
Queueing Syst (2008) 59: 157–184
DOI 10.1007/s11134-008-9080-y

State space collapse for asymptotically critical
multi-class fluid networks

Rosario Delgado

Received: 16 November 2007 / Revised: 7 July 2008 / Published online: 12 August 2008
© Springer Science+Business Media, LLC 2008

Abstract We consider a class of fluid queueing networks with multiple fluid classes
and feedback allowed, which are fed by N heavy tailed ON/OFF sources. We study
the asymptotic behavior when N → ∞ of these queueing systems in a heavy traffic
regime (that is, when they are asymptotically critical). As performance processes we
consider the workload WN (the amount of time needed for each server to complete
processing of all the fluid in queue), and the fluid queue ZN (the quantity of each
fluid class in the system). We show the convergence of

√
NWN and

√
NZN (to Ŵ

and Ẑ) in heavy traffic if state space collapse (SSC) holds. (SSC) is a condition that
establishes a relationship between those components of Ẑ that correspond to fluid
classes processed by the same server, which implies that Ẑ = �Ŵ for a determinis-
tic lifting matrix �. Our main contribution is to prove that assuming that the other
hypotheses are true, (SSC) is not only sufficient for this convergence, but necessary.
Furthermore, we prove that processes Ŵ and Ẑ, conveniently scaled in time, con-
verge to W (a reflected fractional Brownian motion) and Z (= �W). We illustrate
the application of our results with some examples including a tandem queue.
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1 Introduction

In this paper we investigate the asymptotic behavior of a family of multi-class fluid
networks in a heavy traffic regime (that is, when they are asymptotically critical). The
networks of this family consist of a different number of fluid classes, K , and stations,
J , with K ≥ J ≥ 1, and they generalize the non-deterministic fluid model consid-
ered in [7], where K = J . We assume a non-idling FIFO (first-in-first-out) service
discipline, and fluid classes processed at constant processing rates, 1/mk for class k.
Each fluid class can be served at only one station, and at each station there is a single
server and an infinite buffer where fluid waiting to be processed accumulates. More-
over, feedback is allowed. The structure of these networks is that of the deterministic
fluid analog of a multi-class queueing network introduced by Harrison [8].

Nevertheless, while in [8] the external arrival process is deterministic, ours is con-
sidered to be a non-deterministic aggregated cumulative process generated by a big
number N of heavy tailed ON/OFF sources. It is known from [17] that the super-
position of many ON/OFF sources with strictly alternating ON- and OFF-periods
and whose ON- or OFF-period lengths are heavy tailed is a good model for modern
high-speed network traffic, which exhibits long-range dependence and self-similar
traffic patterns. The reason, as proved in Theorem 1 [17], is that the superposition
of N of these ON/OFF sources generates an aggregate cumulative arrival process
that conveniently scaled in time by a factor r , and in state space, converges in some
sense, as N goes to infinity and after that, as r goes to infinity (note that order here
is important), to a fractional Brownian motion (fBm). And it is known too that fBm
is self-similar and when its Hurst parameter H is bigger than 1/2, it has positively
correlated increments. See [12] and references therein for more insight into the in-
terest in dealing with self-similar and long-range dependent models when modeling
modern high-speed network traffic.

As main performance processes, the (J -dimensional) immediate workload process
WN and the (K-dimensional) fluid queue process ZN are introduced. For a server j ,
the corresponding component of the workload process at time t , WN

j (t), is defined
to be the total quantity of time this server needs to complete the processing of all
the fluid in queue (or being served) at station j at time t . For a fluid class k, the
corresponding component of the fluid queue process at time t , ZN

k (t), is defined as
the quantity of that class fluid in queue (or being served) at time t . There is an obvious
relationship between these two processes: for any station j ,

WN
j =

∑

k∈{classes served at station j}
mkZ

N
k . (1.1)

Debicki and Mandjes have showed in [6] that the convergence of the aggregated
cumulative arrival process to the fBm given in [17] carries over to the stationary buffer
content process in a heavy-traffic environment (that is, in the asymptotically critical
situation): the (scaled) workload process converges to the (uni-dimensional) fBm,
reflected appropriately to be non-negative, for single-class fluid models with only one
station and without reentering (that is, in the case K = J = 1 and without feedback).
In [7] the result of [6] was generalized to a multidimensional setting for a multi-
server fluid model with feedback in which every server can only process one fluid
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class, that is, with K = J ≥ 1: the (scaled) workload process was proved to converge
to a J -dimensional reflected fractional Brownian motion (rfBm) on the first orthant.
In the present work we generalize still more this result to the multi-class situation, in
which each server can process one or more fluid classes (but, as usual, each fluid class
can be processed only by one of the servers, and then K ≥ J ≥ 1). Multidimensional
rfBm in the first orthant had been introduced, among others, by Konstantopoulos
and Lin [12], although throughout this paper we use notations from [7], where the
question of what condition on the reflection matrix ensures the existence of such a
process is also considered (see the Appendix at the end here).

Semimartingale reflecting Brownian motions in the first orthant (SRBM) are dif-
fusion processes that have been used as approximate models of multi-class open
queueing networks, in a light-tailed setting, under the heavy traffic assumption and
different service disciplines (including FIFO) by many authors, starting with Iglehart
and Whitt [10, 11] who considered single-class networks without feedback and with
FIFO service discipline. This was generalized to single-class networks with feedback
by Reiman [15], and to feedforward multi-class networks by Peterson [14], where
limit theorems to justify the diffusion approximations have been proved. See [19] for
a summary of the heavy traffic limit theorems of this type for different single-class
and multi-class networks up to date. Heavy traffic limits for multi-class queueing net-
works is a topic of much interest although the class of networks for which these limits
have been proved is still small and it is known that not all multi-class networks with
feedback can be approximated under heavy traffic by such reflecting processes (see
[5], for instance). General approximation schemes can be seen in [9], but they are not
always valid. A rigorous theory for multi-class networks in the light-tailed setting un-
der heavy traffic and with feedback remained to be carried out when Williams’ paper
[21] appeared. In [21] Williams proves a generalization of the previous heavy traffic
limit results to multi-class networks with feedback, by using an invariance principle
proved by the same author in [20]. It was a first step in the direction of developing a
theory by giving general sufficient conditions for a heavy traffic limit theorem to hold
for open multi-class queueing networks with some disciplines (including FIFO), in
the light-tailed setting, a SRBM in the first orthant being the limit process. These suf-
ficient conditions are: the reflection matrix has to be well defined and completely-S,
and a form of state space collapse must hold.

By combining the previous ideas and methodology developed by Williams among
others, with the convergence results for heavy-tailed ON/OFF traffic to fractional
Brownian motion of Taqqu et al. [17] already used in the previous work [7], in this
paper we try to contribute to the development of a similar theory for multi-class fluid
networks with feedback in the heavy-tailed setting, by obtaining sufficient conditions
to ensure a heavy traffic limit result, where the limit process is a multidimensional
rfBm in the first orthant (see Corollary 1).

More specifically, in Theorem 1 we prove that when the number of ON/OFF
sources N converges to ∞, the limit of

√
NWN , say Ŵ , and the limit of

√
NZN ,

Ẑ, exist (both in the sense of the convergence of the finite-dimensional distributions).
The result can be proved under four hypotheses, two of which are related to matri-
ces defined from the model parameters: condition (H�), which refers to a K × J

matrix � that is a lifting operator from R
J to R

K which relates Ẑ and Ŵ as fol-
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lows: Ẑ = �Ŵ , and condition (HR) on a J × J matrix R, related to �, which en-
sures the existence of the reflected fractional Brownian motion process with R as
reflection matrix (and also that R is a completely-S matrix). See the Appendix for
more details on assumption (HR) and for the definition of the multidimensional rfBm
process. The other two hypotheses are: a heavy traffic condition, denoted by (HT)
(see (3.10)), which states that the network is asymptotically critical, that is, its traffic
intensity tends to be one (for any station) as N goes to infinity, and a kind of state
space collapse condition denoted by (SSC) (see (3.12)).

