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Abstract In this article, we give the Laplace transform of the

first passage times of reflected Ornstein-Uhlenbeck process

with two-sided barriers.
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1 Introduction

In [4], Ward and Glynn proposed a queueing system

with reneging and then constructed a reflected Ornstein-

Uhlenbeck (O-U) process via an appropriate Markovian

approximation procedure. In their successive article [5],

Ward and Glynn further derived the stationary distribu-

tion of the reflected process. Now, from the point of

view of queueing system, it is natural to suggest a fluid

model with finite buffer capacity. This leads to consider
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a refined queueing process with two-sided barriers. Hence

motivated by Ward and Glynn’s one-sided reflected O-U

processes, we are concerned with the following reflected

O-U process with two-sided barriers. Let Z = {Zt , t ≥ 0}
be an one-dimensional reflected Ornstein-Uhlenbeck process

with barriers 0 and b (b > 0 is a constant), which is defined

by{
d Zt = (μ − αZt )dt + σd Bt + d Lt − dUt ,

Z0 = x ∈ [0, b],
(1.1)

where B = {Bt , t ≥ 0} is an one-dimensional standard

Brownian motion, and μ ∈ R, α, σ ∈ R+. Here L =
{Lt , t ≥ 0} and U = {Ut , t ≥ 0} are the regulators of point

0 and b, respectively. Further, the processes L and U are

uniquely determined by the following properties (see e.g.

[2]),

� Both t → Lt and t → Ut are continuous nondecreasing

processes with L0 = U0 = 0 and t ∈ R+,� L and U increase only when Z = 0 and Z = b, respec-

tively, i.e.,
∫ t

0
I{Zs=0}d Ls = Lt and

∫ t
0

I{Zs=b}dUs = Ut ,

for t ≥ 0.

Recall (1.1), it is actually equivalent to

Zt = x − α

∫ t

0

Zsds + σ Bt + μt + Lt − Ut ∈ [0, b],

for t ≥ 0. (1.2)

As for the existence and uniqueness of the strong solutions of

(1.1), readers might refer to Lions and Sznitman [3] for more

details. In this note, our objective is to derive the Laplace
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transform on the first passage times of the reflected process

Z with two-sided barriers.

2 Main result and its proof

In this section we consider the Eq. (1.1) with assumptions that

μ = 0, σ = 1 and Z0 = x ∈ [0, b]. Let y ∈ [0, b], define the

first passage time by

T (y) := inf{t ≥ 0 : Zt = y}, (2.1)

with the usual convention inf Ø = ∞. On the other

hand, suppose λ > 0. For f ∈ C2([0, b]), define a linear

operator

A(λ) f (x) := 1

2
f ′′(x) − αx f ′(x) − λ f (x), for x ∈ [0, b].

With this we are going to give the expression of the Laplace

transform of T (y).

Theorem 2.1. Let x ∈ [0, b] and λ > 0. Suppose that f (λ)

1

and f (λ)

2 are the respective solutions of the following equa-
tions

A(λ) f (λ)

1 (y) = 0, y ∈ [0, b], and f (λ)

1
′(0) = 0, (2.2)

and

A(λ) f (λ)

2 (y) = 0, y ∈ [0, b], and f (λ)

2
′(b) = 0. (2.3)

If f (λ)

1 (y) �= 0 for x ≤ y ≤ b, and f (λ)

2 (y) �= 0 for 0 ≤
y ≤ x, then

Ex
[
e−λT (y)

] = f (λ)

1 (x)

f (λ)

1 (y)
, for x ≤ y ≤ b, (2.4)

and

Ex [e−λT (y)] = f (λ)

2 (x)

f (λ)

2 (y)
, for 0 ≤ y ≤ x . (2.5)

Proof: Applying the Itô formula for h(t, x) :=
exp(−λt) f (x) with f ∈ C2

b ([0, b]), we have

h(t, Zt ) = h(0, Z0) +
∫ t

0

∂h

∂s
(s, Zs)ds +

∫ t

0

∂h

∂x
(s, Zs)d Zs

+1

2

∫ t

0

∂2h

∂x2
(s, Zs)d 〈Z , Z〉s

= f (Z0) +
∫ t

0

e−λs

[
− λ f (Zs) − αZs f ′(Zs)

+1

2
f ′′(Zs)

]
ds +

∫ t

0

e−λs f ′(Zs)d Ls

−
∫ t

0

e−λs f ′(Zs)dUs +
∫ t

0

e−λs f ′(Zs)d Bs

= f (Z0)+
∫ t

0

e−λs A(λ) f (Zs)ds + f ′(0)

∫ t

0

e−λsd Ls

− f ′(b)

∫ t

0

e−λsdUs +
∫ t

0

e−λs f ′(Zs)d Bs, (2.6)

since L and U are finite variation (FV) processes. Let T < ∞
be a stopping time and x ∈ [0, b]. It follows from martingale

optional theorem, that

Ex [e−λT f (ZT )]

= f (x) + Ex

[ ∫ T

0

e−λs A(λ) f (Zs)ds

]

+ f ′(0)Ex

[ ∫ T

0

e−λsd Ls

]
− f ′(b)Ex

[ ∫ T

0

e−λsdUs

]
.

