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Abstract Polling systems have been extensively studied,
and have found many applications. They have often been
used for studying wired local area networks such as to-
ken passing rings and wireless local area networks such as
bluetooth. In this contribution we relax one of the main re-
strictions on the statistical assumptions under which polling
systems have been analyzed. Namely, we allow correlation
between walking times. We consider (i) the gated regime
where a gate closes whenever the server arrives at a queue.
It then serves at that queue all customers who were present
when the gate closes. (ii) The exhaustive regime in which
the server remains at a queue till it empties.

Our analysis is based on stochastic recursive equations
related to branching processes with migration with a random
environment. In addition to our derivation of expected wait-
ing times for polling systems with correlated walking times,
we set the foundations for computing second order statistics
of the general multi-dimensional stochastic recursions.
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1 Introduction

Polling systems have been studied extensively over the last
20 years, and found many applications in various areas
of performance evaluation. They have often been used for
studying wired local areas networks such as token passing
rings [1] and wireless local area networks such as blue-
tooth [2]. They have also been useful for analyzing access
to a disk [3]. Polling systems are one of the few multidi-
mensional queueing systems for which explicit solutions for
the expected waiting times have been available. The reader
is referred to Takagi’s monograph and its supplement [4, 5]
for analytical results and to Yechiali [6] and Lévy and Sidi
[7] for surveys on applications.

In this paper we relax one of the main restrictions on
the statistical assumptions under which polling systems have
been analyzed. Namely, we allow correlation between walk-
ing times: the walking times constitute a stationary ergodic
series of random variables and as such no restrictions are
posed on the shape of the autocorrelation function of the
walking times. As an example of systems that may have such
correlation, consider a wireless LAN where an access point
(the “server”) polls mobiles according to some order. As-
sume that there is some signaling traffic between the access
point and a mobile that is going to be polled, for example
in order to receive the information of how many packets are
awaiting for an uplink transmission from the mobile to the
access point. (The signaling is thus used for reservations of
the number of slots needed in order to transfer the packets
present at the mobile.) Further signaling could be used at the
end of a polling period of a mobile. Assume that the access
point is aware of the radio channel state to each mobile and
that the transmission rate of the signaling traffic is a func-
tion of the channel state. The duration of signaling could be
modeled as part of the “walking times” that the server takes
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between periods of service of two consecutive mobiles. In
this example there can be correlation between the radio con-
ditions of a polled mobile and the radio condition of the next
mobile to be polled (this is a spatial correlation). Further cor-
relation can be due to the fact that switching time to a mobile
and switching from the same mobile (after its packets have
been received) are likely to occur under similar radio condi-
tions (temporal correlation).

We consider in this paper gated and exhaustive polling
systems, i.e. systems in which the server remains with a
queue until all customers are served that were present upon
arrival of the server at the queue (gated) or until there are
no more customers in the queue (exhaustive). In terms of
our example of an access point that polls mobiles, the gated
model is natural since the access point’s information on the
number of packets to expect from a mobile is based on the
reservation signaling from that mobile that occurs just be-
fore transmission from the mobile starts.

Our analysis is based on stochastic recursive equations
[8–10] of a form that is related to branching processes with
migration in a random environment. Branching processes
find their origins in the work of Bienaymé [11] and Gal-
ton and Watson [12], the first asymptotic result in the the-
ory of branching processes being obtained by Kolmogorov
[13]. The first reference on branching with migration is [14].
Multi-type branching processes in a varying environment
without migration have been studied in [15]. Further, an
overview on branching processes can be found in [16, 17].

There is a close connection between branching processes
and polling systems. Already Resing [18] demonstrated the
fact that the number of customers at polling instants can
be described as a discrete multi-type branching processes
with migration. A similar branching structure with a contin-
uous state space was shown to describe the so called “sta-
tion times” of polling systems. A station time is the time
spent at the various queues including the walking time to the
next queue. This structure was used to compute the expected
waiting times of polling systems with up to two queues by
reducing the state evolution to a one-dimensional branching
process [19]. However, this approach did not extend to more
than two queues. The basic obstacle in extending the analy-
sis to a polling system with more than two queues has been
that expected waiting times require to derive second order
properties of the stochastic recursive equations.

Branching processes have also been identified in other
queueing models including infinite server queues [20] and
processor sharing queues [21, 22]. Although some stochastic
processes appearing in queueing models correspond to con-
tinuous branching processes (CBP) (an example is the sta-
tion times in polling systems [23]), it seems that the queue-
ing theory community has only been aware of the formalism
of discrete branching processes. For background on CBP,
see [24].

In this paper we compute the second moment and cor-
relation in multi-type branching processes with a station-
ary ergodic migration process. Our framework has its origin
in [25], which has studied a general form of stochastic re-
cursive equations that applies in particular to the model in
this paper. In our present contribution we make use of those
results to derive the first two moments of multi-type branch-
ing processes with stationary ergodic migration. The second
moment results we obtain here allow us to compute the ex-
pected waiting times in a polling system with any number of
queues.

The contribution of this paper is thus not only in analyz-
ing polling systems with correlated walking times but also in
setting the foundations for computing second order statistics
of the stochastic under non Markov setting.

The remainder of this contribution is organized as fol-
lows. In the next section we present the continuous state
branching model with stationary ergodic migration, for
which we obtain the first two moments in stationary regime.
Some background for this section is delayed to the Appendix.
We apply these results to a symmetric polling system with
the gated regime in Sect. 3 and with an exhaustive regime in
Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Branching model: two first moments

Our starting point is the following stochastic recursive equa-
tion,

Yn+1 = An(Yn) + Bn. (1)

For each given integer n, An is a nonnegative Additive Lévy
field: it is an extension of a stochastic process where the
“time” parameter is not a scalar but a vector in R

m+. For each
An and for each y ∈ R

m+, An(y) takes values in R
m+. As a

function of n, the random fields An(.) are assumed to be
independent and identically distributed (i.i.d.). The reader is
referred to the Appendix for the definition of Additive Lévy
fields.

The series {Bn} is a stationary ergodic series of m-
dimensional column vectors whose entries take values in the
nonnegative reals R

+. Further, the process {Bn} is assumed
to be independent of the process {An}. We call the process
{Yn} a continuous-state branching process (see [26] where
related one-dimensional processes that have the above form
are defined, as well as [24] and references therein). Bn is
then called the migration process. Let B(k) be the matrix
E[B0(Bk)

T ], where k is an integer and let B̂(k) be defined as
B(k) − E[B0]E[B0]T . Notice that in particular B̂(0) equals
the covariance matrix cov[B0] of the random vector B0.

