ + βn)rn,1

λ + 2μ − (n + 1)θrn+1,1

= λ

nθμ

λ + μ + (n + 1)θ

λ + μ + nθ

nθμ + (λ + nθ)2

3λ + 2μ + 2(n + 1)θ
, n = 1,2, . . . . (2.28)

According to Theorem 2.1, to completely explicitly express all probabilities, we still
need an expression for π0, which can be obtained by solving the following equa-
tions:

π0Q
(0) = π0

⎡

⎣
−λ λ 0
μ −(λ + μ) λ

0 2μ + θr1,0 −(λ + 2μ) + θr1,1

⎤

⎦= 0. (2.29)

Specifically,

π0,0 = μ

λ
π0,1 (2.30)

π0,1 = (λ + 2μ) − θr1,1

λ
π0,2 = μ

λ
· 3λ + 2μ + 2θ

λ + μ + θ
π0,2. (2.31)

Finally, π0,2 is determined by the normalization condition, which leads to a lengthy
expression and will not be provided here. The above discussion is summarized into
the following corollary.
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Corollary 2.3 For the standard M/M/2 retrial queue, the stationary distribution is
given by

πn = π0,2r1,2r2,2 · · · rn−1,2(rn,0, rn,1, rn,2),

= π0,2(λ/θμ)n−1

(n − 1)!

(
n−1∏

k=1

kθμ + (λ + kθ)2

3λ + 2μ + 2(k + 1)θ

)
λ + μ + nθ

λ + μ + θ
(rn,0, rn,1, rn,2),

n ≥ 1, (2.32)

π0 = π0,2

(
μ2

λ2

3λ + 2μ + 2θ

λ + μ + θ
,
μ

λ

3λ + 2μ + 2θ

λ + μ + θ
,1

)
, (2.33)

where rn,0, rn,1, and rn,2 are given in (2.27) and (2.28), and π0,2 is determined ac-
cording to the normalization condition.

It is also not difficult to check that the above result is consistent with that on p. 102
in [8].

Remark 2.5 Based on the results obtained in this section, we can also construct a
semi-explicit solution for the joint probabilities πn,k for c = 3 and c = 4. By semi-
explicit, we mean that the expression of the solution is no longer a simple explicit
function of the system parameters. Instead, a probability is expressed in terms of
the limit of a sequence of numbers which are explicitly expressed as functions of
the system parameters. In the literature, such a semi-explicit solution, but different
from ours in its appearance, was derived for c = 3 [11, 16]. However, a numerical
procedure or algorithm is still needed for computing the probabilities πn,k .

3 Tail asymptotics

Since there is no explicit solution for the stationary distribution πn,k for the M/M/c

retrial queue with general c, tail asymptotic analysis becomes more important, aside
from its own independent interest. Properties of tail asymptotics can often lead to
various performance bounds, approximations, and estimates of errors.

In this section, we first provide an asymptotic analysis on the quantity rn,k , based
on the Key Lemma and the censored equations, which is an expected taboo sojourn
time in state (n+ 1, k) before returning to level n. Then, based on the above analysis,
tail asymptotic results in the joint probabilities πn,k as n → ∞ are obtained, including
the identification of the exact decay function for πn,k .

According to Lemma 2.3, the detailed censored equations (rn,0, rn,1, . . . , rn,c)

Q(n) = 0 for n = 1,2, . . . are given by

σn,0rn,0 − μrn,1 = 0, (3.1)

σn,1rn,1 − λrn,0 − 2μrn,2 = βn+1rn+1,0rn,c, (3.2)

σn,2rn,2 − λrn,1 − 3μrn,3 = βn+1rn+1,1rn,c, (3.3)
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σn,3rn,3 − λrn,2 − 4μrn,4 = βn+1rn+1,2rn,c, (3.4)

...

σn,c−2rn,c−2 − λrn,c−3 − (c − 1)μrn,c−1 = βn+1rn+1,c−3rn,c, (3.5)

σn,c−1rn,c−1 − λrn,c−2 − cμrn,c = βn+1rn+1,c−2rn,c, (3.6)

−λ − λrn,c−1 + ωcrn,c = βn+1rn+1,c−1rn,c. (3.7)

The following property will be repeatedly used in this section when taking a limit.

Lemma 3.1 For the M/M/c retrial queue, there exists a positive constant M0 such
that rn,k ≤ M0 < ∞ for all n and k.