(2.7)

In particular, take T = T (y) for y ∈ [0, b], and note that

Ex

[ ∫ T (y)

0

e−λsdUs

]
= 0, for x ≤ y ≤ b,

and

Ex

[ ∫ T (y)

0

e−λsd Ls

]
= 0, for 0 ≤ y ≤ x .
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Then,

Ex
[
e−λT (y) f (ZT (y))

]
= f (x) + Ex

[ ∫ T (y)

0

e−λs A(λ) f (Zs)ds

]

+ f ′(0)Ex

[ ∫ T (y)

0

e−λsd Ls

]
, for x ≤ y ≤ b, (2.8)

and

Ex
[
e−λT (y) f (ZT (y))

]
= f (x) + Ex

[ ∫ T (y)

0

e−λs A(λ) f (Zs)ds

]

− f ′(b)Ex

[ ∫ T (y)

0

e−λsdUs

]
, for 0 ≤ y ≤ x . (2.9)

Replace f by f (λ)

1 in (2.8) and by f (λ)

2 in (2.9), we im-

mediately get (2.4) and (2.5) by ZT (y) = y, f (λ)

1
′(0) = 0

and f (λ)

2
′(b) = 0. Thus the proof of the theorem is completed.

�
Remark 2.1. Although neither f (λ)

1 nor f (λ)

2 in the theorem

is unique, each of their ratios by (2.4) and (2.5) is unique,

which determine the first passage time T (y).

In the following, we are going to give an explicit expres-

sion on the Laplace transform of T (y). Actually we can get

a solution g(λ) of (2.2) and a solution l (λ) of (2.3) as well:

g(λ)(x) :=
∞∑

k=0

(2x2)k

(2k)!

k−1∏
j=0

(λ + 2 jα), for x ∈ [0, b],

and

l (λ)(x) := g(λ)(x) − C (λ)h(λ)(x), for x ∈ [0, b],

where the constant C (λ) and the function h(λ)(·) are deter-

mined respectively by

C (λ) :=
∑∞

k=1
2k b2k−1

(2k−1)!

∏k−1

j=0(λ + 2 jα)∑∞
k=0

(2b2)k

(2k)!

∏k−1

j=0 [λ + (2 j + 1)α]
< ∞,

and

h(λ)(x) :=
∞∑

k=0

2k x2k+1

(2k + 1)!

k−1∏
j=0

[λ + (2 j + 1)α] < ∞,

for x ∈ [0, b].

Hence by (2.4) and (2.5) in the theorem,

Ex [e−λT (y)] = g(λ)(x)

g(λ)(y)
, for x ≤ y ≤ b, (2.10)

and

Ex [e−λT (y)] = l (λ)(x)

l (λ)(y)
, for 0 ≤ y ≤ x . (2.11)

By the way, if let y = 0 or b, then we get the first passage

times at 0 and b respectively:

Ex [e−λT (0)] = l (λ)(x)

l (λ)(0)
= l (λ)(x),

and

Ex [e−λT (b)] = g(λ)(x)

g(λ)(b)
.

Where we adopt the convention
∏−1

j=0(λ + 2 jα) = ∏−1

j=0(λ

+(2 j + 1)α) = 1.

Remark 2.2. As for the case μ �= 0 and σ �= 1, in order to

derive Laplace transform of T (y), one needs to solve the

following equations,

Ã(λ) f̃ (λ)

1 (y) = 0, y ∈ [0, b], and f̃ (λ)

1
′(0) = 0, (2.12)

and

Ã(λ) f̃ (λ)

2 (y) = 0, y ∈ [0, b], and f̃ (λ)

2
′(b) = 0, (2.13)

where

Ãλ f (x) := σ 2

2
f ′′(x) + (μ − αx) f ′(x) − λ f (x),

for f ∈ C2([0, b]).

For the Eqs. (2.12) and (2.13), it is not hard to get their power

series solutions. However it seems to be difficult to give the

explicit forms of the solutions as above g(λ) and l (λ) for μ = 0

and σ = 1.
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