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Abstract We consider an extension of the standard G/G/1

queue, described by the equation W
D= max{0,B − A +

YW }, where P[Y = 1] = p and P[Y = −1] = 1 − p. For
p = 1 this model reduces to the classical Lindley equation
for the waiting time in the G/G/1 queue, whereas for p = 0
it describes the waiting time of the server in an alternating
service model. For all other values of p, this model describes
a FCFS queue in which the service times and interarrival
times depend linearly and randomly on the waiting times.
We derive the distribution of W when A is generally distrib-
uted and B follows a phase-type distribution, and when A is
exponentially distributed and B deterministic.
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1 Introduction

One of the most fundamental relations in queuing and ran-
dom walk theory is Lindley’s recursion [11]:

Wn+1 = max{0,Bn − An + Wn}. (1.1)

In queuing theory, it represents a relation between the wait-
ing times of the nth and (n+1)st customer in a single server
queue, An indicating the interarrival time between the nth
and (n + 1)st customer and Bn denoting the service time of
the nth customer. In the applied probability literature there
has been a considerable amount of interest in generalisations
of Lindley’s recursion, namely the class of Markov chains
described by the recursion Wn+1 = g(Wn,Xn). For earlier
work on such stochastic recursions see, for example, Brandt
et al. [5] and Borovkov and Foss [3]. Many structural prop-
erties of this recursion have been derived. For example, As-
mussen and Sigman [2] develop a duality theory, relating the
steady-state distribution to a ruin probability associated with
a risk process. More references in this domain can be found
in Asmussen and Schock Petersen [1] and Seal [16]. An im-
portant assumption which is often made in these studies is
that the function g(w,x) is non-decreasing in its main argu-
ment w. For example, in [2] this assumption is crucial for
their duality theory to hold.

In this paper we consider a generalisation of Lindley’s
recursion, for which the monotonicity assumption does not
hold. In particular, we study the Lindley-type recursion

Wn+1 = max{0,Bn − An + YnWn}, (1.2)

where for every n, the random variable Yn is equal to plus
or minus one according to the probabilities P[Yn = 1] = p

and P[Yn = −1] = 1 − p, 0 � p � 1. The sequences {An}
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and {Bn} are assumed to be independent sequences of i.i.d.
non-negative random variables. Our main goal is to derive
the steady-state distribution of {Wn, n = 1,2, . . .}, when it
exists.

Equation (1.2) reduces to the classical Lindley recur-
sion [11] when P[Yn = 1] = 1 for every n. Furthermore,
if P[Yn = −1] = 1, then (1.2) describes the waiting time
of the server in an alternating service model with two ser-
vice points. For a description of the model for this spe-
cial case and related results see Park et al. [13] and Vla-
siou et al. [20–23].

Studying a recursion that contains both Lindley’s clas-
sical recursion and the recursion in [13, 20–23] as special
cases seems of interest in its own right. Additional motiva-
tion for studying the recursion is supplied by the fact that,
for 0 < p < 1, the resulting model can be interpreted as a
special case of a queuing model in which service and inter-
arrival times depend on waiting times. We shall now discuss
the latter model.

Consider an extension of the standard G/G/1 queue in
which the service times and the interarrival times depend lin-
early and randomly on the waiting times. Namely, the model
is specified by a stationary and ergodic sequence of four-
tuples of non-negative random variables {(An,Bn, ̂An, ̂Bn)},
n � 0. The sequence {Wn} is defined recursively by

Wn+1 = max{0,Bn − An + Wn},
where

An = An + ̂AnWn,

Bn = Bn + ̂BnWn.

We interpret Wn as the waiting time and Bn as the ser-
vice time of customer n. Furthermore, we take An to be the
interarrival time between customers n and n+ 1. We call Bn

the nominal service time of customer n and An the nominal
interarrival time between customers n and n + 1, because
these would be the actual times if the additional shift were
omitted, that is, if P[̂An = ̂Bn = 0] = 1.

Evidently, the waiting times satisfy the generalised
Lindley recursion (1.2), where we have written Yn = 1+
̂Bn − ̂An. This model—for generally distributed random
variables Yn—has been introduced in Whitt [24], where
the focus is on conditions for the process to converge to
a proper steady-state limit, and on approximations for this
limit. There are very few exact results known for queuing
models in which interarrival and/or service times depend on
waiting times; we refer to Whitt [24] for some references.

Whitt [24] builds upon previous results by Vervaat [19]
and Brandt [4] for the unrestricted recursion Wn+1 =
YnWn + Xn, where Xn = Bn − An. There has been consid-
erable previous work on this unrestricted recursion, due to
its close connection to the problem of the ruin of an insurer

who is exposed to a stochastic economic environment. Such
an environment has two kinds of risk, which were called
by Norberg [12] insurance risk and financial risk. Indica-
tively, we mention the work by Tang and Tsitsiashvili [17],
and by Kalashnikov and Norberg [10]. In the more general
framework, Wn may represent an inventory in time period
n (e.g. cash), Yn may represent a multiplicative, possibly
random, decay or growth factor between times n and n + 1
(e.g. interest rate) and Bn −An may represent a quantity that
is added or subtracted between times n and n + 1 (e.g. de-
posit minus withdrawal). Obviously, the positive-part oper-
ator is appropriate for many applications [24].

This paper presents an exact analysis of the steady-state
distribution of {Wn, n = 1,2, . . .} as given by (1.2) with
P[Yn = 1] = p and P[Yn = −1] = 1 − p. For 0 < p < 1,
this amounts to analysing the above-described G/G/1 ex-
tension where ̂An = ̂Bn with probability p, and ̂An = 2+ ̂Bn

with probability 1 − p. This problem, and state-dependent
queuing processes in general, is connected to LaPalice queu-
ing models, introduced by Jacquet [9], where customers are
scheduled in such a way that the period between two con-
secutively scheduled customers is greater than or equal to
the service time of the first customer.

