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Abstract In this paper, an M/G/1 queue with exponentially working vacations is an-
alyzed. This queueing system is modeled as a two-dimensional embedded Markov
chain which has an M/G/1-type transition probability matrix. Using the matrix ana-
lytic method, we obtain the distribution for the stationary queue length at departure
epochs. Then, based on the classical vacation decomposition in the M/G/1 queue,
we derive a conditional stochastic decomposition result. The joint distribution for the
stationary queue length and service status at the arbitrary epoch is also obtained by
analyzing the semi-Markov process. Furthermore, we provide the stationary waiting
time and busy period analysis. Finally, several special cases and numerical examples
are presented.
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1 Introduction

We consider a queueing system where the server may not be fully available for a
period of time, called a vacation. During the vacation period, the server may also per-
form other supplementary tasks. Over the last two decades, the queueing systems with
vacations have been well studied because of their applications in modeling the com-
puter networks, communication, and manufacturing/service systems (see Fuhrmann
and Cooper [6]). Readers are referred to the surveys of Doshi [4, 5], and the mono-
graphs of Takagi [17] and Tian and Zhang [16]. In these previous studies, usually
it is assumed that the server stops service completely during the vacation. In 2002,
Servi and Finn [14] analyzed an M/M/1 queue with working vacations, denoted by
M/M/1/WV, where the server works at a lower service rate rather than completely
stopping service during the vacation period. The motivation of studying M/M/1/WV
queue is to model approximately a multi-queue system where each queue can be
served at one of two service rates and the fast service rate mode cyclically moves
from queue to queue with exhaustive service. The working vacation model can be ap-
plied to analyze a wavelength division multiplexing (WDM) optical access network.
Subsequently, Kim, Choi and Chae [8], Wu and Takagi [18] generalized the model in
[14] to an M/G/1 queue with general working vacations. Baba [1] provided a study on
a GI/M/1 queue with working vacations by using the matrix analytic method. Banik
et al. [2] analyzed the GI/M/1/N queue with working vacations. Liu et al. [9] es-
tablished the stochastic decomposition in the M/M/1 queue with working vacations.
Li and Tian [10, 11] considered two types of discrete-time GI/Geo/1 queues with
working vacations. In fact, the matrix geometric solution method developed by Neuts
[12] is very powerful in analyzing the GI/M/1-type (including M/M/1-type) working
vacation queues. However, there was no attempt in analyzing the M/G/1-type work-
ing vacation queues via the matrix analytic method. The study on the M/G/1 with
working vacations in Wu and Takagi [18] is based on the Laplace–Stieltjes transform
(LST) for an embedded Markov chain. Kim, Choi and Chae [8] analyzed the M/G/1
with exponentially working vacations using the results in systems with disasters.

In this paper, we treat the M/G/1 queue with exponentially working vacations,
which is a special case of that in Wu and Takagi [18] and is the same as that in Kim,
Choi and Chae [8]. But we utilize the matrix analytic approach which is very different
from the methods used in previous studies and derive more results and properties
about the system performance.

The rest of this paper is organized as follows. In Sect. 2, the M/G/1/WV queue is
formulated as the two-dimensional embedded Markov chain at the departure epochs.
The M/G/1-type transition probability matrix for the model is developed. In Sect. 3,
using the matrix analytic approach, we derive the probability generating function
(PGF) of the stationary queue length at the departure epochs. In Sect. 4, we use the
stochastic decomposition property for the standard M/G/1 queue with general (non-
working) vacations in Shanthikumar [15] to develop another expression for the PGF.
Section 5 gives the joint distribution of the stationary queue length and service rate
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status at an arbitrary epoch based on the semi-Markov process theory. The waiting
time and busy period analysis are provided in Sects. 6 and 7. Finally, some special
cases and numerical examples are presented in Sects. 8 and 9.

2 Model formulation and embedded Markov chain

Consider an M/G/1 queue with a Poisson arrival process of rate λ. Whenever the
system becomes empty at a service completion instant, the server starts a working
vacation during which the service is at a low rate and the service times are also i.i.d.
The notations used in our model are as follows:

(1) The normal service time during the busy period Sb follows a general distribution
with the mean of 1/μb and

Gb(x) = P{Sb < x}, ˜Gb(s) =
∫ ∞

0
e−sx dGb(x),

b(k) =
∫ ∞

0
xk dGb(x), k ≥ 2.

(2) The service time during the vacation period Sv also follows a general distribution
with the mean of 1/μv and

Gv(x) = P{Sv < x}, ˜Gv(s) =
∫ ∞

0
e−sx dGv(x),

g(k)
v =

∫ ∞

0
xk dGv(x).

(3) The vacation time is exponentially distributed with rate θ . At a vacation comple-
tion instant, if there are customers in the system, the server will start a new busy
period. Otherwise, he/she takes another working vacation. Inter-arrival times, ser-
vice times, and working vacation times are mutually independent. The service
discipline is First Come First Served (FCFS).

Let L(t) be the number of customers in the system at time t and Ln the number
of the customers at the nth service completion instant. Note that a service completion
(or customer departure) may occur during a normal service period (busy period) or a
working vacation period. Define

Jn =
{

1, after the nth departure, the system stays in a busy period,
0, after the nth departure, the system stays in a working vacation period.

Due to the exponential vacations, the process {(Ln, Jn), n ≥ 1} is a two-dimensional
embedded Markov chain with the state space

Ω = {

(0,0)
}∪ {(k, j), k ≥ 1, j = 0,1

}

.

Obviously, the server only stays in the vacation period when there are no customers
in our model.
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To develop the transition matrix of (Ln, Jn), we introduce a few quantities:
(i) Define

ak =
∫ ∞

0
e−λt (λt)k

k! dGb(t), k ≥ 0.

Then, ak (k ≥ 0) is the probability that there are k arrivals during Sb (regular service
time). Multiplying ak by zk , and summing over k = 0,1, . . . ,∞, we have

A(z) =
∞
∑

k=0

akz
k =

∫ ∞

0
e−λ(1−z)x dGb(x) = ˜Gb

(

λ(1 − z)
)

, A′(1) = λ

μb

= ρ.

(ii) Define

bk =
∫ ∞

0
e−θx (λx)k

k! e−λx dGv(x), k ≥ 0,

vk =
∫ ∞

0

∫ x

0
θe−θu (λu)k

k! e−λu dudGv(x), k ≥ 0.

Evidently,

∞
∑

k=0

bk =
∫ ∞

0
e−θx dGv(x) = P{Sv < V } = ˜Gv(θ),

∞
∑

k=0

vk =
∫ ∞

0

∫ x

0
θe−θu dudGv(x) = P{V ≤ Sv} = 1 − ˜Gv(θ).

Thus, {bk, k ≥ 0} and {vk, k ≥ 0} are two non-complete probability distributions. In
fact, denote by Ax the number of arrivals during a random length x. Then, we have

P{ASv = k,Sv < V } = bk, P{AV = k,V ≤ Sv} = vk, k ≥ 0.

