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Abstract In this paper we investigate an M/M/∞ queue whose parameters depend on
an external random environment that we assume to be a semi-Markovian process with
finite state space. For this model we show a recursive formula that allows to compute
all the factorial moments for the number of customers in the system in steady state.
The used technique is based on the calculation of the raw moments of the measure of
a bidimensional random set. Finally the case when the random environment has only
two states is deeper analyzed. We obtain an explicit formula to compute the above
mentioned factorial moments when at least one of the two states has sojourn time
exponentially distributed.
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1 Introduction

The M/M/∞ queue is one of the simplest model in queueing theory. This is due to the
joint situation to have a memory-less arrival process and an infinite set of servers that
allows customers to behave independently from each other. This suddenly stops to be
true after introducing some correlation between customers. In this paper we achieve
that by introducing an independent random environment that modulates the system
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parameters, i.e. the arrival rate and the server speeds. Queues with variable service
and arrival speeds arise naturally in practice and therefore many classical works can
be found. Most of the results deal with the single server queue, see for example
[10, 13, 14] and references therein. Neuts [8] analyzed the M/M/1 queue as well as
the M/M/C queue in random environment by using the matrix-geometric approach
while Takine and Sengupta [15] looked at the infinite server queue when only the
arrival process was subject to a Markovian modulation. The infinite server queue in
random environment has then been studied by Keilson and Servi [7], Baykal-Gursoy
and Xiao [2] and D’Auria [5] in the special case when the random environment is
Markovian and has only two states.

In [9] the authors looked at the case when the environment is given by a finite
state Markov process and for this case they showed how to compute the factorial
moments for the number of customers in the system in steady state. Here we extend
their analysis to the case of a semi-Markovian random environment.

This extension is interesting as it makes the model more attractive for application
purposes. Indeed, despite its simplicity, the M/M/∞ system is often used to model
pure delay systems, such as highways, satellite links or long communication cables,
or to approximate the behavior of multi server systems. When these kinds of systems
are subject to external influences, such as day time changing rates, it is then helpful
to look at extended models, such as the one proposed in this work, in order to analyze
or predict their behaviors.

The methodology we use follows the technique developed in [5]. It consists on
representing the stationary and isolate M/G/∞ system as a Poisson process on R

2 and
by computing the number of customers in the system by measuring a deterministic
set according to the point process measure (see also [11, Sect. 3.3] and [6]). In this
context the random environment can be expressed as a random modulation of the set
and in the special case of exponential distributed service times its measure can be
derived by solving a system of stochastic equations, see relation (4.5) below. We use
this relation to compute the factorial moments for the number of customers in the
system at steady state.

2 Model description

To start, we define the random environment {�(u),u ∈ R} as a semi-Markov chain
with values in the finite state space E = {1, . . . ,K}. We assume that the sojourn
time in the state k ∈ E, denoted as Tk , is an independent positive random variable
whose distribution function has Laplace transform denoted by τk(s) := E[e−sTk ]. In
the following we show that the Laplace transform is the only information we need to
compute the moments. When the sojourn time in state k ∈ E expires, the environment
jumps to state j ∈ E with probability pkj . Denoting by P := {pkj }k,j∈E the routing
matrix that we assume irreducible and with no loss of generality with pkk = 0, we
can define the reverse routing matrix

Q := �−1P� �, (2.1)

where P� denotes the transpose of the matrix P, � := diag(�π) and �π is the stationary
distribution of the Markov chain generated by P (see [3, Sect. 6.1]).
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We assume that when the environment is in state k ∈ E customers arrive accord-
ing to a Poisson rate λk ≥ 0. Each of them brings an independent request of service,
σ , that is exponentially distributed with rate μ. All servers work at constant speed
βk = μk/μ ≤ 1. To avoid trivial cases we assume that μ,β,λ > 0 where
λ := maxk∈E λk and β := maxk∈E βk .

By the results in [5] the system is stable and we are allowed to study its stationary
regime.

We then look at the system at time 0 and we count the number of customers
still in the system. We order them according to their arrival times {uh}h∈Z with
uh < uh+1 and u−1 < 0 ≤ u0, and we denote by G(σ) := 1 − e−μσ , σ > 0, the
common exponential distribution function of the {σh}h∈Z.

