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Abstract. We consider a multi-class, multi-server queueing system with preemptive priorities. We distin-
guish two groups of priority classes that consist of multiple customer types, each having their own arrival
and service rate. We assume Poisson arrival processes and exponentially distributed service times. We derive
an exact method to estimate the steady state probabilities. Because we need iterations to calculate the steady
state probabilities, the only error arises from choosing a finite number of matrix iterations. Based on these
probabilities, we can derive approximations for a wide range of relevant performance characteristics, such
as the moments of the number of customers of a certain type in the system en the expected postponement
time for each customer class. We illustrate our method with some numerical examples. Numerical results
show that in most cases we need only a moderate number of matrix iterations (∼20) to obtain an error less
than 1% when estimating key performance characteristics.
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1. Introduction

1.1. Model

In this paper, we consider a multi-class M /M /k queue with two priority groups, high and
low. That is, each priority group may consist of multiple customer types, each having
their own arrival and service rate. Within each priority group, customers are served on
a first come, first serve (FCFS) basis. If all servers are occupied upon arrival of a high
priority customer, a low priority customer in service can be interrupted to free service
capacity for the high priority customer. That is, we assume preemptive priorities. If
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multiple low priority customers are in service, a customer is selected for postponement
randomly. Postponed low priority customers have priority over non-postponed waiting
customers of the same priority class. Because of the memoryless property of the expo-
nential distribution, it does not make a difference whether postponed jobs are resumed
from the moment of interruption or whether they are restarted completely. If one of
the postponed customers can re-enter service due to service completion of one of the
customers in service, then the choice of that customer is also made randomly from the
available customers. This rule allows us to work with the number of postponed customers
of each low priority type in the state space, neglecting the sequence of postponement.
Other disciplines for the postponed customers, such as FCFS, are possible at the expense
of a larger state space.

We present a method to solve the steady state equations exactly. Because we
know all state probabilities, we are able to evaluate a wide range of performance
characteristics per customer type, such as the moments of the number of customers
waiting and in the system, the waiting probability and the mean number of low pri-
ority customers whose service is interrupted. So our analysis facilitates the computa-
tion of advanced performance measures beyond standard measures as the mean queue
length.

Note that our model covers the M/Hx/k priority queue with no customer subclasses
per priority group. In this case, we represent each priority group class with hyperexpo-
nential (Hx ) service times by x customer subclasses with exponential service times and
we use the performance estimators for the total number of customers of each priority
group in the system. We will focus on the multi-class model in this paper, because we are
interested in performance measures per customer type rather than aggregate performance
measures per priority group.

1.2. Motivation

Multi-server priority queueing systems arise in various applications, such as production,
computer and telecommunication systems and call centers. We encountered this model
during our research on spare parts logistics for repairable items [13,14]. In such situations
we aim to minimize holding costs for spare parts stocks given fixed system availability,
or to maximize system availability given a fixed budget for spare parts. The queueing
models are necessary to model repair facilities.

A repair shop in spare part networks is generally able to handle multiple items
and it can use priority setting in its control. Here, we classify priorities statically as
either high priority or low priority items. Each item has its own arrival rate and service
time distribution. As a consequence, we need to model a repair shop by a (multi-server)
priority queueing system with two priority classes, where each class consists of multiple
subclasses (item types). An algorithm to determine performance characteristics of such
multi-server, multi-class priority queueing systems is not available in the literature as
far as we know.
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1.3. Literature

There is quite some literature on multi-server priority queueing systems, see e.g. both for
preemptive priorities [4,10,11] and for nonpreemptive priorities [3,6–8,10,18,19,20].

Regarding non-preemptive priority queues, Wagner [18–20] analyzes multi-server
nonpreemptive priority systems with Markovian arrival process, service times having
phase type distributions and both finite or infinite queueing space using matrix-analytic
methods. Kao and Narayanan [6] apply a matrix geometric approach to compute the
steady-state distribution of the customers in the system. Kao and Wilson [7] apply a
power-series approach to a multi-server queue with two priority classes. The power-
series approach has been introduced by Hooghiemstra et al. [5] and has been applied
before to solve a variety of queueing problems—particularly those with multidimen-
sional state space. The power series approach is interesting, because it can easily be
implemented and it can be extended to include more than two priority classes and to
preemptive priorities in theory. However these extensions cause an enormous growth of
memory requirements and computation time.

Among the papers on preemptive priorities, we mention the approximation ap-
proach of Buzen [1] and the generating function approach as proposed by Mitrani and
King [11] and by Gail et al. [4]. The basic idea of the Buzen’s approximation approach
is to replace k servers by a single server that works k times as fast and to use a correction
factor, being the ratio of the waiting times when the same trick would be applied to
the non-priority multi-server queue. Although this approach is attractive because of its
simplicity and its extendibility to general service times, it was done only for the first
moments of the number of customers in the system. In contrast to Buzen’s idea, the gen-
erating function approach gives exact results for the first two moments of the number
of customers in the system. However, these approaches [4,11] have only been applied
to cases with two classes each with one type of item.

The literature above focuses on priority queues where the priority classes do not
consist of multiple customer subclasses (or: customers types) each with their own arrival
and service rate. Such a setting can be found in the literature on dynamic scheduling of
multi-class queues. However, there the focus is on finding an optimal scheduling policy
rather than analytic performance estimation, see Wein [21] and Reinman and Wein
[12] for dynamic scheduling of a single-server queue and Maglaras [9] for dynamic
scheduling in queueing networks. We could not find any literature on the computation
of the steady state probabilities if the priority classes consist of non-identical subclasses.
Only for non-priority queues, such an analysis is known, see De Smidt [2] and Van Harten
and Sleptchenko [16]. The priority model that we consider in this paper requires a more
detailed state description and a different solution scheme.