This paper is organised in the following way. In Sect. 2
we comment on the stability of the process {Wn}, as it is
defined by recursion (1.2). In the remainder of the paper it
is assumed that the steady-state distribution of {Wn} exists.
Section 3 is devoted to the determination of the distribution
of W when A is generally distributed and B has a phase-type
distribution. In Sect. 4 we determine the distribution of W

when A is exponentially distributed and B is deterministic.
At the end of each section we compare the results that we
derive to the already known results for Lindley’s recursion
(i.e. for p = 1) and to the equivalent results for the Lindley-
type recursion arising for p = 0.

At the end of this introduction we mention a few nota-
tional conventions. For a random variable X we denote its
distribution by FX and its density by fX . Furthermore, we
shall denote by f (i) the ith derivative of the function f . The
Laplace-Stieltjes transforms (LST) of A and W are respec-
tively denoted by α and ω . To keep expressions simple, we
also use the function φ defined as φ(s) = ω(s)α(s).

2 Stability

The following result on the convergence of the process {Wn}
to a proper limit W is shown in Whitt [24]. It is included here
only for completeness.

From recursion (1.2), it is obvious that if we replace Yn

by max{0, Yn} and Bn − An by max{0,Bn − An}, then the
resulting waiting times will be at least as large as the ones
given by (1.2). Moreover, when we make this change, the
positive-part operator is not necessary anymore.
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Lemma 1 (Whitt [24, Lemma 1]) If Wn satisfies (1.2), then
with probability 1, Wn � Zn for all n, where

Zn+1 = max{0, Yn}Zn + max{0,Bn − An}, n � 0, (2.1)

and Z0 = W0 � 0.

So if Wn satisfies (1.2), Zn satisfies (2.1), and Zn

converges to the proper limit Z, then {Wn} is tight and
P[W > x] � P[Z > x] for all x, where W is the limit in
distribution of any convergent subsequence of {Wn}. This
observation, combined with Theorem 1 of Brandt [4], which
implies that Zn satisfying (2.1) converges to a proper limit if
P[max{0, Yn} = 0] = P[Yn � 0] > 0, leads to the following
theorem.

Theorem 1 (Whitt [24, Theorem 1]) The series {Wn} is
tight for all ρ = E[B0]/E[A0] and W0. If, in addition, 0 �
p < 1 and {(Yn,Bn − An)} is a sequence of independent
vectors with

P[Y0 � 0,B0 − A0 � 0] > 0,

then the events {Wn = 0} are regeneration points with finite
mean time and {Wn} converges in distribution to a proper
limit W as n → ∞ for all ρ and W0.

Naturally, for p = 1, i.e. for the classical Lindley recur-
sion, we need the additional condition that ρ < 1.

Therefore, assume that the sequences ̂Bn − ̂An and
Bn − An are independent stationary sequences, that are also
independent of one another, and that for all n, An and Bn

are non-negative. Then the conditions of Theorem 1 hold, so
there exists a proper limit W , and for the system in steady-
state we write

W
D= max{0,B − A + YW }, (2.2)

where “
D= ” denotes equality in distribution, where A, B are

generic random variables distributed like An, Bn, and where
P[Y = 1] = p and P[Y = −1] = 1 − p.

Remark 1 For x � 0 (2.2) yields that

FW(x) = P[W � x]
= pP[X + W � x] + (1 − p)P[X − W � x],

where X = B − A (note that P[X < 0] > 0). Assuming that
the distribution FX of the random variable X is continuous,
the last term is equal to 1 − P[X − W � x], which gives us
that

FW(x) = p

∫ x

−∞
FW(x − y)dFX(y)

+ (1 − p)

(

1 −
∫ ∞

x

FW (y − x)dFX(y)

)

.

This means that the limiting distribution of W , provided that
FX is continuous, satisfies the functional equation

F(x) = p

∫ x

−∞
F(x − y)dFX(y)

+ (1 − p)

(

1 −
∫ ∞

x

F (y − x)dFX(y)

)

. (2.3)

Therefore, there exists at least one function that is a solution
to (2.3). It can be shown that in fact there exists a unique
measurable bounded function F : [0,∞) → R that satisfies
this functional equation.

To show this, consider the space L∞([0,∞)), i.e. the
space of measurable and bounded functions on the real line
with the norm

‖F‖ = sup
t�0

|F(t)|.

In this space define the mapping

(T F)(x) = p

∫ x

−∞
F(x − y)dFX(y)

+ (1 − p)

(

1 −
∫ ∞

x

F (y − x)dFX(y)

)

.

Note that T F : L∞([0,∞)) → L∞([0,∞)), i.e., T F is
measurable and bounded. For two arbitrary functions F1 and
F2 in this space we have

‖(T F1) − (T F2)‖
= sup

x�0
|(T F1)(x) − (T F2)(x)|

= sup
x�0

∣

∣

∣

∣

p

∫ x

−∞
[F1(x − y) − F2(x − y)]dFX(y)

+ (1 − p)

∫ ∞

x

[F2(y − x) − F1(y − x)]dFX(y)

∣

∣

∣

∣

� sup
x�0

(

p

∫ x

−∞
|F1(x − y) − F2(x − y)|dFX(y)

+ (1 − p)

∫ ∞

x

|F2(y − x) − F1(y − x)|dFX(y)

)

� sup
x�0

(

p

∫ x

−∞
sup
t�0

|F1(t) − F2(t)|dFX(y)

+ (1 − p)

∫ ∞

x

sup
t�0

|F2(t) − F1(t)|dFX(y)

)

= ‖F1 − F2‖ sup
x�0

[p FX(x) + (1 − p)(1 − FX(x))].

