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Abstract We consider the estimation of arrival and ser-

vice rates for queues based on queue length data collected

at successive, not necessarily equally spaced, time points.

In particular, we consider the M/M/c queue, for c large,

but application of the method to the repairman problem

is almost identical, and the general approach presented

should extend to other queue types. The estimation proce-

dure makes use of an Ornstein-Uhlenbeck diffusion approx-

imation to the Markov process description of the queue.

We demonstrate the approach through simulation studies

and discuss situations in which the approximation works

best.
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1 Introduction

While the literature on the stochastic modelling of queues

is extensive, estimation and inference concerning the arrival

and service rates has, in comparison, received little attention.

Almost all the literature that addresses estimation issues de-

scribes methods that require continuous observation of the

process over a fixed interval of time [2, 3, 8, 10–12, 26].

One exception is the work of Basawa et al. [9], who con-

sider estimation for single server queues from waiting time

data. Here we derive a method that requires substantially

less information: simply the number in the queue at suc-

cessive, not necessarily equally spaced, time points. The

specific results we present apply to the M/M/c queue, in

particular when c > 40 (as will be discussed), but the ap-

proach should extend to many other queue types. For exam-

ple, our results extend almost immediately to the repairman

problem [14].

Our method makes use of results of Kurtz [15, 16]

and Barbour [4–7] concerning density-dependent Markov

processes. By taking the arrival rate of customers (packages)

to be of the same order as the number of servers, we arrive

at a Markov process with density-dependent transition

rates. This allows us to apply the aforementioned results

to derive an Ornstein-Uhlenbeck (OU) approximation to

the queueing process. This OU approximation provides us

with an approximate likelihood for successive observations

of the state of the queue, namely that of a multivariate

Gaussian distribution, with explicit expressions for the

mean, variance and covariance of the observations all in

terms of the number of servers and the arrival and service

rates. The use of diffusion approximations to estimate rates

in this way has been suggested previously [13, 17], but its

practical implementation has, to the best of our knowledge,

not been undertaken until recently [19].
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We demonstrate the approach by considering simulated

examples of a queueing process corresponding to a large

packet switching type telecommunication system, a smaller

telecommunication system and to a simpler, shopping type

queue. We discuss situations in which our method provides

accurate estimates of rates, provide confidence regions of es-

timates and rules on how to achieve the best possible results.

2 Definitions

The M/M/c queue has Poisson arrivals at rate λ and indepen-

dent exponentially distributed service times, and c servers

each operating at rate μ. More formally, it is a Markov pro-

cess {X (t), t ≥ 0} on the state space S = {0, 1, . . . } with

non-zero transition rates

q(m, m + 1) = λ, m ∈ S,

and

q(m, m − 1) = μ min(m, c), m = {1, 2, . . . },

where m is the state (number in the queue) of the process at

time t .
Our approach to estimating λ and μ relies on results

of Kurtz [15, 16] and Barbour [4–7] concerning density-
dependent processes. Pollett [18] extended the applica-

bility of these results to asymptotically density-dependent

processes: Let {mc(·)} be a family of Markov processes in-

dexed by c > 0, and suppose that mc(·) takes values in Sc,

which is contained in Zk , and has transition rates Qc =
(qc(m, n), m, n ∈ Sc). In practice, one has great freedom in

identifying an index parameter. For definiteness, let us think

of c as the number of servers in our queue.

Definition 2.1. Suppose that there exists an open set E ⊆ Rk

and a family { fc, c > 0} of continuous functions, with fc :

E × Zk → R, such that

qc(m, m + l) = c fc

(m

c
, l

)
, l �= 0.

Then, the family of Markov chains is asymptotically density-

dependent if, additionally, there exists a function F : E → R
such that {Fc}, given by Fc(x) = ∑

l l fc(x, l), x ∈ E , con-

verges pointwise to F on E .