Hence, bk is the probability that V > Sv and k customers arrive during Sv , and vk

is the probability that V ≤ Sv and k customers arrive during V . The z-transforms of
{bk, k ≥ 0} and {vk, k ≥ 0} can be obtained as follows:

B(z) =
∞
∑

k=0

bkz
k =

∫ ∞

0
e−[θ+λ(1−z)]x dGv(x) = ˜Gv

(

θ + λ(1 − z)
);

V (z) =
∞
∑

k=0

vkz
k =

∫ ∞

0

∫ x

0
θe−[θ+λ(1−z)]u dudGv(x)

= θ

θ + λ(1 − z)

∫ ∞

0

[

1 − e−[θ+λ(1−z)]x]dGv(x)

= θ

θ + λ(1 − z)

[

1 − ˜Gv

(

θ + λ(1 − z)
)]= θ

θ + λ(1 − z)

[

1 − B(z)
]

.
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Define β = B ′(1). Obviously,

B ′(1) = λ

∫ ∞

0
xe−θx dGv(x) = β, V ′(1) = λ

θ

(

1 − ˜Gv(θ)
)− β.

(iii) Define

ck =
k
∑

j=0

vjak−j , k ≥ 0,

which represents the probability that the vacation time V is not longer than Sv and k

customers arrive during V plus Sb . Therefore,

∞
∑

k=0

ck = 1 − ˜Gv(θ), C(z) =
∞
∑

k=0

ckz
k = V (z)A(z),

and

C′(1) =
(

ρ + λ

θ

)

(

1 − ˜Gv(θ)
)− β.

Using ak, bk, vk , and ck , we can present the transition probability matrix of Xn =
(Ln, Jn) by considering three transition cases.

• Case 1: if Xn = (m,1),m ≥ 1:

Xn+1 =
{

(m − 1 + j,1) with probability aj , m ≥ 2, j ≥ 0;
(j,1) with probability aj , m = 1, j ≥ 1;
(0,0) with probability a0, m = 1;

• Case 2: if Xn = (m,0),m ≥ 2:

Xn+1 =
{

(m − 1 + j,0) with probability bj , j ≥ 0;
(m − 1 + j,1) with probability cj , j ≥ 0;

• Case 3: if Xn = (m,0),m = 1,0:

Xn+1 =
{

(j,0) with probability bj , j ≥ 1;
(j,1) with probability cj , j ≥ 1;
(0,0) with probability b0 + c0.

Using the lexicographical sequence for the states, the transition probability matrix
of (Ln, Jn) can be written as the block-Jacobi matrix

˜P =

⎡

⎢

⎢

⎢

⎢

⎣

B0 B1 B2 B3 · · ·
C0 A1 A2 A3 · · ·

A0 A1 A2 · · ·
A0 A1 · · ·

...
...

⎤

⎥

⎥

⎥

⎥

⎦

, (1)
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where

B0 = b0 + c0; B i = (bi, ci), i ≥ 1; C0 = (b0 + c0, a0)
T ;

Ai =
[

bi ci

0 ai

]

, i ≥ 0.

Evidently,

B0 +
∞
∑

i=1

Bie = 1, C0 +
∞
∑

i=1

Aie = e,

∞
∑

i=0

Aie = e,

where e = (1,1)T and T represents matrix transpose operation. Then, the stochastic
matrix ˜P is an M/G/1-type matrix (see Neuts [13]). For such a model, the minimal
nonnegative solution of the equation G = ∑∞

i=0 AiG
i is required and is obtained

first.

Lemma 1 If ρ = λ/μb < 1, the equation z = ˜Gb(λ(1 − z)) has the minimal nonneg-
ative root z = 1 and the equation z = ˜Gv(θ + λ(1 − z)) also has a unique root in the
range 0 < z < 1.

Proof First, we consider the equation z = ˜Gb(λ(1 − z)). Let ψ(z) = ˜Gb(λ(1 − z))

and evidently, 0 < ψ(0) = ˜Gb(λ) < ψ(1) = 1. And, for 0 < z < 1,

ψ ′(z) = λ

∫ ∞

0
te−λ(1−z)t d˜Gb(t) > 0; ψ ′′(z) = λ2

∫ ∞

0
t2e−λ(1−z)t d˜Gb(t) > 0.

Meanwhile, it follows from ρ = λ/μb < 1 that ψ ′(1) = ρ < 1. Thus, the equation
z = ψ(z) has the unique root z = 1. Similarly, we set ϕ(z) = ˜Gv(θ +λ(1 − z)). Then
we have

0 < ϕ(0) = ˜Gv(θ + λ) < ϕ(1) = ˜Gv(θ) < 1.

And, for 0 < z < 1,

ϕ′(z) = λ

∫ ∞

0
te−(θ+λ(1−z))t d˜Gv(t) > 0;

ϕ′′(z) = λ2
∫ ∞

0
t2e−(θ+λ(1−z))t d˜Gv(t) > 0.

Therefore, z = ϕ(z) has a unique root in the range 0 < z < 1. �

Lemma 2 If ρ = λ/μb < 1 and θ > 0, the matrix equation G =∑∞
i=0 AiG

i has the
minimal nonnegative solution

G =
[

γ 1 − γ

0 1

]

,

where γ is the unique root in the range 0 < z < 1 for z = ˜Gv(θ + λ(1 − z)).
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Proof Because all Ai are upper triangular, we can assume that G has the same struc-
ture as

G =
[

r11 r12
0 r22

]

.

Then, for i ≥ 1, we have

Gi =
[

ri
11 r12

∑i−1
j=0 r

j

11r
i−1−j

22

0 ri
22

]

.

Substituting Gi into the matrix equation, we obtain
⎧

⎪

⎨

⎪

⎩

r11 =∑∞
i=0 bir

i
11 = ˜Gv(θ + λ(1 − r11)),

r12 =∑∞
i=0 ri

22ci + r12
∑∞

i=1 bi

∑i−1
j=0 r

j

11r
i−1−j

22 ,

r22 =∑∞
i=0 air

i
22 = ˜Gb(λ(1 − r22)).

(2)

From Lemma 1, the first equation has the unique root r11 = γ in the range 0 < r11 < 1
and the third equation has r22 = 1. Taking r22 and r11 into the second equation, we
have r12 = 1 − γ . �

The steady state analysis is justified by the following condition.

Theorem 1 The Markov chain ˜P is positive recurrent if and only if
∑∞

i=0 iai = ρ =
λμ−1

b < 1.

Proof Because

A =
∞
∑

i=0

Ai =
[

˜Gv(θ) 1 − ˜Gv(θ)

0 1

]

is a reducible stochastic matrix, with the notation of (2.3.18) in Neuts [13], A(2) = 1
is the degenerative stochastic matrix, and has the degenerative stationary distribution
π(2) = 1. On the other hand, Ai (2) = ai, i ≥ 0, and β(2) =∑∞

i=0 iAi (2) = ρ. Thus,
with Theorem 2.3.3 in Neuts [13], the Markov chain ˜P is positive recurrent if and
only if

π(2)β(2) = ρ < 1. �

3 Stationary queue length at the departure epoch

Let (L,J ) be the stationary limit of the process (Ln, Jn). Let

π0 = π00; πk = (πk0,πk1), k ≥ 1,

πkj = P{L = k, J = j} = lim
n→∞ P{Ln = k, Jn = j}, (k, j) ∈ Ω,

where πkj represents the stationary probability that there are k customers in the sys-
tem with server status in j at a service completion instant.
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There are two possible transitions for the system to reach state (0,0): (i) the empty
system resulted from the last service completion in a busy period; and (ii) the empty
system left by a customer departure during the working vacation period. Certainly,
for a classic vacation system, the service is stopped during the vacation period, thus,
case (ii) does not exist. Using π˜P = π , we have the balance equations:

π00 = π00(b0 + c0) + π1C = (π00 + π10)b0 + (π00 + π10)c0 + π11a0;

πk = π00Bk +
k+1
∑

j=1

π jAk+1−j , k ≥ 1.
(3)

Theorem 2 The PGF of the stationary queue length L at the departure epochs is
given by

L(z) = θ(1 − ˜Gv(θ))(1 − ρ)

(1 − ˜Gv(θ))(θ + λ(1 − γ )) − ρθ(1 − γ )˜Gv(θ)

× A(z)(1 − z)(B(z) − z) + z(γ − z)(A(z) − B(z) − C(z))

(z − B(z))(z − A(z))
, (4)

where A(z),B(z), and C(z) are given in Sect. 2.