Note that the supremum appearing above is less than
or equal to max{p,1 − p} for p ∈ (0,1) and equal to
1 − FX(0) for p = 0. Therefore, since for p �= 1 it holds
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that supx�0[p FX(x) + (1 − p)(1 − FX(x))] < 1, for these
values of the parameter p we have a contraction mapping.
Furthermore, we know that L∞([0,∞)) is a Banach space,
therefore by the Fixed Point Theorem we have that (2.3) has
a unique solution; for a related discussion, see also [20].

In the next two sections we determine the distribution of
W for two cases in which {An} and {Bn} are independent
and i.i.d. sequences of non-negative random variables.

3 The GI/PH case

In this section we assume that A is generally distributed,
while B follows a particular phase-type distribution. Specif-
ically, we assume that with probability κn the nominal ser-
vice time B follows an Erlang distribution with parameter μ

and n phases, i.e.,

FB(x) =
N

∑

n=1

κn

(

1 − e−μx
n−1
∑

j=0

(μx)j

j !
)

=
N

∑

n=1

κn

∞
∑

j=n

e−μx (μx)j

j ! , x � 0, (3.1)

with LST
∑N

n=1 κn(μ/(μ + s))n. These distributions, i.e.
mixtures of Erlang distributions, are special cases of Cox-
ian or phase-type distributions. It is sufficient to consider
only this class, since it may be used to approximate any
given continuous distribution on [0,∞) arbitrarily close;
see Schassberger [15]. Following the proof in [22], one can
show that for such an approximation of FB , the error in the
resulting waiting time approximation can be bounded.

We are interested in the distribution of W . In order to
derive the distribution of W , we shall first derive the LST
of FW . We follow a method based on Wiener-Hopf decom-
position. A straightforward calculation yields for values of s

such that Re(s) = 0:

ω(s) = E[e−sW ]
= p E[e−s max{0,B−A+W }]

+ (1 − p)E[e−s max{0,B−A−W }]
= p P[W + B � A] + p E[e−s(B−A+W)]

− p E[e−s(B−A+W);W + B � A]
+ (1 − p)P[B � W + A]
+ (1 − p)E[e−s(B−A−W);B � W + A]; (3.2)

here A, B and W are independent random variables. The

Lindley-type equation W
D= max{0,B − A − W } for A

generally distributed and B phase-type has already been

analysed in Vlasiou and Adan [21], and the LST of the corre-
sponding W is given there. From (3.8) of [21] we can readily
copy an expression for the last two terms appearing in (3.2),
so ω can now be written as

ω(s) = p P[W + B � A] + p α(−s)ω(s)

N
∑

n=1

κn

(

μ

μ + s

)n

− p E[e−s(B−A+W);W + B � A]

+ (1 − p)

[

1 −
N

∑

n=1

n−1
∑

i=0

κn

(−μ)i

i! φ(i)(μ)

×
(

1 −
(

μ

μ + s

)n−i)
]

.

So for Re(s) = 0 we have that

ω(s)

[

1 − p α(−s)

N
∑

n=1

κn

(

μ

μ + s

)n
]

= p P[W + B � A] − p E[e−s(B−A+W);W + B � A]

+ (1 − p)

[

1 −
N

∑

n=1

n−1
∑

i=0

κn

(−μ)i

i! φ(i)(μ)

×
(

1 −
(

μ

μ + s

)n−i)
]

. (3.3)

Cohen [6, pp. 322–323] shows by applying Rouché’s theo-
rem that the function

1 − p α(−s)

N
∑

n=1

κn

(

μ

μ + s

)n

≡ 1

(μ + s)N

[

(μ + s)N − p α(−s)

N
∑

n=1

κnμ
n(μ + s)N−n

]

has exactly N zeros ξi(p) in the left-half plane if 0 < p < 1
(it is assumed that α(μ) �= 0, which is not an essential re-
striction) or if p = 1 and E[B] < E[A]. Naturally, this state-
ment is not valid if p = 0; therefore, this case needs to be
excluded from this point on. So we rewrite (3.3) as follows

ω(s)

N
∏

i=1

(

s − ξi(p)
)

=
∏N

i=1(s − ξi(p))

(μ + s)N − p α(−s)
∑N

n=1 κnμn(μ + s)N−n

×
[

p (μ + s)NP[W + B � A]

− p (μ + s)NE[e−s(B−A+W);W + B � A]
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+ (1 − p)

[

(μ + s)N −
N

∑

n=1

n−1
∑

i=0

κn

(−μ)i

i! φ(i)(μ)

× (

(μ + s)N − μn−i (μ + s)N−n+i
)

]]

. (3.4)

The left-hand side of (3.4) is analytic for Re(s) > 0 and
continuous for Re(s) � 0, and the right-hand side of (3.4)
is analytic for Re(s) < 0 and continuous for Re(s) � 0. So
from Liouville’s theorem [18] we have that both sides of
(3.4) are the same N th degree polynomial, say,

∑N
i=0 qis

i .
Hence,

ω(s) =
∑N

i=0 qis
i

∏N
i=1(s − ξi(p))

. (3.5)

In the expression above, the constants qi are not determined
so far, while the roots ξi(p) are known. In order to obtain the
transform, observe that ω is a fraction of two polynomials
of degree N . So, ignoring the special case of multiple zeros
ξi(p), partial fraction decomposition yields that (3.5) can be
rewritten as

ω(s) = c0 +
N

∑

i=1

ci

(s − ξi(p))
, (3.6)

which implies that the waiting time distribution has a mass
at the origin that is given by

P[W = 0] = lim
s→∞ E[e−sW ] = c0

and has a density that is given by

fW(x) =
N

∑

i=1

cie
ξi (p)x .

