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Abstract This paper develops a rare-event simulation algorithm for a discrete-time
version of the M/G/s loss system and a related Markov-modulated variant of the
same loss model. The algorithm is shown to be efficient in the many-server asymp-
totic regime in which the number of servers and the arrival rate increase to infinity in
fixed proportion. A key idea is to study the system as a measure-valued Markov chain
and to steer the system to the rare event through a randomization of the time horizon
over which the rare event is induced.

Keywords Rare event simulation · Loss systems · M/G/s queue · Measure-valued
processes
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1 Introduction

A central contribution of Erlang was his development and analysis of multi-server
loss models. In this paper, we offer a computational perspective on the loss models
studied by Erlang, with a special focus on the calculation of loss probabilities suffered
by the M/G/s queue when a customer arrives to find all the servers busy. We have
a particular interest in the many-server setting in which the numbers of servers s is
large, as well as the arrival rate to the system.

An extensive literature exists on rare-event simulation for computing tail proba-
bilities for single-server and multi-server systems with infinite capacity buffers, or
for calculating loss probabilities for such single and multi-server systems in the large
buffer limit (some early references include [5, 10, 13]). In such problem settings,
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one can often draw upon the extensive theory on large deviations of random walks
to develop an appropriate change-of-measure for use in the associated importance
sampler. On the other hand, in the many-server loss context of the current paper, the
rare event is induced in a fundamentally different way. For example, in the single-
server setting the rare event is generated by an associated random walk undergoing
unusual dynamics over a time horizon that is of the same order as the buffer size
(see [1]). On the other hand, as we shall see in this paper, the most efficient way of
inducing loss in the many-server context is over a finite horizon (independent of s)
over which the arrival rate and mix of incoming traffic change so as to eventually
saturate all the servers. Specifically, the mix of service requirements changes in such
a way that longer service times are favored relative to the nominal service time dis-
tribution.

There is a small existing literature on related many-server simulation problems.
For the M/M/s queue, Cottrell et al. [6] use the birth–death structure to show that
the optimal importance distribution involves switching the birth and death rates to the
right of the mode of the equilibrium distribution. Glynn [7] studies large deviations
for the infinite-server queue when subjected to a high arrival rate, and Szechtman and
Glynn [16] exploit this large deviations result to develop an efficient importance sam-
pler for computing equilibrium tail probabilities for this class of models. Both of the
latter papers exploit the fact that the steady-state distribution of such infinite-server
systems has an explicit probabilistic representation (that yields a perfect simulation
algorithm in the presence of bounded service times). Unfortunately, the finite-server
loss system under consideration here enjoys no such probabilistic representation,
and the algorithms developed here do not explicitly leverage off these infinite-server
ideas. Finally, Srikant and Whitt [14, 15] study variance reduction techniques for
many-server loss systems based on control variate ideas.

In contrast to the earlier efforts described above, the many-server algorithm intro-
duced here does not exploit either memorylessness in the service time distribution (as
in the M/M/s queue) or any special probabilistic representation characteristics (as in
the infinite-server system). Of course, this extension comes at the cost of needing to
enrich the state-space so as to include information on the remaining service time re-
quirements of the customers that are present. To deal with this in full generality would
require working with a continuous-time measure-valued process. To avoid technical
complications, we choose to work with a slotted time formulation in which the ser-
vice times have finite support, thereby leading to a finite-dimensional (vector-valued)
state descriptor. (It can also be argued that such a formulation is not particularly lim-
iting from a practical standpoint.) The slotted time M/G/s queue on which we focus
in Sects. 2 through 4 is a well known example of an “insensitive queue” (see, for
example, [12]), so that there is a closed form expression for the aggregate loss prob-
ability in such queues. Because our algorithm does not exploit insensitivity, it can be
extended to rare-event computations to which known insensitivity results do not ap-
ply (e.g. the distribution of the remaining service requirements conditional on buffer
overflow) and to model extensions not covered by insensitivity. As a simple illustra-
tion of this latter point, we extended our M/G/s ideas in Sects. 5 and 6 to a model
that exhibits a correlated arrival stream, namely that of a Markov-modulated variant
of the M/G/s queue. While not described in this paper, the same ideas easily extend
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to slotted M/G/s loss models in which the arrival process is Poisson with a periodic
(non-stationary) arrival intensity. Thus, we take the viewpoint that the ideas devel-
oped here are an important step towards the development of efficient computational
tools for more complex loss systems.

This paper is organized as follows. Section 2 introduces the basic model that is
considered in this paper. The formulation is a natural discrete-time analog of the
continuous-time M/G/s loss system. We work in discrete time in large part to avoid
complications that arise in dealing with continuous-time measure-valued processes,
both at a mathematical level and in creating the data structures necessary to effi-
ciently implement the continuous-time importance sampler. Section 3 describes our
rare-event algorithm, while Sect. 4 proves that the algorithm is efficient. Section 5 de-
scribes the extension of the algorithm to a Markov-modulated version of the M/G/s

loss system, and Sect. 6 discusses efficiency and implementation issues. Finally,
Sect. 7 provides a discussion of numerical results.

2 The basic model

Our basic model is a loss system with s servers. As will soon become evident, we
will extensively exploit the Markovian “measured-valued” description of the system
in describing both our algorithm and developing the associated theory. This measure-
valued process becomes finite-dimensional (i.e. vector-valued) when the service time
requirements are bounded and integer-valued, with slotted time arrivals. In view of
this simplification, we will therefore work with a discrete-time formulation of the
classical M/G/s loss model. Throughout the rest of the paper we will use the notation
Po(λ) to denote a generic Poisson random variable with mean λ > 0. Similarly we
use Bin(n,p) to denote a generic binomial r.v. (random variable) with mean np and
variance np(1 − p) with n ∈ {1,2, . . .} and p ∈ (0,1).

Suppose that V is a r.v. corresponding to a generic service time requirement. We
assume that V takes values in the integers {1,2, . . . ,m}. Let Wn(i) be the number of
customers in the system at time n with a remaining service time requirement of i time
units (so that Wn � (Wn(1), . . . ,Wn(m)) is the measure-valued process mentioned
above). Then,

Qn � ‖Wn‖ =
m∑

i=1

Wn(i)

is the total number of customers in the system at time n. The state Wn+1 at time n+1
is obtained from Wn according to the following algorithm.

Algorithm A

1. Advance time to just prior to n + 1, and temporarily set Wn+1(i) = Wn(i + 1) for
1 ≤ i ≤ m − 1.

2. Generate a Poisson r.v. χn+1, independently of Wn, having mean λ, corresponding
to the total number of customers arriving at time n + 1.

3. Each of the arriving χn+1 customers is independently assigned a service time re-
quirement from the distribution of V .
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4. If Qn−Wn(m)+χn+1 ≤ s, all the arriving customers are accepted into the system,
and each customer is assigned its own server. If Qn − Wn(m) + χn+1 > s, then
Qn − Wn(m) + χn+1 − s customers are chosen uniformly and at random (with-
out replacement) from the χn+1 customers that have just arrived and immediately
deleted from the system (i.e. “lost”). The remaining s − Qn +Wn(m) customers
are assigned servers.

5. The state vector Wn+1 is now updated to include the service time requirements of
the min(χn+1, s − Qn + Wn(m)) customers that have just been accepted into the
system.

6. The [Qn − Wn(m) + χn+1 − s]+ customers that have just been accepted into the
system start their service times at time n + 1.