Proof For k = 0,1, . . . , c − 1, the result follows immediately from the Key Lemma,
that is, from

n(rn,0 + rn,1 + · · · + rn,c−1) = λ

θ
.

For k = c, it follows from (3.7) and the Key Lemma that for n large,

(λ + cμ)rn,c = (n + 1)θrn+1,c−1rn,c + λ + λrn,c−1 ≤ λrn,c + λ + λrn,c−1,

or cμrn,c ≤ λ + λrn,c−1. This leads to the final result since rn,c−1 is bounded. �

Denote by o(xn) a function of n such that limn→∞ o(xn)/xn = 0 and by O(xn)

a function of n such that limn→∞ O(xn)/xn = C 
= 0, where C is a constant. The
following is a first-order asymptotic formula for rn,k .

Theorem 3.1 (First-order formula) For k = 0,1,2, . . . , c,

rn,c−k = ρ

(
μ

nθ

)k
c!

(c − k)! + o

(
1

nk

)
. (3.8)

Proof First of all, we show

nrn,k → 0 for k = 0,1, . . . , c − 2, (3.9)

by recursively using (3.1), (3.2), . . . , (3.5). Specifically, it is clear from (2.12) that we
have

rn,k → 0 for k = 0,1, . . . , c − 1. (3.10)

Then, (3.1) implies nrn,0 → 0, by which (3.2) implies nrn,1 → 0 since rn,c ≤ M0
for all n; (3.3) implies nrn,2 → 0; continue the process until finally (3.5) implies
nrn,c−2 → 0.

By using the result (3.9) in (2.12), we have

nrn,c−1 → λ

θ
= ρ

μ

θ
c, (3.11)
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which is equivalent to

rn,c−1 = ρ

(
μ

nθ

)
c + o

(
1

n

)
.

Taking the limit, as n → ∞, on both sides of (3.6) gives

lim
n→∞[nθrn,c−1 − cμrn,c] = 0

by using Lemma 3.1, (3.9), and (3.10). Therefore, we have

lim
n→∞ rn,c = λ

cμ
= ρ (3.12)

by using (3.11), or rn,c = ρ + o(1).
Next, we show

n2rn,k → 0 for k = 0,1, . . . , c − 3. (3.13)

To this end, multiply both sides of the first c − 2 system equations in (3.1) to (3.7)
by n. Taking the limit as n → ∞ in the first equation leads to n2rn,0 → 0 by noticing
the property in (3.9); by which the second equation leads to n2rn,1 → 0 by using
Lemma 3.1 and (3.9); continue this process until the (c − 2)nd equation leads to
n2rn,c−3 → 0.

Now, consider the limit, as n → ∞, of (3.5) multiplied by n on both sides. Equa-
tions (3.9), (3.13), and Lemma 3.1 imply

n2θrn,c−2 − n(c − 1)μrn,c−1 → 0,

or

n2rn,c−2 → ρ

(
μ

θ

)2

c(c − 1), (3.14)

which is equivalent to rn,c−2 = ρ(
μ
nθ

)2c(c − 1) + o( 1
n2 ).

Continue the above procedure by multiplying both sides of the first c−3 equations
by n2 and taking the limit as n → ∞ to show that n3rn,k → 0 for k = 0,1, . . . , c − 4
and rn,c−3 = ρ(

μ
nθ

)3c(c − 1)(c − 2) + o( 1
n3 ), . . . , until rn,0 = ρ(

μ
nθ

)cc! + o( 1
nc ) is

proved. �

Based on the first-order asymptotic result and using the Key Lemma, we can im-
prove the asymptotic formula to the following refined result.

Corollary 3.1 (Refined first-order formula)

rn,c−k = ρ
c!

(c − k)!
(

μ

nθ

)k

+ O

(
1

nk+1

)
for k = 0,1,2, . . . , c.
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Proof First, we prove the result for k = 1, which is immediate from the Key Lemma
and the first-order asymptotic formula:

rn,c−1 = λ/nθ − [rn,c−2 + rn,c−3 + · · · + rn,1 + rn,0]
= λ/nθ + O

(
1

n2

)
. (3.15)

Next, we prove the result for k = 0. By (3.7), we have

rn,c = λ + λrn,c−1

ωc − βn+1rn+1,c−1

= λ + λrn,c−1

ωc − [λ + O( 1
n
)]

= λ

cμ
· 1 + rn,c−1

1 − O( 1
n
)

= ρ · (1 + rn,c−1)

(
1 + O

(
1

n

))

= ρ + O

(
1

n

)
.