The h-th customer, h < 0, will be in the system at time 0 iff its service time, σh,
is greater than the work done by the server it has occupied during the time interval
[uh,0). We denote this quantity by F�(uh) and, as the subscript shows, it is a random
quantity that depends on the random environment �. Its value can be computed in the
following way,

F�(u) :=
∫ 0

u

β�(t)dt, u ≤ 0. (2.2)

Denoting by N the number of customers in stationary regime we have that it is
given by

N =
∑
h<0

1{σh > F�(uh)}, (2.3)

where 1{·} is the indicator function of the set {·}. It is helpful to rewrite the numer-
able collection of indicator functions appearing in expression (2.3) in the following
equivalent way

1{σh > F�(uh)} = δ(uh,σh)(A�)

where δ(u,σ ) denotes a Dirac delta measure with center (u,σ ) ∈ R × R
+ and the set

A� ⊂ R
− × R

+ is given by

A� := {(u,σ ) ∈ R
− × R

+ : σ > F�(u)}. (2.4)

This alternative formulation allows the decoupling of the sequence {(uh, σh)}h∈Z and
the function F�(u) both depending on the realization of the environment � in the
computation of the quantity N . Indeed we can express the stationary number of cus-
tomers in the system in the following way

N =
∑
h<0

δ(uh,σh)(A�) = N�(A�), (2.5)

where

N� :=
∑
h∈Z

δ(uh,σh) (2.6)

is a point process which locates one Dirac delta measure at each arrival point
{(uh, σh)}h∈Z. For the theoretical background and definition of point processes see
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[4, Sect. 7.1] or [11, Sect. 3.1]. The subscript � stays to denote that N� depends on
the random environment by the sequence of arrival times {uh}h∈Z. Indeed given a
realization γ of the process �, the sequence ({uh}h∈Z|� = γ ) belongs to an inhomo-
geneous Poisson process with intensity rate λγ (u), u ∈ R. By Proposition 3.8 in [11]
it follows that N�|� = γ is still a Poisson process, now on R × R

+, with intensity
measure

λγ (A) := E[N�(A)|� = γ ] =
∫

A

λγ (u)duG(dσ), A ⊂ R × R
+.

Finally N� is a doubly stochastic Poisson process or, more briefly, a Cox process
(see [4, Sect. 8.5]), i.e. a Poisson process whose intensity measure is itself random
and given by

λ�(A) := E[N�(A)|�] =
∫

A

λ�(u)duG(dσ), A ⊂ R × R
+. (2.7)

It is well known that the finite dimensional distributions of a Cox process are of mixed
Poisson type (see [4, Corollary 8.5.II]), or equivalently that for any set A ⊂ R × R

+

N�(A) ∼ Po(|A|�) (2.8)

is a Poisson random variable whose parameter is itself random with value |A|� =
E[N�(A)|�]. |A|� can be geometrically interpreted as the measure of the set A ac-
cording to the measure λ�(·), i.e. |A|� = λ�(A).

From relations (2.5) and (2.8) we finally get that

N ∼ Po(|A�|�), (2.9)

a mixed Poisson random variable with random parameter |A�|� = λ�(A�). Figure 1
shows an example of realization where the random environment has K = 5 states: the
dots are the centers of the Dirac deltas of the point process N� , while the piecewise
linear function F�(u) denotes the lower bound of the set of integration A� . The
customers present in the system at time 0 are then the ones whose dots fall in the
set A� ; in the shown example N = 2.

Example 2.1 The easiest case is when the environment process is constant, K = 1,
so that the system reduces to a classical M/M/∞ queue. In this case the set A� is
deterministic, given by {(u,σ ) : u < 0, σ > β|u|}. From (2.7) we get

|A�|� =
∫ 0

−∞

∫
σ>β|u|

λG(dσ)du = λ

β

∫ ∞

0
(1 − G(u))du = λ

β
E[σ ] = λ

βμ

and we obtain the known information that N ∼ Po( λ
βμ

), i.e. the stationary number of
customers in the system is Poisson distributed.
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Fig. 1 Example of realization

3 Computing the factorial moments

Before beginning to compute the factorial moments of the random variable N , it is
worthwhile to review some basic results about the different kinds of moments and
their relations with the various generating functions. A good reference about the fol-
lowing relations especially in connection with point processes is [4, Chap. 5].