Our interest is focused on computing the equilibrium fraction of customers that are
lost in the above system, in the “many-server asymptotic regime” in which s ↗ ∞
and λ ↗ ∞ so that λEV/s � ρ ∈ (0,1). We shall apply an approach for computing
such equilibrium quantities that was introduced by Goyal et al. [9]. In particular,
note that W = (Wn : n ≥ 0) is a finite-state irreducible discrete-time Markov chain
for each s ≥ 1. Let W∞ be a r.v. with the stationary distribution π(·) of (Wn : n ≥ 0).
Select a non-empty subset A ⊆ S � {(w1, . . . ,wm) ∈ Z

m+ : w1 +· · ·+wm ≤ s} and let
πA(·) = P(W∞ ∈ ·|W∞ ∈ A). The fraction of lost customers (in steady state) satisfies

β(s) = lim
n→∞

∑n−1
j=0[Qj − Wj(m) + χj+1 − s]+

∑n−1
j=0 χj

.

The previous limit is well defined almost surely because of the law of large numbers.
Moreover, a generalization of Kac’s formula (see, for example, p. 123 of [4]) yields

β(s) = EπA

(∑TA−1
j=0 [Qj − Wj(m) + χj+1 − s]+)

λ
π(A), (1)

where EπA
(·) is the expectation operator under which P(W0 ∈ ·) = πA(·) and TA �

inf{n ≥ 1 : Wn ∈ A} is the first return time to A. If we choose A so that π(A) is
bounded away from zero (as a function of s), it is evident that the computationally
challenging term in calculating the steady-state loss probability β(s) is the quantity

κ(s) � EπA

(
TA−1∑

j=0

[
Qj − Wj(m) + χj+1 − s

]+
)

. (2)

Note that [Qj −Wj(m)+χj+1 − s]+ is non-zero for j < TA only when T � inf{n ≥
1 : Qn−1 − Wn−1(m) + χn > s} < TA. Since the event {T < TA} will typically be
a rare event in our asymptotic regime, computing (2) involves rare-event simulation
ideas. As we shall see in Sect. 3, the set A can be chosen so that the quantity π(A)

can be efficiently calculated via standard Monte Carlo ideas.
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One strategy for computing κ(s) is to run a crude Monte Carlo simulation of W

up to time n, with n large. We then estimate (2) via

∑n−1
j=0 Γj+1(Wj )I (Wj ∈ A)

∑n−1
j=0 I (Wj ∈ A)

,

where the collection of r.v.’s (Γj (w) : j ≥ 1,w ∈ A) is independent of (Wn : n ≥ 0)

and chosen so that

EΓj (w) = Ew

(
TA−1∑

j=0

[
Qj − Wj(m) + χj+1 − s

]+
)

for w ∈ A. Let Yj = (Yj (1), . . . , Yj (m)), where Yj (i) is the number of customers
having service requirement i that arrive at time j . Because of the Poisson “thinning
property”, the Yj (i)’s are independent and Poisson with EYj (i) = λP (V = i). In
constructing suitable Γj (w)’s, we take advantage of the fact that

Ew

(
TA−1∑

j=0

[
Qj − Wj(m) + χj+1 − s

]+
)

= Ew

(
TA−1∑

j=0

[
Qj − Wj(m) + χj+1 − s

]+
I (T < TA)

)

= Ew

(
φ(WT −1, YT )I (T < TA)

)
,

where φ(w,y) is defined for ‖w + y‖ > s + wm via

φ(w,y) = Ew

(
TA−1∑

j=0

[
Qj − Wj(m) + χj+1 − s

]+
∣∣∣∣W0 = w,Y1 = y

)
.

Since T = 1 conditional on ‖w + y‖ > s + wm, φ(·) can be estimated via simulat-
ing W under its nominal dynamics. As a result, the rare-event computation can be
reduced to an efficient sampler for expectations defined in terms of (WT −1, YT ), con-
ditional on T < TA. The next section describes such a rare-event simulation algorithm
(Algorithm C below).

3 Rare-event simulation for the discrete-time M/G/s queue

For 0 ≤ n < T , the system experiences no loss, so the dynamics of the many-server
queue are identical to those of the infinite-server queue for such n. In particular,

Wn+1 = BWn + Yn+1
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for n ≥ 0 and n < T , where B is the m × m matrix in which B(i, i + 1) = 1 if
1 ≤ i ≤ m− 1 and B(i, j) = 0 otherwise. If we set R0 = w = W0 and let (Rn : n ≥ 0)

be the Markov chain driven by the recursion

Rn+1 = BRn + Yn+1

for n ≥ 1; then Wn = Rn for n < T ; the sequence R = (Rn : n ≥ 0) is the measure-
valued description of the infinite-server system associated with (Wn : n ≥ 0). Note
that

Rn = BnR0 +
n−1∑

j=0

BjYn−j

for n ≥ 0. Since Bl = 0 for l ≥ m, it follows that

Rn =
m−1∑

j=0

BjYn−j

for n ≥ m and Rn is independent of Rn−m. In particular, this implies that (Rn : n ≥ 0)

converges to stationarity in m steps.
As pointed out in Sect. 2, the key to a successful rare-event simulation algorithm

for computing loss probabilities for our model is the development of an efficient
sampler for (WT −1, YT ), conditional on T < TA. But, given R0 = w = W0,

T = inf
{
n ≥ 1 : ‖Rn‖ > s

}
.

It follows that the required sampler is equivalent to finding an efficient algorithm for
computing expectations defined in terms of (RT −1,RT − BRT −1), conditional on
T < T̃A, where

T̃A = inf{n ≥ 1 : Rn ∈ A}.
Let τ be a random variable independent of (Rn : n ≥ 0) and taking values on the

positive integers. Moreover, assume that P(τ = n) > 0 for n ≥ 1. Let

P̃ (·) = Pw

(·|‖Rτ‖ > s
)
. (3)

Note that

P̃
(
(R1, . . . ,RT ) ∈ ·, T < T̃A

)

=
∞∑

n=1

Pw((R1, . . . ,RT ) ∈ ·, T < T̃A,‖Rn‖ > s, τ = n)

Pw(‖Rτ‖ > s)

=
∞∑

n=1

Pw((R1, . . . ,RT ) ∈ ·, T < T̃A,T ≤ n,‖Rn‖ > s)P (τ = n)

Pw(‖Rτ‖ > s)

= Ew

(
I
(
(R1, . . . ,RT ) ∈ ·, T < T̃A

)∑∞
n=T hn(T ,RT )

Pw(‖Rτ‖ > s)

)
, (4)
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where

hn(k, r) = P(τ = n)Pr

(‖Rn−k‖ > s
)
.

Because R converges to stationarity in m steps,

∞∑

n=T

hn(T ,RT ) =
T +m−1∑

n=T

hn(T ,RT ) +
∑

n≥T +m

P (τ = n)P
(‖Rm‖ > s

)

and

Pw

(‖Rτ‖ > s
) =

m−1∑

j=1

Pw

(‖Rj‖ > s
)
P(τ = j) + P(τ ≥ m)Pw

(‖R∞‖ > s
)
.

For each j , ‖Rj‖ is a Poisson r.v., so that Pw(‖Rj‖ > s) and Pw(‖R∞‖ > s) can
be calculated in closed form. This, of course, simplifies the computation of

L−1(T ,RT ) =
∑∞

n=T hn(T ,RT )

Pw(‖Rτ‖ > s)
.