All that remains is to determine the N + 1 constants ci . To
do so, we work as follows.

We shall substitute (3.6) in the left-hand side of (3.4),
and express the terms P[W + B � A] and E[e−s(B−A+W);
W + B � A] that appear at the right-hand side of (3.4) in
terms of the constants ci . Note that the terms φ(i)(μ) that ap-
pear at the right-hand side of (3.4) can also be expressed in
terms of the constants ci . Thus we obtain a new equation that
we shall differentiate a total of N times. We shall evaluate
each of these derivatives for s = 0 and thus we obtain a lin-
ear system of N equations for the constants ci , i = 0, . . . ,N .
The last equation that is necessary to uniquely determine the
constants ci is the normalisation equation

c0 +
∫ ∞

0
fW(x)dx = 1. (3.7)

To begin with, note that

P[W + B � A] = P[W = 0]P[B � A]

+
∫ ∞

0
P[B � A − x]

N
∑

i=1

cie
ξi (p)x dx,

(3.8)

with

P[B � A] =
∫ ∞

0

N
∑

n=1

κn

(

e−μx
∞
∑

j=n

(μx)j

j !
)

dFA(x)

=
N

∑

n=1

∞
∑

i=n

κn

(−μ)i

i! α(i)(μ), (3.9)

and

∫ ∞

0
P[B � A − x]

N
∑

i=1

cie
ξi (p)x dx

=
∫ ∞

0

∫ ∞

0
P[B � y − x]

N
∑

i=1

cie
ξi (p)x dx dFA(y)

=
∫ ∞

0

∫ y

0
e−μ(y−x)

N
∑

n=1

×
∞
∑

j=n

κn

(μ(y − x))j

j !
N

∑

i=1

cie
ξi (p)x dx dFA(y)

=
N

∑

n=1

∞
∑

j=n

N
∑

i=1

∞
∑

k=j+1

κnci

μj (μ + ξi(p))k−j−1

k!(−1)k
α(k)(μ).

(3.10)

Likewise, we have that

E[e−s(B−A+W);W + B � A]
= P[W = 0]E[e−s(B−A);B � A]

+
∫ ∞

0
E[e−s(B−A+x);x + B � A]

N
∑

i=1

cie
ξi (p)x dx,

(3.11)

with

E[e−s(B−A);B � A]

=
∫ ∞

0

∫ x

0
e−s(y−x)

N
∑

n=1

κnμe−μy (μy)n−1

(n − 1)! dy dFA(x)

=
∫ ∞

0
exs

N
∑

n=1

κn

(

μ

μ + s

)n
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×
∞
∑

i=n

e−x(μ+s) x
i(μ + s)i

i! dFA(x)

=
N

∑

n=1

∞
∑

i=n

κn μn (−1)i

i! (μ + s)i−nα(i)(μ), (3.12)

and

∫ ∞

0
E[e−s(B−A+x);x + B � A]

N
∑

i=1

cie
ξi (p)x dx

=
∫ ∞

0

∫ y

0

∫ y−x

0
e−s(z−y+x)

N
∑

n=1

κnμe−μz (μz)n−1

(n − 1)!

×
N

∑

i=1

cie
ξi (p)x dzdx dFA(y)

=
∫ ∞

0

∫ y

0

N
∑

n=1

κn

(

μ

μ + s

)n

e−s(x−y)

×
∞
∑

j=n

e−(μ+s)(y−x) (μ + s)j (y − x)j

j !

×
N

∑

i=1

cie
ξi (p)x dx dFA(y)

=
N

∑

n=1

∞
∑

j=n

N
∑

i=1

∞
∑

k=j+1

κnci

(

μ

μ + s

)n

× (μ + s)j
(

μ + ξi(p)
)k−j−1

k!(−1)k
α(k)(μ). (3.13)

So, using (3.9) and (3.10), substitute (3.8) in the right-
hand side of (3.4), and similarly for (3.11). Furthermore,
as mentioned before, substitute (3.6) into the left-hand side
of (3.4) to obtain an expression, where both sides can be
reduced to an N th degree polynomial in s. By evaluating
this polynomial and all its derivatives for s = 0 we obtain N

equations binding the constants ci . These equations, and the
normalisation equation (3.7), form a linear system for the
constants ci , i = 0, . . . ,N , that uniquely determines them
(see also Remark 2 below). For example, the first equation,
evaluated at s = 0, yields that

c0 −
N

∑

i=1

ci

ξi(p)
= 1 − p

1 − p α(0)
= 1,

since α(0) = 1. We summarise the above in the following
theorem.

Theorem 2 Consider the recursion given by (1.2), and as-
sume that 0 < p < 1. Let (3.1) be the distribution of the ran-
dom variable B . Then the limiting distribution of the waiting

time has mass c0 at the origin and a density on [0,∞) that
is given by

fW(x) =
N

∑

i=1

cie
ξi (p)x .

In the above equation, the constants ξi(p), with
Re(ξi(p)) < 0, are the N roots of

(μ + s)N − p α(−s)

N
∑

n=1

κnμ
n(μ + s)N−n = 0,

and the N + 1 constants ci are the unique solution to the
linear system described above.

Remark 2 Although the roots ξi(p) and coefficients ci may
be complex-valued, the density and the mass c0 at zero will
be positive. This follows from the fact that there is a unique
equilibrium distribution and thus a unique solution to the
linear system for the coefficients ci . Of course, it is also
clear that each root ξi(p) and coefficient ci have a compan-
ion conjugate root and conjugate coefficient, which implies
that the imaginary parts appearing in the density cancel.