Although the stochastic recursive equation (1) is not lin-
ear, it is linear in expectation. That is, for any y ∈ R

m+,

E[An(y)] = Ay, (2)
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for some matrix A. The latter matrix is defined in the
Appendix, see expression (40). Moreover, we have for
j > 1,

E

[(
j⊗

i=1

Aj

)
(y)

]
= Aj y. (3)

Here we understand
⊗k

i=n Ai(x) = x whenever k < n, and⊗k
i=n Ai(x) = Ak(Ak−1(. . . (An(x)))) whenever k > n.
In the following Theorem, we obtain expressions for the

mean vector and covariance matrix of the stationary solu-
tion. Let ||·|| denote the Euclidean norm.

Theorem 1 Consider the stochastic recursive equation (1)
where An are i.i.d. Additive Lévy processes, independent
of the sequence Bn which is assumed to be stationary er-
godic. Assume that all eigenvalues of A are within the unit
disk and that the elements of B0 have finite second order
moments. Then, there exists a unique stationary solution
{Y ∗

n } to (1); moreover, one can construct a probability space
on which both {Yn} as well as {Y ∗

n } are defined such that
limn→∞

∣∣∣∣Yn − Y ∗
n

∣∣∣∣ = 0, P -a.s. The stationary limit Y ∗
n sat-

isfies the following:

(i) The first moment of Y ∗
0 is given by

E[Y ∗
0 ] = (I −A)−1 E[B0], (4)

where I denotes the m × m identity matrix.
(ii) cov(Y ∗

0 ) is given as the unique solution of the following
set of linear equations:

Z =
m∑

j=1

E[Y j

0 ]�(j) +AZAT + cov[B0]

+
∞∑

j=1

Aj B̂(j) + (Aj B̂(j))T , (5)

where E[Y j

0 ] denotes the j th element of the vector
E[Y ∗

0 ], Z is the m × m matrix to be solved for and the
matrices �(j) are defined in (38) in the Appendix.

Proof The existence, uniqueness of the stationary regime
and the convergence to it have been established in [25]. In
the sequel we shall understand Yn to denote Y ∗

n .
Taking expectation in (1) we have

E[Y0] = AE[Y0] + E[B0],

and we immediately obtain (4) since the fact that the eigen-
values of A are within the unit disk implies that (I − A) is
a non-singular matrix.

Further, multiplying both sides of (1) by their transpose,
taking expectation and using the stationarity yields,

E[Y0Y
T
0 ] = E[A0(Y0)A

T
0 (Y0)] + E[B0B

T
0 ]

+ E[A0(Y0)B
T
0 ] + E[B0A

T
0 (Y0)].

The covariance matrix cov[Y0] therefore equals,

cov[Y0] = cov[A0(Y0)] + cov[B0] + E[A0(Y0)B
T
0 ]

−AE[Y0]E[B0]T + E[B0A0(Y0)
T ]

− E[B0](AE[Y0])T . (6)

In view of property (42) of Additive Lévy processes, we fur-
ther find,

cov[A0(Y0)] =
m∑

j=1

E[Y j

0 ]�(j) +A cov[Y0]AT . (7)

The stationary solution of the recursive equation (1) is dis-
tributed as the right hand side of expression (46) of Theo-
rem 5 in the Appendix. Therefore we find,

E[Y0B
T
0 ] =

∞∑
j=0

E

{ −1⊗
i=−j

A−j,i (B−j−1)B
T
0

}

=
∞∑

j=0

E

(
E

{ −1⊗
i=−j

A−j,i (B−j−1)B
T
0

}∣∣∣∣∣B−
0

)

=
∞∑

j=0

E(AjB−j−1B
T
0 ) =

∞∑
j=0

AjB(j + 1), (8)

with B−
0 := (B0,B−1,B−2, . . .). Recall that B(k) =

E[B0(Bk)
T ]. Notice that the sums in the last line are finite

since the finiteness of the second moments of the elements
of B0 implies that B(j) is uniformly bounded and since all
eigenvalues of A are within the unit disk. Finally, in view of
the former expression, we compute,

E[A0(Y0)B
T
0 ] = E[E[A0(Y0)B

T
0 |Y0,B0]]

= AE[Y0B
T
0 ] =

∞∑
j=1

AjB(j),

or equivalently,

E[A0(Y0)B
T
0 ] =

∞∑
j=1

Aj B̂(j) +
∞∑

j=1

Aj E[B0]E[B0]T

=
∞∑

j=1

Aj B̂(j) +A(I −A)−1 E[B0]T

=
∞∑

j=1

Aj B̂(j) +AE[Y0]E[B0]T . (9)
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Substitution of expressions (7) and (9) into expression (6)
then yields (5).

Next, we show uniqueness. Let Z1 and Z2 be two so-
lutions of (6) and define Z = Z1 − Z2. Then Z satisfies
Z = AT ZA in view of (5). Iterating the former expression
we obtain,

Z = lim
n→∞AnZ(AT )n = 0

where the last equality follows from the fact that all the
eigenvalues of A are within the unit disk. This implies the
uniqueness of the solution of (5). �

3 Symmetric gated polling systems

We now consider a polling system with a gated service
discipline and with correlated walking times. The server
polls m queues and the workload arrival processes into
the different queues are modeled by means of indepen-
dent subordinators—Lévy processes with increasing sam-
ple paths—distributed as some (generic) subordinator R(t),
t ∈ R+. For further use, let ρ = E[R(1)] and σ 2 =
var[R(1)] denote the mean and variance of R(1). Also,
the Itô decomposition states that a subordinator decom-
poses into a Poisson process and a constant flow. Let λ

and r denote the Poisson arrival intensity and the flow rate
respectively and let p1 and p2 denote the first two mo-
ments of the Poisson jumps. Notice that ρ = r + λp1. The
walking times are assumed to constitute a stationary er-
godic series {Vn} of nonnegative random variables and the
average walking time is denoted by v = E[V0]. For fur-
ther use, let V(j) = E[V0Vj ] for some integer j and let
V̂(j) = E[V0Vj ] − v2. Notice that V̂(0) equals the vari-
ance var[V0] of the random variable V0. Also, in the case
that the consecutive walking times are independent, we have
V̂(j) = 0 for all j = 1,2, . . . .