Since
∑∞

n=k hn(k, r) > 0 for each r ∈ Z
m+ and k ∈ Z+, it follows that (4) implies the

change-of-measure identity

Pw

(
(R1, . . . ,RT ) ∈ ·, T < T̃A

)

= Ẽ
(
I
(
(R1, . . . ,RT ) ∈ ·, T < T̃A

)
L(T ,RT )

)
. (5)

A related change-of-measure has been proposed by Blanchet and Li [3] in the context
of Gaussian processes.

We now turn to the question of generating paths of R under P̃ . Note that

P̃ (·) =
∞∑

k=1

Pw(·,‖Rk‖ > s)P (τ = k)

Pw(‖Rτ‖ > s)

=
∞∑

k=1

Pw(·|‖Rk‖ > s)Pw(‖Rk‖ > s)P (τ = k)

Pw(‖Rτ‖ > s)

=
∞∑

k=1

Pw

(·|‖Rk‖ > s
)
Pw(K = k), (6)

where K is a r.v., independent of (Yn : n ≥ 1) and with probability mass function

Pw(K = k) = Pw(‖Rk‖ > s)P (τ = k)

Pw(‖Rτ‖ > s)
. (7)

We are now ready to state our algorithm for generating the r.v. Γj (w).
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Algorithm B

1. Generate the r.v. K

2. If K ≥ m, use Algorithm C to generate (YK−m+1, . . . , YK), conditional on
‖RK‖1 > s. Then, independently generate (Y1, . . . , YK−m) from the nominal dis-
tribution for the Yj ’s. If K < m, use Algorithm C to generate (Y1, . . . , YK), con-
ditional on ‖RK‖1 > s and R0 = w.

3. Compute T from R0, . . . ,RK .
4. If T̃A ≤ T , then output 0 and STOP. Otherwise, put Wj = Rj for j < T and gen-

erate WT from WT −1 and YT (by independently and uniformly removing exactly
[QT −1 − WT −1(m) + χT − s]+ customers from YT ).

5. Using WT as the initial condition, generate WT +1, . . . ,WTA
using the nominal

dynamics of the Wj ’s.
6. Output

TA−1∑

j=T

[‖BWj−1 + Yj‖ − s
]+

L(T ,RT ).

Algorithm C is intended to first generate ‖Rl‖ with l ≤ m, conditional on ‖Rl‖ > s

and R0 = w followed by generating (Y1, . . . , Yl) conditional on ‖Rl‖ and R0 = w.
Because ‖Rl − BlR0‖ is a Poisson random variable with mean λE(min(V , l)), the
generation of ‖Rl‖ conditional on ‖Rl‖ > s and R0 = w, is equivalent to generating
r.v.’s from the conditional distribution

P
(∥∥Blw

∥∥ + Po(svl) ∈ · | Po(svl) > s − ∥∥Blw
∥∥)

, (8)

where

vl = ρ
(
E min(V , l)

)
/EV.

To generate r.v.’s from the conditional distribution (8), our approach is to use
acceptance–rejection based on utilizing a Poisson r.v. with mean q � s − ‖Blw‖ + 1
as the dominating mass function. The acceptance ratios that arise in this setting are
of the form (svl/q)j , and the average acceptance probability at Step 4 below is

exp
(−(q − svl)

)( q

svl

)q

P
(
Po(svl) ≥ q

)
.

Since

P
(
Po(svl) ≥ q

) ∼ 1

(2πq)1/2
exp

(−(q − svl)
)( svl

q

)q

as s ↗ ∞, it follows that the expected number of times that Steps 1 through 4 below
are executed is of order s1/2 as s ↗ ∞.

Algorithm C

1. Generate a Poisson r.v. Z with mean q .
2. If Z < q , return to STEP 1. (This occurs with approximately probability 1/2 when

s is large).
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3. Generate an independent uniform r.v. U on [0,1].
4. If U ≤ (svl/q)Z−q , go to STEP 5. Else, return to STEP 1.
5. Distribute the Z customers across the r.v.’s (BjYl−j )(i) for i ∈ {1, . . . ,m} and

j ∈ {0,1, . . . , l − 1} as a multinomial r.v. with corresponding number of trials
equal to Z and associated multinomial probability E(BjY1)(i)/λE(min(V , l)) for
the r.v. (BjYl−j )(i). (Observe that (BjYl−j )(i) is the i-th component of the vector
BjYl−j , which in turn is Yl−j (i − j) if j < i and 0 otherwise.)

To fully specify the algorithm for computing the equilibrium loss probability for
our M/G/s queue, we need to describe the distribution of τ and the choice of the
subset A. Note that a heavy-tailed choice for τ is inherently conservative from an
algorithmic viewpoint, since it assigns relatively greater mass to paths taking a long
time to reach the overflow level s. This, in turn, puts less stress on the sampler in
attempting to induce the rare event. This can also be seen by studying the likelihood
ratio L(T ,RT ). Recall that the likelihood ratio’s denominator contains the tail sum∑∞

n=T hn(T ,RT ), where hn(k, r) = P(τ = n)Pr(‖Rn−k‖1 > s), thereby suggesting
that L(T ,RT ) will be easier to control proof-wise when P(τ = n) decays slowly. As
a consequence, our choice for the distribution of τ is P(τ ≥ n) = n−γ for γ > 0.
Furthermore, note that Algorithm B requires “conditioning in” the history of the Yn’s
up to time K . In order to guarantee that the number of Yn’s generated by the algorithm
is well-behaved (e.g. finite mean), we choose γ > 2 (so that Var(τ ) < ∞).

Regarding the choice of A, we have observed previously that A should be chosen
so that π(A) is bounded away from zero (as a function of s). Since the dynamics of
W and R are typically identical, the stationary distribution of W is close to that of R.
Furthermore, in the many-server asymptotic regime it follows easily that Rm obeys a
central limit theorem (see, for example, [8]). This suggests the choice

A =
{

w ∈ R
m : (1 − as−1/2)

m−1∑

j=0

E
(
BjY1

) ≤ w ≤
m−1∑

j=0

E
(
BjY1

)(
1 + as−1/2)

}
,

for a > 0.
In the next section we discuss the efficiency of the above algorithm. However,

before we move on, it is worth to point out that the sampling strategy allows to es-
timate conditional expectations involving the measure-valued descriptor at the time
of a loss. For instance, one compute the distribution of the number of customers in
the system with given remaining processing time at the time of a loss. The efficiency
analysis given in the next section applies with minor changes to the estimation of
such distribution.

4 Algorithmic efficiency

Given an algorithm for computing an expectation α (depending on a parameter
s ↗ ∞), any unbiased estimator Λ ≥ 0 for α must satisfy the inequality

EΛ2 ≥ α2.
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Assuming that α ∈ (0,1) the previous inequality is equivalent to logEΛ2/ log(α) ≤ 2.
In our case, s large corresponds to the expectation α = α(s) being small; it is natural
to assert that Λ is a logarithmically efficient estimator if

lim
s→∞

logEΛ2

logα
= 2;

see, for example, [2] or [11] for a discussion of this efficiency criterion in the rare-
event simulation setting. We will seek to verify a similar criterion for our estima-
tor.

Recall that we have chosen the set A so that P(R∞ ∈ A) is bounded away from
zero. Our first result confirms our intuition that the stationary distributions for (Rn :
n ≥ 0) and (Wn : n ≥ 0) are close to one another when s is large, so that π(A) =
P(W∞ ∈ A) is also bounded away from zero.

