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Abstract We consider a multi-server queue with K priority classes. In this system,
customers of the P highest priorities (P < K) can preempt customers with lower
priorities, ejecting them from service and sending them back into the queue. Service
times are assumed exponential with the same mean for all classes.

The Laplace–Stieltjes transforms of waiting times are calculated explicitly and
the Laplace–Stieltjes transforms of sojourn times are provided in an implicit form
via a system of functional equations. In both cases, moments of any order can be
easily calculated. Specifically, we provide formulae for the steady state means and
the second moments of waiting times for all priority classes. We also study some
approximations of sojourn-time distributions via their moments. In a practical part of
our paper, we discuss the use of mixed priorities for different types of Service Level
Agreements, including an example based on a real scheduling problem of IT support
teams.

Keywords Queues · Priority queues · Workforce management · IT support
systems · Contact centers
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1 Introduction

1.1 Motivation

Many service systems differentiate among customers or jobs according to their busi-
ness value or other factors. As a result, different classes of customers are subject to
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different Service Level Agreements (SLAs) that guarantee a certain service level for
each customer class and often include penalties for their violation.

Customer differentiation gives rise to queues with two main types of priority dis-
ciplines: preemptive and non-preemptive. In the preemptive queues, customers with
higher priorities can eject lower-priority customers from service. According to the
non-preemptive discipline, the service that started should be completed without inter-
ruption.

Most research on priority queues has been dedicated to either pure non-preemptive
priorities (service is never interrupted) or to pure preemptive service disciplines (any
customer of higher priority can eject from service any customer of lower priority).
However, systems with mixed priorities that combine the two disciplines are wide-
spread in various application areas, such as contact centers, health care, and commu-
nication networks.

For example, Information Technology (IT) support systems have recently enjoyed
significant growth both in the volume of operations and in the workforce employed.
IT support systems can perform either relatively simple operations (known as first-
level support, traditionally provided via call centers) or operations that require more
advanced skills and extended service times (second and third-level support). A typi-
cal priority discipline in the second and third-level IT support systems is the mixed
discipline that is analyzed in our paper. Specifically, this research resulted from a
practical scheduling problem for IT support teams in Bangalore, India. A compre-
hensive description of this problem and practical methods applied in the scheduling
solution are provided in Wasserkrug et al. [25]. See Sect. 3.4 for a numerical example
based on this project.

In modern contact centers, classical telephone-based service is combined with
various Internet services, such as chat and mail (Gans et al. [11]). In such centers,
we expect non-preemptive priority discipline to be applied between different classes
of phone calls and preemptive discipline between high-priority phone calls and non-
urgent Internet services.

Additional examples of service systems in which mixed priority service disci-
plines are relevant include health care and communication networks. For example, if
a health-care system is experiencing heavy load at the stage of initial treatment (for
example, in an emergency room or near a battlefield), patients or wounded are divided
into classes according to the severity of their problems. In this case, service discipline
can be either preemptive or non-preemptive, depending on the classes involved.

From a system design point of view, mixed priorities provide us with flexibility to
satisfy multiple SLAs. Specifically, one can choose between pure preemptive, pure
non-preemptive, and different mixed service protocols. In addition, mixed priorities
are often applied if pure preemptive priorities are preferable according to the SLA,
but it is desirable to decrease the number of service interruptions.

1.2 Contribution of the paper

We consider a multi-server system with n servers, K classes of customers, and mixed
priorities. Class 1 customers have the highest priority and, in general, class i cus-
tomers have higher priorities than class j customers if i < j . Customers of classes
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1, . . . ,P are named preempting since they can eject lower-priority customers from
service. Customers of classes P +1, . . . ,K are named non-preempting since they can
enter service only if an idle server is available. Assume K ≥ 3 and 1 ≤ P ≤ K − 2.
The precise description of our service/preemption protocol is provided in Sect. 1.3.

The arrival processes for all classes are independent Poisson processes and the
service distribution is exponential with the same mean for all classes. (The same
service-time distribution can be a reasonable assumption if all customers are engaged
in the same type of service activities and divided into classes according to their busi-
ness value or urgency of service.)

Our paper provides the following contributions to the theory and applications of
priority queues:

• Laplace–Stieltjes Transforms (LSTs) for waiting times of all classes are computed
explicitly, giving rise to straightforward calculations of their moments. In partic-
ular, we provide a simple formula for mean waiting and sojourn times and derive
the second moments of the waiting times.

• In this paper, LSTs for sojourn times are computed implicitly via systems of (n+1)

functional equations. The moments of sojourn times are then calculated via sys-
tems of (n + 1) linear equations. In addition, Sect. 2.3.3 outlines an alternative
method of LSTs calculation for sojourn times.

• In the practical part of the paper, we provide some instructive numerical examples
and discuss which types of SLAs could give rise to mixed priorities protocols. We
study mean waiting times, waiting-time distributions (via LST inversion), and an
approximation of the sojourn-time distribution by three moments using the algo-
rithm of Osogami and Harchol-Balter [18].

Remark 1 As we shall see from the detailed description of our service protocol
in Sect. 1.3, non-preempting classes P + 1, . . . ,K do not affect performance of
preempting classes 1, . . . ,P . Therefore, the performance measures for preempting
classes coincide with the ones in the pure preemptive case that have already been an-
alyzed by Tatashev [24] and Segal [21]. Our analysis on preempting classes is mainly
based on the above results, providing some extensions, such as explicit expressions
for the second moments of the waiting times or the discussion in Sect. 2.3.3. The
results for non-preempting classes are new and provide the main theoretical contri-
bution of this paper.

1.3 Service/preemption protocol

In general, we divide customers in the system into three types: customers in service,
ejected customers (who started service, but have been preempted and are currently
waiting for service restart), and waiting customers (who have not yet started service).
To define the service/preemption protocol in a unique way, we must address two key
questions: First, which customer is ejected if a preempting customer arrives at the
system and all servers are busy? Second, which customer is taken from the queue by
a server that finishes service?

Below we describe the service/preemption protocol used in this paper.
Assume that a preempting customer (classes 1, . . . ,P ) arrives at the system and

there are customers of lower priorities in service.
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Fig. 1 Schematic representation of our service protocol

• If there are non-preempting customers in service (classes P + 1, . . . ,K), then the
last non-preempting customer who started service is ejected, regardless of priority.

• If there are no non-preempting customers in service, the preempting customer with
the lowest priority is ejected from service. If there are several preempting cus-
tomers of this class, the one that started service last is ejected.

Assume that a server finishes service and there are ejected or waiting customers in
the system.

• If there are preempting customers in the queue, the customer with the highest pri-
ority is served. If there are several ejected customers of this priority, the customer
who was ejected last is taken to service. Otherwise, a waiting customer of the high-
est priority is served according to FCFS (First Come First Served).