3.1 Sample-path modeling as a stochastic recursive
equation

There are m queues visited by the server in a cyclic way:
1,2, . . . ,m− 1,m,1,2, . . . . When the server has completed
all the work it found upon arrival at a queue, the server re-
quires a walking time during which it idles. Then the server
moves to the next queue.

We consider the polling system at polling instants. That
is, at time instants where the server arrives at a queue.
Let S(n) denote the nth polling instant and let I (n) =
((n − 1)modm) + 1 denote the queue that the server vis-
its at the nth polling instant. Further, the walking time to
move to queue I (n + 1) is denoted by Vn. Let

Y i
n := S(n) − S(n − i) (i = 1,2, . . . ,m).

It is the time between the (n − i)th and the nth polling in-
stant. The workload arrival process at queue i is described
by a subordinator Ri (t) with time parameter t ∈ R+, which
is distributed as R(t). Let Ri

n be i.i.d. copies of Ri for all
integer n. We can then describe the dynamics of the gated
polling system through the following set of equations:

Y 1
n+1 = S(n + 1) − S(n) = Rm

n (Ym
n ) + Vn,

Y 2
n+1 = S(n + 1) − S(n − 1) = Y 1

n +Rm
n (Ym

n ) + Vn,

Y 3
n+1 = S(n + 1) − S(n − 2) = Y 2

n +Rm
n (Ym

n ) + Vn, (10)

...

Ym
n+1 = S(n + 1) − S(n − m + 1) = Ym−1

n +Rm
n (Ym

n )+Vn.

Equation (10) states that the time between S(n) and S(n + 1)

is the sum of the amount of work that the server finds in
queue I (n) at time S(n) and the nth walking time. The
server finds in queue I (n) at time S(n) all work that arrived
in this queue since time S(n − m), i.e., since the previous
time that the server polled queue I (n). Note that we here
implicitly used the independent increments property of the
workload arrival processes.

In vector notation we have

Yn+1 = An(Yn) + Bn,

with

Bn = Vn · (1,1, . . . ,1)T and
(11)

An(y) = A(1)
n (y1) + · · · + A(m)

n (ym),

for y = (y1, . . . , ym)T ∈ R
m+, and with

A(1)
n (t) = (0, t,0,0, . . . ,0)T ,

A(2)
n (t) = (0,0, t,0, . . . ,0)T ,

... (12)

A(m−1)
n (t) = (0,0,0, . . . ,0, t)T ,

A(m)
n (t) = Rm

n (t)(1,1, . . . ,1)T ,

for t ∈ R+.
Yn can be viewed as the state variables of a Markov chain

in the special case that the series {Bn} is i.i.d. too. Different
state variables have been used before in this Markovian case.
Takagi [4] uses the “buffer occupancy” approach where the
state is the number of customers at each queue at polling
instants. Another well known alternative is the use of station
times as states, where a station time is the time spent at a
station plus the walking time from that station to the next
one. The advantage in our choice of state vector is that one
of its components equals the cycle time (see further), whose
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first two moments, as we shall see, are precisely what we
need for computing the expected waiting time.

Finally, notice that the processes An are Additive Lévy
processes and that the series Bn is a stationary ergodic se-
ries in R

m+ which implies that we can use the framework
developed in the preceding section.

3.2 First and second moment

In accordance with the definition of the matrix A (see
Appendix) and from (12) it follows that,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0 ρ

1 0 0 0 . . . 0 ρ

0 1 0 0 . . . 0 ρ

0 0 1 0 . . . 0 ρ
...

...
...

. . .
...

...
...

0 0 0 0 . . . 0 ρ

0 0 0 0 . . . 1 ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

We shall sometimes use the notation A(ρ) to stress the de-
pendence on ρ = EA(1). The latter matrix then satisfies the
following theorem.

Theorem 2 A sufficient and necessary condition for all
eigenvalues of A to be in the interior of the unit circle is

ρ <
1

m
.

Proof A is known as the Companion matrix, and its eigen-
values are given as the m roots of the polynomial equation,

Pm(z) = zm − ρ(1 + z + · · · + zm−1) = 0, (14)

see Horn and Johnson [27, pp. 146–147]. Choose some z

with |z| ≥ 1. If ρ̄ < 1/m, then

|Pm(z)| ≥ |z|m − ρ

m−1∑
i=0

|z|i > 0.

We conclude that ρ < 1/m is a sufficient condition for all
eigenvalues of A to be in the interior of the unit circle.

If ρ ≥ 1/m then at least one of the eigenvalues of A is not
within the interior of the unit disk. To see that, we note that
the matrix κ = A(1/m) is the transposed of a stochastic ma-
trix and therefore has an eigenvalue of 1. For ρ ≥ 1/m, each
entry of A(ρ) is greater than or equal to the corresponding
entry of κ . We can then apply Theorem 8.4.5 of Horn and
Johnson [27] to conclude that A(ρ) has an eigenvalue not
contained in the interior of the unit disk. This establishes the
necessity of the condition. �

We conclude that the conditions of Theorem 1 hold if and
only if ρ < 1/m. The steady state expectation of Y0 is then
given by,

E[Y0] = (I −A)−1 E[B0] = v

1 − mρ
· (1,2,3, . . . ,m)T .

Recall that the covariance matrix of A(y) is given by
cov[A(y)] = ∑m

j=1 yj�
(j), where �(j) is the corresponding

covariance matrix of A(j)(1) and where yj denotes the j th
element of the vector y (see Appendix). From (12) one finds
that for all j �= m, �(j) is an m × m matrix whose elements
are all zero. Indeed, this follows from,

E[A(j)(1) · (A(j)(1))T ] = diag(0,0, . . . ,1, . . . ,0)

= E[A(j)(1)] · E[(A(j)(1))T ],
where the 1 in the diagonal matrix is in position j + 1.
It remains to compute �(m). Clearly, from (12) we find,
A

(m)
n (1) = Rm

n (1) · (1,1, . . . ,1)T and therefore,

�(m) = σ 2E,

where E denotes an m × m matrix with all elements equal
to 1. Further, in view of (11), we find,

cov[B0] = V̂(0) · E,

B(j) = V(j) · E, B̂(j) = V̂(j) · E .