This definition of density-dependence is more general than

that introduced in [15], which has fc (and hence Fc) being

the same for all c. Roughly speaking, the family is density-

dependent if the transition rates of the corresponding “density

process” Xc(·), defined by Xc(t) = mc(t)/c, t ≥ 0, depend on

the present state m only through the “density” m/c, or, failing

this, if this property is exhibited asymptotically, for large c.

3 Density dependence

Here we present results of Pollett [18], summarising and

extending the remarkable work of Kurtz [15, 16] and Barbour

[4–7], that identify the limiting OU process we use as the

basis for our estimation procedure.

Based on Definition 2.1, there appears to be a natural way

to associate a density-dependent deterministic process with

the Markov process, the intuition being that Xc(·) behaves

more deterministically as c becomes large. Its trajectory is

“tracked” by the process when c is large. The following (func-

tional) law of large numbers establishes a deterministic ap-

proximation under appropriate conditions. It can be deduced

immediately from Theorem 3.1 of [15].

Theorem 3.1. Suppose that fc(·, l) is bounded, for each l
and c, that F is Lipschitz continuous on E and that {Fc} con-
verges uniformly to F on E. Then, if limc→∞ Xc(0) = x0,
the density process Xc(·) converges uniformly in probabil-
ity on [0, t] to X (·, x), the unique (deterministic) trajectory
satisfying X (0, x) = x, X (s, x) ∈ E, s ∈ [0, t], and

∂

∂s
X (s, x) = F(X (s, x)). (1)

The following (functional) central limit law establishes that,

for large c, the fluctuations about the deterministic path fol-

low a Gaussian diffusion, provided that mild “second-order”

conditions are satisfied. It can be deduced from Theorems 3.1

and 3.5 of [16].

Theorem 3.2. Suppose fc(·, l) is bounded, that F is Lips-
chitz continuous and has uniformly continuous first deriva-
tive on E, and that

lim
c→∞ sup

x∈E

√
c|Fc(x) − F(x)| = 0.

Suppose also that the sequence {Gc}, where

Gc(x) =
∑

l

l2 fc(x, l), x ∈ E,

converges uniformly to G, where G is uniformly continuous
on E. Let x0 ∈ E. Then, if

lim
c→∞

√
c (Xc(0) − x0) = z, (2)

the family of processes {Zc(·)}, defined by Zc(s) =√
c (Xc(s) − X (s, x0)), 0 ≤ s ≤ t , converges weakly in
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D[0, t] (the space of right-continuous, left-hand limit
functions on [0, t]) to a Gaussian diffusion Z (·) with
initial value Z (0) = z and with mean and variance
given by μs := E(Z (s)) = Ms z, where Ms = exp(

∫ s
0

Budu)

and Bs = F ′(X (s, x0)), and Var(Z (s)) = σ 2
s , where σ 2

s =
M2

s

∫ s
0

M−2
u G(X (u, x0))du.

It follows that Xc(s) has an approximate normal distribution

with Var(Xc(s)) � σ 2
s /c. We would usually take x0 = Xc(0),

thus giving E(Xc(s)) � X (s, x0).

In the important special case where x0 is chosen as an

equilibrium point of (1), we can be far more precise about

the approximating diffusion.

Corollary 3.3. If x0 satisfies F(x0) = 0 then, under the
conditions of Theorem 3.2, the family {Zc(·)}, defined by
Zc(s) = √

c(Xc(s) − x0), 0 ≤ s ≤ t , converges weakly in
D[0, t] to an Ornstein-Uhlenbeck process Z (·) with initial
value Z (0) = z, local drift B = F ′(x0) and local variance
V = G(x0). In particular, Z (s) is normally distributed with
mean μs = eBs z and variance σ 2

s = V
2B (e2Bs − 1).

We conclude that, for c large, Xc(s) has an approximate

normal distribution with Var(Xc(s)) � σ 2
s /c. A “working ap-

proximation” for the mean (that is, for a fixed value of c) is

given by

E(Xc(s)) � x0 + eBs(Xc(0) − x0).