Now, we prove the result for k = 2,3, . . . , c − 1. By (3.5), we have

rn,c−2 = (c − 1)μrn,c−1 + βn+1rn+1,c−3rn,c + λrn,c−3

σn,c−2

= (c − 1)μλ/nθ + O( 1
n2 )

λ + (c − 2)μ + nθ

= (c − 1)μλ

(nθ)2
· 1 + O( 1

n
)

1 + O( 1
n
)

= ρ
c!

(c − 2)!
(

μ

nθ

)2(
1 + O

(
1

n

))

= ρ
c!

(c − 2)!
(

μ

nθ

)2

+ O

(
1

n3

)
,

which completes the proof for k = 2. Similarly, the cases of k = 3,4, . . . , c − 1 can
be proved.

Finally, we prove the result for k = c, which is immediate by using (3.1), or

rn,0 = μ

λ + nθ
rn,1 = μ

nθ

(
1 + O

(
1

n

))
rn,1

= μ

nθ

(
1 + O

(
1

n

))(
ρc!
(

μ

nθ

)c−1

+ O

(
1

nc

))
. �
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Based on the kth-order asymptotic result and using the Key Lemma repeatedly, we
can improve the asymptotic formula to order k + 1. However, since the asymptotic
expression does not show any unified pattern, we cannot have a single expression for
a general k. The proof will soon become too cumbersome. Without providing any
details, we list some higher-order asymptotic formulas in the following corollary.

Corollary 3.2 (Higher-order formulas)

rn,c−2 = ρ

(
μ

nθ

)2
c!

(c − 2)! − ρ

(
μ

nθ

)3
c!

(c − 2)! (2ρ + 2c − 3) + O

(
1

n4

)
,

rn,c−1 = ρ

(
μ

nθ

)
c!

(c − 1)! − ρ

(
μ

nθ

)2
c!

(c − 2)! + ρ

(
μ

nθ

)3
c!

(c − 2)! (2ρ + c − 1)

+ O

(
1

n4

)
,

and

rn,c = ρ + ρ2 μ

nθ
+ ρ2(c − 1)

μ

n2θ2
(θ + μρ − μ) + O

(
1

n3

)
.

As an immediate consequence of the above discussion, the decay rate of πn,k can
be found easily.

Corollary 3.3 For k = 0,1, . . . , c,

lim
n→∞

πn+1,k

πn,k

= ρ,

independent of k.

We now present a more detailed tail asymptotic result for the stationary probability
distribution πn,k by characterizing the exact decay function for πn,k . By an exact
decay function hk(n) > 0 for πn,k , we mean that for each k,

0 < C
(1)
k ≤ lim inf

n→∞
πn,k

hk(n)
≤ lim sup

n→∞
πn,k

hk(n)
≤ C

(2)
k ,

where C
(1)
k and C

(2)
k are constants independent of n. We start with some preliminary

results.

Fact 1 The third-order asymptotic formula for rn,c in Corollary 3.2 can be rewritten
as

rn,c = ρ

[
1 + a

n
+ b

n2
+ O

(
1

n3

)]
,

where a = λ
cθ

> 0 and b = a(c − 1)[1 − (1 − ρ)μ/θ ], which could be negative, posi-
tive, or zero.
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Fact 2 This is a standard property of the gamma function �(z): For any complex
number z 
= 0,−1,−2, . . . ,

�(z) = lim
n→∞

nzn!
z(z + 1)(z + 2) · · · (z + n)

,

which can be rewritten as

n∏

j=1

j + z

j
= (z + 1)(z + 2) · · · (z + n)

n! ∼ nz

z�(z)
as n → ∞.

Fact 3 Let â > 0, and let b̂ be any real number satisfying b̂ 
= âm − m2 for m =
0,1,2, . . . . Then, we can write

j2 + âj + b̂ = (j + ω̂1)(j + ω̂2), (3.16)

where ω̂1, ω̂2 
= 0,−1,−2, . . . . Note that ω̂1 and ω̂2 might not be real numbers.