Remark 3 In case that ξi(p) has multiplicity greater than
one for one or more values of i, the analysis proceeds in es-
sentially the same way. For example, if ξ1(p) = ξ2(p), then
the partial fraction decomposition of ω becomes

ω(s) = c0 + c1

(s − ξ1(p))2
+

N
∑

i=2

ci

s − ξi(p)
,

the inverse of which is given by

fW(x) = c1xeξ1(p)x +
N

∑

i=2

cie
ξi (p)x .

Remark 4 For the nominal service time B we have con-
sidered only mixtures of Erlang distributions, mainly be-
cause this class approximates well any continuous distri-
bution on [0,∞) and because we can illustrate the tech-
niques we use without complicating the analysis. How-
ever, we can extend this class by considering distributions
with a rational Laplace transform. The analysis in [21] can
be extended to such distributions, and the analysis in Co-
hen [6, Sect. II.5.10] is already given for such distributions,
so the results given there can be implemented directly.

Remark 5 The analysis we have presented so far can be di-
rectly extended to the case where Y takes any finite num-
ber of negative values. In other words, let the distribution
of Y be given by P[Y = 1] = p, and for i = 1, . . . , n,



Queueing Syst (2007) 56: 121–132 127

P[Y = −ui] = pi , where ui > 0 and
∑

i pi = 1 − p. Then,
for example, (3.3) becomes

ω(s)

[

1 − p α(−s)

N
∑

n=1

κn

(

μ

μ + s

)n
]

= p P[W + B � A] − p E[e−s(B−A+W);W + B � A]

+
n

∑

i=1

pi P[B � uiW + A]

+
n

∑

i=1

pi

[

N
∑

n=1

κn

(

μ

μ + s

)n

α(−s)ω(−uis)

− E[e−s(B−A−uiW);B � uiW + A]
]

.

Following the same steps as below (3.3), we can conclude
that the waiting time density is again given by a mixture of
exponentials of the form

fW(x) =
N

∑

i=1

ĉie
ξi (p)x,

where the new constants ĉi (and the mass of the distribution
at zero, given by ĉ0) are to be determined as the unique so-
lution to a linear system of equations. The only additional
remark necessary when forming this linear system is to ob-
serve that both the probability P[B � uiW + A] and the ex-
pectation E[e−s(B−A−uiW);B � uiW +A] can be expressed
linearly in terms of the constants ĉi .

The case p = 0

We have seen that the case where Yn = −1 for all n, or in
other words the case p = 0, had to be excluded from the
analysis. Equation (3.4) is still valid if we take the constants
ξi(0) to be defined as in Theorem 2. However, one can-
not apply Liouville’s theorem to the resulting equation. The
transform can be inverted directly. As it is shown in [21], the
terms φ(i)(μ) that remain to be determined follow by differ-
entiating (3.4) N − 1 times and evaluating ωi(s) at s = μ

for i = 0, . . . ,N − 1. The density in this case is a mixture
of Erlang distributions with the same scale parameter μ for
all exponential phases. As we can see, for p = 0 the result-
ing density is intrinsically different from the one described
in Theorem 2.

The case p = 1

If p = 1 and E[B] < E[A], then we are analysing the steady-
state waiting time distribution of a G/PH/1 queue. Equa-

tion (3.4) now reduces to

ω(s)

N
∏

i=1

(s − ξi(1))

=
∏N

i=1(s − ξi(1))

(μ + s)N − α(−s)
∑N

n=1 κnμn(μ + s)N−n

× [(μ + s)NP[W + B � A]
− (μ + s)NE[e−s(B−A+W);W + B � A]]. (3.14)

Earlier we have already observed that the right-hand side
of (3.14) is equal to an N th degree polynomial

∑N
i=0 qis

i .
Inspection of the right-hand side of (3.14) reveals that it has
an N -fold zero in s = −μ. Indeed, all zeros of the numerator
of the quotient in the right-hand side cancel against zeros of
the denominator, and the term

P[W + B � A] − E[e−s(B−A+W);W + B � A]
is finite for s = −μ. Hence,

N
∑

i=0

qis
i = qN (μ + s)N . (3.15)

Combining (3.14) and (3.15), we conclude that

ω(s)

N
∏

i=1

(s − ξi(1)) = qN (μ + s)N ,

and since ω(0) = 1, the last equation gives us that

qN =
∏N

i=1(−ξi(1))

μN
.

Thus, we have that

ω(s) =
(

μ + s

μ

)N N
∏

i=1

ξi(1)

ξi(1) − s
,

which is in agreement with II.5.190 in [6, p. 324].

4 The M/D case

We have examined so far the case where the nominal interar-
rival time A is generally distributed and the nominal service
time B follows a phase-type distribution. In other words, we
have studied the case which is in a sense analogous to the
ordinary G/PH/1 queue. We now would like to study the re-
versed situation; namely, the case analogous to the M/G/1
queue.