• If there are no preempting customers in the queue, but there are ejected non-
preempting customers, then the customer who was ejected last is served, regardless
of priority.

• Otherwise, if there are only waiting non-preempting customers in the queue, a
waiting customer of the highest priority is served according to FCFS.

Figure 1 depicts the hierarchy of queues in our system.

Discussion on the service protocol First, in our protocol, customers of the same
class are ejected according to the shortest time in service. In many applications,
this is reasonable since breaks at early stages of service are preferable to breaks at
later stages. These assumptions are also consistent with several papers cited below in
Sect. 1.4. (See, for example, [21].) Second, we assume that ejected customers have
priority over waiting customers of the same class, since it is preferable to finish jobs
that were previously started before taking the new ones to service. Third, our proto-
col is “fair” in the sense that two ejected customers of the same class restart service
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according to the order of their arrival. (A customer who arrives first starts service first
among the two customers, is ejected after the second one, and restarts service be-
fore the second one.) Finally, we assume that ejected non-preempting customers are
treated as a single class, once they start service for the first time. Therefore, the dif-
ference between non-preempting classes arises only at the waiting stage. Alternative
protocols that distinguish between non-preempting customers at the later stages of
service/ejection should be studied too. The choice of a specific protocol can depend
on a specific SLA. (See Remark 6 for details.)

1.4 Related work

The research on priority queues was initiated by Cobham [5] more than half a cen-
tury ago. Classical results on non-preemptive discipline with identically distributed
exponential service times for all classes can be found in Davis [6] and Kella and
Yechialy [16]. The corresponding results for preemptive priorities are presented in
Segal [21], Buzen and Bondi [3], and Tatashev [24].

If the service times have different means and/or are non-exponential, the problem
becomes much more complicated. Gail et al. [9, 10] consider both preemptive and
non-preemptive disciplines in the case of two classes and exponential service times
with different means. Harchol-Balter et al. [13] provide an approximate analysis of
a preemptive system with the phase-type service distributions. Finally, Sleptchenko
et al. [23] analyze preemptive system with two classes and hyperexponential ser-
vice times, where some performance measures for hyperexponential subclasses are
derived.

Literature on systems with mixed priorities is more scarce than that for pure pre-
emptive or non-preemptive disciplines. Some single-server results are available in
Chang [4], Adiri and Domb [2], Simon [22], and Drekic and Stanford [7], but no
results for multi-server systems exist, as far as we know.

Finally, distributions of waiting and sojourn times in the priority queues are often
derived via their Laplace–Stieltjes transforms. Due to the increase in the computa-
tional power of modern computers, inversion of Laplace–Stieltjes transforms is now
a much more feasible task than it was in the past. See Abate and Whitt [1] and Appen-
dix A from Jagerman and Melamed [15] that discuss numerical Laplace inversions
and several specific algorithms.

2 Theoretical results

2.1 Notation

This section includes a list of basic notation and definitions, used in this paper.

• λ1, . . . , λK—Poisson arrival rates associated with classes 1, . . . ,K .
• λ̄k = ∑k

j=1 λj ,1 ≤ k ≤ K,—aggregated arrival rates associated with classes
1, . . . , k.

• ρk = λk/(μn),1 ≤ k ≤ K,—servers’ utilization associated with class k.
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• ρ̄k = ∑k
j=1 ρj ,1 ≤ k ≤ K,—aggregated utilization associated with class k. We

assume that the stability condition ρ̄K < 1 prevails.
• Wk,1 ≤ k ≤ K—steady-state waiting time of class k. (The waiting time includes

the wait before the first service start and also possible wait after ejections from
service.)

• Vk,1 ≤ k ≤ K—steady-state sojourn time of class k. (The sojourn time includes
waiting and service times, where the service time can have several phases, due to
ejections.)

• Ṽk(s), W̃k(s),1 ≤ k ≤ K—LST of sojourn and waiting times, respectively. For ex-
ample, W̃k(s) = ∫ ∞

0 e−st dFWk
(t), where FWk

(·) is the corresponding cumulative
distribution function.

• M/M/n(λ;μ)—the M/M/n queue with arrival rate λ and service rate μ.
• M/M/n/n(λ;μ)—the M/M/n/n loss system with arrival rate λ and service rate μ.
• M/M/n(λ1, . . . , λK ;μ)np—a queueing system with K classes, non-preemptive pri-

orities, service rate μ and vector of Poisson arrival rates λ1, . . . , λK .
• M/M/n(λ1, . . . , λK ;μ)pr—a queueing systems with preemptive priorities and pa-

rameters that coincide with the ones from the previous definition.
• M/M/n(λ1, . . . , λK ;μ;P)mx—a queueing systems with mixed priorities and P

preempting classes.

2.2 Waiting times

We start with several additional definitions. It is well known [21] that the LST of a
busy-period length for M/M/n(λ̄k,μ) is given by

B̃k(s) = s + λ̄k + nμ −
√

(s + λ̄k + nμ)2 − 4λ̄knμ

2λ̄k

, 1 ≤ k ≤ K. (2.1)

Now consider the M/M/n(λ1, . . . , λk, . . . , λl;μ)np system with l ≥ k. The LST of the
density of conditional waiting time (Wk|Wk > 0) for class k is equal to [16]:

f̃ 0
k (s) = 2 · (nμ) · (1 − ρ̄k)

s + λ̄k−1 + nμ − 2λ̄k +
√

(s + λ̄k−1 + nμ)2 − 4λ̄k−1nμ
, 1 ≤ k ≤ K.

(2.2)
(Let here and in continuation denote λ̄0 = 0, ρ̄0 = 0.) Note that (2.2) does not depend
on the arrival rates of classes with priorities that are lower than k.

Define the loss probability in M/M/n/n(λ̄k ,μ) by

EB
k = (λ̄k/μ)n/n!