Proposition 1 For each s ≥ 1,

sup
C

∣∣P(R∞ ∈ C) − P(W∞ ∈ C)
∣∣ ≤ mP(R∞ > s).

Proof Set R0 = W0 and note that for each subset C,

1

n

n−1∑

j=0

I (Rj ∈ C) − 1

n

n−1∑

j=0

I (Wj ∈ C) ≤ 1

n

n−1∑

j=0

I (Rj �= Wj). (9)

Since Wj is formed by dropping customers that would otherwise join the infinite-
server process Rj , and since accepted customers initiate their service times at the
same instants in both the finite-server and infinite-server systems, it follows that
Wj ≤ Rj for j ≥ 0 when W0 = R0. If Rj−i ≤ s (and Wj−i ≤ s) for i ≤ m − 1,
then there have been no customers lost in the last m time units, so that all the cus-
tomers present in the infinite-server system at time j were also accepted into the
finite-server system, yielding the conclusion that Wj = Rj . Thus, if Wj �= Rj , there
must exist i ∈ {0,1, . . . ,m − 1} for which ‖Rj−i‖ > s. Consequently,

1

n

n−1∑

j=0

I (Rj �= Wj) ≤ 1

n

n−1∑

j=0

(m−1)∧j∑

i=0

I
(‖Rj−i‖ > s

)

≤ m

n

n−1∑

i=0

I
(‖Ri‖ > s

)
. (10)

Since (Rn : n ≥ 0) and (Wn : n ≥ 0) are irreducible positive recurrent discrete-time
Markov chains, the strong law of large numbers for such chains implies, on the basis
of (9) and (10), that

P(R∞ ∈ C) − P(W∞ ∈ C) ≤ mP
(‖R∞‖ > s

)
.
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Similarly, we obtain that

P(W∞ ∈ C) − P(R∞ ∈ C) ≤ mP
(‖R∞‖ > s

)
,

yielding the result. �

Recall that ‖R∞‖ D= Po(ρs). Hence, in the many-server asymptotic regime

1

s
logP

(‖R∞‖ > s
) −→ −(ρ − 1 − logρ) (11)

as s ↗ ∞, so that P(R∞ > s) −→ 0 exponentially rapidly in s. Consequently, Propo-
sition 1 implies that π(A) = P(W∞ ∈ A) is bounded away from zero as s ↗ ∞.

We turn next to the analysis of β(s).

Theorem 1 The following limits hold as s ↗ ∞
(i) (logP(‖R∞‖ > s))−1 logβ(s) −→ 1

(ii) (logP(‖R∞‖ > s))−1 logβ(s) −→ 1
(iii) (logE([‖R∞‖ − s]+))−1 logβ(s) −→ 1
(iv) (logP(Q∞ = s))−1 logβ(s) −→ 1
(v) s−1 logβ(s) −→ −[ρ − 1 − log(ρ)]

Proof Since ‖R∞‖ D= Po(ρs) with ρ ∈ (0,1),

P
(‖R∞‖ = s

) ≤ P
(‖R∞‖ ≥ s

) =
∞∑

k=0

exp(−ρs)
(ρs)s+k

(s + k)!

= exp(−ρs)
(ρs)s

s!

(
1 +

∞∑

k=1

ρksk

(s + 1) · · · · · (s + k)

)

≤ P
(‖R∞‖ = s

)
(

1 +
∞∑

k=1

ρk

)
.

So, logP(‖R∞‖ = s)/ logP(‖R∞‖ ≥ s) −→ 1 as s ↗ ∞. Also,

P
(‖R∞‖ = s + 1

) ≤ E
([‖R∞‖ − s

]+)

=
∞∑

k=1

k exp(−ρs)
(ρs)s+k

(s + k)!

≤ P
(‖R∞‖ = s

) ∞∑

k=1

kρk,



44 Queueing Syst (2009) 63: 33–57

and hence logP(‖R∞‖ = s)/ log(E[‖R∞‖ − s]+) −→ 1 as s ↗ ∞. Kac’s formula
implies that

P(Q∞ = s) = EπA

(
TA−1∑

j=0

I (Qj = s)

)
/EπA

(TA)

= EπA

(
TA−1∑

j=0

I (Qj = s, T̃ < TA)

)
π(A)

≥ PπA
(T̃ < TA)π(A), (12)

where T̃ = inf{n ≥ 1 : Qn ≥ s} = inf{n ≥ 1 : ‖Rn‖ ≥ s}. Also, because the Wj ’s are
dominated by the Rj ’s,

P(Q∞ = s) ≤ P
(‖R∞‖ ≥ s

)
. (13)

Starting from (1), a similar argument to that for (12) shows that

β(s) ≥ PπA
(T < TA)

π(A)

λ
. (14)

In addition,

1

n

n−1∑

j=0

[
Qj − Wj(m) + χj+1 − s

]+

= 1

n

n−1∑

j=0

[
m−1∑

l=1

Wj(l) − Wj(m) + χj+1 − s

]+

≤ 1

n

n−1∑

j=0

[
m−1∑

l=1

Rj(l) − Wj(m) + χj+1 − s

]+

= 1

n

n−1∑

j=0

[‖BRj + Yj+1‖ − s
]+

= 1

n

n−1∑

j=0

[‖Rj+1‖ − s
]+

.

Sending n ↗ ∞, we conclude that

β(s) ≤ E
([‖R∞‖ − s

]+)
/λ. (15)

Combining (11) to (15) and the earlier results deduced in this proof, we see that the
argument is complete once we show that s−1 logPπA

(T < TA) and s−1 logPπA
(T̃ <

TA) converge to −(ρ − 1 − logρ) as s ↗ ∞. Without loss of generality we assume
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that P(V = m) > 0 (for otherwise we can re-define the endpoint m of the support
of V ). In fact, given our development above, we just require a lower bound. Note that

PπA
(T̃ < TA)

≥
∫

A

πA(dw)Pw(T̃ = m < TA)

≥
∫

A

πA(dw)P
(‖R∞‖ = s

)

× Pw

(‖Ri‖ < s,Ri /∈ A,1 ≤ i ≤ m − 1|‖Rm‖ = s
)
.

But, conditional on ‖Rm‖ = s, for 1 ≤ i ≤ m − 1, ‖Ri − Biw‖ is distributed
Bin(s,E min(V , i)/EV ). Because w ∈ A is within O(s1/2) of

∑m−1
j=0 BjEY1, and

∑m−1
j=0 BjE[Y1(i)] = λE[V − i]+/EV it follows that for each ε > 0

sup
w∈A

P

(∣∣∣∣s
−1‖Ri‖ − ρ

E[V − i]+
EV

− E min(V , i)

EV

∣∣∣∣ > ε

∣∣∣∣‖Rm‖ = s

)
−→ 0

as s ↗ ∞. Since ρEV < ρE[V − i]+ + E(min(V , i)) < EV for 1 ≤ i ≤ m − 1,
it follows that infw∈A Pw(‖Ri‖ < s,Ri /∈ A|‖Rm‖ = s) −→ 1 as s ↗ ∞. But
s−1 logP(‖R∞‖ = s) −→ −(ρ − 1 − logρ) as s ↗ ∞, proving that

s−1 logPπA
(T̃ < TA) −→ −(

ρ − 1 − log(ρ)
)

as s ↗ ∞. An identical argument works for s−1 logPπA
(T < TA), finishing the

proof. �

In view of the discussion at the beginning of this section and Theorem 1, we will
establish the effectiveness of our algorithm by proving that for each w ∈ A,

lim
s−→∞

Ẽ(Γ 2
1 (w)L(T ,RT )2)

β(s)
= 2. (16)

Theorem 2 For each w ∈ A, Γ1(w) satisfies (16).

