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Abstract This paper studies the geometric decay property of the joint queue-length
distribution {p(n1, n2)} of a two-node Markovian queueing system in the steady state.
For arbitrarily given positive integers c1, c2, d1 and d2, an upper bound η(c1, c2) of
the decay rate is derived in the sense

exp
{

lim sup
n→∞

n−1 logp(c1n + d1, c2n + d2)
}

≤ η(c1, c2) < 1.

It is shown that the upper bound coincides with the exact decay rate in most sys-
tems for which the exact decay rate is known. Moreover, as a function of c1 and
c2, η(c1, c2) takes one of eight types, and the types explain some curious properties
reported in Fujimoto and Takahashi (J. Oper. Res. Soc. Jpn. 39:525–540 1996).
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1 Introduction

This paper studies the geometric decay property of the tail of the joint queue-
length distribution of a two-node open queueing network with MAP inputs, PH
services and random routings. In a previous paper [4], the authors derived an up-
per bound for the decay rate of the marginal queue-length distribution for the same
model. Using the result, here we derive an upper bound of the decay rate for the joint
queue-length distribution.

We refer the nodes of the network as Node 1 and Node 2, and denote by p(n1, n2)

the stationary probability that there are n1 customers in Node 1 and n2 customers
in Node 2. One might expect that p(n1, n2) decays geometrically, namely for some
constants η1, η2 and C

p(n1, n2) ≈ C η
n1
1 η

n2
2 for large n1 and n2. (1.1)

In case of a Jackson network, (1.1) holds with equality for any n1 and n2 if we
take ηk as the traffic intensity ρk at Node k (k = 1,2). However, numerical results
for tandem queueing systems PH/PH/1→/PH/1 in Fujimoto et al. [1] showed that
the situation is not so simple. In the paper [1] the asymptotic behavior of p(n1, n2)

was examined numerically when n1 = c1n + d1 and n2 = c2n + d2 go to infinity as
n → ∞ for arbitrarily given positive integers c1, c2, d1 and d2. Based on the results
of an extensive experiment, a conjecture was proposed. There exists a threshold ρ̃2,
and the behavior of p(n1, n2) is different between the cases that the traffic intensity
of the second stage ρ2 < ρ̃2 and ρ2 > ρ̃2.

The aim of this paper is to study this curious property theoretically rather than
numerically. And we will do it in a more general setting. Our model here is two-node
Markovian queueing systems for which the geometric decay property of the tail of the
marginal queue-length distribution was studied in [4]. Instead of (1.1), we consider
here a weaker decay property

η∗(c1, c2, d1, d2) = exp

{
lim sup
n→∞

1

n
logp(c1n + d1, c2n + d2)

}
< 1, (1.2)

for arbitrarily chosen positive integers c1, c2, d1 and d2. We will refer η∗(c1, c2,

d1, d2) above as the decay rate of p(n1, n2) along line l(c1, c2, d1, d2), where
l(c1, c2, d1, d2) is the set {(n1, n2) : n1 = c1n + d1, n2 = c2n + d2, n = 1,2, . . .}
on the (n1, n2)-plane.

In one of our main theorems, Theorem 5.1, we will prove that the inequality (1.2)
holds for any choice of integers c1, c2, d1 and d2 by showing the existence of a func-
tion η(c1, c2) such that

η∗(c1, c2, d1, d2) ≤ η(c1, c2) < 1. (1.3)

The upper bound η(c1, c2) as a function of c1 and c2 takes one of eight forms de-
pending on the position of the point (η∗

1, η∗
2) in a 2-dimension plane, where η∗

k is the
decay rate of the marginal queue-length distribution of Node k (k = 1,2) defined by
(3.3).
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In the theorem, η(c1, c2) is derived by using η∗
1 and η∗

2 , but we usually don’t know
the values of them except for some special systems. Fortunately we know their upper
bounds η∗

1 and η∗
2, which were derived in the previous paper [4]. Using these η∗

1 and
η∗

2 instead of η∗
1 and η∗

2 , we can derive another upper bound η(c1, c2) which is calcu-
lable for any two-node Markovian queueing system. We will do this in another main
theorem, Theorem 6.2. It is shown that the upper bound η(c1, c2) coincides with the
exact decay rate η∗(c1, c2, d1, d2) in some systems for which the exact decay rate is
known. Jackson type queueing networks are among them. The theorem shows that
the upper bound η(c1, c2) takes one of eight types as a function of c1 and c2. In one
of them, η(c1, c2) is given by (η

h1
1 )c1(η̂

h2
2 )c2 (see (6.13)). In another type, η(c1, c2) is

given by (η
h2
1 )c1(η̂

h2
2 )c2 if −c1/c2 ≤ (b̂

h1
2 − b

h2
2 )/(b

h1
1 − b̂

h2
1 ) and by (η̂

h1
1 )c1(η

h1
2 )c2 if

−c1/c2 ≥ (b̂
h1
2 −b

h2
2 )/(b

h1
1 − b̂

h2
1 ) (see (6.11)). These types seem to correspond to the

two cases above conjectured in [1]. There are other types of η(c1, c2) where the func-
tion takes more complicated forms as in (6.12), (6.15), (6.16) and (6.17). The systems
reported in [1] for which the convergence speed of the ratio p(n1, n2)/(η1)

n1(η2)
n2

is very slow are of these types. Hence the convergence speed might relate to the form
of the function η(c1, c2).

The rest of the paper is organized as follows. In Sect. 2 we describe our model and
introduce notations. We prepare some properties of the Markov chain which describes
the stochastic behavior of the model in Sect. 3. In Sect. 4 we prove our fundamental
lemma that gives an upper bound of the joint queue-length probability, and using the
lemma we derive our main result in Sect. 5. The result on the marginal queue-length
distributions in [4] is applied to the upper bound in Sect. 6. In Sect. 7 we discuss
examples with some numerical results.

2 Model description and notations

In this section, we introduce our model and some notations. Our model here is the
same as the one used in [4].

Model The system is an open queueing network with two nodes, Node 1 and Node 2
(Fig. 1). At Node k (k = 1,2), customers arrive from outside of the system via a
Markovian arrival process MAPk with representation (T k,U k) [5]. There is a sin-
gle server and a buffer of infinite capacity. Customers are served in a usual FCFS
(First Come First Served) manner. Service times are subject to a common phase-type
distribution PHk with representation (bk,Sk) [8]. After being served, each customer
proceeds to Node j (j = 1,2) with probability rkj , and leaves the system with prob-
ability rk0 = 1 − rk1 − rk2. Without loss of generality, we assume that the exogenous
arrival rate λ1 to Node 1 is positive and the routing probability r12 is positive. Exoge-
nous arrival processes, service times and routings in both nodes are all stochastically
independent. We will refer this model as a two-node Markovian queueing system.
We use symbol “ k ” to refer to the node number of Node k. And for brevity of ex-
position, when symbol “ k′ ” is used with a “ k ”, it refers to the other node number,
namely k′ = 2 if k = 1, and k′ = 1 if k = 2.
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Fig. 1 Two-node Markovian
queueing system

Vector and matrix notations Row vectors are represented by bold lower case letters
(except for the Markov chain X(t) representing the system behavior). To represent a
column vector we attach a superscript 	 to the corresponding row vector. We denote
by 0 a row zero vector and by e a row vector with all elements equal to 1. Matrices
are represented with bold upper case letters. We denote by O a zero matrix and by
I an identity matrix. Dimensions of vectors and matrices should be understood from
the context. They may be finite or infinite. Inequalities between vectors or matrices
are considered elementwise.

We extend our use of terminology “Perron-Frobenius eigenvalue” to an eigenvalue
of a finite-dimensional square matrix having nonnegative off-diagonal elements and
possibly negative diagonal elements. Let A be such a matrix. We will say that a real
number x is the Perron-Frobenius eigenvalue of A if x + s is the Perron-Frobenius
eigenvalue in the usual sense (i.e. the maximal eigenvalue) of the nonnegative matrix
A + sI for a sufficiently large s.

Markov chain representations The exogenous arrival process MAPk has an un-
derlying finite Markov chain with transition rate matrix T k + U k . Elements of
U k govern state transitions accompanied by arrivals, and off-diagonal elements of
T k govern those without arrivals. Diagonal elements of T k are negative so that
(T k + U k)e

	 = 0	. We denote the state space of the Markov chain by Ik and re-
fer to the state of the chain as the phase of MAPk . We assume that Ik is finite and
T k + U k is irreducible. The stationary probability vector of the chain is denoted by
ak . The exogenous arrival rate to Node k is given by λk = (−akT

−1
k e	)−1. When

there exist no exogenous arrivals to Node 2, we consider both T 2 and U2 is a scalar
equal to 0, and λ2 = 0.