The M/G/1 queue has been studied in much detail. How-
ever, the analogous alternating service model—i.e., take
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P(Y = −1) = 1 in (1.2), so p = 0—seems to be more com-
plicated to analyse. As shown in [20], if p = 0, the density of
W satisfies a generalised Wiener-Hopf equation, for which
no solution is known in general. The presently available re-
sults for the distribution of W with p = 0 are developed
in [20], where B is assumed to belong to a class strictly big-
ger than the class of functions with rational Laplace trans-
forms, but not completely general. Moreover, the method
developed in [20] breaks down when applied to (2.2) with Y

not identically equal to −1.
We shall refrain from trying to develop an alternative ap-

proach for the M/G case with a more general distribution
for B than the one treated in Sect. 3. Instead, we give a de-
tailed analysis of the M/D case: A is exponentially distrib-
uted and B is deterministic. This case is neither contained in
the G/PH case of the previous section nor has it been treated
(for the special choice of p = 0) in [20]. Its analysis is of
interest for various reasons. To start with, the model gener-
alises the classical M/D/1 queue; additionally, the analysis
illustrates the difficulties that arise when studying (2.2) in
case A is exponentially distributed and B is generally dis-
tributed; finally, the different effects of Lindley’s classical
recursion and of the Lindley-type recursion discussed in [20]
are clearly exposed. As we shall see in the following, the
analysis can be practically split into two parts, where each
part follows the analysis of the corresponding model with
Y ≡ 1, or Y ≡ −1.

4.1 Deterministic nominal service times

As before, consider (2.2), and assume that Y = 1 with prob-
ability p and Y = −1 with probability 1−p. Let A be expo-
nentially distributed with rate λ and B be equal to b, where
b > 0. Furthermore, we shall denote by π0 the mass of the
distribution of W at zero; that is, π0 = P[W = 0].

For this setting, we have from (2.2) that for x � 0,

FW(x)

= P[max{0, b − A + YW } � x]
= P[b − A + YW � x]
= p P[b − A + W � x] + (1 − p)P[b − A − W � x]
= p π0P[b − A � x]

+ p

∫ ∞

0
P[b − A � x − y]fW(y)dy

+ (1 − p)π0P[b − A � x]

+ (1 − p)

∫ ∞

0
P[b − A � x + y]fW(y)dy

= π0P[A � b − x] + p

∫ ∞

0
P[A � b − x + y]fW (y)dy

+ (1 − p)

∫ ∞

0
P[A � b − x − y]fW(y)dy. (4.1)

So, for 0 � x < b the above equation reduces to

FW(x) = π0 e−λ(b−x) + p

∫ ∞

0
e−λ(b−x+y)fW (y)dy

+ (1 − p)

∫ b−x

0
e−λ(b−x−y)fW (y)dy

+ (1 − p)

∫ ∞

b−x

fW (y)dy, (4.2)

and for x � b, (4.1) reduces to

FW(x) = π0 + p

∫ x−b

0
fW (y)dy

+ p

∫ ∞

x−b

e−λ(b−x+y)fW (y)dy + (1 − p)(1 − π0),

(4.3)

where we have utilised the normalisation equation

π0 +
∫ ∞

0
fW(y)dy = 1. (4.4)

In the following, we shall derive the distribution on the
interval [0, b) and on the interval [b,∞) separately. At this
point though, one should note that from (2.2) it is apparent
that for A exponentially distributed and B = b, the distri-
bution of W is continuous on (0,∞). Also, one can ver-
ify that (4.2) for x = b reduces to (4.3) for x = b. The
fact that FW is continuous on (0,∞) will be used exten-
sively in the sequel. Notice also that from (4.2) and (4.3)
we can immediately see that we can differentiate FW (x)

for x ∈ (0, b) and x ∈ (b,∞); see, for example, Titch-
marsh [18, p. 59].

The distribution on [0, b)

In all subsequent equations it is assumed that x ∈ (0, b). In
order to derive the distribution of W on [0, b], we differen-
tiate (4.2) once to obtain

fW(x) = λπ0 e−λ(b−x) + λp

∫ ∞

0
e−λ(b−x+y)fW (y)dy

+ λ(1 − p)

∫ b−x

0
e−λ(b−x−y)fW (y)dy

− (1 − p)e−λ(b−x)eλ(b−x)fW (b − x)

+ (1 − p)fW (b − x).

We rewrite this equation after noticing that the terms in the
last two lines cancel, while the sum of the integrals in the
first two lines can be rewritten by using (4.2). Thus, we have
that
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fW(x) = λπ0 e−λ(b−x) + λ

(

FW(x) − π0e−λ(b−x)

− (1 − p)

∫ ∞

b−x

fW (y)dy

)

= λFW(x) − λ(1 − p)

∫ ∞

b−x

fW (y)dy. (4.5)

In order to obtain a linear differential equation, differentiate
(4.5) once more, which leads to

f ′
W(x) = λfW(x) − λ(1 − p)fW (b − x). (4.6)

Equation (4.6) is a homogeneous linear differential equa-
tion, not of a standard form because of the argument b − x

that appears at the right-hand side. To solve it, we substitute
x for b − x in (4.6) to obtain

f ′
W(b − x) = λfW(b − x) − λ(1 − p)fW (x). (4.7)

Then, we differentiate (4.6) once more to obtain

f ′′
W(x) = λf ′

W(x) + λ(1 − p)f ′
W(b − x),

and we eliminate the term f ′
W(b − x) by using (4.7). Thus,

we conclude that

f ′′
W(x) = λ2p (2 − p)fW (x). (4.8)

For p �= 0, the solution to this differential equation is given
by

fW(x) = d1er1x + d2er2x, (4.9)

where r1 and r2 are given by

r1,2 = ±λ
√

p(2 − p), (4.10)

and the constants d1 and d2 will be determined by the initial
conditions. Namely, the solution needs to satisfy (4.6) and
the condition FW (0) = π0. Thus, for the first equation, sub-
stitute the general solution we have derived into (4.6). For
the second equation, first rewrite (4.5) as follows:

fW(x) = λFW(x) − λ(1 − p)

(

1 − π0 −
∫ b−x

0
fW(y)dy

)