∑n
j=0(λ̄k/μ)j /j ! , 1 ≤ k ≤ K, EB

0 = 1, (2.3)

and the delay probability in M/M/n (λ̄k ,μ) by

EC
k =

[

1 +
n−1∑

j=0

n!(1 − ρ̄k)

j !(λ̄k/μ)n−j

]−1

, 1 ≤ k ≤ K.
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Finally, introduce the following constants (their intuitive meaning is explained in
Statements 3 and 4 in Sect. 2.2.1):

p0
k = 1 − ρ̄k−1(E

B
k − EB

k−1)

ρk(1 − EB
k )

, 1 ≤ k ≤ P, (2.4)

p0
np = 1 − ρ̄P (EB

K − EB
P )

(ρ̄K − ρ̄P )(1 − EB
K)

, (2.5)

pk = 1 − ρ̄k−1
(
1 − EB

k−1

)
, 1 ≤ k ≤ P, (2.6)

pnp = 1 − ρ̄P

(
1 − EB

P

)
. (2.7)

Theorem 1 For the preempting classes (1 ≤ k ≤ P ), the LST of the waiting time is
given by

W̃k(s) = (
1 − EC

k

) · p0
k + EC

k pkf̃
0
k (s) + (1 − EC

k )pk(1 − p0
k)B̃k−1(s)

1 − (1 − pk)B̃k−1(s)
. (2.8)

For the non-preempting classes (P +1 ≤ k ≤ K), the LST of the waiting time is given
by

W̃k(s) = (
1 − EC

K

) · p0
np + EC

Kpnpf̃ 0
k (s) + (1 − EC

K)pnp(1 − p0
np)B̃P (s)

1 − (1 − pnp)B̃P (s)
. (2.9)

Corollary 1 The expected values of the waiting times are equal to

E[Wk] = 1

nμ
·
[
ρ̄k

ρk

EC
k

1 − ρ̄k

− ρ̄k−1

ρk

EC
k−1

1 − ρ̄k−1

]

, 1 ≤ k ≤ P, (2.10)

E[Wk] = 1

nμ
·
[

EC
K

(1 − ¯ρk−1)(1 − ρ̄k)
+ ρ̄P (EC

K − EC
P )

(1 − ρ̄P )(ρ̄K − ρ̄P )

]

, P + 1 ≤ k ≤ K.

(2.11)

The second moments of the waiting times are calculated via

E[Wk]2 = 2

(nμ)2
·
[

EC
k (1 − ρ̄k−1ρ̄k)

(1 − ρ̄k)2(1 − ρ̄k−1)3
+ EC

k ρ̄k−1(1 − EC
k−1)

(1 − ρ̄k)(1 − ρ̄k−1)3

+ (1 − p0
k + (p0

k − pk)E
C
k )(1 − ρ̄k−1 + pkρ̄k−1)

p2
k(1 − ρ̄k−1)3

]

, 1 ≤ k ≤ P,

(2.12)

E[Wk]2 = 2

(nμ)2
·
[

EC
K(1 − ρ̄k−1ρ̄k)

(1 − ρ̄k)2(1 − ρ̄k−1)3
+ EC

Kρ̄P (1 − EC
P )

(1 − ρ̄P )2(1 − ρ̄k)(1 − ρ̄k−1)

+ (1 − p0
np + (p0

np − pnp)EC
K)(1 − ρ̄P + pnpρ̄P )

p2
np(1 − ρ̄P )3

]

, P + 1 ≤ k ≤ K.

(2.13)
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Remark 2 Higher moments of waiting times can be derived via differentiation of
(2.8) and (2.9).

Remark 3 Formulae (2.8) and (2.10) are well known, see Tatashev [24] and Buzen
and Bondi [3], respectively.

2.2.1 Proof of Theorem 1

Remark 4 Due to work-conservation and the assumption of the same service
rate for all classes, the steady-state distribution of overall number-in-system in
M/M/n(λ1, . . . , λK ;μ;P)mx coincides with the steady-state distribution in
M/M/n(λ̄K,μ). Moreover, if we consider a preempting class k ≤ P , the distribu-
tion of number-in-system for classes 1, . . . , k coincides with M/M/n(λ̄k,μ).

Denote by Ik the steady-state number of service interruptions for class k, 1 ≤
k ≤ K . (Of course, I1 ≡ 0.) The waiting time of class k can then be represented via
the following sum:

Wk = Wk(0) + Wk(1) + · · · + Wk(Ik), (2.14)

where Wk(0) is the waiting time before the first service start and Wk(i), 1 ≤ i ≤ Ik ,
is the waiting time between the ith interruption and the next service start.

Below we show that the following four statements prevail.

Statement 1 For the preempting classes 2 ≤ k ≤ P , distribution of Wk(i), i ≥ 1, co-
incides with the distribution of busy-period length in M/M/n(λ̄k−1,μ) with LST given
by B̃k−1(s) in (2.1). For the non-preempting classes P +1 ≤ k ≤ K , it coincides with
the distribution of busy-period length in M/M/n(λ̄P ,μ) with LST given by B̃P (s).

Statement 2 For the preempting classes 1 ≤ k ≤ P , distribution of Wk(0) coincides
with the distribution of the kth class waiting time in M/M/n(λ1, . . . , λk;μ)np . A cor-
responding random variable is zero with probability 1 −EC

k and has LST f̃ 0
k (s), pro-

vided in formula (2.2), otherwise. For the non-preempting classes P + 1 ≤ k ≤ K ,
distribution of Wk(0) coincides with the distribution of the kth class waiting time
in M/M/n(λ1, . . . , λk, . . . , λK ;μ)np . (A corresponding random variable is zero with
probability 1 − EC

K and has LST f̃ 0
k (s), otherwise.)

Statement 3 The probability to finish service without interruption given the service
has been started after positive wait is given by pk from formula (2.6) for the preemp-
tive classes and by pnp from (2.7) for the non-preempting classes. Formally,

P
{
Ik = 0 | Wk(0) > 0

} = pk
�= 1 − ρ̄k−1

(
1 − EB

k−1

)
, 2 ≤ k ≤ P, (2.15)

P
{
Ik = 0 | Wk(0) > 0

} = pnp
�= 1 − ρ̄P

(
1 − EB

P

)
, P + 1 ≤ k ≤ K. (2.16)

Note that due to the memoryless properties of our system, the left part of (2.15) and
(2.16) is also equal to P{Ik = i + 1 | Ik ≥ i}, for i ≥ 0.
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Statement 4 The steady-state probability to finish service without interruption given
the service has been started immediately upon arrival is given by p0

k from formula
(2.4) for the preempting classes, and by p0

np from (2.5) for the non-preempting
classes. Formally,

P
{
Ik = 0 | Wk(0) = 0

} = p0
k , 2 ≤ k ≤ P, (2.17)

P
{
Ik = 0 | Wk(0) = 0

} = p0
np, P + 1 ≤ k ≤ K. (2.18)

We shall prove Statements 1–4 for the non-preempting classes. The proofs for
preempting classes are similar.

Proof of Statement 1 Assume that a non-preempting customer is interrupted. Ac-
cording to the protocol in Sect. 1.3, this customer is then placed at the head of the
queue of non-preemptive customers. At the moment of ejection, there are no pre-
empting customers in the queue. (Otherwise, the customer in consideration would be
ejected earlier.) Therefore, the customer restarts service once the number of service
terminations after his/her ejection exceeds the number of new arrivals of preempting
customers.