1.4. Approach

To analyze our model, we proceed as follows. First we construct the equilibrium state
equations on a semi-infinite state space (Section 2). The state corresponds with the
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numbers of clients waiting for service in queue and the state of service (i.e. how many
clients of which type are in service and how many are postponed). We distinguish three
areas when solving the equilibrium equations, namely (I) states with at least one high
priority customer in the queue, (II) states with only low priority customers in the queue,
and (III) states in which the queues are empty. The boundaries between these areas
require special attention, as they are critical to solve the steady state equations. We will
deal with each area separately.

In Section 3.1, we will solve the equilibrium equations in area I (high priority
customers in the queue) combining the generating function approach with the matrix-
geometric approach. That is, in the area I the probabilities of the system states will
be expressed as derivatives of some power function. In this way we express all the
probabilities in this area in state probabilities with only one high priority customer
in the queue. The latter states are exactly the boundary between the areas I and
II.

Next, in Section 3.2, we will show how to deal with the area II (no high priority
customers in the queue), and the boundary between areas I and II (i.e. states with only
one high priority customer in the queue). Here, we will apply a generating function
approach with respect to the lower priority items only. We can solve the latter equations
iteratively only, thereby obtaining a cut-off error. Here again we express all the prob-
abilities in area II in state probabilities with only one high or low priority customer in
the queue, which belong to the boundaries between area I and II and between II and III,
respectively.

Finally, we solve the remaining state probabilities (area III plus the states with at
most one customer in the queue) in Section 3.3.

Altogether, the structure of this problem is a lot more complex than the
problem without priorities dealt with in Van Harten and Sleptchenko [16]. The main
reason is that we have to cope with a non-hyperexponential structure of the solution.
As a consequence, we have to do some tricky transformations to find our solutions.
In this respect, our approach resembles the moment generating function approach and
is somewhat analogous to Keilson’s Laguerre transform approach. We prefer a special
scheme in order to get better transparency and numerical efficiency.

In Section 4, we show how we can calculate various performance characteris-
tics from the state probabilities. In Section 5 we summarize the proposed method.
In the numerical Section 6, we show the results of several experiments to get in-
sight in the number of matrix iterations required to calculate the performance char-
acteristics with high precision. As examples of performance characteristics, we take
the expected number of customers of each type in the queue, being served or post-
poned, the first two moments of the number of customers in the system for each
customer type, and the expected waiting, sojourn and postponement time per cus-
tomer type. We present our conclusions and we discuss some model extensions in
Section 7.
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2. Notation and state equations

2.1. Definitions and notation

We denote the number of customer classes with high (low) priority by N h (Nl). High
priority jobs from subclass i arrive according to a Poisson process with rate λh

i and
low priority jobs from subclass j arrive with rate λl

j . We denote the number of parallel
service channels by k. The service times of the subclasses are exponentially distributed
with rates µh

i and µl
j for high and low priority customer classes, respectively.

Other general notations used throughout the paper are:

�h, �l, µh, µl—overall arrival and service rates per priority class, i.e. �h = ∑N h

i=1 λh
i ,

�l = ∑Nl

i=1 λl
i andµh = �h/

∑N h

i=1
λh

i

µh
i

= �h/kρh ,µl = �l/
∑Nl

i=1
λl

i

µl
i
= �l/kρl , where

the overall utilization rates for each priority class are ρh = �h/kµh , ρl = �l/kµl

and the total utilization rate is ρ = ρh + ρl .
ah

i , al
i —customer i arrival rate as fraction of the total arrival rate of its priority class, i.e.

ah
i = λh

i /�
h , al

i = λl
i/�

l .

µ̄(s̄h, s̄l)—total service rates of all customers in service, i.e. µ̄(s̄h, s̄l) = ∑N h

i=1 sh
i µh

i +
∑Nl

i=1 sl
i µ

l
i .

ēh
i (ēl

i )—a vector of dimension N h (Nl) with component i equal to 1 and all other
components equal to 0; this vector is used to indicate the changes in vectors of queue
and servers states during transitions from state to state.

eh
i j (e

l
i j )—the j th component of the vector ēh

i (ēl
i ), so eh

i j (el
i j ) = 1 if i = j and 0 otherwise.

We characterize the system states by two vectors of dimension N h and three vectors
of dimension Nl , where the components of each vector refer to the (high and low priority)
subclasses. These vectors contain information about the customers in queue, in service
and postponed:

s̄h and s̄l—vectors containing the number of high and low priority customers in service
per customer class.

w̄h and w̄l—vectors containing the number of high and low priority customers in the
queue waiting for first service per customer class (the vector w̄l excludes postponed
customers).

r̄ l—a vector containing the number of postponed low priority customers per customer
class.

We denote the systems state probabilities by P(w̄h, s̄h, w̄l, s̄l, r̄ l). Fortunately, we
can reduce the state dimension, because the customers within each priority class are
served FCFS and arrive according to independent Poisson processes. Therefore, the
conditional distribution of the number of customers of each type in the queue, given the
total number of customers in the queue for the particular priority class, has a multinomial
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distribution (see van Harten and Sleptchenko [16]). So we can replace the vectors w̄h and
w̄l by scalars qh and ql , denoting the total number of high (low) priority customers in
the queue, respectively. So, qh = ∑N h

i=1 wh
i and ql = ∑Nl

i=1 wl
i and the state probabilities

can be written as

P(w̄h, s̄h, w̄l, s̄l, r̄ l) = qh!
N h∏

i=1

(
ah

i

)wh
i

wh
i !

ql!
Nl∏

j=1

(
al

j

)wl
j

wl
j !

Pqh ,ql (s̄h, s̄l, r̄ l). (1)

where Pqh ,ql (s̄h, s̄l, r̄ l) denotes the steady state probability that (i) qh high priority cus-
tomers are in the queue, (ii) ql low priority customers (who have not been postponed)
are in the queue, and (iii) the vectors of postponed low priority customers and high and
low priority customers equal r̄ l , s̄h and s̄l , respectively. In the remainder of this paper,
we will use the state probabilities Pqh ,ql (s̄h, s̄l, r̄ l) only. When we mention the number
of low priority customers in the queue (ql), we only refer to the customers who have not
been served before (i.e., excluding postponed customers).