The phenomenon of state space collapse was first established by Whitt in [18] for
the single multi-class station but the term was first introduced by Reiman [16]. State
space collapse condition has proved to be a key ingredient in the proof of heavy traf-
fic limits for multi-class queueing networks in the light-tailed environment. See for
instance [14] for feedforward multi-class queueing networks. In [4] Bramson proves
that a form of multiplicative state space collapse holds for two families of multi-class
networks (FIFO networks of Kelly type and head-of-the-line proportional processor
sharing queueing networks), and by using that fact, Williams proves in [21] that under
the heavy traffic condition and the completely-S assumption for the reflecting matrix,
the multiplicative state space collapse condition implies (SSC), and a heavy traffic
limit theorem holds in a light-tailed environment, a multidimensional SRBM in the
first orthant being the workload limit process.

In this work we show that condition (SSC) also plays a key role in demonstrat-
ing a similar heavy traffic limit in our heavy-tailed environment for multi-class fluid
networks, with a multidimensional rfBm as workload limit. (SSC) establishes a re-
striction in process Ẑ in the sense that some relationships between those components
corresponding to fluid classes processed at the same station must be satisfied; these
relationships are established by means of some parameters of the model: the ser-
vice rates mk and the long run fluid rates into and out of stations for each class, λk .
Roughly speaking we can say that from (SSC), with the knowledge of the workload
process we do not need any additional information about the fluid queue process, be-
cause both processes are linked by means of a deterministic lifting operator � in this
way:

Ẑ = �Ŵ, or Ẑk = λkŴj for any fluid class k (1.2)

if j is the station that processes that class (see (6.4)). It is interesting to compare (1.2)
to (1.1). If K = J state space collapse condition vanishes, but for K > J it does not.
Indeed, by assuming that the other three hypotheses are true, this condition is suffi-
cient and, what is more important, also necessary for the conclusion of Theorem 1,
that is, it cannot be weakened nor dropped.

In Corollary 1 we present our heavy traffic limit result, which is a generalization
to the multi-class setting of Theorem 1 in [7], by considering the processes obtained
from the limit processes Ŵ and Ẑ scaling in this way:

Ŵ (r·)
rH f (r)

and
Ẑ(r·)

rH f (r)
, where r is the scaling factor ,

f is a slowly varying at infinity function and H ∈ (1/2,1) is an adequate constant.
We prove that these two processes converge respectively, as r goes to ∞, in the
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distributional sense, to respective processes W (which is a rfBm process of Hurst
parameter H ) and Z (= �W).

Two main ingredients in the proofs of these results are the oscillation inequality
given by Bernard and el Kharroubi [1] (Lemma 1) for Theorem 1, and for Corol-
lary 1, the invariance principle given by Williams [20] (Theorem 4.1) for the re-
flected Brownian motion process, which can also be applied to the reflected fractional
Brownian motion process.

In a paper based on [12], Majewski [13] considers multi-class feedforward queue-
ing networks with priority service discipline and FIFO within each priority class,
driven by long-range dependent arrival and service time processes where feedback
is not allowed: stations are numbered in such a way that a customer leaving a queue
is routed to the next one, so the departures of the ith queue are the arrivals of the
(i + 1)th. Majewski proves a heavy traffic limit: given that cumulative arrival and
service time processes approach heavy traffic in such a way that the corresponding
normalized processes converge to a fractional Brownian motion, the scaled work-
load and queue length processes converge to multidimensional rfBm. Instead, in this
paper we assume that the external arrival process for the multi-class fluid network
is a non-deterministic aggregated cumulative process generated by a big number of
heavy tailed ON/OFF sources, and that each fluid class is processed at a constant rate
by using a FIFO service discipline. Moreover, the structure of the multi-class network
allowing feedback is more complex and rich than that of [13], and can be adapted to
several interesting examples, as Sect. 6 illustrates.

The importance of Theorem 1 and Corollary 1 in the present paper lies in the fact
that they show the role played by condition (SSC) (which is redundant if K = J ,
so it did not appear in [7]) for proving the convergence, under heavy traffic, of the
workload and fluid queue processes for a multi-class queueing fluid network under a
FIFO service discipline with feedback, in the heavy-tailed environment, and that the
workload limit process is a multidimensional rfBm. These results allow us to analyze
a wide variety of real situations, as the examples considered in Sect. 6 show, where
the more explicit form of condition (SSC) given by (6.2) is used. These examples are:
a two-stage queueing system or tandem queue with feedback, considered to be one
of the canonical “building blocks” in modern high speed communication networks
(Sect. 6.1), and a network with a traffic stream and a

∨
-system (a multi-class network

with a single server), both with feedback allowed, in Sect. 6.3.
The organization of the rest of the paper is as follows. In Sect. 2 we set up notation

and terminology. Definition of the reflected fractional Brownian motion process and
assumption on the reflection matrix R (HR) are presented at the end, in the Appendix.
The multi-class fluid network we consider is introduced in Sect. 3, where perfor-
mance processes, model equations and the rest of assumptions are given. Section 4
presents scaled processes and the main results (Theorem 1 and Corollary 1). Sec-
tion 5 deals with a kind of multiplicative state space collapse, which is a condition
apparently weaker than that of state space collapse; by using that R is a completely-S
matrix, which is a consequence of condition (HR), we show in Proposition 1 that they
are, in fact, equivalent conditions (see Williams [21] and Bramson [3, 4] for the intro-
duction of this kind of multiplicative condition in relation with state space collapse
and heavy traffic limits).
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2 Some definitions and terminology

For the convenience of the reader in this section we introduce some definitions and
notations from [7], making our exposition self-explanatory.

For each integer d ≥ 1, we will denote by Id the d-dimensional identity matrix.
Vectors will be column vectors and vT means the transpose of a vector (or a matrix) v.
Given v = (v1, . . . , vd)T ∈ R

d, hereafter we will denote by diag(v) (or, equivalently,
by diag(v1, . . . , vd)) the d × d diagonal matrix with diagonal elements v1, . . . , vd .
Let S denote the d-dimensional first orthant

S = R
d+ = {v = (v1, . . . , vd)T ∈ R

d : vi ≥ 0 ∀i = 1, . . . , d}.

For a d × d ′ matrix A = (aij )i=1,...,d,j=1,...,d ′ , let |A| def= max1≤j≤d ′(
∑

1≤i≤d |aij |).
We will say that a sequence of d × d ′ matrices {An}n converges to a d × d ′ matrix A

if |An −A| → 0 as n tends to ∞ (this convergence is equivalent to the convergence in
the componentwise sense), and we will denote it simply limn→∞ An = A. The same
applies for the particular case d ′ = 1, which corresponds to d-dimensional vectors,

with |v| def= ∑
1≤i≤d |vi |.

Let Cd be the space of continuous functions ω : [0,∞) → R
d , with the topology

of the uniform convergence on compact time intervals. For later use, for each T ≥ 0
and ω ∈ Cd , we define

‖ω(·)‖T
def= sup

t∈[0,T ]
|ω(t)| = sup

t∈[0,T ]

( ∑

1≤�≤d

|ω�(t)|
)

.

We will say that ωn → ω as n → ∞ in Cd (uniformly on compacts) if for any T ≥
0, ‖ωn(·) − ω(·)‖T → 0, and we will denote it limn→∞ ωn = ω. To measure the
oscillation of ω we make the following definition: for any T ≥ 0,

Osc
(
ω(·), [0, T ]) def= sup

0≤s<t≤T

|ω(t) − ω(s)| = sup
0≤s<t≤T

( ∑

1≤�≤d

|ω�(t) − ω�(s)|
)

.

Note that, in general, Osc(ω(·), [0, T ]) ≤ 2‖ω(·)‖T and that Osc(ω(·), [0, T ]) =
‖ω(·)‖T if ω(0) = 0 and ω�(t) ≥ 0 for any t ∈ [0, T ] and any 1 ≤ � ≤ d .

We will use the following notations for different types of convergence:
D-lim for the convergence in distribution on Cd (or weak convergence), P-lim for

the convergence in probability (uniformly on compacts), and ˜lim for the convergence
of the finite-dimensional distributions.

3 The multi-class fluid network

3.1 Introducing the model

In this section we present the family of multi-class fluid networks we deal with: those
whose input traffic alternates between heavy-tailed ON and OFF-periods, by follow-
ing the notation of Williams [21].
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We consider a network composed of J stations with a single server that processes
continuous fluid, and an infinite buffer, at each one, and we distinguish among fluid
of classes 1, . . . ,K , with K ≥ J . Each fluid class can be processed by only one sta-
tion but each station can process more than one class, and the many-to-one mapping
from fluid classes to stations is denoted by s, s : {1, . . . ,K} −→ {1, . . . , J }, s(k) be-
ing the station where class k fluid is processed. We can also introduce the J × K

(deterministic) constituency matrix C = (Cjk) by

Cjk
def=

{
1 if j = s(k),

0 otherwise.