Proof Observe that

Ẽ
(
Γ 2

1 (w)L(T ,RT )2)

= Ẽ

((
TA−1∑

j=0

[
Qj − Wj(m) + χj+1 − s

]+
L(T ,RT )

)2)

= Ew

((
TA−1∑

j=0

[
Qj − Wj(m) + χj+1 − s

]
)2

I (T < TA)L(T ,RT )

)
.
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But for ‖r‖ > s,

L(k, r)

Pw(‖Rτ‖ > s)
≤ 1

hk(k, r)
= 1

P(τ = k)
≤ 2γ kγ

γ
,

and thus

Ẽ
(
Γ 2

1 (w)L(T ,RT )2) ≤ 2γ

γ
Pw

(‖Rτ‖ > s
)

× Ew

((
TA∑

j=1

χj

)2

T
γ

A I (T < TA)

)
. (17)

Clearly,

P
(‖Rm‖ > s

)
P(τ = m)

≤ Pw

(‖Rτ‖ > s
)

≤
m−1∑

j=1

Pw

(‖Rj‖ > s
) + P(τ ≥ m)P

(‖R∞‖ > s
)
.

Since ‖Rj‖ is distributed Poisson with mean ρsE(min(V , i))/EV + ‖Biw‖ with
w ∈ A,

Pw

(‖Rj‖ > s
) = o

(
P

(‖R∞‖ > s
))

.

We then conclude that

logPw(‖Rτ‖ > s)

logP(‖R∞‖ > s)
−→ 1 (18)

as s ↗ ∞. Finally, Holder’s inequality and Wald’s identity imply that

Ew

((
TA∑

j=1

χj

)2

T
γ

A I (T < TA)

)

≤ Ew

(
T

2+γ

A

(
max

1≤j≤TA

χ2
j

)
I (T < TA)

)

≤ E1/p
w T

(2+γ )p

A × E1/q
w

TA∑

j=1

χ
2q
j × P 1/r

w (T < TA)

≤ E1/p
w T

(2+γ )p

A × E1/q
w TA × E1/qχ

2q

1 × P 1/r
w (T < TA) (19)

for 1/p + 1/q + 1/r = 1 and p,q, r ≥ 1. Set r = 1 + ε. If we can show that EwT n
A

is uniformly bounded in s for each n ≥ 1, then it follows from (19) that

lim
s−→∞

1

s
logEw

((
TA∑

j=1

χj

)2

T
γ

A I (T < TA)

)
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≤ − 1

1 + ε

(
ρ − 1 − log(ρ)

); (20)

since ε > 0 was arbitrary, (18) and (20) then prove the theorem. To deal with EwT n
A

for arbitrary n ≥ 1, note that the independence of Rm, Rm+1, . . . implies that

Pw(TA > km)

≤ Pw(Rm /∈ A,R2m /∈ A, . . . ,Rkm /∈ A)

= P(R∞ /∈ A)k = (
1 − P(R∞ ∈ A)

)k
,

proving that EwT n
A is uniformly bounded as s ↗ ∞ for each n ≥ 1 (by the choice

of A and the central limit theorem for R∞). As a result, we have proved that our
estimator is efficient. �

5 The Markov-modulated M/G/s queue

Now we consider a variation of the basic model in which the arrival process is au-
tocorrelated. The process W ′ = (W ′

n : n ≥ 0) denotes the measure-valued description
of the loss system. Similarly, to emphasize the distinction between the model treated
here and the basic model developed in earlier sections we use the super-index “ ′ ” for
quantities that correspond to their natural counterparts. So, for instance, the number
of customers that arrive at time n is denoted by χ ′

n.
We suppose that there exists an irreducible finite-state S -valued Markov chain

X = (Xn : n ≥ 0) that modulates the sequence of arriving customers (χ ′
n : n ≥ 0).

Specifically, conditional on X, we assume that the χ ′
n’s are independent Poisson r.v.’s

for which E(χ ′
n|X) = λ(Xn) for some function λ : S −→ R+. To simplify the ar-

guments that follow, we shall assume that the transition matrix (p(x, y) : x, y ∈ S)

satisfies p(x, x) > 0 for x ∈ S . Let μ be the stationary distribution of X. The rest of
the model is identical to that described in Algorithm A. The reader should note that
the service times are not assumed to depend on X. We introduce this assumption to
simplify the exposition but we shall describe at the end of Sect. 6 how to deal with
the case in which the service times depend on X.

It is immediate from the description in the previous paragraph that for each s ≥ 1,
the process ((W ′

n,Xn) : n ≥ 0) is an irreducible finite-state Markov chain on S × S ,
having a stationary distribution denoted by π ′.

We will consider a many-server asymptotic regime in which λ(x) and s go to in-
finity in such a way that for each x ∈ S , ρ(x) � λ(x)EV/s is fixed. A key difference
in this setting is the role that the Markov modulation plays in the large deviations
behavior of the system. We shall assume that

ρ′ � max
x∈S

ρ(x) < 1. (21)

In order to motivate this assumption, observe that if there exists z ∈ S such that
ρ(z) > 1, then the associated loss probability is bounded away from zero and there-
fore it could be estimated via crude Monte Carlo using standard techniques. Indeed, to



48 Queueing Syst (2009) 63: 33–57

see that (21) is required to induce a rare-event environment note that since p(x, x) > 0
for x ∈ S , then the number of busy servers will typically reach s if X exhibits a path
segment (Xj+1, . . . ,Xj+m) for which ρ(Xj+1) = · · · = ρ(Xj+m) > 1.

Our strategy in computing loss probabilities in this setting will be to exploit the
ideas already developed in Sects. 2 through 4. Note that the Poisson structure of the
χ ′

j ’s can be exploited just as in the earlier M/G/s context, once one conditions on X.
The main complication that is introduced is that the χ ′

j ’s are then a sequence of non-
identically distributed (but still conditionally independent) Poisson r.v.’s. However,
since the key properties of the Poisson r.v.’s are preserved in the presence of non-
stationarity, the algorithms and analysis of Sects. 2 through 4 remain largely intact.

Kac’s formula again applies in this context, yielding the relationship

∑n−1
j=0[Q′

j − W ′
j (m) + χ ′

j+1 − s]+
∑n−1

j=0 χ ′
j

−→ β ′(s) �
Eπ ′

A′
(∑TA′−1

j=0 [Q′
j − W ′

j (m) + χ ′
j+1 − s]+)

Eμλ(X0)
π ′(A′) (22)

a.s. as n ↗ ∞, where Eπ ′
A′ (·) is the expectation operator under which

P(W ′
0 ∈ ·,X0 ∈ ·) = π ′

A′(·) � P
(
W ′∞ ∈ ·,X∞ ∈ ·|(W ′∞,X∞) ∈ A′)

and TA′ � inf{n ≥ 1 : (W ′
n,Xn) ∈ A′} is the first return time to A′. Let x∗ be selected

so that ρ′ = ρ(x∗); put

Δ =
{

w ∈ S :
∣∣∣∣∣

m∑

j=1

E
(
BjYj

∣∣Xj = x∗
) − w

∣∣∣∣∣ ≤ as−1/2
m∑

j=1

E
(
BjYj

∣∣Xj = x∗
)
}

(where the absolute value above is interpreted component by component) and set

A′ � Δ × {x∗}.
In order to see that π ′(A′) is bounded away from zero, note that

R′∞
D= R′

m = Y ′
m + BY ′

m−1 + · · · + Bm−1Y ′
1, (23)

assuming that X0 is drawn from μ. Therefore,

π(A′) = Eμ

(
P(Rm ∈ Δ,Xm = x∗|X0)

)

≥ μ(x∗)p(x∗, x∗)mP (Rm ∈ Δ|X0 = · · · = Xm = x∗).