Formally, if we define by AP
i interarrival times of preempting customers that are

exp(λ̄P ) distributed, and by Si times between service terminations (exp(nμ) distrib-
uted), then the waiting time till service restart is equal to S1 + · · · + SU , where

U = min
{
i ≥ 1 : S1 + · · · + Si < A1 + · · ·AP

i

}
.

To complete the proof, observe that S1 + · · · + SU is distributed exactly as the busy-
period length in M/M/n(λ̄P ,μ). �

Proof of Statement 2 Assume that a customer of priority k, P + 1 ≤ k ≤ K , encoun-
ters wait (all servers are busy) upon arrival. Denote by Qk the number of customers
who are waiting in the queue upon arrival of our customer and who will enter service
before him.

Using an argument that is similar to the one in the proof of Statement 1, it is easy
to show that a busy-period of M/M/n(λ̄k−1,μ) should elapse before our customer
moves one step forward in the queue. The waiting time distribution till first service
start (conditional on positive wait) is then given by

Wk(0)
d=

Qk+1∑

i=1

Bi, (2.19)

where Bi are iid random variables with LST B̃k−1(s) given by (2.1).
Customers that constitute Qk can be divided into two types:

Type 1: Customers of classes 1, . . . , k that arrived before our customer and were
waiting in the queue upon his/her arrival;

Type 2: Customers of classes k + 1, . . . ,K that were ejected and were waiting for
service restart at the time of arrival of our customer.
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Note that in the M/M/n(λ1, . . . , λK ;μ)np system, the queue consists of Type 1
customers only and the waiting time can be also represented via (2.19). In our
M/M/n(λ1, . . . , λK ;μ;P)mx queue, every Type 2 customer was ejected by a pre-
empting customer with the same exponential service distribution. Therefore, distrib-
ution of Qk is the same for the two systems and Statement 2 prevails. �

Proof of Statement 3 Let qi , 0 ≤ i ≤ n − 1, denote the probability that a non-
preempting customer does not finish service without interruption given i customers
in the system upon arrival. Conditioning on the next event (our customer finished ser-
vice, some other customer finished service, arrival of a preemptive customer), we get
the following system of equation for qi :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0 = λ̄P

λ̄P +μ
q1,

q1 = λ̄P

λ̄P +2μ
q2 + μ

λ̄P +2μ
q0,

. . .

qk−1 = λ̄P

λ̄P +kμ
qk + (k−1)μ

λ̄P +kμ
qk−2,

. . .

qn−1 = λ̄P

λ̄P +nμ
+ (n−1)μ

λ̄P +nμ
qn−2.

(2.20)

Now define by EB
P (k), 0 ≤ k ≤ n, the loss probability in M/M/k/k(λ̄P ,μ). (Let

EB
P (0) = 0 and note that EB

P (n)
�= EB

P by (2.3).) The solution of (2.20) is then given
by

qk = EB
P

EB
P (k)

, 0 ≤ k ≤ n − 1. (2.21)

To prove (2.21), define R̄P = λ̄P /μ and use the following relations between the
M/M/n/n probabilities that can be easily derived from (2.3):

EB
P (k)

EB
P (k − 1)

= R̄P (1 − EB
P (k))

k
, k ≥ 1, (2.22)

EB
P (k)

EB
P (k − 2)

= R̄P · (R̄P − (R̄P + k)EB
P (k))

(k − 1)k
, k ≥ 2. (2.23)

Now we can substitute (2.21) into (2.20) and check that the equations in (2.20) pre-

vail. For example, the first equation is equivalent to q0 = R̄P

R̄P +1
or EB

P (1) = R̄P

1+R̄P
,

which immediately follows from the M/M/n/n loss probability definition.
Then equations in (2.20) are equivalent to

qk−1 = R̄P

R̄P + k
qk + k − 1

R̄P + k
qk−2, 1 ≤ k ≤ n. (2.24)
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(Define qn
�= 1.) Substituting (2.21) into (2.24), we get

EB
P (k)

EB
P (k − 1)

= R̄P

R̄P + k
+ k − 1

R̄P + k
· EB

P (k)

EB
P (k − 2)

that can be verified via (2.22) and (2.23).
Finally, a non-preempting customer who starts service after queueing has the same

probability of finishing service without interruption, as the customer who observed
n − 1 customers in the system upon arrival. This probability is equal to

1 − qn−1 = 1 − ρ̄P

(
1 − EB

P

)
.

The last equality follows from (2.21), (2.22) and ρ̄P = R̄P /n. �

Proof of Statement 4 Assume that a non-preempting customer started service imme-
diately. The probability that this customer will be interrupted at least once is then
given by:

q0
np =

n−1∑

i=0

EB
P (n)

EB
P (i)

· R̄i
K/i!

∑n−1
j=0 R̄

j
K/j !

(2.25)

where the first term in the product is taken from (2.21) and the second term is the
probability to encounter i customers in service upon arrival given the service started
immediately. Then, using definition (2.3),

q0
np = R̄n

P /n!
(
∑n

j=0 R̄
j
P /j !)(∑n−1

j=0 R̄
j
K/j !)

·
n−1∑

i=0

(
R̄K

R̄P

)i

·
i∑

j=0

R̄
j
P

j ! .

Interchanging sums, we get

q0
np = R̄n

P /n!
(
∑n

j=0 R̄
j
P /j !)(∑n−1

j=0 R̄
j
K/j !)

·
n−1∑

j=0

R̄
j
P

j ! ·
n−1∑

i=j

(
R̄K

R̄P

)i

= R̄n
P /n!

(
∑n

j=0 R̄
j
P /j !)(∑n−1

j=0 R̄
j
K/j !)

· R̄P

R̄K − R̄P

·
n−1∑

j=0

R̄
j
P

j ! ·
((

R̄K

R̄P

)n

−
(

R̄K

R̄P

)j)

= λ̄P

(λ̄K − λ̄P ) · (1 − EB
K)

· R̄n
P /n!

(
∑n

j=0
R̄

j
P

j ! )(
∑n

j=0
R̄

j
K

j ! )

·
((

R̄K

R̄P

)n

−
(

R̄K

R̄P

)j)

,

(2.26)

where the last equation follows from definition (2.3). We can then calculate (EB
K −

EB
P ) using (2.3) and check that it is equal to the product of the last two terms of (2.26).

The last observation shows that

q0
np = λ̄P (EB

K − EB
P )

(λ̄K − λ̄P )(1 − EB
K)

and completes the proof of Statement 4. �
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Define by Geom(p), p > 0, the geometric distribution with parameter p, sup-
ported on the set {0,1,2, . . .}. Combining Statements 3 and 4 with independence be-
tween probabilities to finish service after the first service start and after interruptions
1, . . . , Ik we get that:

• Distribution of {Ik | Wk(0) > 0} is Geom(pk) for 2 ≤ k ≤ P , and Geom(pnp) for
P + 1 ≤ k ≤ K .