Given a random variable X, we denote by ψX(s) := E[esX] its moment generating
function and by φX(z) := E[zX] its probability generating function.

The factorial moment of order i of X, f
(i)
X is defined as

f
(i)
X := E

[
Xi

]
=

∞∑
n=0

ni pn,

where pn = Pr{X = n} and ni := n(n − 1) · · · (n − i + 1) is the falling factorial. It
can be directly computed by the i-th derivative of the probability generating function,
i.e. f

(i)
X = limz→1 φ

(i)
X (z). Knowing the factorial moments of X it is then easy to

compute its moments, in the sequel called raw moments to distinguish them from
the factorial ones. Indeed, by taking the expectations on both sides of the following
known equivalence [1]

Xn =
n∑

i=0

S
(i)
n Xi,

where S
(i)
n is a Stirling Number of the Second Kind, we obtain the following rela-

tion between the n-th moment of X, m
(n)
X := E[Xn] with m

(0)
X := 1, and the factorial

moments of order i ≤ n,

m
(n)
X =

n∑
i=0

S
(i)
n f

(i)
X . (3.1)
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The reverse relation is obtained by using the Stirling Numbers of the First Kind,
s
(n)
i (see [1]), that satisfy the following known relation

Xi =
i∑

n=0

s
(n)
i Xn,

so that, taking the expectations of both sides, finally we get

f
(i)
X =

i∑
n=0

s
(n)
i m

(n)
X . (3.2)

It is interesting to notice that relation (3.1) comes directly from using the fact that
ψX(s) = φX(es) and that m

(n)
X = lims→0 ψ

(n)
X (s). Indeed,

lim
s→0

ψ
(n)
X (s) = lim

s→0

dn

dsn
φX(es) =

n∑
i=0

S
(i)
n φ

(i)
X (1),

where in the last equation we used Faá di Bruno’s formula for the expansion
of derivatives of order n for composition of functions (see [1]) and the fact that
lims→0

dn

dsn es = 1.
A random variable X is called mixed Poisson if there exists a

non-negative random variable Y such that X
d= Po(Y ), or equivalently (X|Y = y)

d=
Po(y), where the operator

d= denotes equality in distribution. In the case X were a
mixed Poisson random variable we would have that

φX(z) = ψY (z − 1),

so that taking the derivatives of order n, we get

lim
z→1

φ
(n)
X (z) = lim

z→1
ψ

(n)
Y (z − 1) = lim

s→0
ψ

(n)
Y (s),

or, in other words, that the factorial moments of X are equal to the raw moments of Y ,

f
(n)
X = m

(n)
Y ,

and the latter often are easier to compute.
This is exactly what happens in our case where, as shown by relation (2.9), N is

a mixed Poisson and that is why we are interested into its factorial moments rather
then directly its raw moments. Indeed we have that the following relation holds

f
(n)
N = m

(n)
|A� |� , (3.3)

and our task reduces to the computation of the raw moments of the measure of the
random set A� .
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Fig. 2 Decomposition of A03
as C03 ∪ TT3,β3T3A05

4 Computing the raw moments of |A�|�
In this section we compute the raw moments of the measure of the set A� , defined
in (2.4), when measured by the random intensity measure λ� , defined in (2.7). We use
a fixed point technique and to this aim we look at a modified environment process, �0,
that is the Palm version of the process �, i.e. we assume that at time 0 it has a transi-
tion. We denote by k ∈ E the last state it has assumed before 0, i.e. k := �0(0−), and
by Tk its corresponding sojourn time. While, as depicted in Figure 1, for the process
� the sojourn time in the last state before 0 would be given by a residual sojourn time,
for the process �0 it is distributed as any other sojourn time corresponding to the same
state. We define by A0k := (A�0 |�0(0−) = k), k ∈ E, the set A�0 conditioned to the
event that the last state occupied by the environment before 0 is the state k, and we
call |A0k| its measure, i.e. |A0k| := (λ�0(A�0)|�0(0−) = k).

Figure 2 shows an example of the set A0k when k = 3, together with its decom-
position in the set C0k and the set TT3,β3T3A05. To this we have defined by C0k the
restriction of the set A0k up the last transition of the process �0 before time 0, i.e.