The service time distribution PHk also has an underlying finite absorbing Markov

chain with transition rate matrix
(

Sk σ	
k

0 0

)
and an initial probability vector (bk 0). Here

σ	
k = −Ske

	. The state space of the chain is represented as Jk ∪ {0}, where Jk is
a finite set of transient states and 0 is a single absorbing state. When a new service
starts at Node k, the Markov chain starts from a transient state chosen according to the
distribution bk , and the service lasts until the chain is absorbed in the absorbing state.
We refer to the state of the chain as the phase of PHk . We assume the representation
(bk,Sk) is irreducible in the sense bk(−Sk)

−1 > 0. The service rate at Node k is
given by μk = (−bkS

−1
k e	)−1. Of course, μk > 0.
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Let Nk(t) be the number of customers in node k at time t , Ik(t) the phase of
MAPk , and Jk(t) the phase of PHk . We put Jk(t) = 0 when Nk(t) = 0. Then, the
vector

X(t) = (N1(t),N2(t), I1(t), I2(t), J1(t), J2(t)) (2.1)

is a time-continuous Markov chain representing the stochastic behavior of the whole
system. Its state is represented by a sextuple (n1, n2, i1, i2, j1, j2), and the state space
is given as

S = {{0} × {0} × I1 × I2 × {0} × {0}} ∪ {{0} ×N × I1 × I2 × {0} ×J2}
∪{N × {0} × I1 × I2 ×J1 × {0}} ∪ {N ×N × I1 × I2 ×J1 ×J2}, (2.2)

where N = {1,2,3, . . .}. From the irreducibility assumptions of the MAPk and PHk

representations and from the model assumption that λ1 > 0 and r12 > 0, the chain
{X(t)} is irreducible.

Stability condition Hereafter we assume the traffic intensity of Node k is strictly
less than 1,

ρk = (1 − rk′k′)λk + rk′kλk′

{(1 − rkk)(1 − rk′k′) − rkk′rk′k}μk

< 1. (2.3)

This assumption implies that the Markov chain {X(t)} is stable (see [4, 9]).
To make our discussion simpler, hereafter we assume there exists no direct feed-

backs to the same node, namely rkk = 0 for k = 1,2. This does not restrict any
generality as long as we are concerned only about the numbers of customers in
Nodes 1 and 2. Because, when rkk > 0, we may change the routing probabilities
to r̃k0 = rk0/(1 − rkk), r̃kk = 0 and r̃kk′ = rkk′/(1 − rkk), and use the service time dis-
tribution (b̃k, S̃k) = (bk,Sk + rkkσ

	
k bk). The new model has the same {X(t)} process

as the original one.

3 Balance equations and doubly geometric solution

For further discussion, here we prepare some notations related to stationary probabil-
ities of the Markov chain {X(t)}.

Stationary probabilities Assuming the chain {X(t)} is in the steady state, we denote
its state probabilities as

p(n1, n2)i1,i2,j1,j2 = P{(N1(t),N2(t), I1(t), I2(t), J1(t), J2(t))

= (n1, n2, i1, i2, j1, j2)}, (n1, n2, i1, i2, j1, j2) ∈ S. (3.1)

Joint queue-length probabilities and marginal queue-length probabilities of Node k

are written as

p(n1, n2) = P{N1(t) = n1,N2(t) = n2}, n1, n2 = 0,1,2, . . . ,

pk(nk) = P{Nk(t) = nk}, nk = 0,1,2, . . . .
(3.2)
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The decay rate η∗
k of the marginal queue-length distribution {pk(nk)} is defined by

logη∗
k = lim sup

nk→∞
1

nk

logpk(nk). (3.3)

In Theorem 4.1 of [4], an upper bound η∗
k of η∗

k was derived and proved to be less
than 1. This implies that the decay rate itself is strictly less than 1, i.e. η∗

k < 1.

Balance equations For n1, n2 ≥ 1, we let C(n1, n2) be the set of states at which
there are n1 customers in Node 1 and n2 customers in Node 2, namely

C(n1, n2) = {n1} × {n2} × I1 × I2 ×J1 ×J2. (3.4)

We call C(n1, n2) as a cell. When n1 = 0 and/or n2 = 0, we define cell C(n1, n2) in
a similar manner by replacing J1 and/or J2 above with {0}. Clearly p(n1, n2) =
P{X(t) ∈ C(n1, n2)}. The vector of state probabilities corresponding to states in
C(n1, n2) can be denoted by

p(n1, n2) = (p(n1, n2)i1,i2,j1,j2; (n1, n2, i1, i2, j1, j2) ∈ C(n1, n2)). (3.5)

For n1, n2 ≥ 2, the set of balance equations around C(n1, n2) is written in a vector
form as

0 = p(n1, n2)(T 1 ⊕ T 2 ⊕ S1 ⊕ S2)

+ p(n1 − 1, n2)(U1 ⊗ I ⊗ I ⊗ I ) + p(n1, n2 − 1)(I ⊗ U2 ⊗ I ⊗ I )

+ {r10 p(n1 + 1, n2) + r12 p(n1 + 1, n2 − 1)}(I ⊗ I ⊗ σ	
1 b1 ⊗ I )

+ {r20 p(n1, n2 + 1) + r21 p(n1 − 1, n2 + 1)}(I ⊗ I ⊗ I ⊗ σ	
2 b2), (3.6)

where ⊗ indicates a Kronecker product operation and ⊕ a Kronecker sum operation.
If n1 ≤ 1 or n2 ≤ 1, the equation takes a slightly different form.

Laplace-Stieltjes Transforms The Laplace-Stieltjes transform (LST) of the service
time distribution PHk is given by

gk(y) = bk(yI − Sk)
−1σ	

k . (3.7)

It is defined for y in the interval D[gk] = (δ
g
k ,∞), where δ

g
k (< 0) is its abscissa

of convergence. The service rate is given by μk = −1/g′
k(0), where the prime (′)

indicates a derivative.
For MAPk , if λk > 0, we let T A

k (n) be the n-th exogenous arrival epoch at Node k,
and define the asymptotic LST of the exogenous interarrival times by

fk(x) = exp

{
lim

n→∞
1

n
logE[e−xT A

k (n)]
}

. (3.8)

The function fk is defined on the interval D[fk] = (δ
f
k ,∞), where δ

f
k (< 0) is its

abscissa of convergence. It is known that fk(x) is the Perron-Frobenius eigenvalue of
the matrix U k(xI − T k)

−1 for x ∈ D[fk].
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For a monotone function h, we denote its inverse function by inv[h]. Let φk be the
inverse function of logfk , and ψk be that of loggk , i.e.

φk(a) = inv[logfk](a) and ψk(a) = inv[loggk](a). (3.9)

These functions are defined on the whole real line (−∞,+∞). If λ2 = 0, we consider
φ2(a) ≡ 0. Functions φk and ψk can be interpreted probabilistically using LSTs of
the number of exogenous arrivals and the number of (fictitious) customers served at
Node k during time interval (0, t]. See [3, 4] for a detailed interpretation.

Doubly geometric form solution Using functions introduced above, we construct a
solution to the local balance equations (3.6) for n1, n2 ≥ 2. Arbitrarily choose a pair
of real numbers (a1, a2) and let

ηk = eak . (3.10)

And let

κ(a1, a2) = φ1(a1) + φ2(a2) + ψ1(−a1 + h2(a2)) + ψ2(−a2 + h1(a1)), (3.11)

where

hk(ak) = −log(rk′k e−ak + rk′0). (3.12)

If rk′k = 0 (this may occur only for k = 1 from the assumption r12 > 0), then
hk(ak) ≡ 0.

We consider matrices T k + η−1
k U k and Sk + (rk0 ηk + rkk′ ηkη

−1
k′ )σ	

k bk . From
the irreducibility of the MAPk and PHk representations, these matrices are irre-
ducible and have simple Perron-Frobenius eigenvalues xk = φk(ak) and −yk =
ψk(−ak + hk′(ak′)), respectively. We denote by νk and νk the unique (up to mul-
tiplicative constants) positive left eigenvectors associated with them. Now we let

ν = ν1 ⊗ ν2 ⊗ ν1 ⊗ ν2, (3.13)

and for arbitrarily given n1, n2 ≥ 2, let

p†(m1,m2) = η
m1
1 η

m2
2 ν, m1 = n1, n1 ± 1 and m2 = n2, n2 ± 1. (3.14)

Substituting p(m1,m2) = p†(m1,m2), a direct calculation shows the right hand side
of (3.6) becomes κ(a1, a2)ν. If κ(a1, a2) = 0 then p†(m1,m2) given by (3.14) satis-
fies the local balance equations (3.6) around cell C(n1, n2). So the function κ(a1, a2)

is crucial in our discussion. Related to the function, we introduce a set of pairs (a1, a2)

as

K = {(a1, a2) : κ(a1, a2) ≤ 0} . (3.15)

This set is bounded and convex on the (a1, a2)-plane. Its periphery

Kloop = {(a1, a2) : κ(a1, a2) = 0} (3.16)

is a loop passing the origin. See Fig. 2 for an example of Kloop. It is round in the sense
that any tangential line is tangent to Kloop at a single point. A segment of the loop
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passes the third quadrant of the (a1, a2)-plane, i.e. Kloop ∩ {a1 < 0} ∩ {a2 < 0} �= φ.
For other properties see Sect. 7 of [4].

4 Fundamental lemma

For the decay rate η∗
k of the marginal queue-length distribution of Node k we put

b∗
k = logη∗

k (< 0) (4.1)

and introduce two subsets of K:

H+ = {(a1, a2) : κ(a1, a2) ≤ 0, b∗
1 < a1 < 0, a2 < 0}, and

H− = {(a1, a2) : κ(a1, a2) ≤ 0, a1 < 0, b∗
2 < a2 < 0}. (4.2)

These sets are nonempty. The following is a key lemma for our discussion. It is proved
at the end of this section after preparing a series of lemmas. Note that η+

k and η−
k de-

fined in the lemma are strictly less than 1 from the definition of H+ and H− in (4.2).
Hence this lemma shows a geometric decay property of the joint queue-length distri-
bution {p(n1, n2)}.