2.2. Equilibrium equations

In this section, we will define the equilibrium equations for the continuous time Markov
chain. Without loss of generality, we assume that if multiple servers are available to
process a job, each available server has an equal chance to get this job.

Different equilibrium equations hold for different system states, but they have a
similar structure. For convenience of notation, we denote the state probabilities as a
vector Pqh ,ql , containing all probabilities Pqh ,ql (s̄h, s̄l, r̄ l) for fixed qh and ql . Then we
can write the equilibrium equations in the following generic form:

Dqh ,ql Pqh ,ql = Fqh ,ql Pqh−1,ql + Eqh ,ql Pqh ,ql−1 + Bqh ,ql Pqh+1,ql + Gqh ,ql Pqh ,ql+1 (2)

where the operators Dqh ,ql , Fqh ,ql , Eqh ,ql , Bqh ,ql , Gqh ,ql depend on the area (I, II or
III). It is straightforward to derive that these operators are given by:

Dqh ,ql = D1,0 with (D1,0Pqh ,ql )[s̄h, s̄l, r̄ l]
de f= (�h + �l + µ̄(s̄h, s̄l))Pqh ,ql [s̄h, s̄l, r̄ l],

qh > 0, ql ≥ 0 (3)

Dqh ,ql = D0,1 with (D0,1P0,ql )[s̄h, s̄l, r̄ l]
de f= (�h + �l + µ̄(s̄h, s̄l))P0,ql [s̄h, s̄l, 0]

− �h
N h∑

i=1

Nl∑

j=1

sl
j + 1

∑Nl

m=1 sl
m + 1

ah
i P0,ql

[
s̄h − ēh

i , s̄l + ēl
j , r̄ l − ēl

j

]

−
N h∑

i=1

Nl∑

j=1

(
sh

i + 1
)
µh

i

r l
j + 1

∑Nl

m=1 rl
m + 1

P0,ql

[
s̄h + ēh

i , s̄l − ēl
j , r̄ l + ēl

j

]
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−
Nl∑

i=1

Nl∑

j=1

(
sl

i + 1 − el
i j

)
µl

i

r l
j + 1

∑Nl

m=1 rl
m + 1

P0,ql

[
s̄h, s̄l + ēl

i − ēl
j , r̄ l + ēl

j

]
,

qh = 0, ql > 0 (4)

Dqh ,ql = D0,0 with (D0,0P0,0)[s̄h, s̄l, r̄ l]
de f= (�h + �l + µ̄(s̄h, s̄l))P0,0[s̄h, s̄l, 0]

− �h
N h∑

i=1

P0,0
[
s̄h − ēh

i , s̄l, 0
] − �l

N l∑

i=1

P0,0
[
s̄h, s̄l − ēl

i , 0
]

−
N h∑

i=1

(
sh

i + 1
)
µh

i P0,0
[
s̄h + ēh

i , s̄l, 0
]−

Nl∑

i=1

(
sl

i + 1
)
µl

i P0,0
[
s̄h, s̄l + ēl

i , 0
]
,

qh = 0, ql = 0 (5)

Eqh ,ql = E with (E Pqh ,ql−1)[s̄h, s̄l, r̄ l]
de f= �lPqh ,ql−1[s̄h, s̄l, r̄ l], qh + ql > 0 (6)

Fqh ,ql = F with (F Pqh−1,ql )[s̄h, s̄l, r̄ l]
de f= �hPqh−1,ql [s̄h, s̄l, r̄ l], qh > 0, ql ≥ 0

(7)

Bqh ,ql = B with (B Pqh+1,ql )[s̄h, s̄l, r̄ l]
de f=

N h∑

i=1

N h∑

j=1

ah
j

(
sh

i + 1 − eh
i j

)

× µh
i Pqh+1,ql

[
s̄h + ēh

i − ēl
j , 0, r̄ l

]
, qh > 0, ql ≥ 0 (8)

Gqh ,ql = 0, qh > 0, ql ≥ 0 (9)

Gqh ,ql = G with (G P0,ql+1)[s̄h, s̄l, r̄ l]
de f=

Nl∑

i=1

Nl∑

j=1

al
j

(
sl

i + 1 − el
i j

)

× µl
i P0,ql+1

[
s̄h, s̄l + ēl

i − ēl
j , 0

] +
N h∑

i=1

Nl∑

j=1

al
j

(
sh

i + 1
)

× µh
i P0,ql+1

[
s̄h + ēh

i , s̄l − ēl
j , 0

]
, qh + ql>0, qh = 0,

Nl∑

m=1

rl
m = 0 (10)

The dimension of the vector Pqh , ql can be specified as follows.
If there are high priority customers in queue, we have:

dim(Pqh ,ql ) =
(

N h + k − 1
k

) k∑

j=0

(
Nl + j − 1

j

)

, qh > 0, ql ≥ 0



88 SLEPTCHENKO, HARTEN AND VAN DER HEIJDEN

If there are only low priority customers in queue, we have:

dim(P0,ql ) =
k∑

i=0

[(
N h + i − 1

i

)(
Nl + k − i − 1

k − i

) i∑

j=0

(
Nl + j − 1

j

)]

,

qh = 0, ql > 0

If queues are empty the dimension can be written as:

dim(P0,0) =
k−1∑

n=0

(
N h + Nl + n − 1

n

)

+
k∑

i=0

[(
N h + i − 1

i

)(
Nl + k − i − 1

k − i

)

×
i∑

j=0

(
Nl + j − 1

j

)]

, qh + ql = 0

In the next section, we will show how we can solve these equilibrium equations
thereby obtaining the exact system state probabilities.

3. Solution of the stationary state equations

3.1. System states with high priority customers in queue (qh > 0)

In this section, we focus on area I, so there is at least one high priority customer in the
queue.

D1,0Pqh ,ql = �hPqh−1,ql + �lPqh ,ql−1 + B Pqh+1,ql , qh > 1 (11)

where D1,0 and B are defined by (3) and (8).
Solving this matrix equation, we can express all state probabilities with qh > 1

and ql ≥ 0 in the state probabilities P1,ql . In the next lemma, we explain the structure
of the solution to this equation.