Fact 4 For â > 0 and any real number b̂ satisfying b̂ 
= âm−m2 for m = 0,1,2, . . . ,

by Fact 3 we have, as n → ∞,

n∏

j=1

(
1 + â

j
+ b̂

j2

)
=

n∏

j=1

(j + ω̂1)

j
· (j + ω̂2)

j

∼ nω̂1

ω̂1�(ω̂1)
· nω̂2

ω̂2�(ω̂2)
(by Fact 2)

= nâ

b̂�(ω̂1)�(ω̂2)
,

where the last equality is due to ω̂1 + ω̂2 = â and ω̂1ω̂2 = b̂ 
= 0.

Remark 3.1 �(ω̂1) and �(ω̂2) are well defined because ω̂1, ω̂2 
= 0,−1,−2, . . . , and
�(ω̂1)�(ω̂2) is always a nonzero real number even if ω̂1 and ω̂2 are not real numbers,
because ω̂1 and ω̂2 must be complex conjugates if they are not real numbers, which
leads to �(ω̂1)�(ω̂2) = �(ω̂1)�(ω̂1) = �(ω̂1)�(ω̂1) = |�(ω̂1)|2 > 0.

Fact 5 It follows from Fact 4 that for any integer n0 ≥ 1, any real number â > 0, and
any real number b̂ satisfying b̂ 
= âm − m2 for m = 0,1,2, . . . , we have, as n → ∞,

n∏

j=n0

(
1 + â

j
+ b̂

j2

)
∼ Cnâ,

where C depends only on n0, â, and b̂, but not on n.

The main tail asymptotic result is proved in the following theorem.
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Theorem 3.2 For the M/M/c retrial queue, an exact decay function hk(n) is given
by

hk(n) = n
λ
cθ

−(c−k)ρn, n ≥ 1,

for k = 0,1, . . . , c. That is, for each k = 0,1, . . . , c, there exist two positive constants
C

(1)
k and C

(2)
k , independent of n, such that

C
(1)
k hk(n) ≤ πn,k ≤ C

(2)
k hk(n).

Proof For the number b defined in Fact 1, we can always find two numbers b(1) and
b(2) satisfying b(1) ≤ b ≤ b(2) and b(1), b(2) 
= am − m2 for m = 0,1,2, . . . , where
a is also defined in Fact 1. Fact 1 implies that there exists a positive integer N0 such
that

0 < ρ

(
1 + a

n
+ b(1)

n2

)
< rn,c < ρ

(
1 + a

n
+ b(2)

n2

)
for all n > N0.

Hence, for all n > N0,

0 < ρn−N0

n∏

j=N0+1

(
1 + a

j
+ b(1)

j2

)
< rN0+1,crN0+2,c · · · rn,c

< ρn−N0

n∏

j=N0+1

(
1 + a

j
+ b(2)

j2

)
,

which can be rewritten as

0 < C(0)ρn

n∏

j=N0+1

(
1 + a

j
+ b(1)

j2

)
< r1,cr2,c · · · rn,c

< C(0)ρn

n∏

j=N0+1

(
1 + a

j
+ b(2)

j2

)
, (3.17)

where C(0) = ρ−N0
∏N0

j=1 rj,c . Note that C(0) is a positive constant independent of n.
By Fact 5, we have a lower bound and an upper bound for r1,cr2,c · · · rn,c , given,

respectively, by

C(0)ρn

n∏

j=N0+1

(
1 + a

j
+ b(1)

j2

)
∼ C(1) · naρn = C(1) · n λ

cθ ρn (3.18)

and

C(0)ρn

n∏

j=N0+1

(
1 + a

j
+ b(2)

j2

)
∼ C(2) · naρn = C(2) · n λ

cθ ρn, (3.19)
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where C(1) and C(2) are positive constants, independent of n. The rest of the proof
follows from Theorem 2.1 and the refined first-order asymptotic formula. �

Remark 3.2 The determination of the constants C
(1)
k and C

(2)
k is possible for c = 1

and c = 2. In fact, we have

C
(1)
k = C

(2)
k = Ck = π0,1

(λ/θ)�(λ/θ)

(
μ

θ

)c−k

when c = 1,

C
(1)
k = C

(2)
k = Ck = π0,2

λ/θ + μ/θ + 1
· �(3λ/2θ + μ/θ + 2)

�(w1 + 1)�(w2 + 1)

(
μ

θ

)c−k
c!
k!

when c = 2,

where

w1,w2 = (2λ/θ + μ/θ) ∓√4(λ/θ)(μ/θ) + (μ/θ)2

2
> 0.