For any j , s−1(j) is the constituency of station j , that is, the set of fluid classes that
are served at that station.

This model is a generalization of that introduced in [7], where K = J was as-
sumed, and therefore matrix C was the identity (that is, each server could only process
one fluid class).

We follow [7] in assuming that for each fluid class, say k, there are N i.i.d.
ON/OFF sources, each one with its own 0/1-valued jump process {U(n)

k (t), t ≥
0}, n = 1, . . . ,N , on a common probability space, and that they are all independent.
U

(n)
k (t) = 1 means that at time t source n of fluid class k is ON (and it is sending

fluid to the network, at a deterministic traffic rate αN
k ≥ 0), and U

(n)
k (t) = 0 means

that it is OFF. We suppose that, independently of k, the lengths of the ON-periods are
i.i.d., those of the OFF-periods are i.i.d., and the lengths of the ON- and OFF-periods
are mutually independent. The ON- and OFF-period lengths may have different dis-
tributions but at least one of them must be heavy-tailed. Their respective expected
values and variances are νon, σ

2
1 for the ON- and νoff, σ

2
2 for the OFF-periods, and

their respective density functions f1 and f2 are supposed to verify that as x → ∞,

∫ ∞

x

f1(u)du ∼ x−β1L1(x) and
∫ ∞

x

f2(u)du ∼ x−β2L2(x),

with L1 and L2 being positive slowly varying functions at infinity, and 1 < β1, β2 ≤
2. We assume that both νon and νoff are finite numbers but that σ 2

1 or σ 2
2 are infinite.

If σ 2
i < +∞, then βi = 2 and if σ 2

i = +∞, βi < 2.
If all sources where ON, class k fluid would arrive at deterministic rate αN

k ≥ 0,
and the cumulative external fluid traffic up to time t would be deterministic and equal
to αN

k t (this was the case for the fluid model introduced by Harrison in [8]). Instead,
as in [7], we define the cumulative external class k fluid generated up to time t (by
the N sources) in this way:

EN
k (t)

def= αN
k

∫ t

0

1

N

(
N∑

n=1

U
(n)
k (u)

)
du.

The K-dimensional (non-deterministic) aggregated cumulative external fluid traf-
fic process is EN = {EN(t) = (EN

1 (t), . . . , EN
K (t))T | t ≥ 0}, whose component

processes are all independent. We suppose, for the sake of simplicity, that at time
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t = 0 there is no accumulated fluid at the network (that is, EN(0) = 0). Let αN =
(αN

1 , . . . , αN
K )T .

From now on we make the assumption that fluid at each server is processed in
a first-in-first-out (FIFO) discipline, there is no capacity restriction in buffers, and
service discipline is under a non-idling (or work-conserving) policy, that means that
a server is never idle when there is fluid waiting to be processed at its station.

Suppose that class k fluid is processed at a constant rate μk > 0 (independent of
N ) if station s(k) were never idle and the server devoted all of its attention to class k.
Let mk = 1/μk be the mean service rate for class k fluid, m = (m1, . . . ,mK)T and
μ = (μ1, . . . ,μK)T .

Let Pk� be the proportion of class k fluid that leaving station s(k) goes next
to station s(�) as class � fluid. We assume that for each k,

∑K
�=1 Pk� ≤ 1 and

1 − ∑K
�=1 Pk� ≥ 0 is the proportion of class k fluid that leaving station s(k) goes

outside the network. Thus, P = (Pk�)
K
k,�=1 is a sub-stochastic matrix. It is called the

“flow” or “routing” matrix of the network, and it is assumed to have spectral radius

less than one. Hence, Q
def= (IK − P T )−1 is well defined.

3.2 Performance processes and model equations

The following descriptive processes ZN,WN and YN will be used to measure the
performance of the queueing fluid network:

The fluid queue process ZN is a K-dimensional process defined by: ZN
k (t) is the

class k fluid that is in queue or being processed (at station s(k)) at time t . We assume
that ZN(0) = 0.

The immediate workload process WN is a J -dimensional process defined by:
WN

j (t) denotes the amount of time required for server j to complete processing
of all fluids in queue (or being served) at station j at time t . We also assume that
WN(0) = 0.

The cumulative idle-time process YN is a J -dimensional process defined by:
YN

j (t) is the cumulative amount of time that the server at station j has been idle
in the time interval [0, t], that is,

YN
j (t)

def=
∫ t

0
1{WN

j (s)=0}ds.

Fluid queue and immediate workload processes measure the congestion and delay in
the network, while idle-time process measures utilization of resources.

We further define some other additional processes associated to the fluid model,
namely AN,DN,FN and LN , that will be useful in proofs.

AN and DN are K-dimensional processes defined by: AN
k (t) is the total class k

fluid arriving to server s(k) up to time t , including both feedback flow and external
input, and DN

k (t) is the total amount of class k fluid departing station s(k) (both
being routed to other stations or departing the network), up to time t . We assume
that AN(0) = DN(0) = 0. By definition, we have that if t and h are non-negative, for
any k,

DN
k (t + h) − DN

k (t) ≤ hμk. (3.1)
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FN is another K-dimensional process defined by FN def= P T DN, that is, FN
� (t) =∑K

k=1 Pk�D
N
k (t) is the total amount of class � fluid that is fed back to station s(�)

(due to the fraction of the amount DN
k (t) of class k fluid that leaving station s(k) is

next routed to station s(�) as class � fluid, summed over all fluid classes).

Finally, LN is a J -dimensional process defined by LN def= CMAN where M
def=

diag(m1, . . . ,mK). Since server s(k) requires an amount of time mka to process a
quantity a of fluid of class k, the amount of time that a server, say j , would need
in order to process the total quantity of fluid arriving in its station by time t equals
LN

j (t) = ∑
k∈s−1(j) mkA

N
k (t).

Processes EN , AN , DN , WN , ZN , YN , FN and LN are related by the following
model equations: for any t ≥ 0,

AN(t) = EN(t) + FN(t), (3.2)

WN(t) = LN(t) − et + YN(t), (3.3)

ZN(t) = AN(t) − DN(t), (3.4)

DN(t + CT WN(t)) = AN(t), (3.5)

WN(t) = CMZN(t), (3.6)

where e = 1 ∈ R
J . The interpretation of these equations is clear: in (3.3), WN

j (t) is
the amount of time required for server j to complete processing of all fluid buffered or
being served at station j at time t , which equals LN

j (t) (the cumulative total amount
of time required for server j to complete processing of fluid arrived at station j up
to time t) minus the amount of time, t − YN

j (t), that the server at station j has been
busy (working) up to time t . Equation (3.5) is

DN
k (t + WN

s(k)(t)) = AN
k (t), for all k = 1, . . . ,K,

and reflects the fact that we are assuming a FIFO service discipline.

Remark 1 Therefore, by (3.4) and (3.5) we have that

ZN
k (t) = DN

k (t + WN
s(k)(t)) − DN

k (t),

and by (3.1), for any k,

ZN
k ≤ μkW

N
s(k)

(
in matrix form, ZN ≤ M−1CT WN

)
. (3.7)

That is, by (3.6) we can express the workload in terms of the fluid queue process, the
natural thing, but for the reverse we only have the inequality given by (3.7). Roughly
speaking, we can say that the state space collapse condition stated below establishes
the existence of a deterministic operator which in the limit, when the number of
sources N tends to ∞, expresses the fluid queue in terms of the workload.
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We define λN to be the unique K-dimensional vector solution to the traffic equa-
tion, that in this case takes the form:

λN = αN νon

νon + νoff
+ P T λN (3.8)

(recall that νon and νoff are the expected values of the ON- and OFF-period lengths,
respectively), that is,

λN = QαN νon

νon + νoff

and it can be interpreted as the long run class k fluid rate into and out of station
s(k) (see Theorem 2 in [7], which is a Functional Weak Law of Large Numbers for
processes AN and DN there that justifies this interpretation).

We also define the fluid traffic intensity for station j as

ρN
j

def=
∑

k∈s−1(j)

λN
k mk

(
in matrix form, ρN = CMλN

)
, (3.9)

and introduce, by following [21], a K × J matrix �N = (
�N

kj

)
by

�N
kj

def=
⎧
⎨

⎩

λN
k

ρN
j

if k ∈ s−1(j),

0 otherwise.