C0k := A0k ∩ {(x, y) ∈ R
− × R

+||x| < Tk}, (4.1)

|C0k| := (λ�0(C0k)|�0(0
−) = k)

and by Ts,tA the (−s, t)-translated version of the set A, i.e.

Ts,tA := {(x, y) ∈ R
2|(x + s, y − t) ∈ A}. (4.2)

We denote by j ∈ E the state of the environment before the last transition before
time 0, i.e. j := �0(−T −

k ), so that, −Tk being a regeneration point for the process
�0, we have the independence of the sets C0k and TTk,βkTk

A0j conditioned to the
values of the states before and after the transitions, i.e. j and k. βkTk = F�0(−Tk) is
the exact amount of work the non-empty servers have done during the time interval
[−Tk,0) being in state k.

By noticing that the set TTk,βkTk
A0j has measure equal in distribution to

|T0,βkTk
A0j | := (λ�0(T0,βkTk

A0j )|�0(0−) = j), we can write down the following set
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of stochastic equations

|A0k| d= |C0k| +
K∑

j=1

1{k ← j}|T0,βkTk
A0j |, (4.3)

where the indicator function 1{k ← j} selects the backward state transition of the
environment from the state k to the state j ; this would happen, according to definition
(2.1), with probability qkj .

Thanks to the fact that along the vertical axis the measure function is given by G

that is exponential we have that the following result holds:

Lemma 4.1 Given the transformation Ts,t , defined in (4.2), we have that

|T0,tA�|� = e−μt |A�|�, (4.4)

for any random set A� : � → B(R− × R
+).

Proof By using definition (2.7) we have

λ�(T0,tA�) =
∫
T0,tA�

λ�(u)due−μσ dσ

= e−μt

∫
T0,tA�

λ�(u)due−μ(σ−t)dσ = e−μtλ�(A�). �

By using Lemma 4.1, (4.3) simplifies in the following

|A0k| d= |C0k| + e−μβkTk

K∑
j=1

1{k ← j}|A0j |, (4.5)

that is the starting point to prove the following main result:

Theorem 4.2 Let us define �m(n)
0 ∈ R

K as the column vector whose k-th coordinate is

the n-th moment of the random variable |A0k|, i.e. m
(n)
0k := m

(n)
|A0k | then the following

relation holds
n∑

i=0

(−1)i
(

n

i

)
Rn−iBn �m(i)

0 = 0, (4.6)

where R := diag(ρk), ρk := λk/μk and the matrix Bn := diag(τ−1
k (nμk)) − Q. The

matrix Bn, n > 0, is invertible and therefore it is possible to express the n-th moment
vector �m(n)

0 in terms of the previous ones, �m(i)
0 , i = 0, . . . , n− 1, in the following way

�m(n)
0 =

n−1∑
i=0

(−1)n−1−i

(
n

i

)
B−1

n Rn−iBn �m(i)
0 . (4.7)
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Proof We first compute the values of the variable |C0k| in the following way

|C0k| = λk

∫ Tk

0
e−μkxdx = ρk(1 − e−μkTk ).

Then substituting its value in (4.5), it gives

|A0k| d= ρk(1 − e−μkTk ) + e−μkTk

K∑
j=1

1{k ← j}|A0j |, (4.8)

that can be rewritten as

|A0k| − ρk
d=

K∑
j=1

1{k ← j}(|A0j | − ρk)e
−μkTk . (4.9)

We denote by ψ0k(s) := E[es|A0k |] the moment generating function of |A0k| so that
applying the exponential function to both members of (4.9) previously multiplied by
s and then taking the expectation, we obtain

ψ0k(s)e
−sρk = E

⎡
⎣ K∑

j=1

qkj e
s(|A0j |−ρk)e

−μkTk

⎤
⎦

= E

⎡
⎣ K∑

j=1

qkjψ0j (se
−μkTk )e−sρke

−μkTk

⎤
⎦ .