Proof Introduce the row-vector generating function

Φ(z) =
∞
∑

k=1

zkπk, |z| < 1.

From the second equation in (3), we obtain

Φ(z) = π00

∞
∑

k=1

zkBk +
∞
∑

k=1

zk

k+1
∑

j=1

π jAk+1−j

= π00

∞
∑

k=1

zkBk + 1

z

∞
∑

j=1

π j z
j

∞
∑

k=j−1

zk+1−jAk+1−j − π1A0

= π00

∞
∑

k=1

zkBk + 1

z
Φ(z)A∗(z) − π1A0,

where

A∗(z) =
∞
∑

k=0

zkAk =
[

B(z) C(z)

0 A(z)

]

.

Then, Φ(z) can be written as

Φ(z) = z

[

π00

∞
∑

k=1

zkBk − π1A0

]

(

zI − A∗(z)
)−1

.
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It follows from

zI − A∗(z) =
[

z − B(z) −C(z)

0 z − A(z)

]

,

that
(

zI − A∗(z)
)−1 =

[ 1
z−B(z)

C(z)
[z−B(z)][z−A(z)]

0 1
z−A(z)

]

.

Noting u = b0(π00 + π10), and

π00

∞
∑

k=1

zkBk − π1A0

= π00
(

B(z) − b0,C(z) − c0
)− (π10b0,π10c0 + π11a0)

= (

π00B(z) − b0(π00 + π10),π00C(z) − (π00 + π10)c0 − π11a0
)

= (

π00B(z) − u,u − π00
(

1 − C(z)
))

,

we have

Φ(z) = z
(

π00B(z) − u, u − π00
(

1 − C(z)
))(

zI − A∗(z)
)−1

= z

(

π00B(z) − u

z − B(z)
,

C(z)(π00B(z) − u)

(z − B(z))(z − A(z))
+ u − π00(1 − C(z))

z − A(z)

)

. (5)

Note that the PGF of the stationary queue length at the departure epochs L(z) =
π00 + Φ(z)e. Firstly, we compute

Φ(z)e

= z
(π00B(z) − u)(z − A(z)) + C(z)(π00B(z) − u) + (u − π00(1 − C(z)))(z − B(z))

(z − B(z))(z − A(z))

= z
π00B(z)(1 + z − A(z)) − π00z(1 − C(z)) + u(A(z) − B(z) − C(z))

(z − B(z))(z − A(z))
.

Then, L(z) has the expression

π00(z − B(z))(z − A(z)) + z[π00B(z)(1 + z − A(z)) − π00z(1 − C(z)) + u(A(z) − B(z) − C(z))]
(z − B(z))(z − A(z))

.

(6)

From Lemma 1, γ is the root of the equation z = ˜Gv(θ + λ(1 − z)) = B(z), and the
numerator of (6) equals 0 for z = γ . Thus, substituting z = γ into the numerator of
(6), and using B(γ ) = γ , we get

π00γ
[

1 + γ − A(γ ) − (

1 − C(γ )
)]+ u

(

A(γ ) − γ − C(γ )
)= 0. (7)

Substituting

A(γ ) − γ − C(γ ) = A(γ ) − γ − A(γ )V (γ ) = A(γ )
(

1 − V (γ )
)− γ,

γ
[

1 + γ − A(γ ) − (

1 − C(γ )
)]= γ

(

γ − A(γ )
(

1 − V (γ )
))

,
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into (7), we obtain u = π00γ. It follows from (6) that

L(z) = π00 + Φ(z)e

= π00
(z − B(z))(z − A(z)) + z[B(z)(1 + z − A(z)) − z(1 − C(z)) + γ (A(z) − B(z) − C(z))]

z − B(z))(z − A(z))

= π00
A(z)(1 − z)(B(z) − z) + z(γ − z)(A(z) − B(z) − C(z))

(z − B(z))(z − A(z))
. (8)

Using the normalizing condition L(1) = 1, we can obtain

π00 = θ(1 − ˜Gv(θ))(1 − ρ)

(1 − ˜Gv(θ))(θ + λ(1 − γ )) − ρθ(1 − γ )˜Gv(θ)
. (9)

This completes the proof. �

Let Pv(Pb) be the probability that an arbitrary customer is served completely at
the low service rate during a working vacation, denoted by S = 0 (at normal service
rate during a busy period, denoted by S = 1), then

Pv = P{S = 0} = (π00 + π10)b0 + Φ(z)e1|z=1

= π00γ + π00

˜Gv(θ) − γ

1 − ˜Gv(θ)
= π00

˜Gv(θ)(1 − γ )

1 − ˜Gv(θ)

= θ(1 − ρ)˜Gv(θ)(1 − γ )

(1 − ˜Gv(θ))(θ + λ(1 − γ )) − ρθ(1 − γ )˜Gv(θ)
,

where e1 = (1,0)T . Similarly,

Pb = P{S = 1} = (π00 + π10)c0 + π11a0 + Φ(z)e2|z=1 = 1 − Pv

= (1 − ˜Gv(θ))(θ + λ(1 − γ )) − θ(1 − γ )˜Gv(θ)

(1 − ˜Gv(θ))(θ + λ(1 − γ )) − ρθ(1 − γ )˜Gv(θ)
,

where e2 = (0,1)T .

4 Conditional stochastic decomposition for L(z)

It is not convenient to use L(z) in (4) to interpret the queue length distribution or to
relate the working vacation model to the classical M/G/1 model. Now based on the
stochastic decomposition method in Shanthikumar [15], we obtain an alternative ex-
pression for L(z). First, we derive the distribution of the queue length at the beginning
epoch of a busy period (the ending epoch of a vacation period).

4.1 The queue length at the beginning epoch of a busy period

Define the queue length at the beginning of a busy period Qb and τk (k ≥ 1) repre-
sents its probability distribution, i.e.,

τk = P{Qb = k}, k ≥ 1.
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Let the last slow rate (during working vacations) service completion before the
start of a busy period be an embedded point, then Qb = k happens in one of two
possible cases: Case 1, under the condition that the system stays in the vacation period
after the last slow rate service and the current vacation time is not longer than Sv , i.e.,
V ≤ Sv , j (j ≥ 1) customers are left by the last slow rate served customer and k − j

customers arrive during the vacation time V ; Case 2, under the same condition, no
customers are left by the last slow rate served customer and k − 1 customers arrive
during the vacation time V . The probability that the system stays in the vacation
period after the last service before the beginning of the busy period and V ≤ Sv is

P{J = 0,V ≤ Sv} =
∞
∑

i=0

πi0 × P{V ≤ Sv} = π00(1 − γ ),

where J represents the system state after one service completion. Thus, we have

τk = P{Qb = k} = 1

π00(1 − γ )

(

k
∑

j=1

πj0vk−j + π00vk−1

)

, k ≥ 1.