3.3 Model assumptions

The following assumptions will be needed throughout the paper. In order to get
an asymptotic result we assume that the network is asymptotically critical, that is,
limN→∞ ρN

j = 1 for any j. This kind of assumption is typically known in the liter-
ature as heavy traffic, and expresses the requirement that the limit traffic intensity is
one by specifying the velocity of convergence of ρN to ρ = e, which will be faster
than N−1/2 in our case:

(HT) Heavy-traffic assumption

lim
N→∞

√
N

(
ρN − e

) = 0. (3.10)

As a consequence of this assumption, we deduce the existence of

α
def= lim

N→∞αN,

λ
def= lim

N→∞λN

(
= Qα

νon

νon + νoff

)
, and

�
def= lim

N→∞�N, whose elements are �kj =
{

λk if k ∈ s−1(j),

0 otherwise ,
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that is, � = diag(λ)CT . It is required that matrix � satisfies the following technical
restriction.

(H�) Hypothesis on matrix �

CMQ� is invertible.

Remark 2 Note that in the particular case K = J , this condition is trivially ac-
complished. Also note that under assumptions (HT) and (H�) we also have that

CMQ�N is invertible for N big enough. Therefore, if we define RN def= (IJ +
CMQP T �N)−1 (for N big enough), and R

def= (IJ + CMQP T �)−1, we have that
these matrices are well defined by assumption (H�), because

IJ + CMQP T �N = CMQ�N and IJ + CMQP T � = CMQ�.

Moreover, (HT) implies that

lim
N→∞RN = R. (3.11)

Our final assumption is a form of state space collapse that expresses a relationship
between the scaled immediate workload and the fluid queue length processes.

(SSC) Assumption of state space collapse

P- lim
N→∞

√
N

(
ZN − �NWN

) = 0. (3.12)

With regard to this condition see Remark 1, and also note that by (3.6), if we define

εN def= ZN −�NWN we have that εN = (IK −�NCM)ZN and, in the particular case
K = J , taking into account that �NCM = IK, εN = 0. So, if K = J condition (SSC)
is trivially accomplished. In general this is not the case, and it must be imposed. On
the other hand, by applying (3.7) we can always ensure that

εN ≤ (
M−1CT − �N

)
WN (which is non-negative). (3.13)

4 State space collapse and the heavy traffic limit

First we introduce the scaled (in space) processes associated to the fluid model (we
use a hat to denote them):

ÊN(t)
def= √

N

(
EN(t) − αNt

νon

νon + νoff

)
,

ÂN (t)
def= √

N
(
AN(t) − λNt

)
,

D̂N (t)
def= √

N
(
DN(t) − λN t

)
,

F̂ N (t)
def= √

N
(
FN(t) − P T λN t

)
,
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ŴN(t)
def= √

NWN(t),

ẐN (t)
def= √

NZN(t),

Ŷ N (t)
def= √

NYN(t),

L̂N (t)
def= √

N
(
LN(t) − ρN t

)
,

ε̂N (t)
def= √

NεN(t).

Note that with this notation, (SSC) condition can be rewritten as

P- lim
N→∞ε̂N = 0.

The following scaled equations are obtained by substituting scaled processes into
model equations (3.2)–(3.6), and will be used to determine the behavior of the scaled
immediate workload and the fluid queue processes, ŴN and ẐN , as N goes to infin-
ity:

ÂN = ÊN + F̂ N (by using (3.2) and (3.8)) (4.1)

L̂N = CMÂN (by using that ρN = CMλN by (3.9)), (4.2)

ŴN = L̂N + Ŷ N + γ̂ N by (3.3), if we introduce, (4.3)

γ̂ N (t)
def= √

N
(
ρN − e

)
t,

ŴN = CMẐN by using (3.6),

ẐN = ÂN − D̂N (by (3.4)), (4.4)

F̂ N = P T D̂N by definition of FN , and by (3.5), (4.5)

ÂN(t) = D̂N

(
t + CT ŴN(t)√

N

)
+ diag(λN)CT ŴN(t), (4.6)

ε̂N = ẐN − �NŴN = (
IK − �NCM

)
ẐN (4.7)

(and therefore, ẐN = ε̂N + �NŴN). (4.8)

Now we will find an alternative expression to (4.3) for ŴN in the following way:
first we substitute D̂N from (4.4) into (4.5), obtaining F̂ N = P T (ÂN − ẐN ), and in
turn by substituting this expression into (4.1) we obtain

ÂN = Q
(
ÊN − P T ẐN

)
. (4.9)

Substituting (4.9) into (4.2) and the resulting into (4.3) yields

ŴN = CMQÊN + γ̂ N − CMQP T ẐN + Ŷ N

= RN
(
CMQÊN + γ̂ N − CMQP T ε̂N + Ŷ N

)
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by using (4.8), which can be rewritten as

ŴN = X̂N + RNŶN (4.10)

with

X̂N def= RNCMQ
(
ÊN − P T ε̂N

) + RNγ̂ N . (4.11)

Remark 3 Note that processes appearing in expression (4.10) verify: ŴN has con-
tinuous paths; for any t ≥ 0, a.s. and ŴN(t) ∈ S = R

J+; Ŷ N has continuous and
non-decreasing paths, and for each j, a.s., Ŷ N

j (0) = 0 and

∫ ∞

0
ŴN

j (s)dŶN
j (s) = 0

(
equivalently,

∫ ∞

0
1{ŴN

j (s)>0}dŶN
j (s) = 0

)
.

In Theorem 1 below we study the relationship between state space collapse (SSC)
and the asymptotic behavior, when N → ∞, of the fluid model introduced in Sect. 3
whose model equations are (3.2)–(3.6), under the preceding hypotheses. More specif-
ically, we prove that (SSC) is a necessary and sufficient condition for the existence of
the scaled workload limit and fluid queue limit processes ŴN and ẐN .

Theorem 1 Assume that conditions (H�) and (HT) of Sect. 3, and (HR) introduced
in the Appendix, for matrix R, hold.

Then, condition (SSC) is necessary and sufficient for the existence of

Ŵ = ˜limN→∞ŴN and Ẑ = ˜lim
N→∞ẐN (and if they exist, then Ẑ = �Ŵ).

Proof Step 1: Sufficiency. We first mention that a slight modification in the proof of
Theorem 1 [7] actually shows that there exists

˜lim
N→∞(ÊN , ε̂N , γ̂ N ) = (Ê,0,0),

where Ê is a process with continuous paths. For a fuller treatment we refer the reader
to [7], where it can be seen that the convergence of ÊN to Ê is in the sense of the
convergence of the finite-dimensional distributions, because

ÊN
k (t) = αN

k

∫ t

0

1√
N

N∑

n=1

(
U

(n)
k (u) − νon

νon + νoff

)
du,

and then it can be shown by the usual Central Limit Theorem, as in [17], that

˜lim
N→∞ÊN(= Ê) = αT

∫ ·

0
G(u)du,

being {G(t), t ≥ 0} a K-dimensional driftless Gaussian and stationary process. Con-
vergence in the weak sense is not proved because unlike the limit considered in



170 Queueing Syst (2008) 59: 157–184

Corollary 1 below (where we deal with a Gaussian process with stationary incre-
ments and an adequate variance function), here the tightness criterion given by The-
orem 12.3 [2], cannot be applied successfully.