Proof of Remark 3.2 For the M/M/1 retrial queue, by the explicit expression of rn,1,
we have

πn,1 = π0,1r1,1r2,1 · · · rn,1 = π0,1

n∏

j=1

λ(λ + jθ)

jθμ
= π0,1ρ

n
n∏

j=1

λ/θ + j

j

∼ π0,1

(λ/θ)�(λ/θ)
· nλ/θρn (by Fact 2).

For the M/M/2 retrial queue, by the explicit expression of rn,2, we have

πn,2 = π0,2r1,2r2,2 · · · rn,2 = π0,2

n∏

j=1

(
λ̄

j μ̄

λ̄ + μ̄ + 1 + j

λ̄ + μ̄ + j

jμ̄ + (λ̄ + j)2

3λ̄ + 2μ̄ + 2 + 2j

)

= π0,2ρ
n

n∏

j=1

(
1

j

λ̄ + μ̄ + 1 + j

λ̄ + μ̄ + j

(w1 + j)(w2 + j)

3λ̄/2 + μ̄ + 1 + j

)
,

where we use λ̄ = λ/θ and μ̄ = μ/θ for simplicity of notation. Therefore,

πn,2 = π0,2ρ
n

(
n∏

j=1

λ̄ + μ̄ + 1 + j

λ̄ + μ̄ + j

)(
n∏

j=1

w1 + j

j

)(
n∏

j=1

w2 + j

3λ̄/2 + μ̄ + 1 + j

)

∼ C2 · ρnn1+w1+w2−(3λ̄/2+μ̄+1) (by Fact 2)

= C2 · n λ
2θ ρn (since w1 + w2 = 2λ̄ + μ̄).
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The rest of the proof follows from Theorem 2.1 and the refined first-order asymptotic
formula. �

4 Approximations

Based on the tail asymptotic results obtained in the previous section, we propose two
approximation methods for computing the joint stationary distribution πn,k . By com-
parison with existing methods, we conclude that both the proposed approximations
are comparable to the best existing ones.

Several approximation methods are available for the joint stationary probabilities
πn,k in the literature as mentioned in the introduction. Approximations based on gen-
eralized truncated models are among the best (see, for example, [2]). To improve the
overall quality in an approximation the key is to find a better approximation for the
tail probabilities. Our methods are based on tail asymptotic expressions for rn,k when
n > N is large and on the solution of the censored equations, in which rN+1,k are
replaced by the proposed asymptotic solution.

There are three steps to compute the stationary probabilities. In the first step, we
propose an approximation for rN+j,k based on the first-order asymptotic formula; in
the second step, we compute all rn,k for n = N,N − 1, . . . ,1 and k = c, c − 1, . . . ,0
based on the censored equations; and in the third step, we complete the computations
of the stationary probabilities.

4.1 Approximations to rN+j,k

Let N be the truncation size. We propose two approximations for rN+j,k , both based
on the first-order asymptotic formula and censored equation (3.7). For this purpose,
we rewrite the refined first-order formula as

rN+j,c−k = ρ
c!

(c − k)!
( μ

Nθ

)k ( N

N + j

)k

+ O

(
1

Nk+1

)

= rN,c−k

(
N

N + j

)k

+ O

(
1

Nk+1

)
, j = 1,2, . . . ; k = 0,1, . . . , c.

It follows that

rN+j,c−k ∼ rN,c−k

(
N

N + j

)k

as N → ∞. (4.1)

It is also true that

rN+j,c−k ∼ rN,c−k

N

N + j
as N → ∞. (4.2)
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By the Key Lemma, we can rewrite censored equation (3.7) as

rN+j,c = λ + λrN+j,c−1

cμ + βN+j+1(rN+j+1,c−2 + rN+j+1,c−3 + · · · + rN+j+1,0)
, j ≥ 1.