Multiplying it by zj and summing over j = 1,2, . . . , we get

Qb(z) =
∞
∑

k=1

τkz
k = 1

π00(1 − γ )

{ ∞
∑

j=1

πj0z
j

∞
∑

k=j

vk−j z
k−j + π00

∞
∑

k=1

vk−1z
k

}

= 1

π00(1 − γ )

{

Φ(z)e1V (z) + π00zV (z)
}

= 1

1 − γ

{

z(B(z) − γ )

z − B(z)
+ z

}

V (z) = 1

1 − γ

z(z − γ )V (z)

z − B(z)
. (10)

Evidently, Qb(1) = 1 and

E(Qb) = (1 − ˜Gv(θ))(θ + λ(1 − γ )) − θ(1 − γ )˜Gv(θ)

θ(1 − γ )(1 − ˜Gv(θ))
= Pb(1 − ρ)

π00(1 − γ )
.

4.2 Conditional stochastic decomposition structure for L(z)

As the system dynamics during the normal busy period in our model is the stochas-
tically equivalent to the classical (or non-working) vacation model in Shanthikumar
[15], the results in Shanthikumar [15] can be used to analyze the normal service
period in the M/G/1 queue with working vacations. Note that we can obtain the sta-
tionary distribution of the number of customers at the beginning of the normal service
period.

As in Shanthikumar [15], the service time of every customer is called an active
period and the length of vacation is called an inactive period. Obviously, in our
M/G/1/WV model, the server can work during an inactive period. The server may
be viewed as alternating between active and inactive states if we allow the inactive
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period to have zero length. To keep coherence with results in Shanthikumar [15], let
Ls(LT ) be the number of the customers at the starting (ending) instant of an inactive
period in the steady state, and Ls(z)(LT (z)) is the corresponding PGF which will be
used in the proof of the following theorem.

Theorem 3 The PGF of the stationary queue length L at the departure epoch can be
expressed as

L(z) = Pv

1 − ˜Gv(θ)

(1 − γ )˜Gv(θ)

B(z)(z − γ )

z − B(z)

+Pb

(1 − ρ)(1 − z)A(z)

A(z) − z

1 − Qb(z)

E(Qb)(1 − z)
. (11)

Proof Using the conditional argument, we have

L(z) = E
(

zL|S = 1
)

P{S = 1} + E
(

zL|S = 0
)

P{S = 0}. (12)

In an M/G/1 queue with working vacations, we choose the customer departure in-
stants during a normal service period (busy period) as regeneration points, and cus-
tomer arrivals and departures during a working vacation period only affect the devia-
tion Ls − LT . Therefore, applying (2) in Shanthikumar [15], we obtain

E
(

zL|S = 1
)= E

(

zN
)

E
(

zX
)

,

where N is the number of customers in a classic M/G/1 queue without vacations. N

and the additional variable X have the PGFs

E
(

zN
)= (1 − ρ)(1 − z)A(z)

A(z) − z
, E

(

zX
)= Ls(z) − LT (z)

(1 − ρ)(1 − z)
, (13)

which is based on Lemma 1 in Shanthikumar [15].
Here, as we explained above, under the condition S = 1, one customer is served

in the normal busy period and the queue length L left by this customer can be zero.
Thus, the expression for E(zL|S = 1) should not be E(zN |N > 0)E(zX).

Certainly, for this system,

E
(

zL|S = 0
) = P −1

v

(

(π00 + π10)b0 + Φ(z)e1
)

= P −1
v π00

B(z)(z − γ )

z − B(z)
= 1 − ˜Gv(θ)

(1 − γ )˜Gv(θ)

B(z)(z − γ )

z − B(z)
. (14)

Note that LT = k(k ≥ 1) includes two disjoint cases: (1) Ls = k, if there is a
zero length inactive period between two successive active periods (two continuously
performed normal services); and (2) Ls = 0 and there are k customers in the system
when a working vacation ends. Therefore, we have

P
{

LT = k
}= P

{

Ls = k
}+ P

{

Ls = 0
}

τk, k ≥ 1, (15)
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and P{LT = 0} = 0. From (10), we can obtain the relationship

LT (z) = Ls(z) − P
{

Ls = 0
}(

1 − Qb(z)
)

.

It follows from (13) that

E
(

zX
)= P{Ls = 0}(1 − Qb(z))

(1 − ρ)(1 − z)
.

Using E(zX)|z=1 = 1, we get P{Ls = 0} = (1 − ρ)(E(Qb))
−1, and

E
(

zX
)= 1 − Qb(z)

E(Qb)(1 − z)
.

Thus, it follows from (12) and (13) that (11) holds. �

Remark 1 Equation (11) and (4) can be shown to be equivalent. Note that

L(z) = π00γ + Φ(z)e1 + π00(1 − γ ) + Φ(z)e2.

From (14), we have

π00γ + Φ(z)e1 = Pv

1 − ˜Gv(θ)

(1 − γ )˜Gv(θ)

B(z)(z − γ )

z − B(z)
.

It is sufficient to verify the relation

Pb

(1 − ρ)(1 − z)A(z)

A(z) − z

1 − Qb(z)

E(Qb)(1 − z)
= π00(1 − γ ) + Φ(z)e2. (16)

Substituting Qb(z) into the left hand side of (16) and using E(Qb) = Pb(1 −
ρ)(π00(1 − γ ))−1, we obtain

Pb

(1 − ρ)(1 − z)A(z)

A(z) − z

1 − Qb(z)

E(Qb)(1 − z)

= π00A(z)
z(z − γ )V (z) − (1 − γ )(z − B(z))

(z − B(z))(z − A(z))
.

Similarly, computing the right hand side of (16) yields the same expression. There-
fore, (11) and (4) are equivalent.

Accordingly, the expected queue length is shown to be

E(L) = Pv

{

β

˜Gv(θ)
+ 1

1 − γ
− 1 − β

1 − ˜Gv(θ)

}

+Pb

{

ρ + λ2b(2)

2(1 − ρ)
+ E(Qb(Qb − 1))

2E(Qb)

}

,

where β is defined in Sect. 2.
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5 Stationary queue length at the arbitrary epoch

Let J (t) be the system state (or server status) at any time t , i.e., J (t) equals 0
or 1, if the system is in a working vacation or a busy period, respectively. Then
X(t) = (L(t), J (t)) forms a continuous-time Markov regeneration process. Define
the limiting distribution of X(t) by

p00 = lim
t→∞ P

{

L(t) = 0, J (t) = 0
}

,

pnj = lim
t→∞ P

{

L(t) = n,J (t) = j
}

, n ≥ 1, j = 0,1.