Lemma 4.1 (Fundamental lemma) For arbitrarily given (a+
1 , a+

2 ) ∈ H+ and

(a−
1 , a−

2 ) ∈ H−, we put η+
k = ea+

k and η−
k = ea−

k . Then there exist positive constants
C+ and C− such that for any nonnegative integers n1 and n2

p(n1, n2) < C+(η+
1 )n1(η+

2 )n2 + C−(η−
1 )n1(η−

2 )n2 . (4.3)

To prove (4.3), we exploit properties of rate matrix of a quasi-birth-and-death
process having infinite number of states in each level [4, 6]. We consider a gen-
eral time-continuous ergodic Markov chain on a two-dimensional state space S =
{(n, i); n, i = 0,1,2, . . .}. Let L(n) be the set of states {(n, i); i = 0,1,2, . . .} with
common n and call it level n. The whole state space S is partitioned into levels as
S = ⋃∞

n=0 L(n). The Markov chain is called a quasi-birth-and-death (QBD) process
having infinite number of states in each level if, after partitioned into levels, its tran-
sition rate matrix is of a block tri-diagonal form

Q =

⎛
⎜⎜⎜⎜⎜⎝

Q1 Q0

Q2 Q1 Q0

Q2 Q1
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (4.4)

Note that Qi and Qi have infinite dimension.
Let π be the stationary state probability vector of Q and partition it into subvectors

as π = (π(0) π(1) π(2) · · · ) according to the levels. It is known [7, 8] that π takes
a matrix geometric form as

π(n) = π(1)Rn−1, n = 1,2,3, . . . , (4.5)



Queueing Syst (2008) 58: 161–189 169

where R, called the rate matrix, is the minimal nonnegative solution of the matrix
quadratic equation

Q0 + RQ1 + R2Q2 = O. (4.6)

If the dimension of R were finite, the level distribution {π(n) e	} would decay geo-
metrically fast with rate equal to the Perron-Frobenius eigenvalue of R. However, in
our case, the dimension of R is infinite and we cannot use the concept “eigenvalue”.
Lemma 5.1 of [4] provides an alternative tool for evaluating powers of R in such a
case. Using the lemma together with (4.5), we can easily obtain a useful inequality
for state probabilities as in Lemma 5.2 of [4].

Level partition for the two-node Markovian queueing system We partition S in (2.2)
into levels by the smaller number of customers in Node 1 and Node 2 as

S =
∞⋃

n=0

L(n), where L(n) =
⋃

min{n1,n2}=n

C(n1, n2). (4.7)

By this partition, the transition rate matrix can be written in the form (4.4). To de-
scribe submatrices Q0, Q1 and Q2 explicitly, we further partition L(n) into cells
as

L(n) =
+∞⋃

m=−∞
L(n,m), where L(n,m) =

{
C(n,n − m) if m < 0,

C(n + m,n) if m ≥ 0.
(4.8)

We refer to L(n) as the nth level and to L(n,m) as the mth sublevel of the nth level.
By suitably arranging the order of states, Qi , i = 0,1,2, are written as

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

O A1 M21

O A1 M21

O A1

[O]
A2 O

M12 A2 O

M12 A2 O

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.9)
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Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

A2 D M20

A2 D M20

A2 D M20 M21

A2 [D] A1

M12 M10 D A1

M10 D A1

M10 D A1

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.10)

Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

M12 M10 O

M12 M10 O

M12 M10 [O] M20 M21

O M20 M21

O M20 M21

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.11)

where

A1 = U1 ⊗ I ⊗ I ⊗ I , A2 = I ⊗ U2 ⊗ I ⊗ I ,

M10 = r10I ⊗ I ⊗ σ	
1 b1 ⊗ I , M20 = r20I ⊗ I ⊗ I ⊗ σ	

2 b2,

M12 = r12I ⊗ I ⊗ σ	
1 b1 ⊗ I , M21 = r21I ⊗ I ⊗ I ⊗ σ	

2 b2, and

D = T 1 ⊕ T 2 ⊕ S1 ⊕ S2.

(4.12)

Here the submatrices with brackets indicate the position corresponding to the 0th
sublevel. The peripheral submatrices Qi , i = 0,1,2, are more complicated. However
they don’t appear in our proof of the fundamental lemma and we omit their explicit
description.

The stationary state probability vector π is also partitioned according to lev-
els and sublevels. Using p(n1, n2) in (3.5), the nth subvector π(n) of π =
(π(0),π(1),π(2), . . .) is represented as

π(n) = (· · · p(n,n + 2) p(n,n + 1) [p(n,n)] p(n + 1, n) p(n + 2, n) · · ·).
(4.13)

Here the subvector with brackets indicates the position of the 0th sublevel.
For an arbitrarily given pair of real numbers (a1, a2), we construct a vector q using

ηk in (3.10) and ν in (3.13) as

q = (· · · η2
2ν η2ν [ν] η1ν η2

1ν · · · ). (4.14)
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Lemma 4.2 If the pair (a1, a2) satisfies the condition κ(a1, a2) ≤ 0, then the vector
q given by (4.14) satisfies qR ≤ η1η2q .

Proof From Lemma 5.1 of [4], if there exists some constant ξ satisfying q(ξ−1Q0 +
Q1 + ξQ2) ≤ 0 then qR ≤ ξq . From the matrix representations of Qi ’s (4.10)–
(4.12) above, if we set ξ = η1η2, the mth subvector of q(ξ−1Q0 + Q1 + ξQ2) for
m = 2,3, . . . is given by

1

η1η2
(ηm+1

1 νA2 + ηm+2
1 νM12) + (ηm−1

1 νA1 + ηm
1 νD + ηm+1

1 νD1)

+ η1η2(η
m−1
1 νD2 + ηm−2

1 νM21)

= ηm
1 ν

[(
T 1 + 1

η1
U2

)
⊕

(
T 2 + 1

η2
U2

)

⊕
(

S1 + η1

(
r10 + r12

η2

)
σ	

1 b1

)
⊕

(
S2 + η2

(
r20 + r21

η1

)
σ	

2 b2

)]
. (4.15)

A direct calculation shows the right hand side of the above equation becomes
κ(a1, a2)η

m
1 ν. Similarly, for m = −2,−3, · · · the mth subvector of q(ξ−1Q0 +Q1 +

ξQ2) is given by κ(a1, a2)η
−m
2 ν. When m = −1,0,1, the equation for the mth sub-

vector takes a slightly different form from the one above, but we can easily check that
it is also given by κ(a1, a2)η2ν, κ(a1, a2)ν or κ(a1, a2)η1ν according to the value of
m. Hence q(ξ−1Q0 + Q1 + ξQ2) = κ(a1, a2)q . Then the condition κ(a1, a2) ≤ 0
implies that q(ξ−1Q0 + Q1 + ξQ2) ≤ 0, and Lemma 5.1 of [4] assures that q satis-
fies qR ≤ ξq . �

Proof of fundamental lemma The key idea of the proof of Lemma 4.1 is to split the
state probability vector π(1) into two parts. Let

π−(1) = (· · · p(1,3) p(1,2) 0, 0 0 · · · ), and

π+(1) = (· · · 0 0 p(1,1), p(2,1) p(3,1) · · · ). (4.16)

Then, obviously π−(1) + π+(1) = π(1).
For the pair (a+

1 , a+
2 ) ∈ H+, we construct a positive vector q+ as in (4.14) us-

ing corresponding numbers η+
1 , η+

2 and vector ν+. Since κ(a+
1 , a+

2 ) ≤ 0 from the
condition of H+ in (4.2), Lemma 4.2 assures that q+ satisfies

q+R ≤ η+
1 η+

2 q+. (4.17)

Further, since η+
1 > η∗

1 from the condition a+
1 > b∗

1 of H+, there exists a positive
constant C+

π such that

p(m + 1,1) < C+
π (η+

1 )m ν+ for m = 0,1,2, . . . . (4.18)

The inequality 0 < C+
π (η+

2 )m ν+ trivially holds for m = 1,2,3, . . . . Combining these
inequalities we have

π+(1) ≤ C+
π q+. (4.19)
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For the pair (a−
1 , a−

2 ) ∈ H−, we can also construct a positive vector q− as in (4.14)
using corresponding numbers η−

1 , η−
2 and vector ν−. It satisfies similar inequalities

to (4.17) and (4.19) as q−R ≤ η−
1 η−

2 q− and π−(1) ≤ C−
π q− for some positive con-

stant C−
π .

Since π(1) = π+(1) + π−(1) ≤ C+
π q+ + C−

π q−, from (4.5) we have

π(n) = π(1)Rn−1 ≤ C+
π q+Rn−1 + C−

π q−Rn−1

≤ C+
π (η+

1 η+
2 )n−1q+ + C−

π (η−
1 η−

2 )n−1q− for n = 1,2,3, . . . . (4.20)

Rewriting this inequality in subvector-wise, we have

p(n1, n2) ≤ C+
π (η+

1 )n1−1(η+
2 )n2−1ν+ + C−

π (η−
1 )n1−1(η−

2 )n2−1ν−

for n1, n2 = 1,2,3, . . . . (4.21)

It is easily checked that this inequality also holds for the cases with n1 = 0 or
n2 = 0. Postmultiplying (4.21) with e	 and choosing C+ and C− so that C+ >

(η+
1 η+

2 )−1 C+
π ν+e	 and C− > (η−

1 η−
2 )−1 C−

π ν−e	, we get the inequality (4.3).