Lemma 1. Define the matrix function Z(ξ ) as such solution of

D1,0 = �hZ + �lξ + B Z−1, (12)

that satisfies to condition that for all eigenvalues α(Z(ξ )) it holds that

|α(Z(ξ ))| > 1, for ξ = 0, 1

Then

Pqh ,ql = 1

ql!

(
d

dξ

)ql

(Z−1(ξ ))qh−1C(ξ )

∣
∣
∣
∣
ξ=0

(13)

satisfies all equations for qh ≥ 1 and ql ≥ 0.
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Note that
∑

ql≥0 Pqh ,ql = (Z−1(ξ ))qh−1C(ξ )|ξ=1 under mild analyticity conditions
on C(ξ ).

Proof. This lemma can be easily shown by substitution, see Appendix for details.

The probabilities of the system states constructed in this section have a differential
form. Therefore we need the derivatives of the matrix Z(ξ ). Unfortunately, we have not
been able to derive an analytic expression for the matrix Z(ξ ). However, we can use
equation (12) to find the derivatives iteratively using following relations:

�h d

dξ
Z(ξ ) + B

d

dξ
[Z−1(ξ )] = −�l

...

�h

(
d

dξ

)n

Z(ξ ) + B
(

d

dξ

)n

[Z−1(ξ )] = 0, n > 1

and the following relation obtained from the equality Z(ξ )Z−1(ξ ) = I:

(
dn

dξ n
Z(ξ )

)

Z−1(ξ ) + Z(ξ )

(
dn

dξ n
Z−1(ξ )

)

=
n−1∑

i=1

(
n

i

)(
di

dξ i
Z(ξ )

)(
dn−i

dξ n−i
Z−1(ξ )

)

.

So, we have found the probabilities of the system states with a nonempty high priority
queue (qh ≥ 1), expressed via the derivatives of the unknown function C(ξ ). However,
using (13) it is easy to see that the derivatives of this function for ξ = 0 are related to
probabilities of the states with qh = 1. So, if we know these probabilities, we can find
the probabilities of the other states with qh > 1. In the next sections, we show how to
find these probabilities and the other state probabilities (with qh = 0).

3.2. States with all servers busy and at most one high priority customer
in the queue (qh ≤ 1, qh + ql > 0)

Here we consider the equilibrium equations for the systems states in area II (qh= 0) and
the boundary equations of area I and II (qh = 1), which can be written in matrix form
as:

(
D0,1 B

F D1,0

)(
P0,ql

P1,ql

)

=
(

E 0

0 E

)(
P0,ql−1

P1,ql−1

)

+
(

G 0

0 0

)(
P0,ql+1

P1,ql+1

)

+
(

0

B

)

P2,ql

Rewriting these equations in a matrix form, where the vectors Pqh ,ql with the same
number of low priority customers in the system (ql) are joined into one vector Pql , we
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obtain:

D2Pql = E2Pql−1 + G2Pql+1 + B2
1

ql!

(
d

dξ

)ql

[Z−1(ξ )C(ξ )]

∣
∣
∣
∣
ξ=0

, ql > 1 (14)

So, we have an inhomogeneous system of difference equations with a fixed dimen-
sion and with fixed coefficients. These fixed matrix coefficients D2, E2, G2 and B2 were
introduced in the previous equation.

We see that the inhomogeneous term has a differential form, so the standard solution
of inhomogeneous difference equations (solution of homogeneous equation plus a partial
solution of the inhomogeneous equation) can be applied by looking for a solution in
a differential form Pql = 1

(ql−1)! (
d

dξ
)ql−1v(ξ )|ξ=0. This form is sufficiently general to

incorporate, all solutions of the homogeneous equation as well by adding terms to
v(ξ ) proportional to (α + ξ )−1. The substitution of this solution into equation (14)
gives:

D2
1

ql!

(
d

dξ

)ql

v(ξ )

∣
∣
∣
∣
ξ=0

= E2
1

(ql − 1)!

(
d

dξ

)ql−1

v(ξ )

∣
∣
∣
∣
ξ=0

+ G2
1

(ql + 1)!

(
d

dξ

)ql+1

v(ξ )

∣
∣
∣
∣
ξ=0

+ B2
1

(ql + 1)!

(
d

dξ

)ql+1

[Z−1(ξ )C(ξ )]

∣
∣
∣
∣
ξ=0

,

ql > 1

Here we can apply the following equalities:
(

d

dx

)n

(x f (x))

∣
∣
∣
∣
x=0

= n

(
d

dx

)n−1

f (x)

∣
∣
∣
∣
x=0

and

(
d

dx

)n

(x2 f (x))

∣
∣
∣
∣
x=0

= n(n − 1)

(
d

dx

)t−2

f (x)

∣
∣
∣
∣
x=0

,

which allow us to remove the derivatives from equation (14) and to obtain a new ex-
pression of the function v(ξ ) for any ql > 1:

1

(ql + 1)!

(
d

dξ

)ql+1

[ξD2v(ξ ) − ξ 2E2v(ξ ) − G2v(ξ ) − B2Z−1(ξ )C(ξ )]

∣
∣
∣
∣
ξ=0

= 0,

ql > 1 (15)

Using (13), the function C(ξ ) can be expressed as the part of the vector-function
v(ξ ) = ( v0(ξ )

v1(ξ ) ), which corresponds to the states with 1 high priority customer in the queue
v1(ξ ), i.e. C(ξ ) = v1(ξ ) and for example v1(0) = P1,1.