Following the above and by using (4.11) and the continuous mapping theorem (see

Corollary 1 of Theorem 5.1 in [2]), we obtain that X̂ = ˜limN→∞X̂N exists and can
be expressed as

X̂ = RCMQÊ. (4.12)

We proceed now to show the corresponding convergence for processes ŴN and Ŷ N :
first of all note that we can rewrite (4.10) as

ŴN =
(
X̂N + (

RN − R
)
Ŷ N

)
+ RŶN . (4.13)

On account of that and since R is completely-S by assumption (HR), we can apply the
oscillation inequality given in Lemma 1 [1] to obtain that a constant CR > 0 exists,
which only depends on R, such that for any T ≥ 0,

Osc
(
Ŷ N (·), [0, T ]

)
≤ CR Osc

(
X̂N(·) + (RN − R)ŶN(·), [0, T ]

)
, (4.14)

Osc
(
ŴN(·), [0, T ]

)
≤ CR Osc

(
X̂N(·) + (RN − R)ŶN(·), [0, T ]

)
. (4.15)

By (3.11), RN converges to R as N → ∞ and hence, N0 exists such that for any
N ≥ N0, CR|RN − R| < 1/2. Thus, (4.14) implies that if N ≥ N0,

‖Ŷ N (·)‖T = Osc
(
Ŷ N (·), [0, T ]

)

≤ 2CR Osc
(
X̂N(·), [0, T ]

)
≤ 4CR‖X̂N(·)‖T . (4.16)

By the continuity of Ê (which yields that X̂ is continuous by (4.12)), we have that
for any T ≥ 0 and for any ε > 0, a constant Kε > 0 and N1 exist such that if N ≥ N1,
P(‖X̂N(·)‖T ≤ Kε

4CR
) ≥ 1 − ε. Therefore, from (4.16) we conclude that if N ≥ N1 ∨

N0, P(‖Ŷ N (·)‖T ≤ Kε) ≥ 1 − ε.

Furthermore, fixed ε and Kε , N2 exists such that for any N ≥ N2, |RN −R| < ε
Kε

,
and consequently, for any N ≥ max{N0,N1,N2},

P
(|(RN − R)|‖Ŷ N (·)‖T ≥ ε

) ≤ ε,

that is, P-limN→∞(RN − R)ŶN = 0.

According to ŴN − (RN −R)ŶN = X̂N +RŶN , which is a consequence of
(4.13), it may be concluded that, if they exist, ˜limN→∞(X̂N +RŶN)= ˜limN→∞ŴN .

Since R verifies (HR), and X̂ = ˜limN→∞X̂N has continuous paths, from Remark 6
we deduce the existence of a unique strong path-wise solution of the R-regularization
problem of X̂, which coincides with ( ˜limN→∞ŴN , ˜limN→∞Ŷ N ). Therefore, if we
denote ˜limN→∞Ŷ N by Ŷ and ˜limN→∞ŴN by Ŵ , we have that the unique solution
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of the R-regularization problem of X̂ is (Ŵ , Ŷ ), and hence

Ŵ = X̂ + RŶ . (4.17)

From (4.8) and the continuous mapping theorem, the existence of

Ẑ = ˜lim
N→∞ẐN , with Ẑ = �Ŵ, (4.18)

follows.
Step 2: Necessity. The proof of necessity is based in writing ε̂N , by using (4.7),

(4.4) and (4.6), in this way:

ε̂N = ẐN − �NŴN = BN
1 + BN

2 , with

BN
1 (t) = D̂N

(
t + CT ŴN(t)√

N

)
− D̂N(t) and

BN
2 =

(
diag(λN)CT − �N

)
ŴN .

We assume condition (HT) and, in consequence,

lim
N→∞

(
diag(λN)CT − �N

) = diag(λ)CT − � = 0.

By assumption of the existence of Ŵ = ˜limN→∞ŴN , it follows that ˜limN→∞BN
2 = 0.

Let us now examine BN
1 . Taking into account that ˜limN→∞CT ŴN (t)√

N
= 0 and the ran-

dom time change theorem (see (17.9) in [2]), from the existence of

D̂ = ˜lim
N→∞D̂N

( = Q
(
Ê − P T Ẑ

) − Ẑ
)

(4.19)

(we will prove this fact below), we deduce that ˜limN→∞BN
1 = 0, which finishes the

proof of the convergence ˜limN→∞ε̂N = 0. Moreover, assumption (SSC) follows if
we prove tightness, and tightness can be easily checked by using (3.13), (4.15) and
(4.16), from which it may be concluded that a positive constant κ exists such that for
any T ≥ 0, ‖ε̂N (·)‖T ≤ κ‖X̂N(·)‖T . Hence, from the continuity of X̂ = ˜limN→∞X̂N

we have that for any T ≥ 0 and for any ε > 0, a positive constant K ′
ε > 0 exists such

that

P
(
‖ε̂N (·)‖T ≤ K ′

ε

)
≥ 1 − ε (for N big enough),

that is, sequence {ε̂N }N is tight.
To finish Step 2 we have to prove (4.19), as explained above. Indeed, (4.19) follows

from (4.4) and the existence of

˜lim
N→∞ÂN = ˜lim

N→∞Q
(
ÊN − P T ẐN

) = Q
(
Ê − P T Ẑ

)
,

which is a consequence of (4.9). Note that the existence of Ê, which was shown in
Step 1, does not need assumption (SSC). �
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We now introduce the scaled (in time) processes associated to the fluid model,
indexed by r , where r (the factor of scaling in time) tends to infinity through a strictly
increasing sequence of strictly positive real numbers. For this we introduce some
notation previously used in [17] and [7]. Set βmin = min(β1, β2)(∈ (1,2)). For any

j = 1,2, set aj = �(2−βj )

(βj −1)
if σ 2

j = +∞ and aj = σ 2
j

2 if σ 2
j < +∞. The normalization

factors used below depend on whether b, defined by b
def= limt→∞ tβ2−β1 L1(t)

L2(t)
, is

finite or not. If 0 ≤ b < ∞ we have that βmin = β2. Set L = L2 and

σ 2 = 2(ν2
offa1b + ν2

ona2)

(νon + νoff)3�(4 − βmin)
.

If, on the other hand, b = ∞, βmin = β1. Then set L = L1 and

σ 2 = 2ν2
offa1

(νon + νoff)3�(4 − βmin)
.

Let us define H
def= 3−βmin

2 .

Remark 4 In Corollary 1 below quantity H plays the role of the Hurst parameter of
the reflected fractional Brownian motion process (rfBm), to which the scaled in time
workload process converges. Definition of this process can be found in the Appendix.
Note that βmin ∈ (1,2) implies H ∈ ( 1

2 ,1). In particular, H > 1
2 (the condition on the

Hurst parameter corresponding to the long-range dependence behavior of the rfBm
process) is due to the fact that βmin < 2, that is, that the ON- or OFF-period lengths
(at least one of them) have infinite variance (heavy tails). As is mentioned in [17],
if both period lengths were light-tailed (with finite variances), then β1 = β2 = 2 and
H = 1

2 , which would correspond to the ordinary Brownian motion process, whose
increments are independent.

Corollary 1 Under the assumptions of Theorem 1, suppose that condition (SSC)
also holds. Then, X̂ = ˜limN→∞X̂N and Ŷ = ˜limN→∞Ŷ N exist, and if we define the
scaled in time limit processes by

ˆ̂
Wr(t)

def= Ŵ (rt)

rH L1/2(r)
,

ˆ̂
Xr(t)

def= X̂(rt)

rH L1/2(r)
,

ˆ̂
Y r(t)

def= Ŷ (rt)

rH L1/2(r)
and ˆ̂

Zr(t)
def= Ẑ(rt)

rH L1/2(r)
,

we also have the following:

(i) W = D- limr→∞ ˆ̂
Wr , X = D- limr→∞ ˆ̂

Xr and Y = D- limr→∞ ˆ̂
Y r exist,

(ii) W = X + RY and it is a rfBm on S = R
J+ with associated data

(
x = 0,H = 3 − βmin

2
, θ = 0,�,R

)
,

where � = σ 2RCMQdiag(α)2QT MCT RT , and
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(iii) Z = D- limr→∞ ˆ̂
Zr also exists, and Z = �W .

Remark 5 Assumption (HR) holds trivially for matrix R if K = J because
(�)−1M−1 = IJ and C = IJ in that case, and then we obtain that

R = (IJ + G)−1 = (CMQ�)−1 = �−1Q−1M−1

= �−1M−1 − �−1P T M−1 = IJ + ( − �−1P T M−1),

and � = �−1P T M−1 has the same spectral radius as P , which is supposed to be
strictly less than one. Therefore, for K = J assumption (HR) is accomplished, and
also conditions (SSC) and (H�), as we have seen above. Therefore, for K = J heavy
traffic (HT) is the only hypothesis we need to prove the rfBm limit for the scaled
(both in space and time) workload process, as was established in Theorem 1 of [7].