5 Upper bound for the decay rate

Using Lemma 4.1, our fundamental lemma, we shall derive an upper bound for the
decay rate η∗(c1, c2, d1, d2) of the joint queue-length distribution {p(n1, n2)} when
n1 and n2 get large along line l(c1, c2, d1, d2). Remind that η∗(c1, c2, d1, d2) is de-
fined by (1.2) and l(c1, c2, d1, d2) is defined just below the equation.

Upper bound for decay rate From Lemma 4.1, for any (a+
1 , a+

2 ) ∈ H+ and
(a−

1 , a−
2 ) ∈ H−, there exist constants C+ and C− for which (4.3) holds. Hence we

have

p(c1n + d1, c2n + d1) < D+ exp{n(c1a
+
1 + c2a

+
2 )} + D− exp{n(c1a

−
1 + c2a

−
2 )}

≤ D exp{nmax[c1a
+
1 + c2a

+
2 , c1a

−
1 + c2a

−
2 ]}, (5.1)

where D+ = C+ exp{d1a
+
1 + d2a

+
2 }, D− = C− exp{d1a

−
1 + d2a

−
2 } and D =

D+ + D−. It follows that

lim sup
n→∞

1

n
logp(c1n + d1, c2n + d1) ≤ max[c1a

+
1 + c2a

+
2 , c1a

−
1 + c2a

−
2 ]. (5.2)

We note that the right hand side of the inequality does not depend on d1 and d2.
Taking the infimum of the right hand side of (5.2) over possible pairs (a+

1 , a+
2 ) and

(a−
1 , a−

2 ), we get an upper bound of the limes superior. We let

w+(c1, c2) = inf
(a+

1 ,a+
2 )∈H+

(c1a
+
1 + c2a

+
2 ),

w−(c1, c2) = inf
(a−

1 ,a−
2 )∈H−

(c1a
−
1 + c2a

−
2 ), and

w(c1, c2) = max[w+(c1, c2),w
−(c1, c2)].

(5.3)
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Then we have the following.

Theorem 5.1 For arbitrarily positive integers c1, c2 and nonnegative integers d1 and
d2, the decay rate η∗(c1, c2, d1, d2) of p(n1, n2) along l(c1, c2, d1, d2) is bounded
from above by exp{w(c1, c2)}, namely

η∗(c1, c2, d1, d2) ≤ exp{w(c1, c2)}. (5.4)

Notations To derive an explicit expression for w(c1, c2), we prepare some more
notations. As stated before, the closed set K is convex and its periphery Kloop is a
round loop. So any straight line on the (a1, a2)-plane, if it meets Kloop, intersects
with Kloop at two points or is tangent to Kloop at a single point (see Lemma 7.2 of [4]

for details). Let b
K(1)
1 be the minimum of a1 on Kloop, i.e.

b
K(1)
1 = min{a1 : ∃a2 such that κ(a1, a2) = 0}, (5.5)

and denote the coordinates of the point attaining the minimum as (b
K(1)
1 , b

K(1)
2 ). Sim-

ilarly we denote the coordinates of the point attaining the minimum of a2 on Kloop as

(b
K(2)
1 , b

K(2)
2 ). It is known that b

K(k)
k < 0. On the contrary, b

K(k)

k′ may be positive or
negative, or equal to 0.

For a given a◦
1 such that b

K(1)
1 ≤ a◦

1 ≤ 0, we let θ2(a
◦
1) be the second coordinate

of the lower intersection of the straight line a1 = a◦
1 with Kloop, namely θ2(a

◦
1) is the

smaller root of the equation κ(a◦
1, a2) = 0 for a2. Similarly, for a given a◦

2 such that

b
K(2)
2 ≤ a◦

2 ≤ 0, we let θ1(a
◦
2) be the smaller root of the equation κ(a1, a

◦
2) = 0 for a1.

Especially we write

b0
k′ = θk′(0), and b̂∗

k′ = θk′(b∗
k ) if b∗

k ≥ b
K(k)
k . (5.6)

Note that b∗
k is the logarithm of η∗

k , the decay rate of the marginal queue-length dis-
tribution at Node k as defined in (4.1).

For a point (a1, a2) on Kloop such that b
K(1)
1 < a1 < b

K(2)
1 and b

K(2)
2 < a2 < b

K(1)
2 ,

let σ(a1, a2) be the gradient of the tangential line of the loop at the point, namely

σ(a1, a2) = −
∂

∂a1
κ(a1, a2)

∂
∂a2

κ(a1, a2)
. (5.7)

As a convention, we regard σ(b
K(1)
1 , b

K(1)
2 ) = −∞ and σ(b

K(2)
1 , b

K(2)
2 ) = 0. For

an arbitrarily given negative number u, let (τ1(u), τ2(u)) be the coordinates of
the point (a1, a2) on Kloop such that b

K(1)
1 < a1 < b

K(2)
1 , b

K(2)
2 < a2 < b

K(1)
2 and

σ(a1, a2) = u. Note that a line which is tangent to Kloop at (τ1(u), τ2(u)) with gradi-
ent u is −ua1 + a2 = −uτ1(u) + τ2(u) (= const).

Let b
K1
1 be the minimum of a1 on Kloop with a2 ≤ 0, i.e.

b
K1
1 = min{a1 : ∃a2 such that a2 ≤ 0 and κ(a1, a2) = 0}, (5.8)



174 Queueing Syst (2008) 58: 161–189

and we denote the coordinates of the point attaining the minimum as (b
K1
1 , b

K1
2 ). The

point is given by (b
K(1)
1 , b

K(1)
2 ) if b

K(1)
2 ≤ 0, and by (b0

1,0) if b
K(1)
2 > 0. Similarly we

denote the coordinates of the point attaining the minimum of a2 on Kloop with a1 ≤ 0

as (b
K2
1 , b

K2
2 ).

For positive integers c1 and c2, we put

v(c1, c2) = min{c1a1 + c2a2 : (a1, a2) ∈K, a1 ≤ 0, a2 ≤ 0}. (5.9)

Some considerations reveal that

v(c1, c2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1τ1(−c1/c2) + c2τ2(−c1/c2), if τ1(−c1/c2) < 0 and

τ2(−c1/c2) < 0,

c1b
0
1, if τ2(−c1/c2) ≥ 0,

c2b
0
2, if τ1(−c1/c2) ≥ 0.

(5.10)

Note that the second case may occur only when b
K(1)
2 > 0 and the third case may

occur only when b
K(2)
1 > 0. Hence, if b

K(2)
1 < 0 and b

K(1)
2 < 0, then the first case

occurs.

Explicit expressions for w+(c1, c2) and w−(c1, c2) For a given pair of positive in-
tegers c1 and c2, we shall derive explicit expressions for w+(c1, c2) and w−(c1, c2).
For w+(c1, c2), we check cases b∗

1 ≥ b
K2
1 , b

K1
1 < b∗

1 < b
K2
1 and b∗

1 ≤ b
K1
1 separately.

When b∗
1 ≥ b

K2
1 , the infimum of c1a

+
1 + c2a

+
2 over points (a+

1 , a+
2 ) ∈ H+ is at-

tained at (b∗
1, b̂∗

2) as illustrated in Fig. 2. Hence w+(c1, c2) = c1b
∗
1 + c2b̂

∗
2 .

When b
K1
1 < b∗

1 < b
K2
1 , the line c1a1 + c2a2 = v(c1, c2) is tangent to Kloop at

(τ1(−c1/c2), τ2(−c1/c2)). If τ1(−c1/c2) ≥ b∗
1 , this point is included in H+ as il-

lustrated in Fig. 3. Hence the infimum is attained at the point, and w+(c1, c2) =
v(c1, c2). If τ1(−c1/c2) < b∗

1 , the point is not included in H+, and the infimum is
attained at the extreme point (b∗

1, b̂∗
2) with value w+(c1, c2) = c1b

∗
1 + c2b̂

∗
2 .

Fig. 2 H+ and the line
attaining w+(c1, c2) when

b∗
1 ≥ b

K2
1



Queueing Syst (2008) 58: 161–189 175

Fig. 3 H+ and the line
attaining w+(c1, c2) when

b
K1
1 < b∗

1 < b
K2
1

When b∗
1 ≤ b

K1
1 , the set H+ consists of all the points of K in the third quadrant

(except for the point (b∗
1, b̂∗

2) when b∗
1 = b

K1
1 ). Hence the infimum w+(c1, c2) is given

by v(c1, c2).
Summarizing the above arguments, we have an explicit expression for w+(c1, c2)

as in (5.11) below. Note that here we use the fact that b∗
1 ≥ τ1(−c1/c2) when

b∗
1 ≥ b

K2
1 . For w−(c1, c2) we have a similar expression as in (5.12).

Lemma 5.2 For a given pair of positive integers c1 and c2, w+(c1, c2) and
w−(c1, c2) defined in (5.3) are expressed as follows.

w+(c1, c2) =
{

c1b
∗
1 + c2b̂

∗
2, if b∗

1 ≥ τ1(−c1/c2) and b∗
1 ≥ b

K1
1 ,

v(c1, c2), if b∗
1 ≤ τ1(−c1/c2) or b∗

1 ≤ b
K1
1 ,

(5.11)

w−(c1, c2) =
{

c1b̂
∗
1 + c2b

∗
2, if b∗

2 ≥ τ2(−c1/c2) and b∗
2 ≥ b

K2
2 ,

v(c1, c2), if b∗
2 ≤ τ2(−c1/c2) or b∗

2 ≤ b
K2
2 .