(4.3)

Approximation I: Based on (4.2) and (4.3), for j ≥ 1, we propose the following
approximation r̃N+j,k for k = 0,1, . . . , c:

r̃N+j,c−k = r̃N,c−k

N

N + j
for k = 1,2, . . . , c, (4.4)

and

r̃N+j,c = λ + λr̃N+j,c−1

cμ + βN+j+1(r̃N+j+1,c−2 + r̃N+j+1,c−3 + · · · + r̃N+j+1,0)

= λ(1 + N
N+j

r̃N,c−1)

cμ + βN(r̃N,c−2 + r̃N,c−3 + · · · + r̃N,0)
, (4.5)

where r̃N,k will be computed in the next subsection.

Remark 4.1 We notice that for every j > 0, the approximations r̃N+j,k for k =
0,1, . . . , c − 1 satisfy (2.12) in the Key Lemma.

Approximation II: This approximation is based on (4.1) and (4.3): for j ≥ 1,

r̃N+j,c−k = r̃N,c−k

(
N

N + j

)k

for k = 1,2, . . . , c, (4.6)

and

r̃N+j,c = λ + λr̃N+j,c−1

cμ + βN+j+1(r̃N+j+1,c−2 + r̃N+j+1,c−3 + · · · + r̃N+j+1,0)
, (4.7)

where r̃N+j,c−1 and r̃N+j+1,k for k = 0,1, . . . , c − 2 are given in (4.6), and r̃N,k will
be computed in the next subsection.

4.2 Approximations to rn,k for n ≤ N

Based on the two proposed approximations, in this subsection, we develop two
respective algorithms for computing approximations r̃n,k to rn,k for n = N,N −
1, . . . ,1 and k = c, c − 1, . . . ,0. We provide details for using Approximation I, and
details for using Approximation II can be easily obtained by replacing approximation
formulas (4.4) and (4.5) by (4.6) and (4.7), respectively.

The approximation to rn,k for n ≤ N is the solution to the censored equations, in
which rN+1,k are replaced by the approximations r̃N+1,k . Specifically, we first rewrite
the censored equations as

rn,c = λ + λrn,c−1

cμ + βn+1(rn+1,c−2 + rn+1,c−3 + · · · + rn+1,0)
,
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rn,c−k = (c − k + 1)μrn,c−k+1 + βn+1rn+1,c−k−1rn,c + λrn,c−k−1

σn,c−k

,

k = 1,2, . . . , c − 1,

rn,0 = μrn,1

σn,0
,

where the Key Lemma was used for obtaining the first equation. To solve the above
nonlinear system numerically, we will use the following direct iterative formula:

rnew
n,c = λ + λr last

n,c−1

cμ + βn+1(r
last
n+1,c−2 + r last

n+1,c−3 + · · · + r last
n+1,0)

, (4.8)

rnew
n,c−k = (c − k + 1)μr last

n,c−k+1 + βn+1r
last
n+1,c−k−1r

last
n,c + λr last

n,c−k−1

σn,c−k

,

k = 1,2, . . . , c − 1, (4.9)

rnew
n,0 = μr last

n,1

σn,0
. (4.10)

The iterative method is extremely efficient in numerical computations since we
can set the initial values r init

n,k for rn,k according to asymptotic properties as, for
n = N,N − 1, . . . ,1,

r init
n,c = ρ,

r init
n,c−1 = λ

βn

,

r init
n,c−k = 0 for k = 2,3, . . . , c.

The detailed algorithm is given below. Let

rold
n,k = r last

n,k = r init
n,k for n = N,N − 1, . . . ,1 and k = c, c − 1, . . . ,0,

rold
N+1,k = r last

N+1,k = N

N + 1
· r last

N,k for k = c, c − 1, . . . ,0,

where the last equation has the same argument as in Approximation I.
For each fixed n (starting with n = N ), the following algorithm computes all r̃n,k

for k = c, c − 1, . . . ,0.

For n = N ,
Iteration: If n > 0, then do the following; otherwise stop (all r̃n,k have been com-

puted).

(1) Compute rnew
n,c according to (4.8) and update r last

n,c = rnew
n,c ;

(2) For k = 1,2, . . . , c − 1, compute rnew
n,c−k according to (4.9) and update r last

n,c−k =
rnew
n,c−k ;

(3) Compute rnew
n,0 according to (4.10) and update r last

n,0 = rnew
n,0 ;
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(4) If

max
0≤k≤c

∣∣rnew
n,k /rold

n,k − 1
∣∣< 10−8,

then set r̃n,k = rnew
n,k for 0 ≤ k ≤ c. Let n = n − 1 and go back to Iteration.