Proof of Corollary 1 The existence of X̂ = ˜limN→∞X̂N and Ŷ = ˜limN→∞Ŷ N is
proved in the Step 1 of the proof of Theorem 1, and we also have by (4.12) and (4.17)
that

X̂ = RCMQÊ and Ŵ = X̂ + RŶ . (4.20)

Furthermore, with a similar proof to that of Theorem 1 [7], we can obtain that

D- lim
r→∞

ˆ̂
Er = BH ,

where BH is a K-dimensional drift-less fractional Brownian motion with associated
data (x = 0,H = 3−βmin

2 , θ = 0,� = σ 2 diag(α)2). Here, as we have pointed out in
the proof of the previous theorem, the convergence in the weak sense can be proved,
as in [17], by using the tightness criterion.

As a consequence, we have that D-limr→∞ ˆ̂
Xr = X exists, with X = RCMQBH

by (4.20), which is a J -dimensional fBm with associated data (x = 0,H =
3−βmin

2 , θ = 0,�), being � the matrix

� = σ 2RCMQdiag(α)2QT MCT RT .

Moreover, from (4.20) we conclude that Ŵ , X̂ and Ŷ verify the hypotheses of the
invariance principle of Theorem 4.1 [20] with matrix R, taking into account that

D- limr→∞ ˆ̂
Xr = X, and R is a Completely-S matrix by assumption (HR).

Therefore, {( ˆ̂
Wr,

ˆ̂
Xr,

ˆ̂
Y r)}r inherits tightness from sequence { ˆ̂

Xr}r and conse-
quently, by assumption (HR) (see Corollary 4.3 [20]),

D- lim
r→∞

( ˆ̂
Wr,

ˆ̂
Xr,

ˆ̂
Y r

) = (W,X,Y ) exists,

where W = X + RY , and conditions of Definition 1 (see Appendix) are satisfied.
Hence W is a J -dimensional rfBm on S = R

J+ with associated data (x = 0,H =
3−βmin

2 , θ = 0,�,R), and (i) and (ii) are proved.
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Finally, we deduce (iii) from (4.18).
We mention that Theorem 4.1 [20] gives the convergence in the distributional

sense on DJ , the space of functions from [0,∞) to R
J which are right continuous and

have finite left hand limits, with the Skorokhod topology. Our convergence is taken
in the distributional sense on CJ , and is implied by the convergence on DJ because
the Skorokhod topology relativized to CJ coincides with the uniform topology over
compacts. �

5 Multiplicative state space collapse

It is possible, by following [4], to introduce an assumption related to (SSC) which is
a kind of multiplicative state space collapse, in our setting:

(MSSC) Multiplicative state space collapse

P- lim
N→∞

ε̂N

‖WN(·)‖T ∨ 1
= 0.

It is obvious that (SSC) implies (MSSC), because for any N and t , if we introduce
the notation

ζ̂ N (t)
def= ε̂N (t)

‖WN(·)‖T ∨ 1
,

we have that |ζ̂ N (t)| ≤ |ε̂N (t)|. We will see in Proposition 1 below that in fact they
are equivalent (that is, (MSSC) also implies (SSC)) if matrix R is Completely-S .
Previously, in Lemma 1 we will establish a technical result that is needed in the proof
of Proposition 1.

Lemma 1 Assume that R is a Completely-S matrix and that (MSSC) holds. There-
fore, for any T ≥ 0 and for any ε > 0, a constant CR,ε > 1 which only depends on R

and ε, and Ñ exist such that for any N ≥ Ñ, we have that

P
(‖ŴN(·)‖T ∨ 1 ≤ CR,ε

) ≥ 1 − ε

(equivalently, ‖ŴN(·)‖T is bounded in probability, that is, a constant C̃R,ε > 0 and
Ñ exist such that for any N ≥ Ñ, P (‖ŴN(·)‖T ≤ C̃R,ε) ≥ 1 − ε, by taking C̃R,ε =
CR,ε − 1).

Proof By (4.15) and (4.16) we have that a constant CR > 0 which only depends on
R exists such that for any N ≥ N0 (N0 is the fixed value that appears in the proof of
expression (4.16)),

‖ŴN(·)‖T = Osc
(
ŴN(·), [0, T ]

)

≤ CR Osc
(
X̂N(·), [0, T ]

)
+ 1

2
Osc

(
Ŷ N (·), [0, T ]

)

≤ 2CR Osc
(
X̂N(·), [0, T ]

)
. (5.1)
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By defining ξ̂N def= CMQÊN + γ̂ N , (4.11) gives that

Osc
(
X̂N(·), [0, T ]

)

= Osc
(
RN

(
ξ̂N (·) − CMQP T ζ̂N(·)(‖ŴN(·)‖T ∨ 1

))
, [0, T ]

)

≤ |RN |Osc
(
ξ̂N (·), [0, T ]

)

+ |RNCMQP T |(‖ŴN(·)‖T ∨ 1
)

Osc
(
ζ̂ N (·), [0, T ]

)

≤ 2|RN |‖ξ̂N (·)‖T + 2|RNCMQP T |(‖ŴN(·)‖T ∨ 1
)‖ζ̂ N (·)‖T . (5.2)

By assumption (MSSC), it follows that ‖ζ̂ N (·)‖T → 0 in probability as N goes to
infinity. Consequently, N1 exists such that for any N ≥ N0 ∨ N1,

P

(
4CR|RNCMQP T |‖ζ̂ N (·)‖T >

1

2

)
≤ ε

2
.

From (5.1) and (5.2) we deduce the following chain of inclusions:
{

4CR|RNCMQP T |‖ζ̂ N (·)‖T ≤ 1

2

}

⊆
{
‖ŴN(·)‖T ≤ 4CR|RN |‖ξ̂N (·)‖T + 1

2

(‖ŴN(·)‖T ∨ 1
)}

⊆
{(‖ŴN(·)‖T ∨ 1

) ≤ 8CR|RN |‖ξ̂N (·)‖T + 1
}
,

and therefore

P
((‖ŴN(·)‖T ∨ 1

) ≤ 8CR|RN |‖ξ̂N (·)‖T + 1
)

≥ 1 − ε

2
.

On the other hand, the continuity of Ê implies that of

ξ̂ = ˜lim
N→∞ξ̂N = CMQÊ,

and then for any T ≥ 0 and for any ε > 0, a constant κε > 0 and N2 exist such that if
N ≥ N2,

P
(
‖ξ̂N (·)‖T ≤ κε

)
≥ 1 − ε

2
.

By using now that |RN | ≤ 2|R| if N is big enough, say N ≥ N3, since RN → R, we
have that for any N ≥ Ñ , with Ñ = max{N0,N1,N2,N3},

P
((‖ŴN(·)‖T ∨ 1

) ≤ CR,ε

)
≥ 1 − ε, where CR,ε = 16CR|R|κε + 1(> 1),

which finishes the proof. �
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Proposition 1 Assume that R is a Completely-S matrix. Then,

(MSSC) =⇒ (SSC).

Proof We have that ε̂N (t) = ζ̂ N (t)(‖ŴN(·)‖T ∨ 1) for any t . Since we suppose that
assumption (MSSC) holds, we obtain that for any ε > 0 and for any T ≥ 0, N ′ exists
such that for any N ≥ N ′,

P

(
‖ζ̂ N (·)‖T ≥ ε

CR,ε/2

)
≤ ε

2
,

by taking CR,ε/2 to be the constant that appears in Lemma 1 by substituting ε for ε/2
there. Lemma 1 implies that Ñ exists such that for any N ≥ Ñ , P(‖ŴN(·)‖T ∨ 1 >

CR,ε/2) ≤ ε
2 , and therefore, for any N ≥ N ′ ∨ Ñ ,

P
(
‖ε̂N (·)‖T ≥ ε

)
= P

(
‖ζ̂ N (·)‖T

(‖ŴN(·)‖T ∨ 1
) ≥ ε

)

≤ P

(
‖ζ̂ N (·)‖T ≥ ε

CR,ε/2

)
+ P

(
‖ŴN(·)‖T ∨ 1 > CR,ε/2

)
≤ ε,

and the proof now is finished because we have proved that for any T ≥ 0, ‖ε̂N (·)‖T

converges to 0 in probability as N → ∞, that is, P- limN→∞ ε̂N = 0. �

6 Examples

We start this section by considering the example of a tandem queue with feedback.
We will examine this example in some detail.