(5.12)

Explicit expression for w(c1, c2) Using Lemma 5.2, we shall derive an explicit
expression for w(c1, c2) = max{w+(c1, c2), w−(c1, c2)}. We consider three cases
separately: (i) τ1(−c1/c2) < 0 and τ2(−c1/c2) < 0, (ii) τ1(−c1/c2) ≥ 0 (and hence
τ2(−c1/c2) < 0), and (iii) τ2(−c1/c2) ≥ 0 (and hence τ1(−c1/c2) < 0).

(i) case τ1(−c1/c2) < 0 and τ2(−c1/c2) < 0: Since the point (τ1(−c1/c2),

τ2(−c1/c2)) is on Kloop, we have τ1(−c1/c2) ≥ b
K1
1 and τ2(−c1/c2) ≥ b

K2
2 .

Hence (5.11) and (5.12) are rewritten as

w+(c1, c2) =
{

c1b
∗
1 + c2b̂

∗
2, if b∗

1 ≥ τ1(−c1/c2),

v(c1, c2), if b∗
1 ≤ τ1(−c1/c2),

w−(c1, c2) =
{

c1b̂
∗
1 + c2b

∗
2, if b∗

2 ≥ τ2(−c1/c2),

v(c1, c2), if b∗
2 ≤ τ2(−c1/c2).
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Further we note that c1b
∗
1 + c2b̂

∗
2 ≥ v(c1, c2) and c1b̂

∗
1 + c2b

∗
2 ≥ v(c1, c2) since

the points (b∗
1, b̂∗

2) and (b̂∗
1, b∗

2) are on Kloop and v(c1, c2) = c1τ1(−c1/c2) +
c2τ2(−c1/c2). So if we define regions in the third quadrant of the (a1, a2)-plane
as

(when τ1(−c1/c2) < 0 and τ2(−c1/c2) < 0)

W 0 = {(a1, a2) : a1 ≤ τ1(−c1/c2) and a2 ≤ τ2(−c1/c2)},
W+ = {(a1, a2) : a1 ≥ τ1(−c1/c2),

c1a1 + c2θ2(a1) ≥ c1θ1(a2) + c2a2 and a1, a2 < 0},
W− = {(a1, a2) : a2 ≥ τ2(−c1/c2),

c1a1 + c2θ2(a1) ≤ c1θ1(a2) + c2a2 and a1, a2 < 0},

(5.13)

then we have Lemma 5.3 below.
(ii) case τ1(−c1/c2) ≥ 0: In this case b∗

1 < 0 ≤ τ1(−c1/c2), and hence w+(c1, c2) =
v(c1, c2). On the other hand, b

K2
2 = b0

2 ≥ τ2(−c1/c2). Hence w−(c1, c2) =
c1b̂

∗
1 + c2b

∗
2 if b∗

2 ≥ b0
2, and w−(c1, c2) = v(c1, c2) if b∗

2 ≤ b0
2. Since always

c1b̂
∗
1 + c2b

∗
2 ≥ v(c1, c2), we have w(c1, c2) = w−(c1, c2). So the three regions

for Lemma 5.3 below are given as follows.

(when τ1(−c1/c2) ≥ 0)

W 0 = {(a1, a2) : a1 < 0 and a2 ≤ b0
2},

W+ = φ, W− = {(a1, a2) : a1 < 0 and b0
2 ≤ a2 < 0}.

(5.14)

(iii) case τ2(−c1/c2) ≥ 0: Similarly the three regions for Lemma 5.3 are given as
follows.

(when τ2(−c1/c2) ≥ 0)

W 0 = {(a1, a2) : a1 ≤ b0
1 and a2 < 0},

W+ = {(a1, a2) : b0
1 ≤ a1 < 0 and a2 < 0}, W− = φ.

(5.15)

Lemma 5.3 For a given pair of positive integers c1 and c2, w(c1, c2) defined in (5.3)
is expressed as follows.

w(c1, c2) =

⎧⎪⎪⎨
⎪⎪⎩

c1b
∗
1 + c2b̂

∗
2 if (b∗

1, b∗
2) in W+,

c1b̂
∗
1 + c2b

∗
2 if (b∗

1, b∗
2) in W−,

v(c1, c2) if (b∗
1, b∗

2) in W 0,

(5.16)

where W 0, W+ and W− are regions defined in (5.13), (5.14) or (5.15).

Note that these expressions for W+, W− and W 0 depend only on the ratio
−c1/c2, and any pair (c1, c2) having a common ratio leads to same regions. Fig-
ure 4 shows an example of the division of the third quadrant of the (a1, a2)-plane
into sets W+, W− and W 0 in the case (i). The boundary between W+ and W− is
denoted by V . Figure 5 shows how (b∗

1, b∗
2) is related to a point on Kloop which gives

the value of w(c1, c2).
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Fig. 4 Curve V and regions
W+, W− and W0

Fig. 5 Relation between
(b∗

1 , b∗
2) and the point attaining

w(c1, c2)

Remark 5.1 From Theorem 5.1, an upper bound for the decay rate η∗(c1, c2, d1, d2)

of p(n1, n2) along l(c1, c2, d1, d2) is given by ew(c1,c2). Hence, the lemma above
shows that the upper bound takes the form either

(η∗
1)c1(η̂∗

2)c2, (η̂∗
1)c1(η∗

2)c2 or ev(c1,c2), (5.17)

where η̂∗
k = exp{b̂∗

k }. Let η0
k = exp{b0

k}. From (5.10), ev(c1,c2) is given by
exp{c1τ1(−c1/c2) + c2τ2(−c1/c2)} when τ1(−c1/c2) < 0 and τ2(−c1/c2) < 0, by
(η0

1)
c1 when τ2(−c1/c2) ≥ 0, and by (η0

2)
c2 when τ1(−c1/c2) ≥ 0. Remind that η∗

k is
the exact decay rate of the marginal queue-length distribution of Node k. In some
systems (such as Jackson type networks), η̂∗

k coincides with η∗
k . However, the bound
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in general may differ from (η∗
1)c1(η∗

2)c2 . It might be smaller or even larger than
(η∗

1)c1(η∗
2)c2 .

w(c1, c2) as a function of c1 and c2 So far we have treated c1 and c2 being fixed.
Now we vary c1 and c2 and examine the behavior of w(c1, c2) as a function of
them.

We note that, as −c1/c2 → −∞, the curve V in Fig. 4 tends to the upper left
arc of Kloop from (b0

1,0) to (b
K1
1 , b

K1
2 ), and as −c1/c2 → 0, V tends to the lower

right arc of Kloop from (0, b0
2) to (b

K2
1 , b

K2
2 ). Two half-lines, which are boundaries

between W+ and W 0 and between W− and W 0, also move as V moves. Hence,
when −c1/c2 increases from −∞ to 0, the boundaries of the regions move as il-
lustrated in Fig. 6. So, if we partition the third quadrant of the (a1, a2)-plane into

Fig. 6 Movement of W’s when
−c1/c2 increases from −∞ to 0

Fig. 7 Partition by the form of
the function w(c1, c2)
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eight regions as illustrated in Fig. 7, the function w(c1, c2) takes different forms ac-
cording to the region in which (b∗

1, b∗
2) falls. Formally these regions are defined as

follows.

R0 = {(a1, a2) : κ(a1, a2) = 0, a1 < 0 and a2 < 0},
R1

0 = {(a1, a2) : κ(a1, a2) < 0, a1 < 0 and a2 < 0},
R1

1 = {(a1, a2) : κ(a1, a2) > 0, b
K2
1 ≤ a1 < 0 and b

K2
2 a1 − b

K2
1 a2 ≥ 0},

R1
2 = {(a1, a2) : κ(a1, a2) > 0, b

K1
2 ≤ a2 < 0 and b

K1
2 a1 − b

K1
1 a2 ≤ 0},

R2
0 = {(a1, a2) : κ(a1, a2) > 0, b

K1
1 < a1 < b

K2
1 and b

K2
2 < a2 < b

K1
2 },

R2
1 = {(a1, a2) : κ(a1, a2) > 0, b

K1
1 < a1 < b

K2
1 and a2 ≤ b

K2
2 },

R2
2 = {(a1, a2) : κ(a1, a2) > 0, a1 ≤ b

K1
1 and b

K2
2 < a2 < b

K1
2 },

R2
3 = {(a1, a2) : κ(a1, a2) > 0, a1 ≤ b

K1
1 and a2 ≤ b

K2
2 }.

(5.18)

Note that κ(a1, a2) = 0 implies that the point (a1, a2) is on Kloop, κ(a1, a2) < 0 im-
plies that (a1, a2) is inside of Kloop, and κ(a1, a2) > 0 implies that (a1, a2) is out-
side of Kloop. Then we have the following lemma. Remind that, from Theorem 5.1,
exp{w(c1, c2)} is our upper bound of the decay rate η∗(c1, c2, d1, d2) of p(n1, n2)

along line l(c1, c2, d1, d2).

Lemma 5.4 The function w(c1, c2) is given as follows.