• Distribution of {Ik | Wk(0) = 0}, 2 ≤ k ≤ P , is zero with probability p0
k and

1 + Geom(pk) with probability 1 − p0
k . For P + 1 ≤ k ≤ K , distribution of

{Ik | Wk(0) = 0} is zero with probability p0
np and 1 + Geom(pnp) with probability

1 − p0
np .

Now, using Statements 1 and 2, we observe that the following random variable will
have the same distribution as the waiting time of a non-preempting class k:

Wk = JC
K ·

(

W
q0
k +

Gnp∑

i=1

Bi
P

)

+ (
1 − JC

K

) · (1 − J 0
np

)
Gnp+1∑

i=1

Bi
P (2.27)

where JC
K and J 0

np are Bernoulli random variables with parameters EC
K and p0

np ,

respectively, Gnp ∼ Geom(pnp), W
q0
k has LST f̃ 0

k (s), Bi
P , i ≥ 1 has LST B̃P (s), and

all random variables above are independent.
It is easy to show that if {Yi}∞i=1 are iid random variables with LST f̃Y (s), N has

Geom(P ) distribution and X = ∑N
i=1 Yi , then LST of X is given by:

f̃X(s) = p

1 − (1 − p)f̃Y (s)
. (2.28)

Now (2.9) follows from representation (2.27), (2.28) and well-known LST properties.

Proof of Corollary 1 Formula (2.11) can be derived via the straightforward differen-
tiation of (2.9) and a well-known relation between the delay probability in M/M/n
and the loss probability in M/M/n/n:

EB
k = EC

k (1 − ρ̄k)

1 − ρ̄kE
C
k

, 1 ≤ k ≤ K,

that enables us to present expressions in (2.4)–(2.7) via M/M/n delay probabilities.
Formulae (2.12) and (2.13) are derived via computation of the second derivatives

of (2.8) and (2.9), respectively, in the origin. (We omit details of these straightforward
but tedious calculations; (2.12) and (2.13) were verified via symbolic differentiation
software.) �

2.3 Analysis of sojourn times

Distributions of sojourn times cannot be derived automatically from distributions of
waiting times. The reason is that service and waiting times are dependent: longer ser-
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vice times would imply more service interruptions and longer waiting times. There-
fore, we need to use a different technique to derive LST and moments of sojourn
times.

Let

π
j
k = (λ̄k/μ)j

j ! ·
[

n−1∑

i=0

(λ̄k/μ)i

i! + (λ̄k/μ)n

n!(1 − ρ̄k)

]−1

, 1 ≤ k ≤ P, 0 ≤ j ≤ n,

denote the steady-state probabilities of number-in-system in M/M/n (λ̄k , μ). In ad-
dition, denote by Ṽk(s, j), 0 ≤ j ≤ n, the LST of the sojourn time distribution for
preempting class k, 1 ≤ k ≤ P , given j customers from classes 1 − k in the system
upon arrival. Let Ṽa(s, j), 0 ≤ j ≤ n − 1, denote the LST of the sojourn time distrib-
ution for non-preempting class k, P + 1 ≤ k ≤ K , given j customers from all classes
1 − K in the system upon arrival. (This distribution does not depend on a customer’s
class, see Sect. 2.3.1.) Finally, Ṽa(s, n) is the LST of the sojourn time distribution for
non-preempting class P + 1, given all servers busy and no queue in the system upon
arrival.

Theorem 2 The LST of the steady-state sojourn time distribution is given by:

Ṽk(s) =
n−1∑

j=0

π
j
k Ṽk(s, j) + πn

k Ṽk(s, n)

1 − ρ̄kB̃k−1(s)
, 1 ≤ k ≤ P, (2.29)

Ṽk(s) =
n−1∑

j=0

π
j
KṼa(s, j) + EC

K · f̃ 0
k (s) · Ṽa(s, n − 1), P + 1 ≤ k ≤ K, (2.30)

where functions B̃k−1(s) and f̃ 0
k (s) were defined in formulae (2.1) and (2.2), respec-

tively, and Laplace–Stieltjes transforms Ṽk(s, j) in (2.29) can be calculated via the
system of n + 1 equations, provided by (2.31)–(2.32). Specifically, for 0 ≤ j ≤ n − 1

−jμṼk(s, j − 1) + [
s + λ̄k−1 + (j + 1)μ

]
Ṽk(s, j) − λ̄k−1Ṽk(s, j + 1) = μ,

(2.31)

Ṽk(s, n) = B̃k−1(s)Ṽk(s, n − 1). (2.32)

(Assume Ṽk(s,−1) = 0.)
Finally, the Laplace–Stieltjes transforms Ṽa(s, j) in (2.30) are computed by the

system of equations (2.33)–(2.34). For 0 ≤ j ≤ n − 1

−jμṼa(s, j − 1) + [
s + λ̄P + (j + 1)μ

]
Ṽa(s, j) − λ̄P Ṽa(s, j + 1) = μ, (2.33)

and

Ṽa(s, n) = B̃P (s)Ṽa(s, n − 1). (2.34)

(Assume Ṽa(s,−1) = 0.)

Remark 5 Note that formula (2.29), (2.31) and (2.32) are known from Segal [21].
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2.3.1 Proof of Theorem 2

The proof of Theorem 2 is based on the method of Segal [21]. Since the proof for
preempting classes is almost identical to [21] (only formulae modification for μ �= 1
is needed), we shall consider the non-preempting classes P + 1 ≤ k ≤ K . First, we
shall prove formulae (2.33) and (2.34) for LSTs of conditional distributions, and then
proceed to (2.30).

Proof of (2.33)–(2.34) Assume that a non-preempting customer from class k, P +
1 ≤ k ≤ K , arrived, observed 0 ≤ j < n customers in the system and started service
immediately. Define by fa(t, j), 0 ≤ j < n, density of sojourn time for this customer.
This density does not depend on class k since, according to our service protocol, the
class of a non-preempting customer is not taken into account after the first service
start. Assume that a non-preempting customer from class P + 1 arrived, observed n

customers in the system and was placed at the head of the queue. Define by fa(t, n)

the corresponding density of sojourn time.
Conditioning on the next event (service of our customer, service of other customer,

and arrival of preemptive customer) we get:

fa(t, j) = μe−μte−(jμ+λ̄P )t + j

∫ t

0
μe−μxe(−jμ+λ̄P )xfa(t − x, j − 1) dx

+
∫ t

0
λ̄P e−λ̄P xe−(j+1)μxfa(t − x, j + 1) dx, 0 ≤ j ≤ n − 1. (2.35)

(Note that the last term of (2.35) for j = n − 1 corresponds to ejection of our cus-
tomer. In this case, according to the service protocol in Sect. 1.3, the customer is
placed at the head of the queue of ejected customers and his/her residual sojourn time
distribution is identical to the sojourn time distribution of class P + 1 customer that
observed n customers in the system upon arrival.)