The last expression can be written in matrix form in the following way

e−sR �ψ0(s) = E

[
e−sRT(Q �ψ0)(sT)

]
, (4.10)

where T := diag(e−μkTk ) and where with notation �v(W), with W a diagonal matrix,
we denote a vector whose k-th component is vk(wkk). We use then the following
matrix formulas for derivatives

D(n)[e−sW�v(s)] =
n∑

i=0

(−1)n−i

(
n

i

)
e−sWWn−iD(i)[�v(s)], (4.11)

and

D(n)[�v(sW)] = Wn�v (n)(sW), (4.12)

to compute the n-th derivative of both sides of (4.10) so that

n∑
i=0

(−1)n−i

(
n

i

)
e−sRRn−i �ψ (i)

0 (s)
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= E

[
n∑

i=0

(−1)n−i

(
n

i

)
e−sRTRn−iTn−iD(i)[Q �ψ0(sT)]

]

= E

[
n∑

i=0

(−1)n−i

(
n

i

)
e−sRTRn−iTn(Q �ψ (i)

0 )(sT)

]
.

Remembering that �m(n)
0 = lims→0 �ψ (n)

0 (s) and taking the limit of the last expression
as s → 0, we get

n∑
i=0

(−1)n−i

(
n

i

)
Rn−i �m(i)

0 = E

[
n∑

i=0

(−1)n−i

(
n

i

)
Rn−iTnQ �m(i)

0

]
. (4.13)

Multiplying on the left side by (−1)−n
E[Tn]−1, the last expression can be easily

rearranged in

n∑
i=0

(−1)−i

(
n

i

)
Rn−i

[
E

[
Tn

]−1 − Q
] �m(i)

0 = 0, (4.14)

that gives the result. The invertibility of the matrix Bn for n > 0 comes from
Lemma A.2. �

It is remarkable that it is possible to express (4.6) in terms of the forward transition
chain P. The result is contained in the following corollary whose proof comes from
simple matrix computations.

Corollary 4.3 A result similar to (4.6) is valid for the row vector �m�(n)
0 := ( �m(n)

0 )�,
that involves the matrix P instead of the matrix Q, i.e.

n∑
i=0

(−1)i
(

n

i

)
�m�(i)

0 �B′
n Rn−i = 0, (4.15)

where B′
n := diag(τ−1

k (nμk)) − P. The matrix B′
n is non-singular when n > 0.

Given the raw moments of |A�0 |, we can successively compute the moments of
the measures of the sets Ak := (A�|�(0) = k), k ∈ E. Following previous definitions
we define m

(n)
k := m

(n)
|Ak |. Similarly to (4.3) we have the following equation

|Ak| d= |C∗
k | +

K∑
j=1

1{k ← j}|T0,βkT
∗
k
A0j |, (4.16)

with |C∗
k | = ρk(1 − e−μkT

∗
k ). T ∗

k refers to a residual sojourn time of the environment
in state k ∈ E. We define by τ ∗

k (s) the Laplace transform of the distribution function
of T ∗

k and it is related to the one of Tk , τk(s), by the relation τ ∗
k (s) = τ̄k(1 − τk(s))/s,

with τ̄k := E[Tk]−1. For the vector of raw moments �m(n) the following theorem holds.
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Theorem 4.4 The vector �m(n) satisfies the following relation with the vector �m(n)
0

n∑
i=0

(−1)i
(

n

i

)
Rn−i[ �m(i) − En �m(i)

0 ] = 0, (4.17)

with En := diag(τ ∗
k (nμk)/τk(nμk)). Therefore the vector �m(n) can be computed from

the previous moments { �m(i)}i<n and the corresponding vectors { �m(i)
0 }i≤n in the fol-

lowing way

�m(n) = En �m(n)
0 +

n−1∑
i=0

(−1)n−1−i

(
n

i

)
Rn−i[ �m(i) − En �m(i)

0 ], (4.18)

finally

m(n) := m
(n)
A�

= �m(n) �π. (4.19)

Proof Starting by (4.16) and following the same calculations that brought us from
(4.3) to (4.14), we get

n∑
i=0

(−1)i
(

n

i

)
Rn−i

[
E

[
T∗n]−1 �m(i) − Q �m(i)

0

] = 0, (4.20)

that after subtracting equation (4.14) gives

n∑
i=0

(−1)i
(

n

i

)
Rn−i

[
E

[
T∗n]−1 �m(i) − E

[
Tn

]−1 �m(i)
0

] = 0, (4.21)

and by multiplying on the left by E[T∗n] we finally get the result. �

In order to check our results we compare (4.15) for the exponential case with

results in [9] here repeated in formula (4.22). For this case since T ∗
k

d= Tk , we have

that �m(n) = �m(n)
0 .