6.1 The tandem queue with feedback

Consider a fluid tandem queue, which is a network with two stations (J = 2) and three
fluid classes (K = 3). Class 1 fluid enters the system from outside (at rate αN

1 > 0)
and it is processed by server 1. After being processed (at constant processing rate
1/m1) by the first server, this fluid goes into station 2 as class 3 fluid, where it is
processed at constant processing rate 1/m3. After that, a proportion q ∈ (0,1] of
fluid goes outside the network but the proportion p = 1 − q goes back to station 1 to
be reprocessed as class 2 fluid, at constant processing rate 1/m2, and then goes again
to station 2 as class 3 fluid, and so on. This model, which is a two-stage queueing
system, seems adequate, for example, for situations in which there is recycling, that
is, quality control inspection is performed after first stage at the second one, and fluid
that does not meet quality standards is sent back to station 1 for reprocessing.

In that scenario, αN
1 > 0 but αN

2 = αN
3 = 0 (the system only allows external ar-

rivals of class 1 fluid). Constituency and flow matrices are, respectively,

C =
(

1 1 0
0 0 1

)
and P =

⎛

⎝
0 0 1
0 0 1
0 p 0

⎞

⎠
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(note that P is a sub-stochastic matrix with spectral radius
√

p, which is strictly less
than 1). Therefore, by (3.6) we can express the workload process in terms of the fluid
queue process as WN = CMZN , that is,

{
WN

1 = m1Z
N
1 + m2Z

N
2 , and

WN
2 = m3Z

N
3 .

We can isolate from the second equation and obtain ZN
3 = 1

m3
WN

2 , but we cannot do

the same with ZN
1 nor ZN

2 . On the other hand, we also know that ZN ≤ M−1CT WN

(see (3.7)), that is,
⎧
⎪⎨

⎪⎩

ZN
1 ≤ 1

m1
WN

1 ,

ZN
2 ≤ 1

m2
WN

1 , and

ZN
3 ≤ 1

m3
WN

2 (actually, this is an equality).

Fluid traffic intensity is ρN = (ρN
1 , ρN

2 )T , with ρN
1 = λN

1 m1 + λN
2 m2 and ρN

2 =
λN

3 m3, being λN = QαNν (by ν we denote throughout this section constant νon
νon+νoff

).

Taking into account that Q = (IK − P T )−1, we have that

Q = 1

q

⎛

⎝
q 0 0
p 1 p

1 1 1

⎞

⎠

and thus

λN
1 = ναN

1 , λN
2 = ν

p

q
αN

1 and λN
3 = ν

1

q
αN

1 . (6.1)

Heavy traffic condition (HT) can be stated as:

α1
( = lim

N→∞αN
1

) = q

m3ν
> 0 and qm1 + pm2 = m3

by using that λN
1 m1 + λN

2 m2 −→ 1, λN
3 m3 −→ 1, and that by (6.1),

λN
1 → λ1 = να1, λN

2 → λ2 = ν
p

q
α1 and λN

3 → λ3 = ν
1

q
α1.

Under (HT) we have

� =
⎛

⎝
λ1 0
λ2 0
0 λ3

⎞

⎠ and CMQ� =
(

1 + p
q

m2
m3

p
q

m2
m3

1
q

1
q

)
,

which turns out to be an invertible matrix. Thus, assumption (H�) is accomplished.
State space collapse (SSC) can be expressed under (HT) in the following way:

P- lim
N→∞

(
λN

2 ZN
1 − λN

1 ZN
2

)
exists and equals zero,
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because

IK − �NCM =

⎛

⎜⎜⎜⎝

1 − m1λ
N
1

ρN
1

−m2λ
N
1

ρN
1

0

−m1λ
N
2

ρN
1

1 − m2λ
N
2

ρN
1

0

0 0 0

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

m2λ
N
2

ρN
1

−m2λ
N
1

ρN
1

0

−m1λ
N
2

ρN
1

m1λ
N
1

ρN
1

0

0 0 0

⎞

⎟⎟⎟⎠ .

Finally, with respect to condition (HR) we have that

R = (
CMQ�

)−1 =
(

1 −p m2
m3−1 q + p m2
m3

)
= I2 + �, with � =

(
0 −p m2

m3−1 p(m2
m3

− 1)

)

and we can ensure that the spectral radius of the matrix obtained from � by replacing
its elements by their absolute values, is strictly less than 1

if p <
m3

2m2 − m3
in the case m3 < m2

(otherwise, the spectral radius is always strictly less than 1).
As a consequence of all these facts, we can see that Theorem 1 and Corollary 1

for that tandem queue could be rewritten in this way:

Corollary 2 For the tandem queue considered in this section and with notations of
the previous sections, under assumptions:

(h1)

⎧
⎪⎨

⎪⎩

αN
1 −→ q

m3ν
,

qm1 + pm2 = m3,

p <
m3

2m2−m3
if m3 < m2

we have that condition

(h2) P- lim
N→∞

(
λN

2 ZN
1 − λN

1 ZN
2

)
exists and equals zero

is necessary and sufficient for the existence of Ŵ and Ẑ (which must verify pẐ1 =
qẐ2), and Ẑ = �Ŵ. Moreover, under (h1) and (h2), we have that

(i) W,X and Y exist,
(ii) W = X + RY and it is a rfBm on S = R

2+ with associated data

(
x = 0,H = 3 − βmin

2
, θ = 0,�,R

)
, where

R =
(

1 −p m2
m3−1 q + p m2
m3

)
and � = σ 2α2

1

(
m2

1 m1(m3 − m1)

m1(m3 − m1) (m3 − m1)
2

)

with α1 = q
m3ν

, and
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(iii) Z also exists, and Z = �W, that is,
⎧
⎪⎨

⎪⎩

Z1 = q
m3

W1,

Z2 = p
m3

W1,

Z3 = 1
m3

W2.

6.2 More insight into condition (SSC)

In general, if we do not know the structure of the network, we cannot obtain expres-
sions as explicit as in the previous example for condition (SSC) nor for condition
(HT), which states that the limit values of parameters m and λ verify

ρj =
∑

k∈s−1(j)

λkmk = 1 for any j = 1, . . . , J.

Nevertheless, it is quite straightforward to show that condition (SSC) can be ex-
pressed in general in the following way: for any k such that s−1(s(k))�{k} �= ∅ ,

P- lim
N→∞

(
(ρN

s(k) −λN
k mk)Z

N
k −

∑

k′∈s−1(s(k)),k′ �=k

λN
k mk′ZN

k′
)

exists and equals zero

(6.2)

Indeed, we have that IK − �NCM is a K × K matrix with diagonal square matrix
boxes (and zeros outside), one for each station. Take one of these boxes, say that
corresponding to station j , and assume that fluid classes processed at that station are
j1, . . . , jr1 . Then, row � of this box (for � = 1, . . . , r1) has the form:

(
−λN

j�
mj1

ρN
j

,−λN
j�

mj2

ρN
j

, . . . ,−λN
j�

mj�−1

ρN
j

,1 − λN
j�

mj�

ρN
j

,−λN
j�

mj�+1

ρN
j

, . . . ,−λN
j�

mjr1

ρN
j

)
.

Therefore, by Theorem 1, under (HT), (H�), (HR) and (SSC), we know that Ẑ exists,
and verifies that for any k such that s−1(s(k))�{k} �= ∅ ,

Ẑk = λk

1 − λkmk

∑

k′∈s−1(s(k)),k′ �=k

mk′Ẑk′ , (6.3)

and moreover Ŵ exists and Ẑ = �Ŵ. Note that condition (SSC) as stated in (6.2),
expresses some relationships between those components of Ẑ that correspond to the
fluid classes processed at the same station (see (6.3)). In particular, if for one sta-
tion there is only one fluid class processed there, there is no restriction in the corre-
sponding component of Ẑ. Corollary 1 (analogously to Corollary 2) says that under
the same hypotheses, both the rfBm process W , which is the limit of the workload
process, and the queue limit process Z, exist, and moreover Z = �W, that is,

Zk = λkWs(k), for any k = 1, . . . ,K (6.4)
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We can observe that formula (6.4) is compatible with (3.6), which implies that in the
limit, for any station j , Wj = ∑

k∈s−1(j) mkZk, because

∑

k∈s−1(j)

mkZk =
∑

k∈s−1(j)

mkλkWs(k) = Wj

∑

k∈s−1(j)

mkλk = Wjρj = Wj,

and also with (3.7), because λk ≤ μk(= 1
mk

) due to the fact that λkmk ≤ ρs(k) = 1.