Hence, (5) simplifies to

cov[Y0] = mvσ 2

1 − mρ
E +A cov[Y0]AT + V̂(0)E

+
∞∑

j=1

V̂(j)[AjE + (AjE)T ]. (15)

We conclude that the covariance of Y0 in stationary regime
is given by the unique solution of (15). Note that the last
term in (15) disappears for the case of independent walking
times.

3.3 Performance measures

We now find expressions for various performance measures
of the polling system under consideration.

3.3.1 Cycle time and busy time

Let the cycle time be defined as the time between (the start
of) two consecutive visits of the server to a queue. In partic-
ular, let the nth cycle time be defined as,

Cn = S(n + m) − S(n).
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Cn is thus the time between the arrival of the server at the
nth queue that it visits, and the next time it arrives at that
queue. Clearly, we have Cn = Ym

n and therefore,

E[C0] = E[Ym
0 ] = mv

1 − mρ
,

var[C0] = var[Ym
0 ],

E[C0
2] = var[Ym

0 ] + E[Ym
0 ]2

with var[Ym
0 ] the bottom right element of the matrix cov[Y0].

Let the nth busy time Gn be defined as the part of the nth
cycle time during which the server attends queue I (n). The
gated polling policy implies that the length of the nth busy
time equals the time to serve the amount of work that arrived
in the queue during cycle Cn−m. That is,

Gn = R(Cn−m).

Therefore, we find,

E[G0] = ρ E[C0],
var[G0] = σ 2 E[C0] + ρ2 var[C0],
E[G0

2] = σ 2 E[C0] + ρ2 E[C0
2].

3.3.2 Workload

Let the workload of a queue at a point in time be defined
as the amount of time it takes the server to empty the queue
under the assumption that there arrives no new work and
under the assumption that the server remains with the queue.
At any point in time, one may decompose the workload into
two components: (i) the workload in front of the gate which
will be served during the next cycle and (ii) the workload
behind the gate which is served during the current cycle.

The expected workload in front of the gate at a queue
grows from 0 linearly in time (see (38)) during the cycle.
The average time since the start of the ongoing cycle from
the vantage point of a random point in time is given by (see
a.o. Baccelli and Brémaud [28]),

Es[Cp] = E[C0
2]

2 E[C0] .

The expectation Es in the left hand side of the above
equation is with respect to the stationary regime. The ex-
pectation operator in the right hand side, involved in the ex-
pected cycle and expected busy duration per cycle which
we have just computed, is to be understood as those corre-
sponding to the Palm probabilities (see Baccelli and Bré-
maud [28]). We next consider the expected workload, where
this time the expectation is with respect to the stationary
probability distribution.

In order for the paper to be self contained, we briefly re-
call what are the stationary and the Palm distributions at the

end of the section. We shall assume that the cycle durations
are strictly positive w.p.1.

The expected stationary average workload in front of the
gate which we denote by Es[Uf ] is given by,

Es[Uf ] = ρ Es[Cp] = ρ
E[C0

2]
2 E[C0] .

The expected workload behind the gate diminishes lin-
early in time during the busy period and equals 0 during the
walking time. The time until the end of the ongoing busy
period (the residual busy period) as seen from the vantage
point of a random point in time during a busy period is given
by (see a.o. Baccelli and Brémaud [28]),

Es[Gr ] = E[G0
2]

2 E[G0] .

(A more formal discussion is given at the remark at the end
of the section. It explains what we mean by random point in
time.) Since a random point in time is part of the busy pe-
riod with probability ρ, we find that the expected stationary
average workload behind the gate Es[Ua] is given by,

Es[Ua] = ρ2 E[G0
2]

2 E[G0] = ρ
σ 2 E[C0] + ρ2 E[C2

0 ]
2 E[C0] .

The total expected workload in the queue therefore
equals,

Es[U ] = Es[Uf ] + Es[Ua]

= ρ
(ρ2 + 1)E[C0

2] + σ 2 E[C0]
2 E[C0] .

3.3.3 Virtual waiting time

Since the arrival process is described in terms of work
streams and not in terms of customer arrival instants, one
cannot consider customer waiting times. We may however
consider the “virtual” waiting time of an infinitely small
amount of work—a virtual customer—that arrives in the
system. That is, let virtual waiting time be defined as the
amount of time that it takes to empty the queue upon arrival
of a (virtual) customer, given that there are no future arrivals.

The waiting time of a tagged virtual customer can be
decomposed into the following three terms: (i) the expec-
tation of the residual cycle time Cr upon arrival, (ii) the
time to serve all the workload in front of the gate present
at the queue upon arrival, i.e. the workload that arrived since
the cycle began; the latter duration is denoted by Cp , and
(iii) the amount of work that arrives at the same epoch but
before the tagged infinitesimal amount.

A random infinitesimal amount of work arrives at a ran-
dom point in time. To see this, note that a subordinator
combines a deterministic arrival stream and a batch Poisson
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process. Therefore the infinitesimal amount is either part of
the stream or of a batch. Clearly, if the infinitesimal amount
is part of the stream, it arrives at a random point in time. If
the infinitesimal amount is part of a batch, we may apply the
well-known PASTA (Poisson Arrivals See Time Averages)
property of Poisson processes. Summarizing we have (also
see Baccelli and Brémaud [28]),

Es[Cr ] = Es[Cp] = E[C0
2]

2 E[C0] . (16)

By (38) and since the workload arrival process has in-
dependent increments, the expectation of term (ii) equals
ρ Es[Cp]. Further, an infinitesimal amount of work is part
of a Poisson jump with probability λp1/(r + λp1). If this is
the case, the average amount of work that arrives before the
tagged amount of work equals p2/2p1 (see a.o. Baccelli and
Brémaud [28]) and therefore the expected amount of work
that arrives at the same epoch but before a tagged virtual
customer equals,

Es[Uj ] = λp2

2(r + λp1)
. (17)

Recall that λ, pi and r denote the Poisson arrival rate, the ith
moment of the batch size distribution and the deterministic
rate of the arrival process respectively. We conclude that the
average waiting time is given by,

Es[W ] = E[(C0)
2]

2 E[C0] (1 + ρ) + λp2

2(r + λp1)
. (18)