Applying Laplace–Stieltjes transform to (2.35), we derive (2.33) via straightfor-
ward manipulations.

Equation (2.34) prevails, because if a customer from class P + 1 is at the first
place in the queue, it takes him/her the busy-period length of M/M/n(λ̄P ,μ) to start
service. (See the proof of Theorem 1 and the definition of the service protocol in
Sect. 1.3.) �

Proof of (2.30) As mentioned previously in Sect. 2.2.1, the number of jobs in our sys-
tem is identical to the number-in-system in M/M/n(λ̄K,μ). According to the PASTA
principle [26], an arriving customer encounters 0,1, . . . , n − 1 customers with prob-
abilities π0

K,π1
K, . . . , πn−1

K . The conditional density of the sojourn time is equal to
fa(t, j),0 ≤ j ≤ n− 1 in this case, implying the first term on the right side of (2.30).
A non-preempting customer must wait with probability EC

K and, in this case, the LST
of his waiting time till the first service start is given by f̃ 0

k (s) defined in (2.2). (See
Statement 2 from the proof of Theorem 1.) The sojourn time after the first service
start is distributed according to fa(t, n − 1), implying the second term on the right
side of (2.30). �
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2.3.2 Moments of sojourn times

Theorem 2 can be used to derive the moments of sojourn times. Differentiating
Laplace–Stieltjes transforms Ṽk(s) at the origin, we get systems of linear equations
for these moments that are presented below.

In our calculations, we need the moments of the busy-period length of M/M/n
(λ̄k ,μ). Denote the lth moment, l ≥ 1, by Bl

k . Their values can be calculated via the
differentiation of (2.1) at the origin. For example, the first three moments are given
by:

B1
k = 1

nμ(1 − ρ̄k)
, B2

k = 2

(nμ)2(1 − ρ̄k)3
, B3

k = 6(1 + ρ̄k)

(nμ)3(1 − ρ̄k)5
.

Preempting classes Let Ml
k(j), 1 ≤ k ≤ P , 0 ≤ j ≤ n, l ≥ 1, denote the lth moment

of sojourn time given j customers of classes 1, . . . , k upon arrival. Differentiating
(2.31) and (2.32), we derive the system of (n + 1) linear equations (2.36)–(2.37) for
these moments:

−jμMl
k(j − 1) + [

λ̄k−1 + (j + 1)μ
]
Ml

k(j) − λ̄k−1M
l
k(j + 1) = lMl−1

k (j), (2.36)

where 0 ≤ j ≤ n − 1 and by convention Ml
k(−1) = 0, and

Ml
k(n) = Ml

k(n − 1) +
l−1∑

i=0

(
l

i

)

Mi
k(n − 1)Bl−i

k−1, (2.37)

where M0
k (j) = 1. Now the unconditional formulae for moments of sojourn times

can be obtained via the differentiation of (2.29).

First and second moments for preempting classes

E[Vk] =
n−1∑

j=0

π
j
k M1

k (j) + πn
k M1

k (n)

1 − ρ̄k

+ πn
k ρ̄kB

1
k−1

(1 − ρ̄k)2
,

E
[
V 2

k

] =
n−1∑

j=0

π
j
k M2

k (j) + πn
k M2

k (n)

1 − ρ̄k

+ πn
k ρ̄k(B

2
k−1 + 2B1

k−1M
1
k (n))

(1 − ρ̄k)2

+ 2πn
k (ρ̄kB

1
k−1)

2

(1 − ρ̄k)3
.

(Formula (2.10) provides a simpler alternative for the computation of means.)

Non-preempting classes The lth moments of sojourn times for non-preempting
classes P + 1 ≤ k ≤ K can be computed via the differentiation of (2.30):

E
[
V l

k

] =
n−1∑

j=0

π
j
KMl

a(j) + EC
K

l∑

i=0

(
l

i

)

Mi
npMl−i

a (n − 1), (2.38)
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where Ml
a(j), 0 ≤ j ≤ n − 1, l ≥ 1, are sojourn time moments of non-preempting

classes, conditioned on j customers in the system upon arrival. Conditional moments
Ml

a(j) are computed via (2.39)–(2.40):

−jμMl
a(j − 1) + [

λ̄P + (j + 1)μ
]
Ml

a(j) − λ̄P Ml
a(j + 1) = lMl

a(j),

0 ≤ j ≤ n − 1, (2.39)

Ml
a(n) = Ml

a(n − 1) +
l−1∑

i=0

(
l

i

)

Ml
a(n − 1)Bl−i

P . (2.40)

Finally,

Mi
np = E

[
(Wk)

i | Wk > 0
]
,

are conditional moments of the waiting time in a pure non-preemptive system that
can be derived via the differentiation of (2.2). Specifically, the first three moments
are given by:

M1
np = 1

nμ(1 − ρ̄k−1)(1 − ρ̄k)
,

M2
np = 2(1 − ρ̄k−1ρ̄k)

(nμ)2(1 − ρ̄k)2(1 − ρ̄k−1)3
,

M3
np = 6

(nμ)3
· (1 + ρ̄k−1)(1 + ρ̄k−1ρ̄

2
k ) − 4ρ̄k−1ρ̄k

(1 − ρ̄k)3(1 − ρ̄k−1)5
.

Special cases. First and second moments for non-preempting classes

E[Vk] =
n−1∑

j=0

π
j
KM1

a (j) + EC
K ·

[
1

nμ(1 − ρ̄k−1)(1 − ρ̄k)
+ M1

a (n − 1)

]

,

E
[
V 2

k

] =
n−1∑

j=0

π
j
KM2

a (j) + EC
K ·

[
2(1 − ρ̄k−1ρ̄k)

(nμ)2(1 − ρ̄k)2(1 − ρ̄k−1)3

+ 2M1
a (n − 1)

nμ(1 − ρ̄k−1)(1 − ρ̄k)
+ M2

a (n − 1)

]

.

(Formula (2.11) above provides a simpler alternative for means.)

2.3.3 Laplace–Stieltjes transforms of sojourn-time distribution: outline
of alternative calculation

In Sect. 2.3 LSTs of sojourn times were derived implicitly. (However, explicit expres-
sions could be developed via inversion of coefficient matrices from (2.31)–(2.34).)
An approach that is similar to the one used in Tatashev [24] enables an alternative
derivation of explicit LSTs. Below we outline this derivation and finish with a brief
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discussion. We consider non-preempting priorities; the calculations for preempting
priorities are similar.