Remark 4.5 It is worth to notice that in [9], they actually computed the factorial
moments of the random row vector (N 1{�0 = k})k∈E while here we compute the
factorial moments of the row vector (N |�0 = k)k∈E . This explains the presence, in
formula (4.22), of the additional factor given by the diagonal matrix �̃ that has the
diagonal equal to the stationary distribution of the Markovian Environment.

Corollary 4.6 In case the sojourn times Tk are exponentially distributed with para-
meters τ̄k we have that with n > 0

( �m�(n)�̃)(nM − G) = n( �m�(n−1)�̃)� (4.22)

where M := diag(μk), � := diag(λk). �̃ := τ̄ � T̄−1 is the stationary distribution of
the Markovian Random Environment, 1/τ̄ := ∑

k πk/τ̄k , while G := T̄(P − I) is its
generator, T̄ := diag(τ̄k).
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Proof When the sojourn times Tk are exponentially distributed we have that

E[Tn]−1 = nMT̄−1 + I,

that implies

T̄Bn = nM − H,

with H := T̄(Q − I) being the generator of the reverse-time Markov process. By
multiplying on the left both sides of (4.6) by T̄ and noticing that it can commute with
the powers of the matrix R, we can rewrite (4.6) as

n∑
i=0

(−1)n−i

(
n

i

)
Rn−i[nM − H] �m(i) = 0. (4.23)

By Lemma A.1 with U = M, D = R, Vn = H and �v (n) = �m(n), and imposing
�m(0) = �1, we get that the unique solution of (4.23) is given by

(nM − H) �m(n) = nRM �m(n−1),

that transposed reduces to

�m�(n)(�̃ �̃
−1

)(nM − H�) = n �m�(n−1)�.

Multiplying on the right side by �̃ and simplifying we get

�m�(n)�̃(nM − �̃
−1

H��̃) = n �m�(n−1)�̃�,

that gives the result after noticing that G = �̃
−1

H��̃. �

5 Some explicit formulas—Case K = 2

Formulas (4.7) and (4.18) show that generally to find the n-th moment of the random
number of users in the system involves in a complex way the knowledge of all previ-
ous moments. Reversely the exponential case, that was already solved in [9], is easier
as the n-th vector of moments is related only by a factor to the (n − 1)-th one. That
was anyway hidden in a non-trivial way in formula (4.7) so that there could be some
other special cases where an easier expression holds.

In this section we have a look to the case when the environment has only two
stages, i.e. K = 2.

This is a very special case and when the sojourn times are all assumed exponen-
tially distributed, it is known how to compute the complete distribution of the number
of customers in the system at steady state (see [2, 7] and [5]).

We give for this case an explicit formula to calculate the factorial moments in
terms of the Laplace transform of the sojourn time in state 1, when the sojourn time
in state 2 is exponentially distributed.
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By rewriting in more explicit form (4.9) for the case K = 2 we get

|A01| − ρ1
d= (|A02| − ρ1)e

−μ1T1 (5.1)

|A02| − ρ2
d= (|A01| − ρ2)e

−μ2T2 . (5.2)

We define m̃
(n)
0k := E[(|A0k| − ρ1)

n] and take the mean of the n-powers of expression
(5.1) so getting

m̃
(n)
01 = m̃

(n)
02 τ1(nμ1). (5.3)

By adding and subtracting ρ1 to both sides of (5.2) we get

(|A02| − ρ1) − ρ∗
d= (|A01| − ρ1)e

−μ2T2 − ρ∗e−μ2T2 ,

with ρ∗ = ρ2 − ρ1. Then using (5.1) we obtain a recursive equation involving only
|A02| − ρ1,

(|A02| − ρ1) − ρ∗
d= (|A02| − ρ1)e

−μ1T1e−μ2T2 − ρ∗e−μ2T2 .