Remark 1 We provide here some formal definition of the
term “random point in time”. Let T1 be the first time a cycle
starts at some time larger than 0. Thus T0 ≤ 0 < Tn. Call the
cycle starting at T1 the first cycle. Define Tn to be the instant
when the nth cycle starts; we allow n to take both positive
and negative integer values. Let P s and Es denote the sta-
tionary probability measure and the corresponding expecta-
tion. We define P o to be the Palm probability corresponding
to P s where the Palm probability of an event A is the sta-
tionary probability of that event conditioned by the event
T0 = 0. Equations (16) and (18) then express the first mo-
ments of Cr , Cp and W at the stationary regime in terms
of the first and second moments of the cycle time with re-
spect to the Palm probability. Cp is defined as the time as ob-
served at t = 0 since the current cycle began; it is thus given
by −T0 and its expectation is given by Es[Cp] = −Es[T0].
The residual cycle time Gr is simply T1 so its expectation
is Es[Gr ] = Es[T1]. The state at a “random point in time”
can be understood as the state at time zero given that the
system is stationary at that time. Unless the notation Es is
used, all expectations in this subsection are to be understood
as corresponding to the Palm probability.

4 Symmetric exhaustive polling systems

We now consider the exhaustive polling system: the server
remains with the same queue as long as there is work in this
queue. More precisely, the server remains with the queue
as long as there is a sufficient amount of work such that
the server can operate at full capacity. That is, it is possible
that the server stops serving a queue when there is a steady
stream of arriving work with a rate smaller then the service
rate.

Regarding the arrival processes and walking times, we
make the same assumptions as in the preceding section. We
also continue using the notation introduced there.

4.1 Completion periods

Let the notion of a completion period correspond to the time
that it takes the server to completely empty a queue and let
θ(y) denote the completion time given that the amount of
work at the start of the completion time (t = 0) equals y.
Further, let R(t) denote the amount of work that has arrived
in the queue up to time t . One may then express θ(y) in
terms of R(t) as follows,

θ(y) = inf{t ≥ 0 : y +R(t) − t ≤ 0}. (19)

In particular, let R(t) denote a subordinator. The follow-
ing theorem then allows us to retrieve various characteristics
of the process θ(t). By analytic continuation, the Laplace
exponent φ(·) and the Lévy exponent ψ(·) of a subordinator
(see Appendix) relate as φ(ζ ) = −ψ(−iζ ).

Theorem 3 Let R(t) denote a subordinator with drift
smaller than 1 and with Laplace exponent φ(ζ ). Further, let
κ(0) denote the largest solution of κ(0) = φ(κ(0)). Then,
the process θ(y) (as defined in expression (19)) is a sub-
ordinator killed at a rate κ(0). Its Laplace exponent κ(ζ ):
[0,∞) → [κ(0),∞) is the unique solution of the functional
equation κ(ζ ) − φ(κ(ζ )) = ζ .

Proof Since R(t) is a subordinator with drift smaller than 1,
R(t) − t can be decomposed into a subordinator with zero
drift and a strictly negative drift. Further, the Itô decompo-
sition of subordinators and the right continuity of the sam-
ple paths shows that this process crosses levels whenever
it reaches levels from above for every sample path. The
stated results then immediately follow from Proposition 2.1
of [29]. �

By means of Hölders inequality, one finds for ζ1, ζ2 ∈
[0,∞),

eφ(
ζ1+ζ2

2 ) = E[(e ζ1
2 θ(1))(e

ζ2
2 θ(1))]

≤ E[eζ1θ(1)]1/2 E[eζ2θ(1)]1/2 = e
φ(ζ1)+φ(ζ2)

2
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with equality if and only if ζ1 = ζ2. This then implies the
strict convexity of the function ζ − φ(ζ ) on [0,∞). There-
fore the killing rate is strictly positive if and only if the deriv-
ative 1 − φ′(0) is strictly negative. In other words, the sub-
ordinator θ(y) is never killed whenever E[R(1)] = ρ ≤ 1.
Moreover, for ρ < 1, the average completion time E[θ(1)]
and the corresponding variance var[θ(1)] are given by,

E[θ(1)] = θ = 1

1 − ρ
, (20)

var[θ(1)] = σ 2

(1 − ρ)3
(21)

which immediately follows from differentiation of the func-
tional equation κ(ζ ) − φ(κ(ζ )) = ζ .

4.2 Sample path modeling as a stochastic recursive
equation

The former characterization of the completion times now al-
lows us to follow an approach similar to the one that was
used for the symmetric gated polling system with correlated
walking times. Let m denote the number of queues visited
by the server in a cyclic way. As for the gated polling sys-
tem, let I (n) = ((n− 1)modm)+ 1 denote the queue that is
visited at the nth polling instant and let Vn denote the walk-
ing time that the server takes after serving this queue.

As opposed to the gated polling system, we observe
the polling system at time instants where the server leaves
a queue. That is, let S(n) denote the time epoch where
the server leaves the queue that was polled at the nth
polling instant. The polling system is observed at these
instants since—in accordance with the exhaustive polling
discipline—there is no work in queue I (n) at time S(n).

Further, let Y i
n denote,

Y i
n = S(n) − S(n − i) (i = 1,2, . . . ,m − 1).

That is, Y i
n is the time between the instants where the server

leaves the (n − i)th and nth queue. The workload at queue i

is described by a subordinator Ri (t) with parameter t ∈ R+
and which is distributed as R(t). Let Ri

n and R̂i
n denote

series of independent copies of Ri , n = 1,2,3, . . . . Simi-
lar, let θi(y) denote the completion process corresponding
to Ri (t) and let θi

n and θ̂ i
n denote independent copies of θi ,

n = 1,2,3, . . . . The dynamics of the exhaustive polling sys-
tem are then described by the following set of m − 1 equa-
tions,

Y 1
n+1 = S(n + 1) − S(n)

= Vn + θm−1
n (Rm−1

n (Ym−1
n )) + θ̂m−1

n (R̂m−1
n (Vn)),

Y 2
n+1 = S(n + 1) − S(n − 1)

= Y 1
n + Vn + θm−1

n (Rm−1
n (Ym−1

n ))

+ θ̂m−1
n (R̂m−1

n (Vn)),

Y 3
n+1 = S(n + 1) − S(n − 2)

= Y 2
n + Vn + θm−1

n (Rm−1
n (Ym−1

n ))
(22)

+ θ̂m−1
n (R̂m−1

n (Vn)),

...