In the context of queueing models x0 will usually be asymp-

totically stable, that is B < 0. However, it should be empha-

sised that it need not be for each of the above conclusions

to hold. Indeed, the OU approximation is often very accu-

rate in describing the fluctuations about centres and unstable

equilibria (see Barbour [5]). We shall henceforth assume that

B < 0, which is the case for our queueing model.

4 Method for estimation of rates

Our parameter estimation method makes use of the OU ap-

proximation outlined in the previous section. Firstly, the OU

process is strongly stationary if we start it in equilibrium:

Z (0) ∼ Normal (0, σ 2), whereσ 2 = V/(−2B). We therefore

have (for large c) that Xc(0) ∼ Normal (x0, σ
2/c). Hence, we

may approximate Cov(Xc(s), Xc(s + t)) by

c(t) := 1

c
Cov(Z (s), Z (s + t)) = c(0) exp(B|t |), (3)

where c(0) = σ 2/c. Also, for large c, we know ex-

plicitly the correlation structure of the Gaussian vec-

tor (Xc(t1), Xc(t2), . . . , Xc(tn)), and hence its likelihood

function:

f (x) = 1√
(2π )n|C | exp

[
−1

2
(x − m)C−1(x − m)′

]
, (4)

where m = (m1, m2, . . . , mn), mi = x0 for all i = 1,

2, . . . , n, and

C =

⎛⎜⎜⎜⎜⎜⎝
c1 c1,2 c1,3 · · · c1,n

c1,2 c2 c2,3 · · · c2,n

...
...

...
...

...

c1,n · · · · · · · · · cn

⎞⎟⎟⎟⎟⎟⎠ , (5)

where ci = σ 2/c and ci,i+s = (σ 2/c) exp(B|ti+s − ti |). The

inversion of C , and calculation of its determinant, can be

done explicitly, and this permits us to write down the (log-)

likelihood explicitly (see Appendix I). The form that should

be used in practice is given in (11) (or (12)).

We can therefore evaluate the (joint) maximum like-

lihood estimators of the parameters of the model, which

are the values that maximise (4). Explicit calculation of

the maximum likelihood estimators is not practical if the

sample size is large. Therefore a numerical optimisation

procedure will be required in practice to find the parameters

which maximise the likelihood function. We believe the

Cross-Entropy method (see [20]) to be an ideal approach,

but many numerical optimisation procedures should be as

effective. We illustrate this approach in Section 6 by using

the Cross-Entropy method to estimate the parameters of

three hypothetical M/M/c queueing examples. Appendix II

also contains advice on selecting parameters when using the

Cross-Entropy method.

It is pertinent to note that the OU approximation is

achieved by letting the number of servers tend to infinity.

Thus the OU approximation, and consequently the parameter

estimation procedure presented, are best for queues with

a large number of servers. It should also be noted that

unequally spaced sampling of the process is not an obstacle

to the method presented, as can be seen from the covariance

structure (3).

Finally, we note that we can obtain estimates of relation-

ships between parameters without resorting to numerically

maximising the full likelihood. Under the assumptions used

to obtain the OU approximation, we have

E (m̄) = cx0, where m̄ = 1

n

n∑
i=1

mc(ti ), (6)

and

E

(
1

n

n∑
i=1

(mc(ti ) − m̄)2

)
= cσ 2. (7)
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Thus, the mean and variance of our data set provides some

indication about the relationships between the parameters.

5 OU approximation for M/M/c queue

First, we derive the OU approximation for the M/M/c queue

model using the results summarized in Section 3. We start by

supposing that λ = O(c), for c large, that is λ ∼ αc, where α

is a constant for a particular queue. It is clear that the process

is density-dependent with F(x) = α − μx and G(x) = α +
μx , and that x0 = α/μ. Observe also that the traffic intensity

λ/(μc) tends to x0 as c → ∞, so we may interpret x0 as the

asymptotic traffic intensity.