The right hand side of equation (15) should be a function which becomes zero
for any ql > 1, i.e. a polynomial function of second order. Hence, we obtain another
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expression for the vector-functionv(ξ ), that does not contain derivatives, but that contains
unknown vectors C1,C2 and C3:

ξD2v(ξ ) − ξ 2E2v(ξ ) − G2v(ξ ) − B2Z−1(ξ )v1(ξ ) = C1ξ
2 + C2ξ + C3 (16)

or

H(ξ )v(ξ ) = C1ξ
2 + C2ξ + C3 (17)

The constants C1, C2 and C3 can easily be expressed in the state probabilities P2,
P1 and P0, where P0 is also obtained by joining vectors P0,0 and P1,0. That is, we have
from equation (16) that for ξ = 0,

−G2v(0) − B2Z−1(0)C(0) = C3

and recalling that v(0) = P1 and C(0) = P1,0, we obtain an equation for C3:

C3 = −G2P1 + B2Z−1(0)P1,0 (18)

Next, we can take the derivative of equation (16) in the point ξ = 0 and we obtain

D2v(0) − G2v
′(0) − B2

(
d

dξ
Z−1(0)P1,0 + Z−1(0)P1,1

)

= C2.

The left hand side of the last equation is also encountered in equation (14) for ql

= 1, if we take into account that P1 = v(0), P2 = v′(0). Then we find:

C1 = D2P1 − G2P2 − B2

(
d

dξ
Z−1(0)P1,0 + Z−1(0)P1,1

)

. (19)

In this way, we have defined a function v(ξ ) given the probability vectors P2, P1

and P0, (remembering that P1,0 and P1,1 are parts of the vectors P1 and P0).
Next, all probability vectors Pql for ql = 3 . . . ∞, and so all state probabilities

in the areas I and II follow from P2, P1 and P0. Note that P1 and P0 correspond with
states at the boundary between area II, III and area I, but P2 does not. However, up
to now we have not used an essential piece of information by which we can eliminate
P2. It is clear that we are looking for decaying solutions Pql for ql → ∞. As a con-
sequence, v(ξ ) should be analytic on a circle with radius 1 + ε for some ε > 0. Due
to (16), extra conditions have to be satisfied at points ξ inside this circle where H(ξ ) is
singular.

Next, we shall show that the decay requirement boils down to a relation between
the initial condition P2 and P1 of the following type:

P2 = Q1P1 (20)
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It is easy to show (see Appendix B) that:

P2 = Qt
1P1 + Ωt

1Pt+1 (21)

where

Ωt
1 = −(

Θ2
1

)−1Θ2
0 and Qt

1 = −(
Θ2

1

)−1Θ2
2. (22)

with matrices Θt∗
i that can be found recursively from

Θt
i = hi , i = 0, . . . t

Θt∗
0 = h0

(
Θt∗+1

1

)−1Θt∗+1
0 (23)

Θt∗
i = (

h0
(
Θt∗+1

1

)−1Θt∗+1
i+1 − hi

)
, i = 1, . . . t∗

with hi = 1
i!

di

dξ i H(0). That is, if Ωt
1 remains bounded and taking into account that the

vector Pt+1 decay for t → ∞, we get:

Q1 = lim
t→∞ Qt

1

Note that the matrices Ωt
1 and Qt

1 are computed using a straightforward iteration
procedure, which requires O(t2) matrix operations. In this iteration, we check the bound-
edness of Ωt

1. Numerical evidence shows that this is true in all cases that we considered.
Moreover, we find that

lim
t→∞ ‖Ωt

1‖ ≈ ω(1 − ρ)

where ω is some constant depending on other system parameters. Hence, by taking t
sufficiently large, we have a good approximation of the matrix Q1 that will play a role
next. Furthermore, ρ → 1 is not a problem for the convergence of the iterations.

3.3. States with at most one customer in the queues (qh + ql ≤ 1)

In this section, we show how to find the state probabilities for qh + ql ≤ 1. We can
use these probabilities to find all other states probabilities that were expressed in these
remaining probabilities till now.

Using the same techniques as in the previous sections, the equilibrium equations
for the states with qh + ql ≤ 1 can be written as:

D1P1 = E2P0 + G2P2 + B2

(
d

dξ
Z−1(ξ )

∣
∣
∣
∣
ξ=0

P1,0 + Z−1(0)P1,1

)

(24)

D0P0 = G2P1 + B2Z−1(0)P1,0
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where the matrices D0, D1 are given by

D0 =
(

D0,0 B

F D1,0

)

D1 =
(

D0,1 B

F D1,1

)

and the operators are defined as in (14). The vectors P1,i are parts of the vectors Pi , i =
0,1 as before.

Using expression (20), we can rewrite these equations by eliminating P2. We obtain
a system of linear equations for P1 and P0, which determines them up to a multiplicative
constant. Together with normalization condition

∞∑

qh=0

∞∑

ql=0

∑

s̄h ,s̄l ,r̄ l

Pqh ,ql [s̄h, s̄l, r̄ l] = 1 (25)

this provides us with P1, P0 and all other probabilities.

4. Performance measures

Based on the steady state probabilities, we can calculate a wide range of performance
measures for each customer subclass. Examples are the moments of the queue lengths and
the correlation between the numbers of customers in the system for two classes. In this
section, we concentrate on the performance criteria for the low priority customers in the
system, since the performance indicators for the high priority customers can be calculated
using the non-priority multi-class, multi-serve queue analysis presented in Van Harten
and Sleptchenko [16] as well. The latter is possible, because we assume preemptive
priorities. So, low priority customers do not influence high priority customers. Therefore
low priority customers can be ignored for the performance concerning high priority
customers.

As examples for the calculation of performance measures, we take the mean number
of low priority customers of type i in the queue (E[ql

i ]), the mean number of the low
priority customers of type i in the postponed state (E[PSl

i ]) the first two moments of
the total number of type i low priority customers in the system (Rl

i ) and some others.
Such performance indicators play a role in spare part service networks that motivated
our research, see the introduction.
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4.1. Mean number of type i customers in the queue

Obviously, E[ql
i ] can be found from

E
[
ql

i

] =
∑

w̄h ,s̄h ,w̄l ,s̄l ,r̄ l

wl
i P(w̄h, s̄h, w̄l, s̄l, r̄ l).