Taking the n-th power and then the expectation of both sides we get

n∑
i=0

(−1)n−i

(
n

i

)
ρn−i∗ m̃

(i)
02 = τ2(nμ2)E

[(
(|A02| − ρ1)e

−μ1T1 − ρ∗
)n]

= τ2(nμ2)

n∑
i=0

(−1)n−i

(
n

i

)
ρn−i∗ τ1(iμ1) m̃

(i)
02 ,

that, taking into account (5.3), can be rearranged to get the following

n∑
i=0

(−1)n−i

(
n

i

)
ρn−i∗ (τ−1

2 (nμ2)τ
−1
1 (iμ1) − 1) m̃

(i)
01 = 0. (5.4)

Theorem 5.1 Assuming that the sojourn times of state 2 are exponentially distrib-
uted, i.e. T2 ∼ Exp(τ̄2), the solution of formula (5.4) is given by

m̃
(n)
01 =

(
μ2 ρ∗

τ̄2

)n n∏
i=1

i τ−1
1 ((i − 1)μ1)

τ−1
1 (iμ1)τ

−1
2 (iμ2) − 1

, (5.5)

and therefore

m̃
(n)
02 =

(
μ2 ρ∗

τ̄2

)n

τ−1
1 (nμ1)

n∏
i=1

i τ−1
1 ((i − 1)μ1)

τ−1
1 (iμ1)τ

−1
2 (iμ2) − 1

. (5.6)

Finally

m
(n)
0k =

n∑
i=0

(
n

i

)
ρn−i

1 m̃
(i)
0k , k = 1, 2. (5.7)
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Proof Substituting τ−1
2 (s) = 1 + s/τ̄2 in (5.4) and rearranging it, we get

n∑
i=0

(−1)n−i

(
n

i

)
ρn−i∗

(
n
μ2

τ̄2
− (τ1(iμ1) − 1)

)
m̃

(i)
01

τ1(iμ1)
= 0. (5.8)

By applying Lemma A.1 in the scalar case, with U = (μ2/τ̄2), D = (ρ∗), Vn =
(τ1(nμ1) − 1) and �v (n) = (m̃

(n)
01 /τ1(nμ1)), we notice that a set of solutions is given

by

(
τ−1

2 (nμ2) − τ1(nμ1)
) m̃

(n)
01

τ1(nμ1)
= nρ∗

μ2

τ̄2

m̃
(n−1)
01

τ1((n − 1)μ1)
, (5.9)

that is then uniquely defined given that m̃
(0)
01 = 1. Therefore (5.5) holds. Equa-

tion (5.6) results by applying (5.3) to (5.5) and finally (5.7) comes from the fact
that m

(n)
0k = E[((|A0k| − ρ1) + ρ1)

n]. �

Example 5.2 (Case T1 ∼ Exp(τ̄1)) In this special case (5.5) simplifies in

m̃
(n)
01 = ρn∗

(τ̄1/μ1)
n

(τ̄1/μ1 + τ̄2/μ2 + 1)n
,

with in := i(i+1) · · · (i+n−1) being the rising factorial (in [1] it is denoted by (i)n).
Therefore the moment generating function of |A01| − ρ1 is given by the Kummer
function M(τ̄1/μ1, τ̄1/μ1 + τ̄2/μ2 +1, ρ∗s) (see [1]), in accordance to what is shown
in [2, 5] (in there, it is denoted by φON(−s)).

The following example is a new result that generalizes the one of Example 5.2.

Example 5.3 (Case T1 ∼ Erlang(κ, τ̄−1
1 )) For this case we have that τ−1

1 (kμ1) =
(1 + kμ1/τ̄1)

κ . Therefore (5.5) simplifies in

m̃
(n)
01 = n!ρn∗ [(τ̄1/μ1)

n]κ∏n
i=1

[
(τ̄1/μ1 + i)κ (τ̄2/μ2 + i) − (τ̄1/μ1)κ (τ̄2/μ2)

] .