Finally, we point out that (6.4) can be thought of as another approach to the interpre-
tation of λk as the long run class k fluid rate into and out of station s(k).

We can apply comments in this subsection to other examples than the tandem
queue. Only as an illustration, we consider two more examples in the next subsection.

6.3 Two more examples

A queueing network with a traffic stream Consider a queueing network similar to
that introduced by Majewski [13] (Sect. 6). In that network, a traffic stream has to tra-
verse several (say J ) stations which are additionally loaded with long-range depen-
dent background traffic. We have then J stations and K = 2J fluid classes. αN

1 > 0 is
the arrival rate for class 1 fluid (the incoming stream) to station 1, which also serves
class 2 fluid (that arrives from outside at rate αN

2 > 0 and after being served at this
station leaves the system). When class 1 fluid finishes service at station 1, it is sent to
station 2 as class 3 fluid. Class 4 fluid also arrives at station 2 from outside, at a rate
αN

4 > 0, and after being served leaves the system. Class 3 fluid, when served, next
goes to station 3 as class 5 fluid, and so on. At the last station, when service finishes,
all the fluid leaves the system.

With this notation, class 1 fluid is the traffic stream that must traverse all the J

stations by changing class (from class 1 at station 1 to class 3 at station 2, . . . , to class
2j − 1 at station j ). Moreover, at any station j there is an extra input of class 2j fluid
that arrives from outside, at rate αN

2j > 0. Then, station j processes two fluid classes:
2j − 1, which is the traffic stream, and 2j , which comes from outside, at respective
constant processing rates 1/m2j−1 and 1/m2j . Note that αN

3 = · · · = αN
2J−1 = 0, and

by using that λN = QαNν (recall that ν = νon
νon+νoff

) we have:

for any station j, λN
2j = αN

2j ν, λN
2j−1 = αN

1 ν.

As a consequence, the restriction on the parameters introduced by (HT) is:

∃α1 = lim
N→∞αN

1 > 0, α2j = lim
N→∞αN

2j > 0 and ν
(
α1m2j−1 + α2jm2j

) = 1 ∀j

It can be easily seen that conditions (H�) and (HR) are satisfied, because CMQ� is
a lower-triangular matrix with all its diagonal elements equal to 1, under (HT) (and,
consequently, the same applies for R = (CMQ�)−1).

By (6.2) condition (SSC) can be expressed as:

P- lim
N→∞

(
αN

2jZ
N
2j−1 − αN

1 ZN
2j

)
exists and equals zero, for anyj = 1, . . . , J
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As a consequence, by (6.3) we will have that Ẑ2j−1 = α1
α2j

Ẑ2j for any j , and finally
(6.4) becomes:

Z2j−1 = α1νWj and Z2j = α2j νWj , for any j = 1, . . . , J

A
∨

-system with feedback allowed As a final example consider now a
∨

-system
consisting of multiple fluid classes (K > 1 classes) served by a single server (J = 1).
We assume that fluid classes from 1 to K − 1 arrive at the server from outside at
respective rates αN

1 , . . . , αN
K−1 > 0. After being processed with constant processing

rates 1/m1, . . . ,1/mK−1 > 0 respectively, respective proportions q1, . . . , qK−1 of
fluid leave the system, and the rest, p1, . . . , pK−1 with p� = 1 − q�, come back to the
server as class K fluid to be served (with a FIFO service discipline) with a constant
processing rate 1/mK > 0. After being served, a proportion of qK(> 0) class K fluid
leaves the system and the rest (pK = 1 − qK ) comes back to the server as class K

fluid again. Note that p� = 0 for all � corresponds to the non-feedback model, and
that it is allowed to have feedback only for some classes. It could be possible as well
that some p�, � = 1, . . . ,K − 1, be equal to 1, but pK must be strictly less than 1 .

In this example, matrix P is identically zero except for its last column, whose
elements are p1, . . . , pK , and has spectral radius

√
pK < 1. Taking into account that

αN
K = 0, we obtain that

λN
� = ναN

� for � = 1, . . . ,K − 1, and λN
K = ν

1

qK

K−1∑

s=1

psα
N
s .

Condition (HT) can be written as:

∃α� = lim
N→∞αN

� > 0 for � = 1, . . . ,K − 1, and ν

K−1∑

s=1

αs

(
ms + ps

qK

mK

) = 1

Under (HT) conditions (H�) and (HR) are trivially satisfied in this example, because

CMQ� = 1 + ν
1

q2
K

(
K−1∑

s=1

psαs

)
mK(≥ 1).

Condition (SSC) is expressed by means of:

P- lim
N→∞

(
(ρN − ναN

� m�)Z
N
� − ναN

�

∑

k �=�

mkZ
N
k

)
= 0 for � = 1, . . . ,K − 1, and

P- lim
N→∞

(
qK

(
K−1∑

s=1

αN
s ms

)
ZN

K −
(

K−1∑

s=1

psα
N
s

)
K−1∑

k=1

mkZ
N
k

)
= 0
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and as a consequence, (6.3) and (6.4) become, respectively,

Ẑ� =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

να�

1−να�m�

∑
k �=�

mkẐk if � = 1, . . . ,K − 1

1
qK

(
K−1∑
s=1

psαs

K−1∑
s=1

αsms

)K−1∑
k=1

mkẐk if � = K

Z� =

⎧
⎪⎨

⎪⎩

να�W1 if � = 1, . . . ,K − 1

1
qK

ν
(K−1∑

s=1
psαs

)
W1 if � = K
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Appendix

Besides [7], from where we draw the definition and notation, the multidimensional re-
flected fractional Brownian motion (rfBm) process has also been introduced in other
papers. For instance, in [12] a single-class queueing network with long-range depen-
dent arrival and service processes is considered, and it is shown that the normalized
queue length converges to a d-dimensional rfBm process, being d the number of
nodes or servers. The definition of this process, as picked up from [7], is as follows:

Definition 1 (rfBm) A reflected fractional Brownian motion on S = R
J+ associated

with data (x,H, θ,�,R), where x, θ ∈ S, H ∈ (0,1) and � and R are J × J ma-
trices, being � a positive definite one, is a J -dimensional process W = {W(t) =
(W1(t), . . . ,WJ (t))T , t ≥ 0} such that

(i) W has continuous paths and W(t) ∈ S for all t ≥ 0 a.s.,
(ii) W = X + RY a.s., with X and Y two J -dimensional processes defined on the

same probability space verifying:
(iii) X is a fBm with associated data (x,H, θ,�), that is, it is a continuous Gaussian

process starting from x, with mean value E(X(t)) = x + θt for any t ≥ 0 (θ is
the drift vector), and with covariance function given by: if t, s ≥ 0,

Cov
(
X(t),X(s)

) = E
((

X(t) − (x + θt)
)(

X(s) − (x + θs)
)T

)
= �H (s, t)�,

where �H (s, t) = 1
2 (t2H + s2H − |t − s|2H ).

(iv) Y has continuous and non-decreasing paths, and for each j = 1, . . . , J, a.s.,
Yj (0) = 0 and

∫ ∞
0 1{Wj (s)>0}dYj (s) = 0 (that means, Yj can only increase when

W is on face Fj = {y ∈ S = R
J+ : yj = 0}).
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It is also said that the pair (W,Y ) is a R-regularization of X, that (W,Y ) is a solution
of the R-regularization problem of X or that it is a solution of the multidimensional
Skorokhod problem associated to X.

To get an idea, rfBm starts in the interior of S and behaves like a fBm until it
touches the boundary of S, formed by faces Fj . Therefore, it is instantaneously “re-
flected”, by preventing the exit of S. For each j , the j th column of the reflection ma-
trix R gives the direction of the reflection on face Fj , and component Yj of process Y

gives its intensity. Two fundamental properties of fBm justify the general interest in
it from the modelling point of view: fBm is a self-similar process and has long-range
dependent increments, which are positively correlated if 1/2 < H < 1 (the most fre-
quently encountered in modeling).

Remark 6 Proposition 4.2 [20] shows that condition (HR) stated below (denoted as
condition (II) there), which is stronger than the completely-S assumption, is sufficient
to have strong path-wise uniqueness of the solution of the R-regularization problem
of X.

(HR) Hypothesis on the Reflection Matrix R

R can be expressed as IJ +�, with � a J ×J matrix such that the matrix obtained
from � by replacing its elements by their absolute values, has spectral radius less
than 1.
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