To obtain the expressions for pnj , we consider another stochastic process
(˜L(t), ˜J (t)), where ˜L(t) denotes the queue length at the most recent departure, and
˜J (t) equals 0 or 1 if the system stays in a working vacation or a busy service period
after the most recent departure, respectively. Clearly, (˜L(t), ˜J (t)) is a semi-Markov
process (SMP) having (Ln, Jn) for its embedded Markov chain. Let γkj be the so-
journ time in state (k, j) in (˜L(t), ˜J (t)) process. Then

P{γkj < t} =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

P{Sb < t} = Gb(t),

k ≥ 1, j = 1;
P{Sv < t,V > Sv} + P{V + Sb < t,V < Sv} = F(t),

k ≥ 1, j = 0;
P{A + Sv < t,V > Sv} + P{A + V + Sb < t,V < Sv} = A(t) ∗ F(t),

k = 0, j = 0,

where ∗ represents “convolution operation”. Thus, we have

mkj = E(γkj ) =

⎧

⎪

⎨

⎪

⎩

1
μb

, k ≥ 1, j = 1;

( 1
μb

+ 1
θ
)(1 − ˜Gv(θ)), k ≥ 1, j = 0;

1
λ

+ ( 1
μb

+ 1
θ
)(1 − ˜Gv(θ)), k = 0, j = 0.

Let υkj be the steady-state probability that the SMP (˜L(t), ˜J (t)) is in state (k, j).
From the SMP theory in Gross and Harris [7], we have

υkj = πkjmkj
∑1

i=0
∑∞

h=i πhimhi

,

where {πkj , j = 0,1; k ≥ 0} satisfy the equations in (3). It follows from the results
in Theorem 2 and expressions for mkj that

∑1
i=0

∑∞
h=i πhimhi = 1/λ. Therefore,

υkj =
⎧

⎨

⎩

λπk1mk1 = ρπk1, k ≥ 1;
λπk0mk0 = (ρ + λ

θ
)(1 − ˜Gv(θ))πk0, k ≥ 1;

λπ00m00 = (1 + (ρ + λ
θ
)(1 − ˜Gv(θ)))π00, k = 0, j = 0.

For n ≥ 0, j = 0,1, the limiting distribution of (L(t), J (t)) has the following expres-
sions (see in [7]):
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pnj =
1
∑

i=0

∞
∑

k=1

υki

mki

×
∫ ∞

0
P
{

required changes in t to bring state

from (k, i) to (n, j), γki > t
}

dt.

First, we find p00. Because of the fact that no arrivals occur in t means γ00 > t , we
have

p00 = υ00

m00

∫ ∞

0
P
{

no arrivals occur in t
}

dt = υ00

m00

∫ ∞

0
e−λt dt = π00. (17)

For n ≥ 1, j = 0, we have

pn0 = υ00

m00

∫ ∞

0
P {(n − 1) arrivals occur in t, V > t, γ00 > t}dt

+
n
∑

k=1

υk0

mk0
P {(n − k) arrivals occur in t, V > t, γk0 > t}dt

= λπ00

∫ ∞

0

(λt)n−1

(n − 1)!e
−λt
(

P{V > Sv,Sv > t} + P{V > t,V < Sv}
)

dt

+λ

n
∑

k=1

πk0

∫ ∞

0

(λt)n−k

(n − k)!e
−λt
(

P{V > Sv,Sv > t} + P{V > t,V < Sv}
)

dt

= λπ00

∫ ∞

0

(λt)n−1

(n − 1)!e
−λt

(∫ ∞

t

e−θu dGv(u) +
∫ ∞

t

θe−θu
(

1 − Gv(u)
)

du

)

dt

+λ

n
∑

k=1

πk0

∫ ∞

0

(λt)n−k

(n − k)!

× e−λt

(∫ ∞

t

e−θu dGv(u) +
∫ ∞

t

θe−θu
(

1 − Gv(u)
)

du

)

dt

= λ

∫ ∞

0

(

π00
(λt)n−1

(n − 1)!e
−λt +

n
∑

k=1

πk0
(λt)n−k

(n − k)!e
−λt

)

(

1 − Gv(t)
)

e−θt dt. (18)

Similarly, for n ≥ 1,

pn1 = λ

n
∑

k=1

πk1

∫ ∞

0

(λt)n−k

(n − k)!e
−λtP{Sb > t}dt

+λ

n
∑

k=1

πk0

∫ ∞

0

(λt)n−k

(n − k)!e
−λtP{V < t,V < Sv,V + Sb > t}dt
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+λπ00

∫ ∞

0

(λt)n−1

(n − 1)!e
−λtP{V < t,V < Sv,V + Sb > t}dt

= λ

n
∑

k=1

πk1

∫ ∞

0

(λt)n−k

(n − k)!e
−λt
(

1 − Gb(t)
)

dt

+λ

∫ ∞

0
π00

(λt)n−1

(n − 1)!e
−λt

∫ t

0
θe−θu

(

1 − Gv(u)
)(

1 − Gb(t − u)
)

dudt

+λ

∫ ∞

0

n
∑

k=1

πk0
(λt)n−k

(n − k)!e
−λt

∫ t

0
θe−θu

(

1 − Gv(u)
)(

1 − Gb(t − u)
)

dudt.

(19)

Then we get the limiting distribution pkj of the system at an arbitrary epoch.
Define the z-transforms of pn1 and pn0 as

Pb(z) =
∞
∑

n=1

pn1z
n, Pv(z) =

∞
∑

n=0

pn0z
n,

respectively. Utilizing (18) and (19), we easily get

Pv(z) = π00 + λ

(

π00z +
∞
∑

k=1

πk0z
k

)

∫ ∞

0
e−λ(1−z)t

(

1 − Gv(t)
)

e−θt dt

= π00 + λ

(

π00z +
∞
∑

k=1

πk0z
k

)

1 − ˜Gv(θ + λ(1 − z))

θ + λ(1 − z)
,

Pb(z) = λ

∞
∑

k=1

πk1z
k 1 − ˜Gb(λ(1 − z))

λ(1 − z)

+λ

(

π00z +
∞
∑

k=1

πk0z
k

)

θ(1 − ˜Gv(θ + λ(1 − z)))

θ + λ(1 − z)

1 − ˜Gb(λ(1 − z))

λ(1 − z)
.

(20)

Obviously, the stationary distribution of the queue length at an arbitrary epoch is
given by

p0 = lim
t→∞ P

{

L(t) = 0
}= p00, pn = lim

t→∞ P
{

L(t) = n
}= pn1 + pn0, n ≥ 1.

Using the expressions for A(z),B(z) and C(z), the PGF of {pn,n ≥ 0} can be ex-
pressed as

P(z) = Pv(z) + Pb(z)

= π00 +
∞
∑

k=1

πk1z
k 1 − A(z)

1 − z

+
(

π00z +
∞
∑

k=1

πk0z
k

)

1 − B(z) − C(z)

1 − z
. (21)
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Substituting Φ(z)e1,Φ(z)e2 into (21), after routine algebraic manipulation, we ob-
tain

P(z) = L(z),

which demonstrates the relationship pn = πn, n ≥ 0, which indicates the fact that the
stationary queue length distribution at arbitrary epochs is the same as that at departure
epochs. In other words, PASTA (Poisson arrivals see time average) property also
holds in the M/G/1 queue with exponentially working vacations.

Remark 2 As the special case (exponential working vacation) of the model in Wu and
Takagi [18], (4) can be verified to be in agreement with (50) in Wu and Takagi [18].

6 Waiting time analysis

Let W and ˜W(s) be the stationary waiting time and its LST, respectively. Because it is
possible for each customer to be served during either the normal service or working
vacation period, the service time is different for the two possible service periods.
Define the conditional waiting times as

Wb = {W |S = 1}, Wv = {W |S = 0},
with ˜Wb(s), ˜Wv(s) representing their LSTs.