We can simplify this expression via the function v(ξ ) and via the matrix Z(ξ ) using
the Taylor expansion:

E
[
ql

i

] =
∑

qh ,ql

∑

w̄h , s.t.
∑Nh

i=1 wh
i =qh

∑

w̄l , s.t.
∑Nl

i=1 wl
i =ql

wl
i q

h!
N h∏

i=1

(
ah

i

)wh
i

wh
i !

ql!
Nl∏

i=1

(
ah

i

)wl
i

wl
i !

×
∑

s̄h ,s̄l ,r̄ l

Pqh ,ql (s̄h, s̄l, r̄ l)

=
∑

ql

∑

w̄l , s.t.
∑Nl

i=1 wl
i =ql

∑

s̄h ,s̄l ,r̄ l

wl
i a

l
i

1

(ql − 1)!

(
d

dξ

)ql

(Z(ξ )−1)qh−1v1(ξ )

∣
∣
∣
∣
∣
ξ=0

+
∑

w̄l , s.t.
∑Nl

i=1 wl
i =ql

∑

s̄h ,s̄l ,r̄

wl
i q

l!
Nl∏

j=1

(
al

j

)

wl
j !

.
1

ql!

dql

dξ ql v(ξ )

∣
∣
∣
∣
∣
ξ=0

This finally gives us

E
[
ql

i

] = −al
i 〈1, (Z(1) − I)−1Z′(1)(Z(1) − I)−1v1(1)〉

+al
i 〈1, (Z(1) − I)−1Z(1)v′

1(1)〉 + al
i 〈1, v′(1)〉

Here v1 refers to the vector components of v with one high priority customer in
the queue. The notation 1 is used for a vector with all components equal to 1 with
correspondent dimension.

4.2. Mean number of type i customers postponed

Analogously to the derivation of E[ql
i ], we can find an expression for the mean number

of type i customers postponed E[P Sl
i ]:

E
[
P Sl

i

] = 〈
χ rl

i , (I − Z−1(ξ ))−1v1(1)
〉 + 〈

χ rl
i , v(1)

〉

where χ rl
i has as components the number of postponed low priority customers of type

i corresponding to the vector component (s̄h, s̄l, r̄ l) and χ
rl

i
1 is the part of this vector

corresponding to the boundary states with one high priority customer in the queue.
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4.3. Moments of the number of type i customers in the system

Clearly, Rl
i is composed of three terms, namely the number of customers in service, in

the queue and postponed:

E
[
Rl

i

] = E
[
S Rl

i

] + E
[
ql

i

] + E
[
P Sl

i

]

We have already determined the last two components, so what remains is the
mean number of type i customers in service E[S Rl

i ]. Using the vectors χ sl
i and χ

sl
i

0 ,
with the number of low priority customers of type i in service as components and the
corresponding dimensions, we can write down an expression for E[S Rl

i ]:

E
[
S Rl

i

] = 〈
χ sl

i , P0
〉 + 〈

χ sl
i , v(1)

〉

Note that the mean number of type i customers in service can also be estimated
via Little’s law, i.e.

E
[
S Rl

i

] = λl
i

/
µl

i

It is more difficult to find the second moment of Rl
i , since we should take into

account the correlations between the numbers of customers in queue, in service and in
the postponed states. This can be done analogous to the computations for non-priority
systems as presented in Van Harten and Sleptchenko [16]. After a lengthy derivation we
obtain:

E
[
(Rl

i )
2
] = (

al
i

)2〈1, 2[(Z(1) − I)−1Z′(1)(Z(1) − I)−1Z′(1)(Z(1) − I)−1

−(Z(1) − I)−1Z′′(1)(Z(1) − I)−1]v1(1)〉
− 2

(
al

i

)2〈
1, (Z(1) − I)−1Z′(1)(Z(1) − I)−1Z′(1)(Z(1) − I)v′

1(1)
〉

+ (
al

i

)2〈1, (Z(1) − I)−1Z(1)v′′
k (1)〉

− al
i

〈
1, (Z(1) − I)−1Z′(1)(Z(1) − I)−1v1(1)

〉 + al
i

〈
1, (Z(1) − I)−1v′

1(1)
〉

− 2al
i

〈
χ rl

i , (Z(1) − I)−1Z′(1)(Z(1) − I)−1vk(1)
〉

+ 2al
i

〈
χ rl

i , (Z(1) − I)−1v′
k(1)

〉 + 〈
χ (rl

i )2
, (I − Z−1(1))−1vk(1)

〉

+ (
al

i

)2〈
1, v′′(1)

〉 + al
i (
〈
1, v′(1)

〉 + 2
〈
χ rl

i +sl
i , v′(1)

〉
) + 〈

χ (rl
i +sl

i )2
, v(1)

〉

+ 〈
χ (sl

i )2
, P0

〉

With an even more lengthy computation, we can derive expressions for backorder cal-
culation in spare part networks as mentioned in Section 1.2.
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4.4. Mean waiting time, postponement time and sojourn time

Little’s law can be applied to calculate the mean waiting time until the first time that an
customer enters service E[W l

i ], the mean postponement time E[PsTimel
i ] and the mean

sojourn time E[SJTimel
i ]:

λl
i E

[
W l

i

] = E
[
ql

i

]

λl
i E

[
PsTimel

i

] = E
[
PSl

i

]

λl
i E

[
SJTimel

i

] = E
[
Rl

i

]

and, of course,

E
[
SJTimel

i

] = 1

µl
i

+ E
[
W l

i

] + E
[
PsTimel

i

]

Note that E[PsTimel
i ] has to be interpreted as the expected total time that an

customer of type i spends in the postponed state between the moment it leaves the queue
and the moment its service is completed. Further, we should note that the expected total
service time equals 1/µl

i , even though preemption occurs. Because of the memoryless
property of the exponential service time distribution, interruptions (by preemption) do
not affect the expected service time.