We will consider the most interesting case x0 < 1, when

the traffic intensity is less than 1 and we consider the

OU approximation about the stable equilibrium x0. Since

F ′(x) = −μ, we have local drift B = F ′(x0) = −μ and local

variance V = G(x0) = 2α, being approximately 2λ/c when

c is large. Thus, provided we arrange for (2) to hold, there

will be a valid OU approximation. We conclude that, for c
large, Xc(t) has an approximate normal distribution with

E(Xc(t)) � x0 + e−μt (Xc(0) − x0), (8)

Var(Xc(t)) � λ

μc2
(1 − e−2μt ). (9)

This diffusion approximation for M/M/c queues is not

new [14]. However, we present the expressions in a form

that explicitly shows the dependence on both λ and μ, which

is required for estimation of these rates.

6 Estimation of rates

In this section we estimate the rates of M/M/c queues from

simulated data. As discussed in Section 4, if we start the OU

process in equilibrium, then Xc(0) ∼ Normal (ρ/c, ρ/c2) for

large c, where ρ := λ/μ. Thus we have

Cov(Xc(s), Xc(s + t)) � ρ

c2
exp(−μ|t |),

and hence the likelihood for the Gaussian vector

(Xc(t1), Xc(t2), . . . , Xc(tn)) is given by Eq. (4), where mi =
ρ/c for all i ∈ {1, 2, . . . , n}, and C is given by (5) with

ci = ρ/c2 and ci,i+s = ρ/c2 exp(−μ|ti+s − ti |), for all i, s ∈
{1, 2, . . . , n}.

We use the log-likelihood l(x), given by

l(x)= −n

2
log(2π ) − 1

2
log (|C |) − 1

2
(x−m)C−1(x − m)′.

(10)

(Again, the form that should be used in practice is given

in (12).)

For the M/M/c queue, the expected values of the mean and

variance of our data set are (see (6) and (7))

E (m̄) = ρ and E

(
1

n

n∑
i=1

(mc(ti ) − m̄)2

)
= ρ/c.

Hence, we have a quick estimate for ρ (the ratio of arrival

rate to service rate) and the traffic intensity of the queue.

6.1 Large telecommunication system

We simulated the M/M/c queue with c = 300, λ = 25 and

μ = 0.09. This corresponds to a hypothetical system with

300 servers, calls (packets) arriving at rate 50 per second,

each server being able to process 0.18 calls (packets) per

second and being sampled every 0.5 of a second. The traffic

intensity of this system is approximately 0.926. We simu-

lated the queue to collect data corresponding to 5 minute’s

worth of observations (600 data points; 700 data points were

collected, the first 100 discarded to reduce the influence of

initial conditions). We produced 5 simulated data sets and ran

the optimisation (Cross-Entropy) algorithm 5 times on each

data set and reported the best, in terms of maximum likeli-

hood, from each run. The Cross-Entropy parameters we use

here are a sample size of 20,000, and an elite sample size of

1,000. We initialised the algorithm with pairs (λ, μ) drawn

uniformly from the triangle (0, 0) − (100, 0) − (100, 100).

The algorithm was stopped when the largest of the standard

deviations of the sampling distributions dropped below the

threshold ε = 10−5. The table below reports the results and

in addition the average (Avg.) estimates, and relative error

(RE) in the averages.

Run λ̂ μ̂

1 24.6274 0.0863

2 25.6284 0.0930

3 24.0672 0.0886

4 23.9907 0.0875

5 23.4328 0.0854

Avg. 24.3493 0.08816

RE 0.026 0.02

It can be seen that our method of estimation works well

in this situation. The relative errors in the average of our

estimates for λ and μ are extremely small, being 2.6% and

2% respectively.
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6.2 Small telecommunication system

We simulated the M/M/c queue with c = 50, λ = 4250/600

and μ = 1/6. This corresponds to a hypothetical system with

50 servers, calls arriving at rate 4250/300 per minute, each

server being able to process 1/3 of a call per minute and

being sampled every 30 seconds. This system has a traffic

intensity of 0.85. We simulated the queue to collect data

corresponding to 2 hours worth of observations (240 data

points; 440 data points were collected, the first 200 discarded

to reduce the influence of initial conditions). We produced 5

simulated data sets and ran the optimisation (Cross-Entropy)

algorithm 5 times on each data set and report the best, in terms

of maximum likelihood, from each run. The same Cross-

Entropy parameters were used and the same initialisation and

stopping rule. The table below once again reports the results

and in addition the average (Avg.) estimates, and relative

error (RE) in the averages.