Ym−1
n+1 = S(n + 1) − S(n − m + 2)

= Ym−2
n + Vn + θm−1

n (Rm−1
n (Ym−1

n ))

+ θ̂m−1
n (R̂m−1

n (Vn)).

The former equations follow from the fact that at the begin-
ning of the service period of the nth queue, the polling sta-
tion finds all work in the queue that arrived since the last ser-
vice period (Rm−1

n (Ym−1
n + Vn)). The corresponding com-

pletion period then corresponds to the time it takes to reduce
the queue size to zero. The independent increments property
finally leads to the former expressions.

The set of (22) can then be written in vector notation as
follows,

Yn+1 = An(Yn) + Bn.

Here Bn denotes the following vector of size m − 1:

Bn = γ m
n (Vn) · (1,1, . . . ,1)T , (23)

with,

γ m
n (x) = x + θ̂m−1

n (R̂m−1
n (x)).

Notice that the processes γ m
n are subordinators for all m,n

since composition and summation of subordinators yields
subordinators. Further, the processes An can be decomposed
as,

An(y) = A(1)
n (y1) + · · · + A(m−1)

n (ym−1), (24)

for y = (y1, . . . , ym−1)
T ∈ R

m−1+ with,

A(1)
n = (0, t,0,0, . . . ,0,0)T ,

A(2)
n = (0,0, t,0, . . . ,0,0)T ,

... (25)

A(m−2)
n = (0,0,0,0, . . . ,0, t)T ,

A(m−1)
n = θm−1

n (Rm−1
n (t))(1,1, . . . ,1)T

for t ∈ R+.
Clearly, the processes An constitute a series of indepen-

dent and identically distributed Additive Lévy processes. We
can further show that the series of vectors {Bk} constitutes a
stationary and ergodic series of random vectors. This imme-
diately follows from the following theorem.
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Theorem 4 Let γk(·) denote a series of independent and
identically distributed subordinators and let Xk denote a
stationary ergodic series of random variables, then the se-
ries γk(Xk) is also stationary ergodic.

Proof Let Uk denote an independent series of random vari-
ables, uniformly distributed on [0,1]. The series (Xk,Uk) is
then stationary ergodic and therefore this is also the case for
the series Yk = f (Xk,Uk) for any Borel measurable func-
tion f (see e.g. Breiman [30]). In particular, let f (x, y) =
g−1

x (y) with gx(y) = Pr[γ (x) ≤ y]. The Itô decomposition
of subordinators implies that f (x, y) is Borel measurable
and the series Yk is therefore stationary ergodic. Finally,
from the definition of f (x, y) it follows that the processes
Yk and γk(Xk) share the same law and therefore γk(Xk) is
stationary ergodic. �

Summarizing, we find that the series An and Bn consti-
tute a series of i.i.d. Additive Lévy processes in R

m−1+ and a
series of stationary ergodic random vectors in R

m−1+ respec-
tively. As such, we can use the framework of Sect. 2.

4.3 First and second moments

From (25) and the definition of the matrix A, we find,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 θρ

1 0 0 . . . 0 θρ

0 1 0 . . . 0 θρ

0 0 1 . . . 0 θρ
...

...
...

. . .
...

...

0 0 0 . . . 1 θρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

In view of Theorem 2, all eigenvalues of the former matrix
are in the interior of the unit circle whenever,

θρ <
1

m − 1
. (27)

For ρ < 1, the latter condition is satisfied whenever
(see (20)),

ρ <
1

m
. (28)

For ρ ≥ 1, this condition is never satisfied.
For ρ < 1/m, the conditions of Theorem 1 hold and

therefore the steady state expectation of Y0 is given by,

E[Y0] = (I −A)−1 E[B]

= (1 + ρθ)v

1 − (m − 1)ρθ
· (1,2, . . . ,m − 1)T

= v

1 − mρ
· (1,2, . . . ,m − 1)T . (29)

The covariance matrix of A(y) is given by cov[A(y)] =∑m
j=1 yj�

(j), where �(j) is the corresponding covariance

matrix of A(j)(1) and where yj denotes the j th element of
the vector y (see Appendix). Clearly, for j = 1, . . . ,m − 2,
the covariance matrix �(j) is an (m − 1) × (m − 1) matrix
whose elements are all zero. This follows from,

E[A(j)(1)A(j)(1)T ] = diag(0,0, . . . ,1, . . . ,0)

= E[A(j)(1)]E[A(j)(1)]T . (30)

Here the 1 in the diagonal matrix is in position j + 1. We
now compute �(m−1). In view of the definition of A(m−1)(y)

(see expression (25)), we find,

�(m−1) = var[θm−1
0 (Rm−1

0 (1))]E

= (var[θm−1
0 (1)]ρ + θ

2
σ 2)E = σ 2

(1 − ρ)3
E, (31)

where E denotes an (m − 1) × (m − 1) matrix with all ele-
ments equal to 1.

In view of expression (23), we further find,

cov[B0] = var[γ m
0 (V0)] · E = σ 2v + (1 − ρ)2V̂(0)

(1 − ρ)3
· E,

B̂(j) =
{

E
[
γ m

0 (V0)γ
m
j (Vj )

] − v2

(1 − ρ)2

}
· E

= V̂(j)

(1 − ρ)2
· E,

B(j) = E[γ m
0 (V0)γ

m
j (Vj )] · E = V(j)

(1 − ρ)2
· E .

Finally, after plugging in the former expressions into (5)
of Theorem 1, we find that the (m − 1) × (m − 1) matrix
cov[Y0] is the unique solution of,

cov[Y0] = mvσ 2

(1 − mρ)(1 − ρ)2
E +A cov[Y0]AT + V̂(0)

1 − ρ
E

+
∞∑

j=1

V̂(j)

(1 − ρ)2
[AjE + (AjE)T ]. (32)

Note that the last term in (32) disappears for the case of
independent walking times.

4.4 Performance measures

We now find expressions for various performance measures
of the polling system under consideration.

4.4.1 Busy and vacation times

Let the nth busy time Gn be defined as the time between
the arrival of the server at the nth queue and the start of
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the following walking time. Also, let the nth vacation time
Hn be defined as the time between the end of the nth busy
time and the time the server returns to the queue. In view of
the definition of Y i

n and since the server finds all work that
arrived during the (n − m)th vacation time upon arrival at
the nth queue, we find,

Hn = Ym−1
n+m−1 + Vn+m−1, Gn = θ(R(Hn−m)).