4.5. Expected number of preemption events

Let us now focus on another interesting quantity: E[nrPreemptEventl
i ], the expected

number of preemption events per type icustomer. In order to compute it, we need the
arrival rate of a low priority customer into the postponed state. It can be calculated using
the state probabilities as derived in the previous sections. The arrival rate of type i low
priority customers into the postponed state is equal to the arrival rate of high priority
customers multiplied by the probability that customer i is withdrawn from the service:

λ
ps
i = �h

∑

s̄h ,w̄l ,s̄l ,r̄ l

sl
i

∑Nl

i=1 sl
i

P(0, s̄h, w̄l, s̄l, r̄ l) = �h
〈
χ

sl
i , v(1)

〉

where the components of the vectors χ
sl

i are equal to
sl

j
∑Nl

i=1 sl
i

of the corresponding vector
component (s̄h, s̄l, r̄ l).

Comparing the number of preemption events with the number of arrivals over a
long interval, it is clear that number of preemption events per customer entering the
system is equal to:

E
[
nr Preempt Eventl

i

] = λ
ps
i

/
λl

i
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It is now also possible to compute the expected time between postponement and
resumption moments of type i customer, i.e. the expected re-entrance into service time,
E[ReenterTimel

i ]. Using Little’s law, we obtain

λ
ps
i E

[
ReenterTimel

i

] = E
[
PSl

i

]

Note that the number of preemption events per each customer entering the system
can be also calculated as:

E
[
nrPreemptEventl

i

] = E
[
PsTimel

i

]/
E

[
ReenterTimel

i

]

4.6. On the vectors v(1), v′(1) and v′′(1).

To calculate the performance measures, we need to find the values v(1), v′(1) and v′′(1).
However, the procedure is non-trivial due to the singularity of the matrix H (1), i.e. we
cannot find the vector v(1) just by inverting equation (16) at ξ = 1.

H(1)v(1) = FkPk−1 − GPk . (26)

Therefore, we proceed as follows. First, the derivative of (16) at ξ = 1 gives:

H(1)v′(1) + H′(1)v(1) = FkPk−1 (27)

In this equation, we have to get rid of the term with v′(1) to obtain a linear system
for v(1) only. It can be done by projecting both sides of (27) onto the null-space of H (1).
Hence, we multiply equation (27) by the matrix Pr1, defined as:

Pr1 = S














1
. . . 0

1
0

0
. . .

0














S−1

where S is the matrix of eigenvectors of H(1) and where the rows with 1 on the diagonal
correspond to the zero eigenvalues and the rows with 0 on the diagonal to the non-zero
eigenvalues; ε is some number >0 that can be used for scaling purposes. It is easy to
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show that multiplication of the matrices Pr1 and H(1) gives the zero matrix:

Pr 1H(1) = S














1
. . . 0

1

0

0
. . .

0














S−1H (1)

= S














1
. . . 0

1

0

0
. . .

0



























0
. . . 0

0

∗
0

. . .

∗














S−1 = 0

So, we now have a new system of linear equations:

[H(1) + Pr 1H′(1)]v(1) = (I + Pr 1)FkPk−1 − GPk

where the matrix [H(1) + Pr1 H′(1)] turns out to be non-singular. In all our experiments,
it turned out that 0 is a single eigenvalue of H(1), with the corresponding left eigenvector
is 1 = (1, . . . , 1)⊥. As a consequence, the matrix Pr1 can be constructed as a matrix
with elements of one row (any row) equal to 1.

Pr 1 =









1 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0









In the same way, we can find the derivatives v′(1), v′′(1), etc. That is,

[H(1) + 2 Pr 1H′(1)]v′(1) = −[H′(1) + Pr 1H′′(1)]v(1) + FkPk−1 (28)

[H(1) + 3 Pr 1H′(1)]v′′(1) = −[2H′(1) + 3 Pr 1H′′(1)]v′(1) − [H′′(1) + Pr 1H′′′(1)]v(1)

In the same way, we can find the values of the function v(ξ ) and the values of the
derivatives of these function for other values of ξ . Therefore, we are able to find the
derivatives of any order of the function v(ξ ), which be needed for estimation of other
performance measures of the system
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5. Summary of the method and the algorithm

Let us summarize our method to calculate the steady state probabilities for the multi-
class, multi-server preemptive priority queue.

First, we use equation (12) to find the derivatives of the matrix-function Z(ξ ) in
the points ξ = 0 and 1, which allows us to express the state probabilities in area I in
terms of the state probabilities with qh = 1, see Lemma 1.

Next, we use the first t derivatives (t is the chosen number of iterations) of the
matrix-function Z(ξ ) in the point ξ = 0 and relations (21)–(23) to find the matrix Q1,
which expresses the relation (20) between P1 and P2. Then, using this relation and the
equations (26)–(28), we find the derivatives of the function v(ξ ) in the points ξ = 0 and
1, which gives us the state probabilities for area II, expressed in the state probabilities
for the boundary between the areas II en III (i.e., the states with exactly k customers in
the system).

Finally, we express the state probabilities in area III in the probability on an empty
system state P0 using the matrix Qt

1, the linear equations (24) and condition (25) that the
sum of all state probabilities equals 1. Then, we can calculate all system state probabilities
and the performance measures based on these probabilities (as in Section 4).

In algorithmic form, we can summarize our procedure as follows:

Step 1. Initialization.
Step 2. Calculate the first t > 2 derivatives of the function Z(ξ ) in the point ξ = 0 from

Lemma 1.
Step 3. For t∗= t, . . . , 2 calculate Θt∗

0 , . . . , Θt∗
t∗ by (23)

Step 4. Calculate Q1 from (20) using the relations (21)–(23)
Step 5. Calculate P0 and P1 using the equations (20) and (24).
Step 6. Calculate the first t1 derivatives of the function Z(ξ ) in the point ξ = 1 using

Lemma 1 and the first t1 derivatives of the function v(ξ ) in the point ξ = 1 using the
equations from Section 4.6, where t1 is equal to maximum order of the moments we
are looking for plus 1 (i.e., t1 = 3 for the variance)

Step 7. Calculate the performance estimators as desired.