If (b∗
1, b∗

2) ∈R0, then w(c1, c2) = c1b
∗
1 + c2b

∗
2 . (5.19)

If (b∗
1, b∗

2) ∈R1
0,

then w(c1, c2) =
{

c1b
∗
1 + c2b̂

∗
2 for −c1/c2 ≤ (b̂∗

2 − b∗
2)/(b∗

1 − b̂∗
1),

c1b̂
∗
1 + c2b

∗
2 for −c1/c2 ≥ (b̂∗

2 − b∗
2)/(b∗

1 − b̂∗
1).

(5.20)

If (b∗
1, b∗

2) ∈R1
1, then w(c1, c2) = c1b

∗
1 + c2b̂

∗
2 . (5.21)

If (b∗
1, b∗

2) ∈R1
2, then w(c1, c2) = c1b̂

∗
1 + c2b

∗
2 . (5.22)

If (b∗
1, b∗

2) ∈R2
0,

then w(c1, c2) =

⎧⎪⎨
⎪⎩

c1b
∗
1 + c2b̂

∗
2 for −c1/c2 ≤ σ(b∗

1, b̂∗
2),

v(c1, c2) for σ(b∗
1, b̂∗

2) ≤ −c1/c2 ≤ σ(b̂∗
1, b∗

2),

c1b̂
∗
1 + c2b

∗
2 for −c1/c2 ≥ σ(b̂∗

1, b∗
2).

(5.23)

If (b∗
1, b∗

2) ∈R2
1,

then w(c1, c2) =
{

c1b
∗
1 + c2b̂

∗
2 for −c1/c2 ≤ σ(b∗

1, b̂∗
2),

v(c1, c2) for −c1/c2 ≥ σ(b∗
1, b̂∗

2).
(5.24)
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If (b∗
1, b∗

2) ∈R2
2,

then w(c1, c2) =
{

v(c1, c2) for −c1/c2 ≤ σ(b̂∗
1, b∗

2),

c1b̂
∗
1 + c2b

∗
2 for −c1/c2 ≥ σ(b̂∗

1, b∗
2).

(5.25)

If (b∗
1, b∗

2) ∈R2
3, then w(c1, c2) = v(c1, c2). (5.26)

Proof The case (b∗
1, b∗

2) ∈ R0 is a special case where (b∗
1, b∗

2) is on Kloop and hence
b̂∗
k = b∗

k from the definition (5.6). Since (b∗
1, b∗

2) is in W+ or W−, w(c1, c2) is always
given by c1b

∗
1 + c2b

∗
2 from (5.16). This proves (5.19).

If (b∗
1, b∗

2) ∈ R1
0, then (b∗

1, b∗
2) ∈ W+ for small −c1/c2, and (b∗

1, b∗
2) ∈ W− for

large −c1/c2. The changing point is determined by the equation c1b
∗
1 +c2b̂

∗
2 = c1b̂

∗
1 +

c2b
∗
2 . A trite calculation proves (5.20). If (b∗

1, b∗
2) ∈ R1

1, then (b∗
1, b∗

2) stays in W+
for any −c1/c2. Hence, from (5.16), w(c1, c2) = c1b

∗
1 + c2b̂

∗
2 , and this proves (5.21).

(5.22) is proved in a similar manner.
If (b∗

1, b∗
2) ∈R2

0, then (b∗
1, b∗

2) ∈ W− for large −c1/c2, (b∗
1, b∗

2) ∈W0 for medium
−c1/c2, and (b∗

1, b∗
2) ∈ W+ for small −c1/c2. The changing points are given by

equations b∗
2 = τ2(−c1/c2) and b∗

1 = τ1(−c1/c2). Since these equations are equiva-
lent to −c1/c2 = σ(b̂∗

1, b∗
2) and to −c1/c2 = σ(b∗

1, b̂∗
2) respectively, we have (5.23).

When (b∗
1, b∗

2) ∈ R2
1, the case (b∗

1, b∗
2) ∈ W− cannot occur. When (b∗

1, b∗
2) ∈ R2

2, the
case (b∗

1, b∗
2) ∈W+ cannot occur. When (b∗

1, b∗
2) ∈R2

3, always (b∗
1, b∗

2) ∈W0. Hence
(5.24)–(5.26) are proved immediately from (5.16). �

Combining the above lemma with Theorem 5.1, we have an upper bound for the
decay rate η∗(c1, c2, d1, d2) of the joint queue-length probability p(n1, n2) along line
l(c1, c2, d1, d2).

6 Use of upper bound η∗
k

In the preceding section, the upper bound exp{w(c1, c2)} of η∗(c1, c2, d1, d2) was
derived from the exact decay rates η∗

1 and η∗
2 of the marginal queue-length distribu-

tions. However, these marginal decay rates are usually unknown. By scrutinizing the
deriving process, we see that another upper bound can be derived in the same way by
using arbitrary upper bounds for the marginal decay rates. Here we shall apply the
upper bound η∗

k proposed in [4].
For arbitrarily given positive numbers ηk (< 1), we let

H+(η1) = {(a1, a2) : κ(a1, a2) ≤ 0, logη1 < a1 < 0, a2 < 0}, and

H−(η2) = {(a1, a2) : κ(a1, a2) ≤ 0, a1 < 0, logη2 < a2 < 0}. (6.1)

We choose η
�
k so that η∗

k ≤ η
�
k < 1, then H+(η

�
1) is a subset of H+ and H−(η

�
2)

is a subset of H−. So, our fundamental lemma, Lemma 4.1, still holds if we use
H+(η

�
1) instead of H+ and H−(η

�
2) instead of H−. We let w�(c1, c2;η�

1, η
�
2) be the

function defined by (5.3) using H+(η
�
1) and H−(η

�
2) instead of H+ and H−. Then it
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is represented as in (5.19)–(5.26) where b∗
k is replaced with b

�
k = logη

�
k and b̂∗

k′ with

b̂
�

k′ = θk′(b�
k).

The following lemma is a trivial generalization of Theorem 5.1.

Lemma 6.1 For positive numbers η
�
1 and η

�
2 such that η∗

k ≤ η
�
k < 1, we let

η�(c1, c2;η�
1, η

�
2) = exp{w�(c1, c2;η�

1, η
�
2)}. Then it is an upper bound of the decay

rate η∗(c1, c2, d1, d2) of p(n1, n2) along l(c1, c2, d1, d2) for arbitrarily given positive
integers c1, c2, d1 and d2. Namely

η∗(c1, c2, d1, d2) ≤ η�(c1, c2;η�
1, η

�
2). (6.2)

In the previous paper [4], the authors have derived an upper bound η∗
k of the decay

rate η∗
k of the marginal queue-length distribution for node k. The upper bound is

defined as follows. For the function hk(ak) defined in (3.12) we let

Ek = {(a1, a2) ∈Kloop : ak < 0 and hk(ak) ≤ ak′ ≤ 0}, and (6.3)

b
Ek

k = inf{ak : ∃ak′ such that (a1, a2) ∈ Ek}. (6.4)

Further we restrict Ek for ak′ by b
Ek′
k′ as

Fk = Ek ∩ {(a1, a2) : ak′ ≥ b
Ek′
k′ }

= {(a1, a2) ∈ Kloop : ak < 0 and max{hk(ak), b
Ek′
k′ } ≤ ak′ ≤ 0},

(6.5)

and let

b
Fk

k = inf{ak : ∃ak′ such that (a1, a2) ∈ Fk}. (6.6)

Then our upper bound is defined as

η∗
k = exp{bFk

k }. (6.7)

Theorem 4.1 in [4] proved that η∗
k ≤ η∗

k < 1. We will write as η(c1, c2) the upper
bound η�(c1, c2;η∗

1, η
∗
2) in (6.2) using η∗

k .

To describe η∗
k or b

Fk

k more concretely, we prepare some notations. The curve
ak′ = hk(ak) on the (a1, a2)-plane intersects with Kloop at two points, at the origin

(0,0) and at a point having negative k-th coordinate. Let (b
hk

1 , b
hk

2 ) be the coordinates
of the latter point, namely, for example, if k = 1,

b
h1
1 = {unique negative root of equation κ(a1, h1(a1)) = 0 for a1} and

b
h1
2 = h1(b

h1
1 ).

(6.8)

Further we let b̂
hk

k′ = θk′(bhk

k ). (This quantity was represented by b
hk,c

k′ in [4] with a

slightly different definition.) Note that, for example, b̂
h1
2 is the second coordinate of

the lower intersection of the straight line a1 = b
h1
1 with Kloop. Further we denote as

η
hk

k = exp{bhk

k }, η
hk

k′ = exp{bhk

k′ } and η̂
hk

k′ = exp{b̂hk

k′ }. (6.9)
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In Corollary 4.2 of [4], it was shown that the pair (b
F1
1 , b

F2
2 ), which derives the

upper bounds η∗
1 and η∗

2, takes one of the following six forms depending on conditions
designated in Theorem 6.2 below:

(a) (b
h1
1 , b

h2
2 ) (∈R1

0 ∪R0 ∪R2
0)

(b) (b
h1
1 , b̂

h1
2 ) (∈R0)

(c) (b̂
h2
1 , b

h2
2 ) (∈R0)

(d) (b
h1
1 , b

K2
2 ) (on the boundary between R2

0 and R2
1)

(e) (b
K1
1 , b

h2
2 ) (on the boundary between R2

0 and R2
2)

(f) (b
K1
1 , b

K2
2 ) (at the corner of R2

3)

We will refer to them as “type” of the model. Then, from Lemma 5.4, we can get a
concrete expression for η(c1, c2) = η�(c1, c2;η∗

1, η
∗
2) in each type.