The expected busy and vacation times therefore equal,

E[H0] = E[Ym−1
0 ] + E[V0] = vm(1 − ρ)

1 − mρ
,

E[G0] = θρ E[H0] = vmρ

1 − mρ
.

Further, we find following expressions for the second mo-
ments of the busy and vacation times,

E[H0
2] = E[(Ym−1

0 )2] + E[(V0)
2] + 2 E[Ym−1

0 V0]

= E[(Ym−1
0 )2] + V(0) + E[Ym−1

0 Bm−1
0 ]

1 + θρ
,

E[G0
2] = E[θ(ρ(H0))

2] = σ 2 E[H0] + (1 − ρ)ρ2 E[G0
2]

(1 − ρ)3
.

Here E[Ym−1
0 Bm−1

0 ] is the (m − 1)th diagonal element of
the matrix (see (8)),

E[Y0B
T
0 ] =

∞∑
j=0

AjB(j + 1) =
∞∑

j=0

V(j + 1)AjE,

and E[(Ym
0 )2] equals the (m − 1)th diagonal element of the

matrix cov[Y0] + E[Y0]E[Y0]T .

4.4.2 Workload

As before, let the workload in a queue be defined as the
amount of time it takes to empty the queue under the as-
sumption that there arrives no new work and that the server
remains with the queue. Since there is no work in the
(tagged) queue at the beginning of a vacation period and
since work arrives at a rate ρ during the vacation period, we
find the following expression for the mean workload during
vacations,

E[Uv] = ρ
E[H0

2]
2 E[H0] . (33)

Further, let E[Ub] denote the mean workload during busy
periods. The expectation of the remaining busy time then
equals θ E[Ub] since the queue builds down at a rate θ during
service periods. Therefore we find,

E[Ub] = E[G0
2]

2 E[G0]θ
. (34)

Combining the former expressions and taking into account
that the server is busy for a fraction E[G0]/(E[G0]+E[H0])
of the time then leads to the following expression for the
expectation of the unfinished work,

E[U ] = 1

2

ρ E[H0
2] + (1 − ρ)E[G0

2]
E[G0] + E[H0] . (35)

4.4.3 Expected waiting time

Clearly, the expected waiting time of a (tagged) virtual cus-
tomer that arrives during a vacation time equals the sum
of (i) the expected remaining vacation time E[H 2

0 ]/2 E[H0]
(see a.o. Baccelli and Brémaud [28]), (ii) the expected work-
load in the queue upon arrival (see (33)) and (iii) the amount
of work that arrives at the same epoch but before the tagged
virtual customer (see (17)). We find,

E[Wv] = E[H0
2]

2 E[H0] (1 + ρ) + λp2

2(r + λp1)
.

Further, the expected virtual waiting time during busy
times equals the sum of (i) the expected workload upon ar-
rival of the tagged virtual customer (see (34)) and (ii) the
amount of work that arrives at the same epoch but before the
tagged virtual customer (see (17)). We obtain the following
expression for the expectation of the (virtual) waiting times
during busy times,

E[Wb] = E[G0
2]

2 E[G0]θ
+ λp2

2(r + λp1)
.

Taking into account that a fraction E[G0]/(E[G0] + E[H0])
of all work arrives during the busy time, we find the follow-
ing expression of the expected virtual waiting time,

E[W ] = 1

2

(1 + ρ)E[H0
2] + (1 − ρ)E[G0

2]
E[H0] + E[G0]

+ λp2

2(r + λp1)
. (36)

5 Concluding comments

In this paper we have studied and used multi-type branch-
ing processes with a continuous state-space and derived
their first two moments for the case of a (possibly non-
Markovian) stationary ergodic migration process. The
framework is then used to derive explicit formulas for the
expected workload and waiting times in symmetric gated
and exhaustive polling systems with correlated walking
times.
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work of excellence.
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Appendix Background material

We frequently encounter vector-valued stochastic processes
where the “time” parameter is a scalar. We shall need how-
ever to use a vector valued parameter, which gives us a Lévy
field. An example of a scalar field with a vector valued pa-
rameter is a black and white picture. The parameter space is
two dimensional (the x and y directions) and for each value
(x, y) of the parameter, we have a specific gray level which
is given by a scalar. An example of a field where both the
field’s value at a point as well as the parameter space are
vectors is a color photo, where for each point (x, y), a three
dimensional vector is introduced, where the three compo-
nents represent the intensity level of the blue, red and yellow
colors.

We begin by recalling the definition of a K-parameter
Lévy Field. Let K be a cone in R

d inducing an ordering ≤K .
A K-parameter Lévy process {A(s), s ∈ K} on R

m is a col-
lection of random variables on R

m satisfying the following
properties.

(a) Independent increments;
(b) Stationarity in each direction in K ;
(c) Continuity in probability: for each s ∈ K , A(s′) → A(s)

in probability as |s′ − s| → 0 with s′ ∈ K ;
(d) A(0) = 0 almost surely;
(e) Almost surely, A(s) is K-right continuous with K-left

limits in s.

For precise definitions of independent increments and
stationarity, the reader is referred to Sato’s monograph [31].
In the sequel, we shall consider K = R

d+.

The case K = R+

We first consider a multivariate (vector valued) Lévy process
with a one-dimensional (scalar valued) time parameter t (i.e.
K = R+) which we denote—with some abuse of notation—
by A(t). Let m denote the dimension of A(t). The charac-
teristic function of A(t) is then given by (see a.o. [31–34]),

E[ei〈ξ,A(t)〉] = e−tψ(ξ),

for any t ∈ R+, where by the Lévy-Khintchine formula,

ψ(ξ) = i〈a, ξ 〉 +
∫

R
m+
[ei〈x,ξ〉 − 1]L(dx), (37)

for all ξ ∈ R
m and for a given a ∈ R

m+. Here L is a finite
measure on R

m concentrated on R
m+ − {0}. ψ is called the

Lévy exponent of A and L is the corresponding Lévy mea-
sure [33].

The expectation and covariance of a multivariate Lévy
process have the following form:

E[A(t)] = tA, cov[A(t)] = t� (38)

where A is an m-dimensional column vector and � is a sym-
metric m × m matrix. The values of A and of � can be ob-
tained by differentiating (37) once and twice respectively.
That is, the ith element of A and the ij th element of � are
given by (see also [35]),

[A]i = ∂ψ(ξ)

i∂ξi

∣∣∣∣
ξ=0

and [�]ij = −∂ψ(ξ)2

∂ξi∂ξj

∣∣∣∣
ξ=0

.