By the central limit theorem (see, for instance, [8]) we have that P(Rm ∈ Δ|X0 =
· · · = Xm = x∗) is bounded away from zero as s ↗ ∞. On the other hand, exactly the
same argument as that given in the proof of Proposition 1 yields

sup
C

∣∣P(R′∞ ∈ C) − P(W ′∞ ∈ C)
∣∣ ≤ mP

(‖R′∞‖ > s
)
.
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But, representation (23) implies

P
(
Po(sρ′) > s

)
μ(x∗)p(x∗, x∗)m

≤ P
(‖R′∞‖ > s

) ≤ P
(
Po(sρ′) > s

)
(24)

for all s ≥ 1. Hence,

1

s
logP

(‖R′∞‖ > s
) −→ −(ρ′ − 1 − logρ′)

and we conclude that π(A′) is bounded away from zero as s ↗ ∞. On this basis, we
concentrate on the numerator of the expression for β ′(s), namely,

κ ′(s) � Eπ ′
A′

(TA′−1∑

j=0

[
Q′

j − W ′
j (m) + χ ′

j+1 − s
]+

)
, (25)

which involves the occurrence of the rare event {T ′ < TA′ } where

T ′ � inf
{
n ≥ 1 : Q′

n−1 − W ′
n−1(m) + χ ′

n > s
}
.

Computing (25) can be done following the same strategy described in Sect. 2 based
on the construction of r.v.’s Γ ′

k(w,x), k ≥ 1, with the property that

EΓk(w,x) = E(w,x)

(TA′−1∑

j=0

[
Q′

j − W ′
j (m) + χ ′

j+1 − s
]+

)
.

In turn, to construct such Γ ′
j (w,x)’s we take advantage of the fact that

E(w,x)

(TA′−1∑

j=0

[
Q′

j − W ′
j (m) + χj+1 − s

]+
)

= E(w,x)

(
φ′(W ′

T ′−1,XT ′−1, Y
′
T ′)I (T ′ < TA′)

)
, (26)

where

φ′(w,x, y) = E

(TA′−1∑

j=0

[
Q′

j − W ′
j (m) + χ ′

j+1 − s
]+

∣∣∣∣W0 = w,X0 = x,Y ′
1 = y

)
,

Y ′
j = (Y ′

j (1), . . . , Y ′
j (m)) with the Y ′

j (i)’s being conditionally independent given X

and E(Y ′
j (i)|Xj) = λ(Xj )P (V = i). The Monte Carlo evaluation of expectations

such as (26) can be easily done if one takes advantage of an efficient importance
sampling estimator for T ′ < TA′ , which we shall develop next.

The description of our estimator takes advantage of the associated infinite-server
system (R′

n : n ≥ 0) satisfying

R′
n+1 = BR′

n + Y ′
n+1
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for n ≥ 0. As in Sect. 3, the fact that W ′
n = R′

n for n < T ′ (assuming W ′
0 = w = R′

0)
yields that

T ′ = inf
{
n ≥ 1 : ‖R′

n‖ > s
}
,

and that (W ′
T ′−1,XT ′−1, Y

′
T ′) given T ′ < TA′ has the same distribution as (R′

T ′−1,

XT ′−1,R
′
T ′ − BR′

T ′−1), conditional on T ′ < T̃A′ , where

T̃A′ = inf{n ≥ 1 : R′
n ∈ A′}.

Consequently, we concentrate our efforts on describing a sampler that is efficient for
estimating the probability of the event T ′ < T̃A′ .

We run a straightforward adaptation of the algorithm described in Sect. 3 con-
ditional on the chain X. In order to provide an explicit representation of our im-
portance sampling estimator it is convenient to introduce the notation P X

w (·) =
P(w,x)(·|X0,X1, . . .); the associated expectation operator is denoted by EX

w(·). We
let

P̃ X(·) = P X
w

(·|‖R′
τ‖ > s

)

(with τ as defined in Sect. 3). Following the development leading to (4) we conclude
that

P̃ X
(
(R′

1, . . . ,R
′
T ′) ∈ ·, T ′ < T̃A′

)

= EX
w

(
I
(
(R′

1, . . . ,R
′
T ′) ∈ ·, T ′ < T̃A′

)
∑∞

n=T ′ hX
n (T ′,R′

T ′)

P X
w (‖R′

τ‖ > s)

)
, (27)

where

hX
n (k, r) = P(τ = n)P X

r

(‖R′
n‖ > s|R′

k = r
)
.

Our proposed importance sampling distribution is given by P̃ (·) defined via

P̃ (·) = Ew

(
EX

w

(
I
(
(R′

1, . . . ,R
′
T ′) ∈ ·, T ′ < T̃A′

)
∑∞

n=T ′ hX
n (T ′,R′

T ′)

P X
w (‖R′

τ‖ > s)

))

(i.e. no importance sampling is applied to X).
In order to evaluate hX

n (k, r), note that P X
r (‖R′

n‖ > s|R′
k = r) can be computed in

closed form using the Poisson distribution. Now, in contrast to our analysis in Sect. 3,
the pair of infinite series

∑∞
n=T ′ hX

n (T ′,R′
T ′) and

∑∞
n=1 hX

n (1,w) = P X
w (‖R′

τ‖ > s)

cannot be evaluated in closed form; instead, they have to be truncated at some level
thereby introducing a bias. We will deal with this issue later, but for the moment it
suffices to say that one can explicitly control the relative bias of the estimator by
truncating at level t (s) = s1+δ for any δ > 0.

Our development in (27) yields the likelihood ratio identity

dP̃

dPw

= L−1
X (T ′,R′

T ′) =
∑∞

n=T ′ hX
n (T ′,R′

T ′)

P X
w (‖R′

τ‖ > s)
.
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One can generate paths under P̃ (·) by adapting Algorithm B. The adaptation of
Algorithm B to our current setting proceeds as follows. First, step 1 requires simu-
lating X. In practice, because of the truncation issue mentioned before, it suffices to
simply generate X0, . . . ,Xt(s). Then one samples K ′ with probability mass function
proportional to P X

w (‖R′
k‖ > s)P (τ = k)I (k ≤ t (s)). Steps 2 to 5 just involve obvious

notational changes (i.e. replacing the Yj ’s by Y ′
j ’s and χj ’s by χ ′

j ’s). Finally, in step

6, the output involves computing L−1
X (T ′,R′

T ′) truncating the series up to t (s).
In our current setting, there is also a direct adaptation of Algorithm C in order

to generate ‖R′
l‖ with l ≤ m, conditional on X, ‖R′

l‖ > s and R′
0 = w, and then

(Y ′
1, . . . , Y

′
l ) given ‖R′

l‖, X and R′
0 = w. The idea is to fix X and use the fact that

‖R′
l − BlR′

0‖ is a Poisson random variable with mean svX
l , where

vX
l � ρ(Xl)P (V ≥ 1) + · · · + ρ(X1)P (V ≥ l)

EV
.