Run λ̂ μ̂

1 8.3436 0.1863

2 6.8675 0.1742

3 7.4461 0.1735

4 6.8598 0.1567

5 6.9116 0.1554

Avg. 7.2857 0.1692

RE 0.029 0.015

Once again, our method produces reasonably accurate es-

timates for both λ and μ, with the relative error in the averages

in this situation being 2.9% and 1.5% respectively.

6.3 Shopping queue

We simulated the M/M/c queue with c = 5, λ = 0.75 and

μ = 0.175. This corresponds to a hypothetical system with

5 servers, customers arriving at rate 3 per minute, each server

being able to process 0.7 customers per minute and be-

ing sampled every 15 seconds. These rates correspond to

an express lane type queue often found at supermarkets,

and has a traffic intensity of approximately 0.86. We sim-

ulated the queue to collect data corresponding to 1 hour

worth of observations (240 data points; 440 data points

were collected, the first 200 discarded to reduce the influ-

ence of initial conditions). We produced 5 simulated data

sets and ran the optimisation (Cross-Entropy) algorithm 5

times on each data set and report the best, in terms of max-

imum likelihood, from each run. The same Cross-Entropy

parameters were used and the same initialisation and stop-

ping rule. The table below reports the results and in addition

the average (Avg.) estimates, and relative error (RE) in the

averages.

Run λ̂ μ̂

1 0.7567 0.0888

2 0.6615 0.1541

3 0.7468 0.0458

4 0.6436 0.1551

5 0.6586 0.1193

Avg. 0.69344 0.11262

RE 0.075 0.357

Our estimation procedure does not appear to work con-

sistently in this situation. The relative error in the average

estimate for λ is reasonable, at 7.5%, but the relative error in

the average estimate for μ is abominable, at 35.7%.

6.4 Error bounds

Maximum likelihood estimators are asymptotically normally

distributed with mean θ̂ and covariance matrix given by the

inverse of the Fisher information matrix. This can be esti-

mated by

(
(θ̂ )

)−1 =
{

−E

[
∂2l(θ̂ )

∂θ̂∂θ̂ ′

]}−1

.

However, the second derivatives of the log-likelihood are

often too complicated for their exact expected values to be

calculated in practice. A second estimator widely used is

(
(θ̂ )

)−1 =
(

− ∂2l(θ̂ )

∂θ̂∂θ̂ ′

)−1

,

this being the inverse of (the negative of) the matrix of second

derivatives of the log-likelihood, evaluated at the MLE. For

our model we have

(
((λ̂, μ̂))

)−1 = −

⎛⎜⎜⎜⎜⎝
∂2l

∂λ̂2

∂2l

∂λ̂∂μ̂

∂2l

∂μ̂∂λ̂

∂2l

∂μ̂2

⎞⎟⎟⎟⎟⎠
−1

=
(

∂2l

∂λ̂2

∂2l

∂μ̂2
− ∂2l

∂λ̂∂μ̂

∂2l

∂μ̂∂λ̂

)−1

⎛⎜⎜⎜⎝
− ∂2l

∂μ̂2

∂2l

∂λ̂∂μ̂

∂2l

∂μ̂∂λ̂
− ∂2l

∂λ̂2

⎞⎟⎟⎟⎠
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μ

λ

50%

95%

Estimate

Fig. 1 Confidence regions for
simulated data of 600
observations, and parameters
λ = 25, μ = 0.09 and c = 300

Hence, we must compute the second derivatives of the log-

likelihood given in Appendix I. This can be done exactly.

However, the formulæ are rather cumbersome and will not

be written out here. We use this approach to calculate the

error bounds presented below.