If Inp denotes the number of service interruptions for a non-preempting customer,
then the service time has Inp + 1 phases. Introduce the following four distributions
and the corresponding LSTs:

• LST g̃l
np(s) corresponds to the last phase of service time, given this phase started

after positive wait.
• LST g̃l0

np(s) corresponds to the last phase of service time, given this phase started
immediately upon arrival.

• LST g̃e
np(s) corresponds to a phase of service time that was terminated by ejection,

given this phase started after positive wait.
• LST g̃e0

np(s) corresponds to a phase of service time that was terminated by ejection,
given this phase started immediately upon arrival.

Then the following random variable will have the same distribution as the sojourn
time of a non-preempting customer from class k, P + 1 ≤ k ≤ K :

Vk = JC
K ·

(

V
q0
k +

Gnp∑

i=1

Bi
P + Sl

np +
Gnp∑

i=1

Se,i
np

)

+ (
1 − JC

K

) · J 0
np · Sl0

np

+ (
1 − JC

K

) · (1 − J 0
np

)
(Gnp+1∑

i=1

Bi
P + Sl

np +
Gnp∑

i=1

Se,i
np + Se0

np

)

. (2.41)

Here Sl
np has LST g̃l

np(s), Sl0
np has LST g̃l0

np(s), Se0
np has LST g̃e0

np(s), and random

variables S
e,i
np , i ≥ 1 have LST g̃e

np(s). Definitions of other random variables in (2.41)
are explained in the comments to representation (2.27). All random variables in con-
sideration are independent.

Then from LST properties, we get the following Laplace–Stieltjes transform of
sojourn time for non-preempting class k:

Ṽk(s) = (
1 − EC

K

)
p0

npg̃e0
np(s)

+ EC
Kpnpf̃ 0

k (s)g̃l
np(s) + (1 − EC

K)pnp(1 − p0
np)B̃P (s)g̃e0

np(s)g̃l
np(s)

1 − (1 − pnp)B̃P (s)g̃l
np(s)

.

We now describe how to compute four LSTs of service-time phases.
We start with a general remark. Let F denote a general phase-time distribution

with generator matrix R and vector of starting probabilities q̄ . It is known [17] that
LST of F is given by q̄ ′[sI − R]−1r̄ , where r̄ = −R1̄ is the vector of transition rates
to the absorbing state. Let Y denote exponential random variable with rate μ, which
is independent of F . We are interested in the LSTs of two conditional distributions,
{Y | Y ≤ F } and {Y | Y > F }. Straightforward calculations provide us with:

f̃{Y |Y≤F }(s) = μ

μ + s
· 1 − q̄ ′[(s + μ)I − R]−1r̄

1 − q̄ ′[μI − R]−1r̄
, (2.42)
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f̃{Y |Y>F }(s) = μ

μ + s
· q̄ ′[(s + μ)I − R]−1r̄

q̄ ′[μI − R]−1r̄
. (2.43)

Define F1 to be the length of the idle period of the M/M/n(λ̄P ,μ) queue (an idle
period is an interval between two busy-periods). Let F2 denote the time till the start
of the next busy-period of M/M/n(λ̄P ,μ), if the starting number-in-system probabil-
ities are q2i = (λ̄i

K/i!)/(∑n−1
j=0 λ̄

j
K/j !), 0 ≤ i ≤ n− 1. Note that F1 and F2 are phase-

type distributions with the same generator matrix and two different starting distrib-
utions: (0, . . . ,0,1)′ for F1 and q̄2 = (q20, q21, . . . , q2,n−1) for F2. Observe that the
service of a non-preempting customer is interrupted whenever there are n preempt-
ing customers in the system, which corresponds to the start of the M/M/n(λ̄P ,μ)

busy-period. Hence,

g̃l
np(s) = f̃{Y |Y≤F1}(s), g̃e

np(s) = f̃{Y |Y>F1}(s),

g̃l0
np(s) = f̃{Y |Y≤F2}(s), g̃e0

np(s) = f̃{Y |Y>F2}(s)

and can be calculated via (2.42) and (2.43).

Discussion Comparing the methods of this section with Theorem 2 and Sect. 2.3.2,
we conclude that Theorem 2 provides more convenient tools for moments calculation.
However, LST calculation in this section enables additional insights into sojourn time
structure and could possibly be generalized for other service systems.

3 Numerical examples

3.1 Mean waiting times

Mean waiting and mean sojourn times are wide-spread performance measures in
many real-world service systems. We compare mean waiting times for systems with
pure non-preemptive, pure preemptive, and mixed priorities, respectively, via the fol-
lowing instructive example.

Example 1 K = 5, P = 2, n = 2, μ = 1, λ3 = 1.2 and λk = 0.1, k = 1,2,4,5 (see
Table 1).

Example 1 illustrates a situation in which mixed priorities are preferable to the
alternatives from an SLA point of view. Assume that the SLA for the mean waiting

Table 1 Example 1. Mean
waiting times Priorities 1 2 3 4 5

Non-Preemptive 0.37 0.42 1.32 4.74 7.11

Preemptive 0.00 0.02 1.12 5.83 9.16

Mixed 0.00 0.02 1.37 4.80 7.17
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Table 2 Example 1.
Service-level agreement for
waiting times

Class 1 90% of jobs wait less than 30 minutes

Class 2 90% of jobs wait less than 1 hour

Class 3 80% of jobs wait less than 5 hours

Class 4 80% of jobs wait less than 8 hours

Class 5 80% of jobs wait less than 12 hours

times is given by the vector (0.2,0.4,2,5,8). (The mean waiting time does not ex-
ceed 0.2 for class 1, 0.4 for class 2, etc.) The non-preemptive discipline then provides
insufficient SL for classes 1 and 2 and the preemptive discipline implies unsatis-
factory performance for classes 4 and 5. In contrast, the mixed discipline enables
satisfaction of the SLA for all classes. We also assume that the arrival rate of “middle
priority" class 3 is significantly larger than for the other classes. (According to our
practical experience, this is a typical situation in many applications.) In such cases, a
moderate service-level decrease for a “middle” class enables significant improvement
for the other classes.

3.2 Distribution of waiting times

As mentioned in Sect. 1.1, the tail probability P{Wk > T } (or P{Vk > T }) is prob-
ably the most popular performance measure in service applications. In this section,
we examine the behavior of the waiting time tail-probabilities for Example 1 from
Sect. 3.1.