,

then substitute fW(x) from (4.9), and finally evaluate the re-
sulting equation for x = 0. This system uniquely determines
d1 and d2. Specifically, we have that

d1 = λ2(1 − p)(1 − p (1 − π0) − 2π0)r1

(ebr1 − 1)λ2(2 − p)(1 − p) + ebr1r1(r1 − λ(2 − p))
,

d2 = ebr1λ(1 − p (1 − π0) − 2π0)r1(λ − r1)

(ebr1 − 1)λ2(2 − p)(1 − p) + ebr1r1(r1 − λ(2 − p))
,

where in the process we have assumed that p �= 1. Up to this
point we have that the waiting-time distribution on [0, b] is
given by

FW(x) = d1

r1
(er1x − 1) + d2

r2
(er2x − 1) + π0, (4.11)

where d1 and d2 are known up to the probability π0. The
cases for p = 0 and p = 1 follow directly from (4.8) and
will be handled separately in the sequel.

The distribution on [b,∞)

As before, we obtain a differential equation by differenti-
ating (4.3) once, and substituting the resulting integrals by
using (4.3) once more. Thus, we obtain the equation

fW(x) = λ

(

FW(x) − π0 − (1 − p)(1 − π0)

− p

∫ x−b

0
fW (y)dy

)

,

which can be reduced to

fW(x) = λ
(

FW(x) − 1 + p − p FW(x − b)
)

. (4.12)

Equation (4.12) is a delay-differential equation that can be
solved recursively. Observe that for x ∈ (b,2b), the term
FW (x − b) has been derived in the previous step, so for
x ∈ (b,2b), (4.12) reduces to an ordinary linear differential
equation from which we can easily derive the distribution of
W in the interval (b,2b).

For simplicity, denote by Fi(x) the distribution of W

when x ∈ [ib, (i + 1)b], and analogously denote by fi(x)

the density of W , when x ∈ (ib, (i +1)b). Then (4.12) states
that

fi(x) = λ(Fi(x) − 1 + p − p Fi−1(x − b)),

which leads to an expression for Fi that is given in terms of
an indefinite integral that is a function of x, that is,

Fi(x) = eλx

[∫

λ
(−1 + p − p Fi−1(x − b)

)

e−λx dx + γi

]

,

i � 1. (4.13)

The constants γi can be derived by exploiting the fact that
the waiting-time distribution is continuous. In particular,
every γi is determined by the equation

Fi(ib) = Fi−1(ib). (4.14)
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Solving (4.13) recursively, we obtain that

Fi(x) = 1 − pi(1 − π0) − pi

(

d1

r1
+ d2

r2

)

+
2

∑

j=1

(

λp

λ − rj

)i dj

rj
erj (x−ib)

+ x

i−1
∑

j=0

(−λp)jγi−j

(x − jb)j−1

j ! eλ(x−jb). (4.15)

Observe that for i = 0, if we define the empty sum at the
right-hand side to be equal to zero, then the above expression
reduces to (4.11). Notice that, since we have made use of the
distribution on [0, b) as it is given by (4.11), (4.15) is not
valid for p = 0 or p = 1. From (4.14) we now have that for
every i � 1,

γi = e−λib(1 − p)pi−1
(

π0 − 1 − d1 − d2

r1

)

−
2

∑

j=1

e−λibdj

rj

( λp

λ − rj

)i(

1 − ebrj (λ − rj )

λp

)

+ i

i−1
∑

j=1

e−λjb(i − j)j−1(−λpb)j (γi−1−j − γi−j )

j !
+ γi−1, (4.16)

where we have assumed that γ0 = 0, and that for i = 1, the
second sum is equal to zero. Dividing the expressions for di

by ri leads to the simplification

1 − pi(1 − π0) − pi

(

d1

r1
+ d2

r2

)

= 1 − pi

2 − p
.

Recall that d1 and d2, and thus also all constants γi , are
known in terms of π0. The probability π0 that still remains
to be determined will be given by the normalisation (4.4).
Notice though, that since the waiting-time distribution is de-
termined recursively for every interval [ib, (i + 1)b], (4.4)
yields an infinite sum. The sum is well defined, since a
unique density exists. The above findings are summarised
in the following theorem.

Theorem 3 Consider the recursion given by (1.2), and as-
sume that 0 < p < 1. Let A be exponentially distributed
with rate λ and B be equal to b, where b > 0. Then for
x ∈ [ib, (i + 1)b], i = 0,1, . . . , the limiting distribution of
the waiting time is given by

FW(x) = 1 − pi

2 − p
+

2
∑

j=1

(

λp

λ − rj

)i dj

rj
erj (x−ib)

+ x

i−1
∑

j=0

(−λp)jγi−j

(x − jb)j−1

j ! eλ(x−jb),

where the constants γi are given by (4.16) and the probabil-
ity π0 is given by the normalisation equation (4.4).

One might expect though that (4.4) may not be suitable
for numerically determining π0. However, if the probability
p is not too close to one, or in other words, if the system
does not almost behave like an M/D/1 queue, then one can
numerically approximate π0 from the normalisation equa-
tion. As an example, in Fig. 1 we display a typical plot of
the waiting-time distribution. We have chosen b = 1, λ = 2,
and p = 1/3.

For p close to one, we can see from the expressions for
d1 and d2 that both the numerators and the denominators
of these two constants approach zero. Furthermore, the de-
nominators λ − rj , j = 1,2 that appear in the waiting-time
distribution also approach zero, which makes Theorem 3 un-
suitable for numerical computations for values of p close to
one. Moreover, we also see that very large values of the pa-
rameter λ may also lead to numerical problems, since λ is
involved in the exponent of almost all exponential terms that
appear in the waiting-time distribution.