Often it will be difficult to compute the matrix of second

derivatives. In such cases a third estimator may be useful,

which only requires first derivatives of the log-likelihood.

This estimator is

(
(θ̂ )

)−1 =
(

n∑
i=1

ĝi ĝ ′
i

)−1

where

ĝi = ∂l(xi , θ̂ )

∂θ̂
.

We illustrate the error bounds by plotting in Fig. 1 results

for a set of simulated data (with 600 equally spaced obser-

vations, and parameters (λ, μ) = (25, 0.09) and c = 300).

7 Discussion

It can be seen that in the large telecommunication system

example, our methods produce extremely accurate estimates

to the true parameter values from all 5 simulation runs. The

largest relative error over these runs was 6.2%, and the rel-

ative error in our average estimates of λ and μ were 2.6%

and 2% respectively. The parameter estimates reported were

also consistently achieved by the Cross-Entropy algorithm

in each run.

Similar comments apply to our small telecommunication

system example, with the estimation procedure producing

extremely accurate estimates to the true parameter values in

4 out of the 5 simulation runs, and a reasonable estimate in the

other case, with relative errors of 17.8% and 11.8% for λ and

μ respectively. The relative errors in our average estimates

of λ and μ were once again impressive, being 2.9% and

1.5% respectively. The parameter estimates reported were

once again consistently achieved over each of the 5 runs of

the Cross-Entropy algorithm.

In our shopping queue example the quality of both esti-

mates was poor. The estimates of μ consistently underesti-

mated the true service rate and varied considerably over the

5 simulation runs. However, the estimates of λ appear to be

reasonably close to the true values from our investigations

for this (and other small) queues. The poor estimates in this

case appear to be due to the small number of servers (c = 5),

resulting in a poor approximation to the true likelihood of

the queueing process observations. From our investigation it

also appears that a larger sample size does not overcome this

inadequacy. If in such situations this procedure must be used

for parameter estimation, say due to lack of data or ability to

acquire the data required to use other estimation methods, a

simulation study should be performed for the particular num-

ber of servers in the queue under consideration, the results

of which can be used to correct for the bias in the proce-

dure. An alternative approach may be to approximate the

queue by a reflected Ornstein-Uhlenbeck process, a diffu-

sion approximation that has been employed for many queue

types [23–25].

From our investigations we have derived some rules that

ensure our procedure works consistently and provides rea-

sonably accurate estimates. The rules of thumb we provide
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below were derived from simulation studies, and for queue-

ing processes with traffic intensities in the region 0.8 to 0.95,

which is reasonable for many queueing systems. The first

rule concerns the minimum number of servers in the queue.

As already seen, if the number of servers is too small our

procedure fails to produce accurate estimates. We found that

the number of servers should be greater than 40 to provide

accurate estimates. The other rule concerns the sampling in-

terval that is required to produce accurate estimates. The

sampling interval should be chosen so that the value of λ + μ

for that interval is less than approximately 30. This require-

ment arises from the covariance structure (covariance of ob-

servations), which necessitates that the expected number of

transitions between observations is not so large that the co-

variance between observations evanesces. Choosing such a

sampling interval appears to require some prior information

about the values of λ and μ, which in practice may often

be only known approximately. However, as mentioned ear-

lier, the estimates of λ produced by our method appear to

be always reasonably close to the true parameter values, so

one could estimate the rates from one sample of data, and

based upon the estimate for λ, reduce the sampling interval if

necessary.

Finally, we provided confidence contours for our esti-

mates. The confidence region plotted corresponds to the large

telecommunication system example, and we see that the con-

fidence regions are very tight. However, it should be noted

that they do not include the true parameter values. This is

most likely a result of our estimates being biased due to inac-

curacies in the Gaussian likelihood approximation for finite

server size (see also Section 6.3 of [19]).

Results similar to those presented here should hold for

other queue types, approximated by different diffusion ap-

proximations, such as the reflected Ornstein-Uhlenbeck ap-

proximations for queues with reneging or balking [23, 25].