The generation of ‖R′
l‖ conditional on ‖R′

l‖ > s, X and R′
0 = w, is equivalent to

generating r.v.’s from the conditional distribution

P
(∥∥Blw

∥∥ + Po
(
svX

l

) ∈ · | Po
(
svX

l

)
> s − ∥∥Blw

∥∥)
.

Sampling from the previous distribution can be done by means of acceptance–
rejection as suggested in Sect. 3. The expected number proposals required to obtain
an acceptance is also of order O(s1/2) (uniformly over X1, . . . ,Xm). In conclusion, a
small variation of Algorithm C can be executed conditional on X. The only changes
arise in step 4, where vl is replaced by vX

l , and in step 5 where the Z number of
customers are distributed across the (BjY ′

l−j )(i)’s (for i ∈ {1, . . . ,m} and 0 ≤ j < l)
according to a multinomial distribution with associated multinomial probability

EX
w(BjY ′

l−j )(i)

svX
l

= EX
wY ′

l−j (i − j)

svX
l

= λ(Xl−j )P (V = i − j)

svX
l

for (BjY ′
l−j )(i).

6 Efficiency analysis and bias control

The technical development behind the asymptotic behavior of β ′(s) as s ↗ ∞ is
similar to that of Sect. 4. In particular, we have the following result which parallels
the statement of Theorem 1.

Theorem 3 The following limits hold as s ↗ ∞
(i) (logP(‖R′∞‖ > s))−1 logβ ′(s) −→ 1

(ii) (logP(‖R′∞‖ > s))−1 logβ ′(s) −→ 1
(iii) (logE([‖R′∞‖ − s]+))−1 logβ ′(s) −→ 1
(iv) (logP(Q′∞ = s))−1 logβ ′(s) −→ 1
(v) s−1 logβ ′(s) −→ −[ρ′ − 1 − log(ρ′)]
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Proof The proof is completely analogous to that of Theorem 1, taking advantage of
the bounds in (24) for parts (i), (ii) and (iii). The only significant change arises in the
development of a suitable asymptotic lower bound for s−1 logPπ ′

A′ (T̃
′ < TA′), where

T̃ ′ = inf{n ≥ 1 : Q′
n ≥ s} = inf{n ≥ 1 : ‖R′

n‖ ≥ s}. However, note that

PπA′ (T̃
′ < TA′)

≥
∫

Δ×{x∗}
πA′(dw,dx)P(w,x)(T̃

′ = m < TA′)

≥
∫

Δ×{x∗}
πA′(dw,dx)P

(‖R′
m‖ = s,X1 = · · · = Xm = x∗

)

× Pw

(‖R′
i‖ < s,R′

i /∈ A, i ≤ m − 1|‖R′
m‖ = s,X1 = · · · = Xm = x∗

)
.

The argument can be completed exactly as in the proof of Theorem 1 using the fact
that conditional on ‖R′

m‖ = s and on X0 = · · · = Xm = x∗, the random variables,
‖R′

i − Biw‖, i ≤ m − 1 are distributed Bin(s,E min(V , i)/EV ). �

We now turn to the efficiency analysis of the estimator Γ1(w,x∗)2LX(T ′,R′
T ′).

We have the following result which establishes logarithmic efficiency.

Theorem 4 For each w ∈ Δ, we have

lim
s−→∞

log Ẽ(Γ1(w,x∗)2LX(T ′,R′
T ′))

logβ ′(s)
= 2

satisfies (16).

Proof The proof of Theorem 4 is similar to that of Theorem 2. One can use the
Poisson r.v.’s with rate ρ′ to stochastically dominate the count of loss customers. The
main distinction arises in the analysis of the moments of TA′ , which are required to be
uniformly bounded in s in order to complete the proof. Lemma 1 below then provides
the necessary elements to analyze the moments of TA′ thereby completing the proof
of the result. �

The next lemma estimates the tails of TA′ . The analysis is useful both to complete
the proof of Theorem 4 and to estimate the relative bias induced by the truncation
at level t (s) required to implement the procedure. To state our result first, let σ + 1
be the cardinality of the set S . Since p(·) is irreducible and p(x, x) > 0 for x ∈ S it
follows that p(·) is also aperiodic and therefore

η � min
y∈S

pσ (x, y) > 0.

Define

θ = P

(
m⋂

j=1

{∣∣Y ′
1(j) − EY ′

1(j)
∣∣ ≤ as−1/2EY ′

1(j)
}∣∣∣∣X1 = x∗

)m
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and set

φ = ηp(x∗, x∗)mθ.

Observe that φ is bounded away from zero in s and that it can be computed explicitly
using the Poisson distribution for each s ≥ 1.

Lemma 1 Let l = σ + m − 1; then for each w ∈ Δ and every k ∈ {0,1, . . .}
P(w,x∗)

(
TA′ > (k + 1)l

) ≤ (1 − φ)k.

Proof Put

Clk+σ+i =
m⋂

j=1

{∣∣Y ′
lk+σ+i (j) − EY ′

lk+σ+i (j)
∣∣ ≤ as−1/2EY ′

lk+σ+i (j)
}

and set

ζ(Xkl) = P(Xlk+σ+i = x∗,Clk+σ+i ,0 ≤ i ≤ m − 1|Xkl).

Then, for each w ∈ Δ we have

P(w,x∗)
(
TA′ > (k + 1)l

)

≤ E(w,x∗)
(
I (TA′ > kl)

(
1 − ζ(Xkl)

))

≤ P(w,x∗)(TA′ > kl)(1 − φ).

Iterating the previous inequality we conclude the result. �

We finish this section with an estimate of the bias that arises by truncating the infi-
nite series in the definition of L−1

X (T ′,R′
T ′). Sampling K ′ according to the probability

mass function

P(K ′ = k) = P X
w (‖R′

k‖ > s)P (τ = k)I (τ ≤ t (s))

P (‖R′
τ‖ > s|τ ≤ t (s))

as suggested for the practical implementation of our procedure induces an unbiased
estimator for the expectation

Eπ ′
A′

(
φ′(W ′

T ′−1,XT ′−1, Y
′
T ′)I

(
T ′ < TA′ , T ′ ≤ t (s)

))
.

The bias obtained when estimating the numerator of β ′(s) is then bounded by

Eπ ′
A′

(
φ′(W ′

T ′−1,XT ′−1, Y
′
T ′)I

(
t (s) < T ′ < TA′

))

≤ Eπ ′
A′

(
φ′(W ′

T ′−1,XT ′−1, Y
′
T ′)I

(
t (s) < T ′ < TA′

))

≤ Eπ ′
A′

(
φ′(W ′

T ′−1,XT ′−1, Y
′
T ′)2I (T ′ < TA′)

)1/2
Pπ ′

A′
(
TA′ > t(s)

)1/2

≤ Eπ ′
A′

(
φ′(W ′

T ′−1,XT ′−1, Y
′
T ′)2I (T ′ < TA′)

)1/2
(1 − φ)�t (s)/(2l)�.
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Therefore, the relative bias can be bounded by

Eπ ′
A′ (φ

′(W ′
T ′−1,XT ′−1, Y

′
T ′)2I (T ′ < TA′))1/2

Eπ ′
A′ (φ

′(W ′
T ′−1,XT ′−1, Y

′
T ′)I (T ′ < TA′))

(1 − φ)�t (s)/(2l)�

≤
Eπ ′

A′ (φ
′(W ′

T ′−1,XT ′−1, Y
′
T ′)2I (T ′ < TA′))1/2

Pπ ′
A′ (T

′ < TA′ , T ′ ≤ t (s))
(1 − φ)�t (s)/(2l)�.