6 Conclusions

In this paper we showed that using a matrix-geometric approach it is possible to solve
the problem to find the factorial moments of the random number of customers in an
M/M/∞ system when its parameters are modulated by a semi-Markovian random
environment. We showed that this is possible by looking at this random variable as the
random measure of a bidimensional random set by a mixed Poisson process. Finally
the case when the environment has only 2 states is more deeply investigated and it
is shown that explicit formulas are obtainable given that one state has exponential
sojourn times. It is then plausible to believe that for this last case it would be possible
to get an explicit expression for the complete characteristic function.
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Appendix: Technical lemmas

Lemma A.1 Given the matrices U,D, {Vn}n≥0 such that for any 0 < n ≤ l the matrix
(nU − Vn) is invertible than the system of equations

n∑
i=0

(−1)n−i

(
n

i

)
Dn−i[nU − Vi]�v (i) = 0, 0 < n ≤ l (A.1)

has a family of solutions �v (n), 0 < n ≤ l, given by

(nU − Vn)�v (n) = nDU �v (n−1), (A.2)

that reduces to a unique solution once given the vector �v(0) that has to satisfy the
relation V0�v(0) = 0.

Proof The proof of the lemma is immediate once we prove that a set of vectors obey-
ing to relations (A.2) for n ≤ l with V0�v(0) = 0 satisfies as well the following equation
for 0 < n ≤ l

n−1∑
i=0

(−1)l−1−i

(
l

i

)
Dl−i[lU − Vi]�v(i) = (−1)l−n

(
l

n

)
Dl−n[nU − Vn]�v (n). (A.3)

We prove it by induction. Assuming n = 1, we have that

(−1)l−1Dl[lU − V0]�v(0) = (−1)l−1Dl[lU]�v(0)

= (−1)l−1lDl−1DU�v(0)

= (−1)l−1
(

l

1

)
Dl−1(U − V1)�v(1),

so that the base of the induction holds. Now assuming (A.3) valid for n < l we have
for n + 1 that

n∑
i=0

(−1)l−1−i

(
l

i

)
Dl−i[lU − Vi]�v(i)

= (−1)l−n

(
l

n

)
Dl−n [nU − Vn]�v (n) + (−1)l−1−n

(
l

n

)
Dl−n[lU − Vn]�v (n)

= (−1)l−1−n

(
l

n

)
Dl−n(l − n)U�v (n)

= (−1)l−1−n

(
l

n

)
Dl−n−1(l − n)DU�v (n)

and by (A.2),

= (−1)l−1−n

(
l

n

)
l − n

n + 1
Dl−n−1((n + 1)U − Vn+1)�v (n+1)
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= (−1)l−(n+1)

(
l

n + 1

)
Dl−(n+1)((n + 1)U − Vn+1)�v (n+1). �

The proof of the next result follows closely the one of Lemma B.1 in [12].

Lemma A.2 The matrix Bn, n > 0 in (4.6) is invertible.

Proof By noticing that all the diagonal entries of the matrix diag(τ−1
k (nμk)) are

strictly positive, in order to prove the invertibility of the matrix Bn we are left with
proving the non-singularity of the matrix (I − Dn), with

Dn := diag(τk(nμk))Q.

We assume with no loss of generality that the states of the random environment are
ordered according to the increasing values of βk , so that the states with null betas
have the lowest indexes. Being β > 0 we know that they are in number K0 < K .
If we compute the lth power of the matrix Dn we get that in the limit it converges
elementwise to

Dl
n →

( �1 �π�
0 0

0 0

)
, as l → ∞, (A.4)

where �π0 is the vector containing only the first K0 coordinates of the vector �π and �1
is defined as a vector with all coordinates equal to 1 and whose dimension depends
on the context.

The above result comes from the fact that Ql → �1 �π� as l → ∞ and from knowing
that τk(nμk) = 1 when k ≤ K0 and τ l

k(nμk) → 0 when K0 < k ≤ K as l → ∞. For
any l > 0 the following relation is valid

(I − Dn)(I + Dn + · · · + Dl−1
n ) = I − Dl

n,

and the matrix on the right side converges to

I − Dl
n →

(
I − �1 �π�

0 0
0 I

)
as l → ∞.

The determinant of the limit matrix in the right side of the last relation is equal to the
determinant of the matrix (I − �1 �π�

0 ) that is positive by applying Lemma B.1 in [12]
to the strictly substochastic matrix �1 �π�

0 .
Following the reasoning in Lemma B.1 in [12], as the determinant is a continuous

function in the space of matrices with elementwise convergence we get that there ex-
ists some l > 0 such that the determinant of the matrix (I − Dl

n) is positive. Therefore
it follows that the product of the determinants of the two matrix factors in the left side
of (A.4) has to be positive, which concludes the proof. �
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