As one can observe from Fig. 1, and show from Theo-
rem 3, FW is not differentiable for x = b. This is not surpris-
ing, as the waiting-time distribution is defined by two differ-
ent equations; namely (4.2) for x < b and (4.3) for x � b.
Furthermore, from (4.5) we have that

fW(b−) = λFW(b) − λ(1 − p)(1 − π0),

and from (4.12) we have that

fW(b+) = λ(FW(b) − 1 + p − pπ0).

That is, fW(b−) − fW(b+) = λπ0.

Fig. 1 The waiting time distribution for b = 1, λ = 2, and p = 1/3
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The case p = 0

Observe that if p = 0 then the support of W is the inter-
val [0, b]. To determine the density of the waiting time, we
insert p = 0 into (4.8). Thus, we obtain that

f ′′
W(x) = 0,

from which we immediately have that

fW(x) = ν1x + ν2,

for some constants ν1 and ν2 such that (4.6) is satisfied. The
latter condition implies that for every x ∈ (0, b) the follow-
ing equation must hold:

ν1 = λ(ν1x + ν2) − λ(ν1(b − x) + ν2).

From this we conclude that ν1 is equal to zero, i.e. the wait-
ing time has a mass at zero and is uniformly distributed on
(0, b). To determine the mass π0 and the constant ν2, we
evaluate (4.5) at x = 0 and we use the normalisation (4.4),
keeping in mind that fW(x) = 0 for x ∈ [b,∞). These two
equations yield that if p = 0, then

fW(x) = λ

1 + λb
, 0 < x < b, and π0 = 1

1 + λb
.

(4.17)

Evidently, the density in this case is quite different from the
density for p �= 0, which is on (0, b) a mixture of two expo-
nentials; see (4.9).

Another way to see that fW(x) = λπ0, 0 < x < b, is
as follows. Recall that for p = 0 and x � b we have that
fW(x) = 0. Equation (4.5) can now be written as

fW(x) = λπ0 + λP[W ∈ (0, x)] − λP[W ∈ (b − x, b)].
Replacing x by b−x shows that fW(x) = fW(b−x), which
implies that P[W ∈ (0, x)] = P[W ∈ (b − x, b)] and finally
that fW(x) = λπ0, 0 < x < b. It seems less straightforward
to explain probabilistically that W , given that W > 0, is uni-

formly distributed. With a view towards the recursion W
D=

max{0, b − A − W }, we believe that this property is related
to the fact that, if n Poisson arrivals occur in some interval,
then they are distributed like the n order statistics of the uni-
form distribution on that interval; see Ross [14, Sect. 2.3].

The case p = 1

For the M/D/1 queue, Erlang [7] derived the following ex-
pression for the waiting-time distribution:

P[W � x] = (1 − ρ)

i
∑

j=0

(−λ(x − jb))j

j ! eλ(x−jb),

ib � x < (i + 1)b,

where ρ is the traffic intensity. Recall that for the M/D/1
queue we have that FW (0) = 1 − ρ. We see that for
p = 1 (4.5) indeed leads to the waiting-time distribution
(1 − ρ) eλx , as it is given by Erlang’s expression for the
first interval [0, b). For x � b, one needs to recursively
solve (4.13) in order to obtain Erlang’s expression. How-
ever, since the recursive solution we have obtained for our
model makes use of FW (x) as it is given by (4.11), which
is not valid for p = 1, the waiting-time distribution we have
obtained in Theorem 3 cannot be extended to the case for
p = 1.

The terms both in Erlang’s expression for the waiting-
time distribution of an M/D/1 queue and in Theorem 3 al-
ternate in sign and in general are much larger than their sum.
Thus, the numerical evaluation of the sum may be hampered
by roundoff errors due to the loss of significant digits, in par-
ticular under heavy traffic. For the M/D/1 queue, however,
a satisfactory solution has been given by Franx [8] in a way
that only a finite sum of positive terms is involved; thus, this
expression presents no numerical complications, not even
for high traffic intensities. For our model, extending Franx’s
approach is a challenging problem as the representation of
various quantities appearing in [8] which are related to the
queue length at service initiations is not straightforward.

As we see, the waiting-time distribution in Theorem 3 is
quite similar to Erlang’s expression, so we expect that even-
tually the solution will suffer from roundoff errors. How-
ever, a significant difference in the numerical computation
between the M/D/1 queue and the model described by re-
cursion (1.2) arises when computing π0. For any single
server queue we know a priori that P[W = 0] = 1 − ρ. In
our model, π0 has to be computed from the normalisation
equation, where the numerical complications when calculat-
ing the waiting-time distribution become apparent. In par-
ticular, as p tends to 1, i.e. as the system behaves almost
like an M/D/1 queue, the computation of π0 becomes more
problematic.

As a final observation, we note that the effects of Lind-
ley’s classical recursion and of the Lindley-type recursion
discussed in [20] are quite apparent. The analysis for our
model is in a sense separated into two parts: the derivation
of the waiting-time distribution in [0, b) and in [b,∞). In
the first part, we see that (4.6) is quite similar to the differ-
ential equation appearing in [22] for the derivation of the
waiting-time distribution in case p = 0 and B follows a
polynomial distribution. Moreover, one could use the same
technique to derive a solution, but (4.6) is too simple to call
for such means. In the second part, we see the effects of the
M/D/1 queue, as we eventually derive FW in a recursive
manner. Furthermore, this model inherits all the numerical
difficulties appearing in the classical solution for the M/D/1
queue, plus the additional difficulties of computing π0. For
Lindley’s recursion, π0 is known beforehand, while for the
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Lindley-type recursion described in [13, 20–23] π0 is de-
rived by the normalisation equation.
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