Assume that the SLA is formulated via Table 2 (let our time-units be hours).
Figure 2 compares between survival functions (tail probabilities) for the three pri-

ority disciplines, considered in Sect. 3.1. (The arrows show SLAs for the correspond-
ing class.) The algorithm for the distribution calculation via the LST inversion has
been designed using the approach in Jagerman and Melamed [15]. As in Sect. 3.1,
we observe that only the mixed priorities discipline satisfies the SLA in Table 2.

3.3 Moments-based approximations of sojourn time distribution

In general, SLAs with waiting times are prevalent in systems that involve direct inter-
action with customers (for example, call centers), while SLAs with sojourn times are
typical in systems without such interaction. As exhibited in Sect. 2.3, it is more diffi-
cult to compute the LSTs of sojourn times than the LSTs of waiting times. However,
it is relatively easy to compute sojourn-time moments. In Fig. 3, we approximate the
sojourn-time survival functions for classes 1 and 4 from Example 1, via the first three
moments using the algorithm presented in Osogami and Harchol-Balter [18, 19]. This
algorithm fits a general distribution to an Erlang–Coxian distribution by three mo-
ments. (We checked this algorithm for the sojourn times of the pure non-preemptive
priorities and it implies a reasonable-to-excellent fit for various examples.)

If performance conditions for classes 1 and 4 are given in Table 3, then only the
mixed priorities enable SLA satisfaction (see Fig. 3).

Remark 6 As mentioned in Sect. 1.1, the mixed priority discipline can be also rel-
evant if pure preemptive priorities are an appropriate option from an SLA point of
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Fig. 2 Example 1. Waiting time distributions

Table 3 Example 1.
Service-level agreement for
sojourn times

Class 1 90% of jobs are served within 2.5 hours

Class 4 80% of jobs are served within 9 hours

view, but one would still like to decrease the number of service interruptions. Ex-
amples from Sects. 3.2 and 3.3 justify this approach. Assume, for example, that the
first two classes demand a very high service level and that SLAs for classes 3–5 are
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Fig. 3 Example 1. Sojourn time distributions

satisfied for all priority disciplines in consideration. The priority structure defined in
Example 1 is then a good choice. In this case, one could also consider service proto-
cols that differentiate between the non-preempting classes after the first service start,
providing performance that is closer to the pure preemptive case than our protocol.

3.4 Practical example: scheduling of the IT support team

In Sect. 1.1, we mentioned a scheduling project for IT support teams. Below is a nu-
merical example based on real data from this application. (Specifically, arrival rates,
service rate, and priority structure are derived from this project. However, the prob-
lem contained additional features not covered in this example and that required the
use of simulation in the scheduling algorithm. See Wasserkrug et al. [25] for details.)

An IT support system with five service classes (known as “problem tickets”) is
considered. The two classes with the highest priorities have much stricter SLAs than
the three lower-priority classes.

The same service-time distribution for all classes of customers has been a working
assumption in the field. Our statistical analysis for one of the classes has shown that
the mean service time can be approximated by 100 minutes. Although the service
time is not exponential, its coefficient of variation (standard deviation divided by
mean) is smaller than 1 and according to well-known rule of thumb based on the
Khintchine–Pollaczek formula and Allen–Cunneen approximation (see Hall [12]),
we assume that the exponential service model will provide upper bounds for mean
waiting and sojourn times.

Assume that the Poisson arrival rate depends on the day of the week and is con-
stant over four-hour intervals. Arrival rate significantly differs among classes, class 3
constitutes more than 60% of overall arrivals. The arrival rate and, consequently, the
scale of the problem is relatively small. However, scheduling methods for many IT
support teams must be provided.

Assume that the SLA is formulated in Table 4.
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Table 4 Practical example.
Service-level agreement for
waiting times

Class 1 90% of jobs wait less than 30 minutes

Class 2 90% of jobs wait less than 1 hour

Class 3 80% of jobs wait less than 5 hours

Class 4 80% of jobs wait less than 7 hours

Class 5 80% of jobs wait less than 9 hours

We want to provide a schedule with the minimal number of working hours per
week that enables SLA satisfaction on a weekly level. As in the previous examples,
we compare three priority disciplines: pure non-preemptive, pure preemptive, and
mixed priorities with two preempting classes (P = 2). The last policy is the one
applied in the field. The weekly tail probability of wait for each class and policy is
calculated as the weighted average of the steady-state probabilities per interval.

We do not calculate the exact optimal staffing level, applying instead the following
heuristics. Start with the minimal staffing that guarantees the stability of the system
at each four-hour interval. We then consider a class that does not satisfy the corre-
sponding SLA, add a server to the interval where the addition of a server implies the
largest service-level improvement, and recalculate the tail probabilities for all classes.
We stop when the SLA is satisfied for all classes.

Applying this method, we get 312 working hours per week for the mixed disci-
pline, 328 working hours for the pure preemptive discipline, and 456 working hours
for the pure non-preemptive discipline. Hence, the mixed discipline is significantly
more efficient than the non-preemptive discipline (32% improvement). It is also more
efficient than the preemptive discipline (5% improvement), while resulting in less ser-
vice interruptions. We get similar results if SLA on mean waiting times is considered.

4 Possible future research

Other protocols with mixed priorities It would be interesting to explore alternatives
to our service protocol, formulated in Sect. 1.3. For example, one could consider
several versions of service protocols that differentiate between non-preempting cus-
tomers after their first start and not only during initial waiting in queue, as we do.

Different service-time means and non-exponential service times If one needs to gen-
eralize the assumption of exponential service times with the same service mean for
all classes, more complicated numerical methods and approximations are needed. For
example, van der Heijden et al. [14] and Jagerman and Melamed [15] develop ap-
proximations for exponential service time with different means and non-exponential
service times, respectively.

Incorporating abandonment In many systems (e.g., call centers or communication
networks) customers/jobs can abandon if they stay in a queue too long. Rosensh-
midt [20] provides exact and asymptotic analysis of such systems with pure non-
preemptive or preemptive priorities. The generalization of her results for mixed pri-
orities could be important for these applications.
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Time-varying arrival rate Such queues are prevalent in practice and their analysis
poses a challenge. A common approach is to approximate the time-varying arrival-
rate by a piecewise-constant function, and then apply steady-state results during peri-
ods when the arrival rate is assumed constant, as we have done in Sect. 3.4. However,
if the arrival rate is fast-varying with respect to the durations of services, this approach
can be flawed. Feldman et al. [8] present a promising time-varying methodology for
single-class queues.

Asymptotic analysis In service systems with a large number of servers (some call
centers have thousands of agents working simultaneously), approximate methods for
performance estimation and staffing can be appropriate. For example, Rosenshmidt
[20] explores priority systems with abandonment in the so-called QED operational
regime. A specific important research direction would be to check asymptotic equiv-
alence of systems with mixed priorities, under certain conditions, to pure preemptive
or non-preemptive ones.
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