Theorem 6.2 For positive integers c1, c2, d1 and d2, the decay rate η∗(c1, c2, d1, d2)

of the joint queue-length probability p(n1, n2) along line l(c1, c2, d1, d2) is bounded
from above by η(c1, c2) given below.

(a) If max{bh1
1 , b

K2
1 } < b

h2
1 and max{bh2

2 , b
K1
2 } < b

h1
2 [(bF1

1 , b
F2
2 ) = (b

h1
1 , b

h2
2 )],

then
(a-0) If κ(b

h1
1 , b

h2
2 ) = 0 [(bh1

1 , b
h2
2 ) ∈R0],

η(c1, c2) = (η
h1
1 )c1(η

h2
2 )c2 , (6.10)

(a-1) If κ(b
h1
1 , b

h2
2 ) < 0 [(bh1

1 , b
h2
2 ) ∈R1

0],

η(c1, c2) =
{

(η
h1
1 )c1(η̂

h1
2 )c2 for −c1/c2 ≤ (b̂

h1
2 − b

h2
2 )/(b

h1
1 − b̂

h2
1 ),

(η̂
h2
1 )c1(η

h2
2 )c2 for −c1/c2 ≥ (b̂

h1
2 − b

h2
2 )/(b

h1
1 − b̂

h2
1 ),

(6.11)
(a-2) if κ(b

h1
1 , b

h2
2 ) > 0 [(bh1

1 , b
h2
2 ) ∈ R2

0],

η(c1, c2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(η
h1
1 )c1(η̂

h1
2 )c2 for −c1/c2 ≤ σ(b

h1
1 , b̂

h1
2 ),

exp{v(c1, c2)} (= exp{c1τ1(−c1/c2) + c2τ2(−c1/c2)})
for σ(b

h1
1 , b̂

h1
2 ) ≤ −c1/c2 ≤ σ(b̂

h2
1 , b

h2
2 ),

(η̂
h2
1 )c1(η

h2
2 )c2 for −c1/c2 ≥ σ(b̂

h2
1 , b

h2
2 ).

(6.12)
(b) If max{bh2

1 , b
K2
1 } ≤ b

h1
1 [(bF1

1 , b
F2
2 ) = (b

h1
1 , b̂

h1
2 ) ∈R0], then

η(c1, c2) = (η
h1
1 )c1(η̂

h1
2 )c2 . (6.13)

(c) If max{bh1
2 , b

K1
2 } ≤ b

h2
2 [(bF1

1 , b
F2
2 ) = (b̂

h2
1 , b

h2
2 ) ∈R0], then

η(c1, c2) = (η̂
h2
1 )c1(η

h2
2 )c2 . (6.14)
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(d) If max{bh1
1 , b

h2
1 } ≤ b

K2
1 and b

h1
2 > b

K1
2 [(bF1

1 , b
F2
2 ) = (b

h1
1 , b

K2
2 ) ∈ R2

1], then

η(c1, c2) =
{

(η
h1
1 )c1(η̂

h1
2 )c2 for −c1/c2 ≤ σ(b

h1
1 , b̂

h1
2 ),

exp{v(c1, c2)} for −c1/c2 ≥ σ(b
h1
1 , b̂

h1
2 ).

(6.15)

(e) If max{bh1
2 , b

h2
2 } ≤ b

K1
2 and b

h2
1 > b

K2
1 [(bF1

1 , b
F2
2 ) = (b

K1
1 , b

h2
2 ) ∈ R2

2], then

η(c1, c2) =
{

exp{v(c1, c2)} for −c1/c2 ≤ σ(b̂
h2
1 , b

h2
2 ),

(η̂
h2
1 )c1(η

h2
2 )c2 for −c1/c2 ≥ σ(b̂

h2
1 , b

h2
2 ).

(6.16)

(f) If b
h1
2 ≤ b

K1
2 and b

h2
1 ≤ b

K2
1 [(bF1

1 , b
F2
2 ) = (b

K1
1 , b

K2
2 ) ∈ R2

3], then

η(c1, c2) = exp{v(c1, c2)}. (6.17)

Remark 6.1 Note that the function η(c1, c2) is of the form η
c1
1 η

c2
2 in any case. Hence

η(c1n + d1, c2n + d2) = η
d1
1 η

d2
2 {η(c1, c2)}n, and the result of Theorem 6.2 can be

understood as

lim sup
n1,n2→∞

{
p(n1, n2)

η(n1, n2)

}c1/n1

≤ 1 (6.18)

when n1 and n2 get large along line l(c1, c2, d1, d2).

Remark 6.2 We can easily check that Theorem 5.1 holds for case c1 = 0 and c2 > 0.
However, η(0, c2) = η∗

2 for any c2 and thus the upper bound for η∗(0, c2, d1, d2) is
trivial.

Remark 6.3 In the proof of Lemma 4.1, we use Lemma 4.2 instead of handling the
rate matrix R directly. To derive a lower bound of η∗(c1, c2, d1, d2) in the same man-
ner, we need to find a vector q satisfying qR ≥ ξq for some constant ξ . However,
we presently have no way to construct such a vector, and this is left as a future
work.

7 Examples and discussions

Example 7.1 (Tandem queueing system 1) Fujimoto et al. [2] discussed decay
rate of the joint queue-length probabilities in a two-stage tandem queueing sys-
tem PH/PH/s1 →/PH/s2. We compare our result with theirs for the single server
type s1 = s2 = 1. The tandem configuration requires that λ2 = 0, r12 = r20 = 1 and
r10 = r21 = 0. Hence φ2(a2) ≡ 0, h1(a1) ≡ 0 and h2(a2) = a2. Then κ(a1, a2) =
φ1(a1) + ψ1(−a1 + a2) + ψ2(−a2), and b-values satisfy relations b

h1
1 = b0

1, b
h1
2 = 0

and b
h2
1 = b

h2
2 . Notice that the exact decay rate η∗

1 of the marginal queue-length
distribution of Node 1 is given by exp{b0

1}.
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Their results are roughly summarized as follows.1

(i) Under the condition b
K(1)
2 < 0, the decay rate η∗(c1, c2, d1, d2) along line

l(c1, c2, d1, d2) is given by (η
h1
1 )c1(η̂

h2
2 )c2 when −c1/c2 is sufficiently small

(Theorem 3.1 of [2]).
(ii) Under the condition max{bh1

1 , b
K(2)
1 } < b

h2
1 , the decay rate is given by

(η̂
h1
1 )c1(η

h2
2 )c2 when −c1/c2 is sufficiently close to 0 (Theorem 3.2 of [2]).

Consider the case (i) and assume that b
K(1)
2 < 0. Then, when −c1/c2 is very small,

the boundary curve V between regions W+ and W− (see Fig. 4) is near the upper
left arc of Kloop from (b0

1,0) to (b
K1
1 , b

K1
2 ) as indicated in Fig. 6. Since η∗

1 = exp{b0
1},

this implies that the point (b∗
1, b∗

2) = (logη∗
1, logη∗

2) is in W+ irrespective of the
value of η∗

2 . Hence our upper bound for η∗(c1, c2, d1, d2) in Theorem 5.1 is given by

exp{c1b
∗
1 + c2b̂

∗
2} = (η∗

1)c1(η̂∗
2)c2 = (η

h1
1 )c1(η̂

h2
2 )c2 from Lemma 5.3, and this coin-

cides with the exact decay rate given in [2]. For the bound using η∗
k , among the eight

types of Theorem 6.2, five types, (a-0), (a-1), (a-2), (b) and (d), may occur under the
condition b

K(1)
2 < 0. In types (a-1), (a-2), (b) and (d), we can easily check that our

upper bound for small −c1/c2 is given by (η
h1
1 )c1(η̂

h1
2 )c2 . In type (a-0), we see that

b̂
h1
2 = b

h2
2 . Hence the upper bound is given by (η

h1
1 )c1(η

h2
2 )c2 = (η

h1
1 )c1(η̂

h1
2 )c2 . Thus

in each of the five types, our bound is equal to (η
h1
1 )c1(η̂

h1
2 )c2 and coincides with the

exact decay rate.
Next consider the case (ii) and assume that max{bh1

1 , b
K(2)
1 } < b

h2
1 . When −c1/c2

is close to 0, the boundary curve V is near the lower right arc of Kloop from (0, b0
2)

to (b
K2
1 , b

K2
2 ). However, in this type, we cannot discuss our upper bound given in

Theorem 5.1 since we don’t know the value of η∗
2 . For the upper bound using η∗

k , the

condition max{bh1
1 , b

K(2)
1 } < b

h2
1 may not be violated in five types, (a-0), (a-1), (a-2),

(c) and (e), among the eight types of Theorem 6.2. In types (a-1), (a-2), (c) and (e),
we can easily check that our upper bound for −c1/c2 being near to 0 is given by
(η̂

h1
1 )c1(η

h1
2 )c2 . In type (a-0), we see that b̂

h2
1 = b

h1
1 . Hence the upper bound is given

1Theorem 3.1 of [2] is rigorously stated in the following manner. Here we use our notations. Note that i2,
the phase of the exogenous arrival process of Node 2, is always equal to 0 from the tandem assumption. If

b
K(1)
2 < 0, for fixed n2, i1, j1 and j2, the stationary state probability decays geometrically with rate η

h1
1

as n1 → ∞:

p(n1, n2)i1,0,j1,j2 ∼ G1(n2; i1; j1, j2) (η
h1
1 )n1 .