Otherwise, set rold
n,k = r last

n,k for k = c, c − 1, . . . ,0 and go back to (1).

We have now computed all approximations for r̃n,k for n = N,N − 1, . . . ,1 and
k = c, c − 1, . . . ,0. For all experiments conducted, the maximal number of iterations
for a relative error less than 10−8 is only 19.

4.3 Computations of stationary probabilities

In this section, we complete all computations for obtaining a distribution π̃ which is
an approximation to the true distribution π . The computations are divided into the
following steps.

Step 1. Substitute r̃1,0, r̃1,1, . . . , r̃1,c−1 into (2.4) to have

p0(B0 + R̃1C1) = 0,

where p0 = (p0,0,p0,1, . . . , p0,c) and

R̃1C1 =

⎡

⎢⎢⎢
⎣

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0
0 θ r̃1,0 θ r̃1,1 · · · θ r̃1,c−1

⎤

⎥⎥⎥
⎦

.

Solve the system of equations satisfying p0e = 1 (to control all components p0,k < 1
for avoiding computational exploration).

Step 2. For n = 1,2, . . . ,N , compute pn = pn−1,c(r̃n,0, r̃n,1, . . . , r̃n,c) recursively.

Step 3. Normalize pn for n = 1,2, . . . ,N to avoid computational exploration to ob-
tain qn as follows:

� = (p0 + p1 + · · · + pN)e,

qn = pn/�, n = 0,1,2, . . . ,N.

Step 4. For j = 1,2, . . . , let qN+j = (qN+j,0, qN+j,1, . . . , qN+j,c) be computed ac-
cording to qN+j = qN+j−1,c(r̃N+j,c, r̃N+j,c, . . . , r̃N+j,c). Practically, we compute
qN+j for j = 1,2, . . . ,N0 such that qN+N0

e is significantly small.

Step 5. Perform the final normalization to obtain π̃n for n ≥ 0:

π̃n = qn

(1 + κ)
, n ≥ 0, (4.11)

where

κ =
N+N0∑

n=1

c∑

k=0

qn,k.
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Table 1 Truncation size when
Approximation I θ = 0.01 θ = 0.1 θ = 1 θ = 10 θ = 100

ρ = 0.1 2(2) 2(1) 2(1) 2(1) 2(2)

ρ = 0.3 10(2) 5(1) 5(1) 3(1) 2(2)

ρ = 0.6 97(3) 25(3) 13(2) 9(3) 5(2)

ρ = 0.8 397(2) 80(3) 32(3) 19(3) 12(3)

Table 2 Truncation size when
Approximation II θ = 0.01 θ = 0.1 θ = 1 θ = 10 θ = 100

ρ = 0.1 2(2) 2(1) 2(1) 2(1) 2(2)

ρ = 0.3 11(2) 5(1) 4(1) 3(1) 2(2)

ρ = 0.6 101(3) 24(3) 11(1) 7(2) 4(2)

ρ = 0.8 400(3) 74(2) 14(1) 14(2) 7(2)

4.4 Numerical analysis

We compared the two approximations proposed in this section to those available in
the literature (see, for example, Sect. 3.4 in [2]). This comparison suggests that both
of our approximations are comparable to the best available ones in the literature in
the sense that the truncation size from using our approximations is similar to the size
by using generalized truncation methods, which are considered to be among the best
available methods for approximations. We provide the required minimal truncation
size for approximations such that the relative error, compared to the true value of the
blocking probability, is smaller than 10−4.

The number in the parentheses provided in Tables 1 and 2 is the ranking of our
approximation method compared to three other methods, which were compared in
Table 3.10 of [2]. A reading of 1 means that the size of truncations required by using
our method is the smallest compared to the other three methods, 2 means that our
method is the second best, etc. The comparison suggests that both our methods are
good alternatives to the best existing methods.

A comparison of the mean number of customers in the orbit confirms our conclu-
sion, for which details are not provided here.

5 Concluding remarks

In this paper, the M/M/c retrial queue is considered in terms of censoring technique.
We focused on the tail asymptotic analysis, which is an important aspect and has not
been done in the past. We also demonstrated that among other possible applications,
the tail asymptotic results can be used to develop approximation methods for the
stationary joint distribution for the M/M/c retrial queue model. We expect that this
method can be applied to other retrial queues, such as retrial queues with impatient
customers, discrete time retrial queues, etc.
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