The right hand side of the previous expression decreases super-exponentially fast in s

if t (s) is super-linear in s. Moreover, the term (1−φ)�t (s)/(2l)� can be easily estimated
since φ can be explicitly evaluated. On the other hand, the probability Pπ ′

A′ (T
′ < TA′ ,

T ′ ≤ t (s)) can also be estimated efficiently via Monte Carlo (the algorithms explained
above allow to do precisely this); furthermore exponential decay of such probability
coincides with that studied in Theorem 3. Consequently, one can select t (s) = κs3/2

for a suitable constant κ > 0 and estimate the ratio

(1 − φ)�t (s)/(2l)�/Pπ ′
A′

(
T ′ < TA′ , T ′ ≤ t (s)

)

with good relative precision and high confidence. Note that an upper bound for

Eπ ′
A′

[
φ′(W ′

T ′−1,XT ′−1, Y
′
T ′)2I (T ′ < TA′)

]1/2

can easily be obtained either explicitly or by simulation; high relative precision is
not required for this calculation. Combining these observations we conclude that the
relative bias of our estimator can be reduced to a desired accuracy at a relatively low
(sub-exponential in s) computational cost.

We close our discussion on Markov-modulated models with the adaptation of our
ideas to the case in which the service times are allowed to depend on X. We let V (x)

be a generic service time corresponding to a customer that arrives at a time at which
the underlying Markov chain takes value x. Note that the representation given for R′∞
given in (23) is applicable. In fact, Theorem 3 holds in this case by suitably changing
the definition of ρ′, which now takes the form

ρ′ = max
{x1,...,xm:p(x1,x2)×···×p(xm−1,xm)>0}

m−1∑

l=0

m∑

j=l+1

λ(xm−l)P
(
V (xm−l ) = j

)
. (28)

As before, ρ′ < 1 is a condition required to make the loss probability converge to
zero as s ↗ ∞. The difference with our previous development involves finding a
suitable definition for the set A′. Note that our previous analysis relies on a definition
of A′ that is guided by a suitable central limit theorem argument. At the crux of
our arguments is the fact that one can isolate the most likely m-step trajectory in
the Markov-modulated chain and, conditional on ‖Rm‖ = s, there is a law of large
numbers description that moves the vector-valued process outside the set A′ given a
suitable trajectory for the process X (at this step it is useful to have defined A via the
central limit theorem).
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When the service times depend on the underlying Markov-modulated chain one
needs to expand the size of the state descriptor in order to appropriately define a suit-
able equilibrium set A′. In particular, one needs to define R′

n(i, j) as the number of
customers that are of type j (i.e. customers that arrived at a time when the underlying
Markov chain took value j ) and that have i units of remaining service requirement at
time n. Then,

Rn+1(i, j) = Rn(i + 1, j)I (i ≤ m − 1) + Yn+1(i, j)I (Xn+1 = j),

where Yn+1(i, j) is Poisson with rate sλ(j)P (V (j) = i) and all the Yn(i, j)’s are
independent. The appropriate definition of the set A′ now can be done in terms of
the solution to the optimization problem (28). In particular, suppose that the solution
to this optimization problem is given by a sequence (x∗

1 , . . . , x∗
m). Then, consider the

deterministic system

rn+1(i, j) = rn(i + 1, j)I (i ≤ m − 1) + yn+1(i, j)I (x∗
n+1 = j),

where yn+1(i, j) = sλ(j)P (V (j) = i) for all 0 ≤ n ≤ m − 1 assuming that
r0(i, j) = 0. Then we put A′ ⊆ Rm×|S| × S where |S| is the cardinality of the state-
space of the underlying Markov chain defined as follows. First put

Δ = {
r(i, j) : ∣∣r(i, j) − rm(i, j)

∣∣ ≤ s1/2,1 ≤ i ≤ m,1 ≤ j ≤ |S|}

and let

A′ = Δ × {x∗
1 }.

Both the implementation indicated in Sect. 5 and the analysis given in this section
carry over in a completely analogous manner.

7 Numerical experiments

We applied our procedure to a couple of examples both in the standard M/G/s case
and the model with Markov-modulated input. We tested the performance of our al-
gorithms for different sizes of estimated loss probabilities, ranging from quantities of
order 10−1 to 10−10. This range allows us to test the performance of our algorithms
relative to crude Monte Carlo in cases in which the events are not very rare.

We use the method of batch means to provide an associated confidence interval
for the loss probability of interest. The number of batches is equal to 20 in all the
experiments. In order to make the performance analysis comparable in terms of the
coefficient of variation of the estimators we fixed a CPU time budget of roughly
120 seconds (plus the time required to complete the calculations for the last batch
in order to make all the batches of the same size). The column “Estimator” provides
the corresponding point estimate associated with the corresponding method. C.V. is
the empirical coefficient of variation (empirical standard deviation divided by the
estimator). Finally, we display an approximate 95% confidence interval.

Our first set of results, shown in the next two tables, correspond to the basic
M/G/s model explained in Sect. 2 m = 10. We assume that the service times are
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uniform on {1,2, . . . ,10}. The traffic intensity, ρ, is set equal to 0.1. We observe that
substantial variance reduction is observed for loss probabilities of order 10−4. For
probabilities of order 10−8 our procedure is vastly superior to crude Monte Carlo.
It is worth noting that the behavior of the empirical coefficient of variation for our
importance sampler suggests even better performance than simply logarithmic effi-
ciency.

Crude Monte Carlo
Estimator C.V. 95% C.I.

s = 10 0.10007 0.062 [0.09563, 0.10451]
s = 25 0.01092 0.297 [0.00857, 0.01322]
s = 50 3.2307e-04 1.165 [5.3748e-05, 5.9240e-04]
s = 100 0 N/A N/A

Importance Sampling
Estimator C.V. 95% C.I.

s = 10 0.09651 0.462 [0.06455, 0.12847]
s = 25 0.00763 0.894 [0.00274, 0.01251]
s = 50 2.5603e-05 0.879 [9.4973e-06, 4.1709e-05]
s = 100 6.8965e-10 1.289 [5.3544e-11, 1.3257e-09]

For the case of Markov-modulated input we assume that the service times are
uniformly distributed on the set {1,2, . . . ,5}. The transition matrix is

p =
[

0.7 0.3
0.4 0.6

]

and the traffic intensities are given values ρ(1) = 0.1 and ρ(2) = 0.2. The relative
bias was set less than 1% using t (s) = s3/2 and applying the bounds obtained in the
previous section. The conclusions in terms of algorithmic performance are consistent
with our previous observations. Our numerical output is shown in the next tables.

Crude Monte Carlo
Estimator C.V. 95% C.I.

s = 10 0.05278 0.086 [0.04951, 0.05604]
s = 25 0.00473 0.200 [0.00405, 0.00541]
s = 50 1.3461e-04 1.943 [-5.2554e-05, 3.2178e-04]
s = 100 0 N/A N/A

Importance Sampling
Estimator C.V. 95% C.I.

s = 10 0.04912 0.373 [0.03613, 0.06217]
s = 25 0.00476 1.254 [0.00048, 0.0090]
s = 50 6.6055e-05 0.742 [3.0948e-05, 1.0116e-04]
s = 100 5.6104e-08 0.889 [2.0426e-08, 9.1782e-08]
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