As mentioned earlier, the use of such an approximation for

the M/M/c queue may also increase the applicability of our

method to cases when c < 40.

8 Summary

We have presented a method for estimating arrival and ser-

vices rates for M/M/c queues from queue length data. The

procedure makes use of an Ornstein-Uhlenbeck diffusion ap-

proximation to the original Markov process description of

the queue. We demonstrated the applicability of the results

through simulation studies and presented asymptotic confi-

dence contours for the estimates. Rules on how to make best

use of the procedure were also given. These concerned the

minimum number of servers c (c greater than approximately

40) and the maximum sampling interval (sampling to ensure

that λ + μ less than approximately 30 per sampling inter-

val). The approach presented should extend to other queue

types, in particular our results extend almost immediately to

the repairman problem.

Appendix I: The OU (log-) likelihood

We summarise results from [21] that allow us to invert ex-

plicitly, and calculate the determinant of, the time-dependent

covariance matrix C of the OU process. This permits us to

write the (log-) likelihood explicitly, and consequently note

that only O(n) operations are required to evaluate it. Write

the likelihood function (4) as

f (x) = 1√
(2π )n|C | exp

[
−1

2
yC−1 y′

]
,

with y = x − m. It turns out ( [22]) that

yC−1 y′ = σ 2

c

n∑
i=1

(yi − ri−1 yi−1)2

1 − r2
i−1

,

where σ 2 = V/(−2B) and

det(C) =
(

σ 2

c

)n n−1∏
i=1

(
1 − r2

i

)
,

where

rk =
{

0 if k = 0,

exp [B(tk+1 − tk)] if 1 ≤ k ≤ n − 1.

This allows us to write the likelihood, and the log-likelihood,

as

f (x) =
(

2πσ 2

N

)− n
2

(
n−1∏
i=1

1 − r2
i

)− 1
2

× exp

[
− N

2σ 2

n∑
i=1

(yi − ri−1 yi−1)2

1 − r2
i−1

]
, (11)

and

l(x) = − n

2
log

(
2πσ 2

c

)
− 1

2

n−1∑
i=1

log
(
1 − r2

i

)
− c

2σ 2

n∑
i=1

(yi − ri−1 yi−1)2

1 − r2
i−1

. (12)

We emphasise that the above formulæ hold in general, and

should be used to evaluate the (log-) likelihood (instead of

inverting C and calculating its determinant numerically).
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Appendix II: Cross-entropy method

Here we describe the algorithm used to maximise the (log-)

likelihood. This is followed by some general advice on choos-

ing parameters when using the Cross-Entropy method. For

further details and applications of the Cross-Entropy method,

see [20].

Algorithm

1. Set Ns = 20000, Ne = 1000, ε = 10−5, a = 100,

maxits = 5000, t = 0.

2. Draw Ns pairs (λi , μi ) uniformly from the triangle

(0, 0) − (a, 0) − (a, a).

3. Set t = t + 1. Calculate li = l(x ; λi , μi ).

4. Locate a set E of Ne indices i for which lk ≥ l j for all

k ∈ E , j �∈ E .

5. Calculate meanλ, stddevλ and meanμ, stddevμ as the

means and standard deviations of λk and μk where k ∈ E .

6. Draw Ns pairs of unknown parameters, from independent

normal distributions with means and standard deviations

calculated in the previous step.

7. If the largest σ is greater than ε, and t < maxits then return

to step 3; otherwise output λ̂ and μ̂, where κ is an index

such that lκ ≥ l j for all j .

In general, a user should trial parameter combinations on

a sub-problem of the original, with initial “rule of thumb”

settings of, say Ne/Ns = const (0.01), Ns = 5 × d × (20 to

200) (say, where d is the number of dimensions), maxits at

100 or 200 (so that it is usually never achieved). The sugges-

tion is to subsequently refine these parameters if necessary.

There is a “Fully Adaptive” version of the Cross-Entropy al-

gorithm which limits the amount of tweaking required (see

Chapter 5 of [20]).
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