We next present useful formulas for m = 1, for the mean
and variance of A evaluated at a random time. Let τ be a
nonnegative random variable, independent of A. The mean
and variance of A(τ) are then given by,

E[A(τ)] = E[τ ]A,

and,

var[A(τ)] = E[A(τ)2] − (E[A(τ)])2

= E(E[var[A(τ)] + (Aτ)2|τ ]) − (E[A(τ)])2

= E[τ ]� + var[τ ]A2, (39)

respectively.

Additive Lévy process

For the case of Lévy processes with an R
d+ valued “time”

parameter (or Lévy fields), we shall focus on fields with a
special structure: Additive Lévy fields. Let A denote a Lévy
field and let A(1), . . . ,A(d) be d independent Lévy processes
on R

m with scalar valued time parameters. We then assume
that the random field A has the following decomposition:

A(y) = A(1)(y1) + · · · + A(d)(yd),

for all y = (y1, . . . , yd) ∈ R
d+. Let ψ1, . . . ,ψd be the Lévy

exponents corresponding to A(1), . . . ,A(d). Then for any
y ∈ R

d , the characteristic function of A(y) = ∑d
j=1 A(j)(yj )

is given by

E[ei〈ξ,A(y)〉] = e
−∑d

j=1 yj ψj (ξ) = e−〈y,�(ξ)〉, ξ ∈ R
m,

where � = (ψ1, . . . ,ψd).
The expectation of A(y) is given by

E[A(y)] =
d∑

j=1

yjA(j) = Ay, (40)

where A(j) = E[A(j)(1)] denotes the expectation of A(j)(1)

and where A is a matrix whose j th column equals A(j).
Similarly, the covariance matrix of A(y) is given by,

cov[A(y)] =
d∑

j=1

yj�
(j), (41)
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where �(j) = cov[A(j)(1)] is the corresponding covariance
matrix of A(j)(1).

As for the scalar case, we derive the first and second mo-
ments of the process A at a random time A(τ). Here τ is a
non-negative random variable in R

d+, which is independent
of A and represented as a column vector. The mean vector
and covariance matrix of A(τ ) are given by,

E[A(τ)] =
m∑

j=1

A(j)E[τj ],

and,

cov[A(τ)] =
d∑

j=1

E[τj ]�(j) +A cov[τ ]AT , (42)

where τj is the j th entry of the vector τ . Similarly, we also
have,

E[A(τ)A(τ)T ] = E{E[A(τ)A(τ)T ]|τ }
= E{E(cov[A(τ)] +Aτ(Aτ)T |τ)}

=
d∑

j=1

E[τj ]�(j) +AE[ττT ]AT . (43)

Stability and stationary distribution

Finally, we recall some properties of the stationary distri-
bution of the stochastic recursive equation (1) where the
An constitute a series of i.i.d. Additive Lévy processes in
R

m+ with an R
m+ valued time parameter. The Bn consti-

tute a series of stationary ergodic random variables in R
m+

and the process Bn is assumed to be independent of the
processes An.

Additive Lévy processes have a divisibility property. For
any integers n and k and for any y(i) ∈ R

m+, i = 1, . . . , k, we
have,

An

(
k∑

i=0

y(i)

)
=

k∑
i=0

An,i(y(i)),

where for any fixed n, the processes An,i are i.i.d. copies of
the process An. Using the former property, we obtain for any
integers k and n with k < n by iterating (1),

Yn =
n−1∑
j=k

(
n−1⊗

i=n−j

An−j,i

)
(Bn−j−1) +

(
n−1⊗
i=k

Ak,i

)
(Yk). (44)

Here we understand
⊗k

i=n Ai(x) = x whenever k < n, and⊗k
i=n Ai(x) = Ak(Ak−1(· · · (An(x)))) whenever k > n.
Note that compositions of Lévy processes—as we have

in (44)—are themselves Lévy processes. Moreover, if An

and An+1 are Additive Lévy processes in R
m+ then their com-

position is also an Additive Lévy process. Indeed, let An and
An+1 have the decomposition,

Ai(y) = A
(1)
i (y1) + · · · + A

(m)
i (ym),

for all y = (y1, . . . , ym) ∈ R
m+ and for i = n,n + 1 and

where A
(1)
n , . . . ,A

(m)
n and A

(1)
n+1, . . . ,A

(m)
n+1 are 2m indepen-

dent Lévy processes on R
m+. We then have,

An+1(An(y)) = An+1

(
m∑

i=1

A(i)
n (yi)

)

=
m∑

i=1

An+1,i (A
(i)
n (yi)) =

m∑
i=1

Ã(i)
n (yi), (45)

where the processes An+1,i , i = 1, . . . ,M are i.i.d. copies of
the process An+1 and where Ã(i) = An+1,iA

(i)
n is an inde-

pendent Lévy process with a scalar valued time parameter.
As already mentioned, the equilibrium distribution of

the dynamics equation (1) has been studied before in [25].
In particular, the following theorem is a consequence of
Lemma 1 and Theorem 2 in the latter contribution.

Theorem 5 Assume that the sequence {(An(·),Bn),−∞ <

n < ∞} is stationary ergodic, defined on some probability
space (�,F ,P ). For each n, let An be an Additive Lévy
process and assume that the processes An constitute a series
of i.i.d. random processes. Further, assume that all eigenval-
ues of the matrix A are in the interior of the unit circle, and
that E[max(log ||B||,0)] is finite for some norm ||·||.

Then there is a unique stationary solution Y ∗
n of (1), dis-

tributed like

Y ∗
n =d

∞∑
j=0

(
n−1⊗

i=n−j

An−j,i

)
(Bn−j−1), n ∈ Z, (46)

where for each integer i, {Aj,i(·)}j are independent of each
other and have the same distribution as Ai(·). The sum on
the right side of (46) converges absolutely P -almost surely.
Furthermore, for all initial conditions Y0,

∣∣∣∣Yn − Y ∗
n

∣∣∣∣ → 0,
P -almost surely on the same probability space. In particu-
lar, the distribution of Yn converges to that of Y ∗

0 as n → ∞.
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