For a customer served during a busy period, the customers in the system left by
this customer are those arrived during his/her waiting time Wb and normal service
time Sb . Because, if the service of a customer is not complete at the end of the va-
cation, he/she will be served at the normal service rate as a new customer, we regard
the elapsed service time of the interrupted customer as part of his/her waiting time.
Thus, we have

E
(

zL|S = 1
)= ˜Wb

(

λ(1 − z)
)

˜Gb

(

λ(1 − z)
)

.

Substituting s = λ(1 − z) into the equation above, we have

˜Wb(s) = (1 − ρ)s

s − λ(1 − ˜Gb(s))

λ(1 − Qb(1 − s
λ
))

E(Qb)s
.

Theorem 4 The conditional waiting time Wb can be decomposed into the sum of
two independent random variables: Wb = W0 + Wd , where W0 is the waiting time of
a classic M/G/1 queue without vacation. W0 and the additional delay Wd have the
LSTs

˜W0(s) = (1 − ρ)s

s − λ(1 − ˜Gb(s))
, ˜Wd(s) = λ(1 − Qb(1 − s

λ
))

E(Qb)s
.

Similarly, for Wv , we have

E
(

zL|S = 0
)= ˜Wv

(

λ(1 − z)
)

˜Gv

(

λ(1 − z)
)

.
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Substituting s = λ(1 − z) into the equation above yields

˜Wv(s) = 1 − ˜Gv(θ)

(1 − γ )˜Gv(θ)

˜Gv(θ + s)[s − λ(1 − γ )]
s − λ(1 − ˜Gv(θ + s))

1
˜Gv(s)

.

Thus, the LST of the unconditional waiting time W of any customer is given by

˜W(s) = P{S = 0}˜Wv(s) + P{S = 1}˜Wb(s)

= Pv

1 − ˜Gv(θ)

(1 − γ )˜Gv(θ)

˜Gv(θ + s)[s − λ(1 − γ )]
s − λ(1 − ˜Gv(θ + s))

1
˜Gv(s)

+Pb

(1 − ρ)s

s − λ(1 − ˜Gb(s))

λ(1 − Qb(1 − s
λ
))

E(Qb)s
. (22)

It follows from (22) that the mean E(W) and second moment E(W 2) are found to
be

E(W) = Pv

{

1

λ

[

β

˜Gv(θ)
+ 1

1 − γ
− 1 − β

1 − ˜Gv(θ)

]

− 1

μv

}

+Pb

{

λb(2)

2(1 − ρ)
+ E(Qb(Qb − 1))

2λE(Qb)

}

,

E(W 2) = Pv

Λ

λ2(1 − γ )˜Gv(θ)(1 − ˜Gv(θ))2

+Pb

{

b(2)Q
(2)
b (1)

2(1 − ρ)E(Qb)
+ 3λ2(b(2))2 − 2λ(1 − ρ)b(3)

6(1 − ρ)2
+ Q

(3)
b (1)

3λ2E(Qb)

}

,

where Q
(k)
b (1) represents the kth order derivative value for Qb(z) at z = 1,

Λ = ˜G(2)
v (θ)λ(1 − γ )

(

1 − ˜Gv(θ)
)

(

λ + 2(1 − β) + 2
λ

μv

(

1 − ˜Gv(θ)
)

)

−λ2(1 − γ )
(

1 − ˜Gv(θ)
)2

g(2)
v − 2˜Gv(θ)

(

1 − ˜Gv(θ)
)2

×
(

λ + λ

μv

−
(

λ

μv

)2

(1 − γ )

)

+2(1 − β)

(

(1 − β)˜Gv(θ)(1 − γ ) + ˜Gv(θ)(1 − γ )
λ

μv

(

1 − ˜Gv(θ)
)

)

,

and

˜G(2)
v (θ) =

∫ ∞

0
x2e−θx dGv(x).
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7 Busy period analysis

The duration in which the server works at the normal rate continuously is called a
busy period, denoted by Db . A busy period starts at a vacation completion instant
with a non-empty system and ends at a regular service completion with an empty
system. Let Dv be the total working vacation period which begins at the end of a
busy period and ends at the start of the next busy period. Obviously, during Dv , if
there are arrivals, the server will work at the low service rate. A busy cycle C is
then defined as the sum of a working vacation period Dv , and a subsequent busy
period Db .

We first give the busy period and its distribution function in non-vacation classic
M/G/1 queue, denoted by D and D(x), respectively. It follows from the classic busy
period analysis of M/G/1 queue in Cohen [3] that

D(x) = P{D < x} =
∞
∑

j=0

∫ x

0

(λu)j−1

j ! e−λu dP
{

S
(j)
b < u

}

(23)

where S
(j)
b is the j -fold convolution of Sb. And its LST ˜D(s) satisfies the equation

˜D(s) = E
(

e−sD
)= ˜Gb

[

s + λ
(

1 − ˜D(s)
)]

,

and

E(D) = E(Sb)

1 − ρ
.

7.1 Busy period distribution

In our model, if there are k customers at a vacation completion instant, i.e., Qb = k,
due to the memoryless property of the arrival process, the conditional busy period
{Db|Qb = k} is the k-fold convolution of D, i.e.,

{Db|Qb = k} = D(k).

Therefore, the distribution of the busy period length Db is obtained as

P{Db < x} =
∞
∑

k=1

P{Db < x|Qb = k}P{Qb = k} =
∞
∑

k=1

D(k)(x)τk.

Denoting the LST of Db by ˜Db(s), we have

˜Db(s) = E
(

e−sDb
) =

∞
∑

k=1

E
{

e−sDb |Qb = k}P{Qb = k
}

=
∞
∑

k=1

(

E
(

e−sD
))k

τk = Qb

(

˜D(s)
)

,
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where Qb(z) is given as in (10). Furthermore, E(Db) is found to be

E(Db) = E(Qb)E(D) = (1 − ˜Gv(θ))(θ + λ(1 − γ )) − θ(1 − γ )˜Gv(θ)

μb(1 − ρ)θ(1 − γ )(1 − ˜Gv(θ))
.

7.2 Working vacation period distribution

Let a random variable U be the number of vacations continuously taken after a busy
period, then Dv must be the sum of U vacations. If the server takes k vacations during
the working vacation period, i.e., U = k, it means that there are no customers in the
system at the end of j th vacation where j = 1,2, . . . , k − 1, and there are customers
in the system at the end of kth vacation. Letting p be the probability that there are no
customers in the system at the end of a vacation, we have the probability distribution
of U as

P{U = k} = pk−1(1 − p), k ≥ 1.