The multiplicative constant G1(n2; i1; j1, j2) decays geometrically with rate η̂
h2
2 as n2 → ∞:

G1(n2; i1; j1, j2) ∼ G2 C0(i1)C1(j1)C2(j2)(η̂
h2
2 )n2 ,

where C0(i1), C1(j1) and C2(j2) are constants determined from the vector ν and G2 is a constant in-

dependent of n2, i1, j1 and j2. The original condition of the theorem is the one similar to η̂
h2
2 < 1, but

their definition of the corresponding quantity to η̂
h2
2 is slightly different from ours and the condition is

equivalent to b
K(1)
2 < 0.
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Table 1 Corresponding types of models listed in Table 1 of [1]

No. Model ρ1 ρ2 Type No. Model ρ1 ρ2 Type

11 M/H2/1 → /E2/1 0.60 0.40 (b) 15 E4/M/1 → /H2/1 0.60 0.40 (b)

12 E2/E2/1 → /E2/1 0.60 0.40 (b) 16 M/E2/1 → /E2/1 0.60 0.35 (b)

13 M/H2/1 → /H2/1 0.60 0.40 (b) 17 H2/E2/1 → /E2/1 0.60 0.40 (b)

14 E2/H2/1 → /E2/1 0.60 0.40 (b) 18 M/E2/1 → /H2/1 0.60 0.20 (b)

by (η
h1
1 )c1(η

h2
2 )c2 = (η̂

h1
1 )c1(η

h1
2 )c2 . Thus in each of the five types, our bound is equal

to (η̂
h1
1 )c1(η

h1
2 )c2 and coincides with the exact decay rate.

Example 7.2 (Tandem queueing system 2) Fujimoto et al. [1] reported results of an
extensive numerical experiment on the joint queue-length probability p(n1, n2) for
tandem queueing systems PH/PH/1 → /PH/1, and gave a conjecture on the decay
rate. We shall see their results from our point of view of types given in Theorem 6.2
with numerical results for the function

γ (n1, n2) = p(n1, n2)

η(n1, n2)
. (7.1)

Note that the function γ (n1, n2) is the quantity in the brackets of (6.18).
Models of type (b): In Table 1 of [1], numerical results were presented for eight

models listed in Table 12 on the ratio

g(n1, n2) = p(n1, n2)

(η
h1
1 )n1(η̂

h1
2 )n2

(7.2)

when n1 and n2 run along lines l(20,5,15,5) and l(5,20,5,15). The results of [1]
shows that the ratio converges to a common limit in each model. By the classifica-
tion in Theorem 6.2, all the models are of type (b) and η(c1, c2) = (η

h1
1 )c1(η̂

h1
2 )c2 .

Hence the function g(n1, n2) coincides with γ (n1, n2). The authors draw graphs of
γ (n1, n2) for these models, and see that all the graphs are almost flat except near the
axes as designated in Fig. 8 for Model 16. From the numerical results and the graphs,
we may expect that, in a model of type (b), there exists a common limit C such that
the joint state probability p(n1, n2) decays geometrically in the sense that, for any
positive integers c1, c2, d1 and d2,

lim
n→∞

p(c1n + d1, c2n + d2)

(η
h1
1 )c1n+d1(η̂

h1
2 )c2n+d2

= C. (7.3)

Of course this is only a conjecture, and it is an open problem whether this property
generally holds or not.

2As for model representation, we use a similar notation to the Kendall’s one. For inter-arrival and service
time distributions, M stands for an exponential distribution, E2 for an Erlang distribution with 2 phases,
and H2 for a hyper exponential distribution with 2 phases having distribution function of the form F(x) =
0.2(1 − e−3.4νx) + 0.8(1 − e−0.85νx).
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Fig. 8 Graph of γ (n1, n2) for
the Model 16

Fig. 9 Graph of γ (n1, n2) for
the Model 21

Table 2 Corresponding types of models listed in Table 2 of [1]

(group 1)

No. Model ρ1 ρ2 Type (b̂
h1
2 − b

h2
2 )/(b

h1
1 − b̂

h2
1 )

21 M/H2/1 → /E2/1 0.60 0.80 (a-1) −0.901

22 E2/E2/1 → /E2/1 0.60 0.70 (a-0) NAN

23 M/H2/1 → /H2/1 0.60 0.75 (a-1) −0.912

24 E2/H2/1 → /E2/1 0.60 0.85 (a-1) −1.050

25 E4/M/1 → /H2/1 0.60 0.77 (a-1) −0.965

(group 2)

No. Model ρ1 ρ2 Type σ(b
h1
1 , b̂

h1
2 ) σ (b̂

h2
1 , b

h2
2 )

26 M/E2/1 → /E2/1 0.60 0.71 (a-2) −2.506 −0.216

27 H2/E2/1 → /E2/1 0.60 0.70 (a-2) −3.403 −0.050

28 M/E2/1 → /H2/1 0.60 0.70 (a-2) −2.786 −0.593

Models of type (a-1): In Table 2(a) of [1], numerical results were presented for five
models listed in Table 2 (group 1) on the ratio g(n1, n2) in (7.2) when n1 and n2 run
along line l(20,5,15,5) and on the ratio

g(n1, n2) = p(n1, n2)

(η̂
h2
1 )n1(η

h2
2 )n2

(7.4)

when n1 and n2 run along line l(5,20,5,15). Both ratios seem to converge. Fig-
ure 9 shows a graph of γ (n1, n2) for Model 21. Note that this model is of type (a-1)
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Fig. 10 Graph of γ (n1, n2) for
the Model 26

Fig. 11 Graph of γ (n1, n2) for
the Model 28

of Theorem 6.2, and hence γ (n1, n2) = g(n1, n2) for −n1/n2 ≤ u and γ (n1, n2) =
g(n1, n2) for −n1/n2 ≥ u, where u = (b̂

h1
2 − b

h2
2 )/(b

h1
1 − b̂

h2
1 ). The value of u for

this particular model is −0.901 as presented in Table 2. The graph of γ (n1, n2) in
Fig. 9 is almost flat in the region −n1/n2 < u and is also almost flat with another
value in the region −n1/n2 > u except for the neighborhood of the boundary. Hence
we may expect that, for −c1/c2 ≤ u, the geometric convergence (7.3) holds, and for
−c1/c2 ≥ u, the geometric convergence

lim
n→∞

p(c1n + d1, c2n + d2)

(η̂
h1
1 )c1n+d1(η

h1
2 )c2n+d2

= C (7.5)

holds with another constant C. Models 23, 24 and 25 of Table 2 (group 1) exhibit
similar behaviors in γ (n1, n2). On the contrary, Model 22 is of type (a-0), and its
behavior in γ (n1, n2) is rather similar to those of type (b).

Models of type (a-2): In Table 2(b) of [1], numerical results were presented for
g(n1, n2) in (7.2) when n1 and n2 run along line l(20,5,15,5) and for g(n1, n2) in
(7.4) when n1 and n2 run along line l(5,20,5,15) for Models 26, 27 and 28 of Table 2
(group 2). The paper [1] said that the values of these functions seemed converging but
the convergence speed was very slow. In the classification of Theorem 6.2, these three
models are all of type (a-2), and the values of thresholds σ(b

h1
1 , b̂

h1
2 ) and σ(b̂

h2
1 , b

h2
2 )

are as shown in Table 2 (group 2). For the line l(20,5,15,5), −c1/c2 is equal to −4.0,
and for the line l(5,20,5,15) it is equal to −0.25. Hence in Models 26 and 27, the
latter gradient −c1/c2 = −0.25 is in between σ(b

h1
1 , b̂

h1
2 ) and σ(b̂

h2
1 , b

h2
2 ). Therefore,

the estimated decay rate (η̂
h2
1 )n1(η

h2
2 )n2 used in (7.4) is clearly larger than the exact

decay rate (if it exists), and the ratio cannot converge to a positive limit. In Figs. 10
and 11, the graph of γ (n1, n2) is presented for Models 26 and 28, respectively, and
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Table 3 Two-node Markovian queueing system M/E2–M/E2

No. Model ρ1 ρ2 Type σ(b
h1
1 , b̂

h1
2 ) σ (b̂

h2
1 , b

h2
2 )

31 M/E2–M/E2 0.7 0.7 (a-2) −2.216 −0.4500

32 M/E2–M/E2 0.65 0.5 (d) −0.537 −

Fig. 12 Graph of γ (n1, n2) for
the model 31

Fig. 13 Graph of γ (n1, n2) for
the model 32

they seem curving. Our numerical results also show some slow convergence or non-
convergence in these models. So, to understand the decay property of p(n1, n2) for
models of type (a-2), we need further study.

Example 7.3 (Two-node Markovian queueing system M/E2–M/E2) Finally, we
show two examples of a two-node Markovian queueing system which is not a tandem
queueing system. The models are listed in Table 3, and in both models λ1 = λ2 = 1
and r12 = r21 = 0.4. The graph of γ (n1, n2) is presented in Figs. 12 and 13. Model 31
is of type (a-2), and the graph is similar to the one for Model 28 in Fig. 11. On
the other hand, Model 32 is of type (d), and the graph is almost flat in the region
−c1/c2 < σ(b

h1
1 , b̂

h1
2 ) and is curving in the region −c1/c2 > σ(b

h1
1 , b̂

h1
2 ). For details

of the decaying behavior of p(n1, n2), we need further study.
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