The key is to find an expression for p. If one vacation length is fixed, then there
may be several times to make the system empty due to possible customer departures
during this vacation. The instant of the system becoming empty each time in this fixed
time length is equivalent to the ending instant of a busy period in the classic M/G/1
queue with the service time Sv . Thus, assume the busy period with the service time
Sv as Dv , and it follows from the results in Cohen [3] that

Dv(x) = P
{

Dv < x
}=

∞
∑

j=1

P
{

Dv < x,M = j
}=

∞
∑

j=1

Dv
j (x),

where M represents the number of customers served during the busy period Dv .
Then, the LST of Dv satisfies

˜Dv(s) = ˜Gv

[

s + λ
(

1 − ˜Dv(s)
)]

,

where ˜Dv
j (s) is the LST of Dv

j (x).
Then, if we see j (j ≥ 1) customer arrivals during one vacation, k busy periods

may be formed, for k = 1,2, . . . , j , and all j customers are served completely during
this vacation. Let Y = Y1 + Y2 + · · · + Yk be the time interval from the beginning of
this vacation to all k busy periods ending during this vacation, where Yi = Ai + Dv

i

represents the sum of the interval from the end of the previous busy period to the
ith arrival causing the ith busy period to start, and the ith busy period. Note that
Y1, Y2, . . . , Yk form a series of i.i.d. random variables with A + Dv . Meanwhile, Mi

is the number of customers served during the ith busy period. Mi ’s are i.i.d. random
variables, denoted by M . Then for i = 1,2, . . . , k, we have the joint distribution

Hl(x) = P{Yi < x,Mi = l} = A ∗ Dv
l (x), l ≥ 1,

and its LST

˜Hl(s) =
∫ ∞

0
e−sx dHl(x) = λ

λ + s
˜Dv

l (s).
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Then we get

p =
∫ ∞

0
θe−θt e−λt dt

+
∫ ∞

0
θe−θt

∞
∑

j=1

j
∑

k=1

P{Y < t < Y + A,M1 + M2 + · · · + Mk = j}dt

= θ

λ + θ

+ θ

λ + θ

∞
∑

j=1

j
∑

k=1

∑

n1+n2+···+nk=j,
n1,n2,...,nk≥1

∫ ∞

0
e−θu dHn1(u) ∗ Hn2(u) ∗ · · · ∗ Hnk

(u)

= θ

λ + θ
+ θ

λ + θ

∞
∑

j=1

j
∑

k=1

∑

n1+n2+···+nk=j,
n1,n2,...,nk≥1

˜Hn1(θ)˜Hn2(θ) · · · ˜Hnk
(θ)

= θ

λ + θ
+ θ

λ + θ

∞
∑

k=1

(

λ

λ + θ

)k k
∑

j=1

∑

n1+n2+···+nk=j,
n1,n2,...,nk≥1

˜Dv
n1

(θ)˜Dv
n2

(θ) · · · ˜Dv
nk

(θ)

= θ

λ + θ
+ θ

λ + θ

∞
∑

k=1

(

λ

λ + θ

)k
( ∞
∑

l=1

˜Dv
l (θ)

)k

= θ

λ + θ
+ θ

λ + θ

∞
∑

k=1

(

λ

λ + θ

)k
(

˜Dv(θ)
)k = θ

θ + λ(1 − γ )
, (24)

where we use the relationship ˜Dv(θ) = ˜Gv[θ + λ(1 − ˜Dv(θ))] which shows
˜Dv(θ) = γ .

Then the distribution of the vacation number U on Dv is obtained. Obviously, we
get the distribution function of Dv

P{Dv < x} =
∞
∑

k=1

P
{

V (k) < x
}

P{U = k} =
∞
∑

k=1

(1 − p)pk−1P
{

V (k) < x
}

,

where V (k) represents the k-fold convolution of the vacation time V . Furthermore,
the mean E(Dv) is shown to be

E(Dv) = E(V )

1 − p
= 1

θ
+ 1

λ(1 − γ )
.

Certainly, for the busy cycle C, we have

P{C < x} = P{Db + Dv < x}
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and the mean E(C) can be computed as

E(C) = E(Db) + E(Dv).

In fact, denote J the system state at the arbitrary epoch, then from the results in
Sect. 5, we have

P{J = 0} =
∞
∑

n=0

pn0 = (θ + λ(1 − γ ))(1 − ˜Gv(θ))(1 − ρ)

(1 − ˜Gv(θ))(θ + λ(1 − γ )) − ρθ(1 − γ )˜Gv(θ)
,

P{J = 1} =
∞
∑

n=0

pn1 = ρ((1 − ˜Gv(θ))(θ + λ(1 − γ )) − θ(1 − γ )˜Gv(θ))

(1 − ˜Gv(θ))(θ + λ(1 − γ )) − ρθ(1 − γ )˜Gv(θ)
.

We can also compute these probabilities by using

P{J = 1} = E(Db)

E(C)
= E(Db)

E(Db) + E(Dv)
,

P{J = 0} = E(Dv)

E(C)
= E(Dv)

E(Db) + E(Dv)
.

Remark 3 The mean results in the cycle analysis above are in agreement with those
in Kim et al. [8]. Meanwhile, with the expressions for the state probabilities, we can
further show the conditional queue-length distribution given the server is (or not)
on the working vacation at the arbitrary epoch. By the definition and expression for
Pv(z),Pb(z) in (20), after some computation, we can verify that

P0(z) = Pv(z)

P{J = 0} = θ

θ + λ(1 − γ )
+ θz

θ + λ(1 − z)

λ(z − γ )

θ + λ(1 − γ )

1 − B(z)

z − B(z)
,

P1(z) = Pb(z)

P{J = 1} = 1 − ψ(z)

ψ ′(1)(1 − z)

1 − ρ

ρ

z(1 − A(z))

z − A(z)
,

where

ψ(z) = θz

θ + λ(1 − z)

z − γ

1 − γ

1 − B(z)

z − B(z)
.

The results for the conditional queue lengths at the arbitrary epoch are the same as
those in Kim et al. [8].

8 Some special examples

In this section, we show that some vacation models in the literatures published previ-
ously are special cases of our model.

Example 1 The M/G/1 queue with classical (non-working) vacations.
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If the server does not serve customers during the vacation period, then ˜Gv(s) = 0.
Thus some quantities in our model become zero, i.e.,

B(z) = 0, ˜Gv(θ) = 0, γ = 0, β = 0, Pv = 0.

Substituting these zeros into (11), we obtain

L(z) = (1 − ρ)(1 − z)A(z)

A(z) − z

θ

θ + λ(1 − z)

= (1 − ρ)(1 − z)˜Gb(λ(1 − z))

˜Gb(λ(1 − z)) − z

θ

θ + λ(1 − z)
,

which is the PGF of the queue length L in the M/G/1 queue with exponential vaca-
tions. The mean queue length is

E(L) = ρ + λ2b(2)

2(1 − ρ)
+ λ

θ
.

The LST and mean of the waiting time are

˜W(s) = (1 − ρ)s

s − λ(1 − ˜Gb(s))

θ

θ + s
, E(W) = λb(2)

2(1 − ρ)
+ 1

θ
.

All these results are in agreement with the results of M/G/1 queue with exponential
vacations reported in [15]. Furthermore, the expected busy period, busy cycle and
vacation period are given by

E(Db) = 1

μb(1 − ρ)

λ + θ

θ
, E(Dv) = λ + θ

λθ
, E(C) = 1

λ(1 − ρ)

λ + θ

θ
.

Example 2 The M/M/1 queue with working vacations (M/M/1/WV).
If service times Sb and Sv all follow the exponential distributions with parameters

μb and μv , respectively, the system becomes an M/M/1/WV studied in Servi and
Finn [14] and Liu et al. [9]. Now we have

˜Gv(s) = μv

μv + s
, ˜Gb(s) = μb

μb + s
.

Thus, γ is the root of the equation

z = μv

μv + θ + λ(1 − z)

in the range of 0 < z < 1, and the other root γ ′ > 1. They are obtained as

γ = 1

2λ

(

λ + θ + μv −
√

(λ + θ + μv)2 − 4λμv

)= μv

λ
γ ∗,

γ ′ = 1

2λ

(

λ + θ + μv +
√

(λ + θ + μv)2 − 4λμv

)= (γ ∗)−1.
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To relate the results to those in Liu et al. [9], we introduce γ ∗. First, we compute π00
as,

π00 = (1 − ρ)θ

θ − (1 − γ )(ρμv − λ)
= 1 − ρ

1 + 1−γ
θ

ρ(μb − μv)
.

Because γ satisfies,

λγ 2 − (λ + θ + μv)γ + μv = 0,

after some algebraic manipulation, we have the relation,

μv

γ
= θ + μv + λ(1 − γ ) = θ

1 − γ
+ λ.

Thus,

θ

1 − γ
= μv

γ
− λ = μv − λγ

γ
= λ(1 − γ ∗)

γ ∗ .

Substituting it into the expression for π00,

π00 = (1 − ρ)(1 − γ ∗)
1 − γ ∗ μv

μb

.

Using (4), we have

L(z) = π00
A(z)(1 − z)(B(z) − z) + z(γ − z)(A(z) − B(z) − C(z))

(z − B(z))(z − A(z))

= π00
μb(1 − z)[μv − (θ + μv + λ(1 − z))z] + z(γ − z)λ(μb − μv)(1 − z)

[(θ + μv + λ(1 − z))z − μv][(μb + λ(1 − z))z − μb]

= π00

(

1

1 − ρz
+ λ(1 − μv

μb
)z(γ − z)

[μv − (θ + μv + λ(1 − z))z](1 − ρz)

)

.

Because γ and γ ′ are the roots of the equation

λz2 − (λ + θ + μv)z + μv = 0,

then,

μv − (

θ + μv + λ(1 − z)
)

z = λz2 − (λ + θ + μv)z + μv = λ(z − γ )(z − γ ′).

Using the relationship (γ ′)−1 = γ ∗ and substituting π00 into L(z), we get

L(z) = π00

(

1

1 − ρz
+ (1 − μv

μb
)z(γ − z)

(z − γ )(z − γ ′)(1 − ρz)

)

= π00

(

1

1 − ρz
+ 1 − μv

μb

1 − ρz

γ ∗z
1 − γ ∗z

)

= 1 − ρ

1 − ρz

(

1 − γ ∗

1 − γ ∗ μv

μb

+ γ ∗(1 − μv

μb
)

1 − γ ∗ μv

μb

(1 − γ ∗)z
1 − γ ∗z

)

, (25)
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and

E(L) = ρ

1 − ρ
+
(

1 − μv

μb

)(

1 − γ ∗ μv

μb

)−1
γ ∗

1 − γ ∗ . (26)

These results are in agreement with those in Liu et al. [9]. Meanwhile, letting ẑ =
γ ′ = (γ ∗)−1, we further derive

L(z) = 1 − ρ

1 − ρz

1 − γ ∗

1 − γ ∗z

(

1 − γ ∗z
1 − γ ∗μv/μb

+ γ ∗(1 − μv/μb)z

1 − γ ∗μv/μb

)

= 1 − ρ

1 − ρz

1 − γ ∗

1 − γ ∗z
1 − γ ∗μv/μb

1 − γ ∗μv/μbz

= 1 − ρ

1 − ρz

1 − ẑ−1

1 − ẑ−1z

1 − μv/(μbẑ)

1 − μv/(μbẑ)z
,

which also is the same as (1.1) in Servi and Finn [14]. Then, we obtain

Pv = (1 − ρ)
μv

λ
γ ∗

1 − γ ∗ μv

μb

, Pb = 1 − μv

λ
γ ∗

1 − γ ∗ μv

μb

.

The LST of the stationary waiting time is

˜W(s) = Pv
˜Wv(s) + Pb

˜Wp(s)

=
θ
λ
(1 − ρ)γ ∗

(1 − γ ∗ μv

μb
)(1 − μv

λ
γ ∗)

[s − λ(1 − μv

λ
γ ∗)](μv + s)

μvs − (λ − s)(θ + s)

+ 1 − γ ∗

1 − γ ∗ μv

μb

(1 − ρ)(μb + s)

s(s − (λ − μb))

[

θ(λ − s)(λ − s − γ ∗μv)

μvs − (λ − s)(θ + s)
+ λ

(

1 − μv

λ
γ ∗
)]

.

The expected waiting time is given by

E(W) = 1

μb(1 − ρ)
+ 1

λ

((

1 − μv

λ

)

(γ ∗)2

1 − γ ∗ − ρ(1 − γ ∗)
)(

1 − μv

λ
γ ∗
)−1

. (27)

Meanwhile, the expected busy period, the expected vacation period, and the expected
busy cycle are

E(Db) = θ − (1 − γ )(μv − λ)

θμb(1 − ρ)(1 − γ )
, E(Dv) = 1

θ
+ 1

λ(1 − γ )
,

E(C) = θρ−1 + (1 − γ )(μb − μv)

θμb(1 − ρ)(1 − γ )
.

Thus, taking different service time distributions, we can obtain the results of vari-
ous special M/G/1 queues with working vacations or classic vacations.



164 Queueing Syst (2009) 61: 139–166

9 Numerical results

In this section, we present some numerical examples for the M/G/1/WV queue with
several service time distributions such as deterministic (D), exponential (M), and
Erlang (E2).

First we consider the model denoted as M/(D1,D2)/1, where the service times
Sb,Sv are deterministic, and Sb = μ−1

b , Sv = μ−1
v with parameters taken as μb =

2.0, λ = 1.25.
Figure 1 shows how the expected queue length changes with the working-vacation

service rate μv at different θ values and different ρ values, respectively. Similarly,
Fig. 2 shows how the expected waiting time and the probability of a customer being
served completely at the normal service rate change with μv . Clearly, these two fig-
ures show that in general the expected queue length, expected waiting time and Pb

all decrease with μv . Figure 3 shows the relation between the expected queue length
or expected waiting time and μv for an M/(M,E2)/1 queue, where Sb follows the
exponential distribution with the rate of μb and Sv follows an Erlang-2 distribution
with the mean μv . In both Figs. 1 and 3, we can examine the effects of the vacation
rate θ on the performance measures such as the expected queue length. It has been

Fig. 1 Expected queue length against μv in M/(D1,D2)/1

Fig. 2 E(W) and Pb against μv , respectively
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Fig. 3 E(L) and E(W) against μv in M/(M,E2)/1, respectively

Fig. 4 E(W) against ρ in
M/(M,E2)/1

Fig. 5 Comparisons among different models

illustrated that the expected queue length is decreasing in θ and the effect of θ be-
comes smaller and turns to zero when μv = μb = 2. Another extreme case is when
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μv = 0 (no service during the vacation period or the classical vacation model), the
effect of θ is largest.

Figure 4 illustrates that E(W) increases with ρ. Note that the effect of θ on E(W)

is relatively small compared with that of ρ on E(W).
Finally, in Fig. 5, we compare several models with different service distributions

in terms of the expected queue lengths. The similar quantitative effect of the working-
vacation service rate on the expected queue length has been demonstrated.
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