6. Numerical experiments

In this section, we discuss the results of three sets of numerical experiments. First, we
study the convergence speed and computer time requirements of our iterative procedure.
Next, we examine the impact of the system parameters on the key performance char-
acteristics for the low priority customers as presented in the previous section. Finally,
we compare the number of customers in the system for priority queues to non-priority
queues.
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6.1. Convergence of iterative procedure and computation times

To examine the computational efforts, we first examine the error in the first and second
moment of the number of customers in the system as function of the numbers of iterations
t in our algorithm, see formula (21). We chose the following parameter settings for our
numerical experiments:

– fixed parameters: k = 4; N h = Nl = 2; λh
1 = 1.75, λh

2 = 2.25, λl
1 = 2.75, λl

2 = 3.25;

– ρh is equal to 0.2, 0.4 or 0.6; ρ is equal 0.75, 0.85 or 0.95

– µh
1 and µl

1 are equal to 1.5µh and 1.5 µl correspondently, where µh = �h

kρh µl = �l

kρl

– µh
2 and µl

2 are such that
∑N h

i=1
λh

i

µh
i

= kρh and
∑Nl

i=1
λl

i

µl
i
= kρl ;

As performance measures, we focus on the mean and variance of the number of low
priority customers in the system per class, because the characteristics of high priority
customers are not new (as mentioned in the previous section, they can also be obtained
using our method from Van Harten and Sleptchenko [16]).

First, we compared the results of our numerical procedure to some results obtained
by discrete event simulation. We found that the deviation between the calculated and
simulated performance measures lies within 3% error interval with 95% confidence
already after 10 iterations. Further, we have checked whether the test E[S Rl

i ] = λl
i/µ

l
i

from the previous section is satisfied. The experiments have shown that of the results
obtained after 20 iterations and after 40 iterations give average relative errors of ∼0.2%
and ∼0.04%, respectively.

Next, we examined the convergence speed and computer time requirements of our
iterative procedure. In figure 1 we plot the maximum error for the mean and the variance
of the numbers of low priority customers in the system obtained by our algorithm
as function of the number of iterations. As benchmark, we used the results after 80
iterations, because then the values of the performance measures hardly change anymore
in all experiments.

Figure 1. Relation between the error in the mean and variance of the number of low priority customers in
the system and the number of iterations.
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Under the x-axis, we show the CPU time required for our calculations using a
Pentium IV-2.0 PC. We find that the CPU time is approximately a quadratic func-
tion of the number of iterations. The reason of this behavior is that for t iterations
the algorithm requires O(t2) matrix operations. As a consequence, we need long run
times to obtain extremely accurate results. Figure 1 also shows that the CPU-time
requirements are modest if we accept a small error. For example, after 10 iterations
the maximum error is less than 1%, and we need only 90 seconds for these calcula-
tions.

Figure 1 also shows another interesting characteristic of our algorithm. We see that
we can obtain good results for low priority customers, where the number of iterations
required decreases with the utilization rate. These cases are most interesting for our
application (spare part management). Further, we have an exact method to estimate the
performance characteristics of high priority customers that is independent of ρ as for
computational effort [16]. Together, we are able to obtain sufficiently accurate results for
the performance characteristics required, especially for the most practical cases (high
values for ρ)

6.2. Impact of system parameters on performance characteristics

Next, we study the influence of the most important parameters of the MCMS priority
system on the performance measures. From queueing theory, we know that the to-
tal utilization rate ρ and the number of servers k are interesting parameters for any
queueing system. However, we have learned from the experiments with the MCMS
non-priority queueing system [16] that the arrival rates fractions (ai ) and the per-
turbations of the service times (δi ) might also seriously influence the performance
characteristics.

We did computations for a large set of instances. Since the effects we want to discuss
are already present for small systems, we shall only present the results on experiments
for three servers and three customers types. One of customer types has high priority
and two types have low priority. The utilization rate ρ is fixed to 95%. First of all, we
want to see the influence of the difference between the service rates. This difference is
defined by the difference overall service rates µl

µh and difference between service rates
of the low priority classes µl

1

µl
2
. Also, we would like to see the influence of the utilization

rate for high priority customers. Hence, we vary in fact three parameters: ρh , µl

µh and µl
1

µl
2
.

The other parameters are either fixed (e.g. fractions of arrival rates within group of the
low priority customer are equal to al

1 = 0.3 and al
2 = 0.7), or are completely defined by

the other parameters (e.g. δl
1 and δl

2). In this way, we have 18 experiments. We choose
the values 0.5, 1 and 2 for both µl

µh and µl
1

µl
2

and 20% and 60% for ρh , thereby obtaining
3 × 3 × 2 = 18 model runs.

Some interesting performance characteristics are presented in Table 1: the expected
total number of customers in the system for each low priority subclass E[Rl

i ], the
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Table 1
Impact of high priority utilization and service rate ratios on the performance of low priority customers; each

cell in the table contains the performance measure for both low priority customer classes.

ρh = 20% ρh = 60%

µl
1

µl
2

µl

µh E[Rl
i ] E[ql

i ] E[P Sl
i ] λ

ps
i /λl

i E[Rl
i ] E[ql

i ] E[P Sl
i ] λ

ps
i /λl

i

0.5 0.5 6.21 5.03 0.14 0.73 4.34 3.38 0.47 2.95
13.10 11.73 0.16 0.36 8.98 7.89 0.52 1.43

1 6.74 5.59 0.11 0.37 5.85 4.96 0.40 1.49
14.37 13.04 0.12 0.18 12.58 11.58 0.44 0.72

2 7.78 6.66 0.07 0.18 8.87 8.06 0.33 0.75
16.84 15.55 0.08 0.09 19.72 18.80 0.35 0.36

1 0.5 5.31 4.54 0.09 0.47 3.80 3.18 0.30 1.89
12.38 10.59 0.21 0.47 8.86 7.43 0.69 1.89

1 5.84 5.10 0.07 0.24 5.32 4.76 0.25 0.95
13.63 11.90 0.15 0.24 12.42 11.11 0.58 0.95

2 6.89 6.17 0.05 0.12 8.37 7.85 0.20 0.48
16.08 14.40 0.11 0.12 19.52 18.31 0.47 0.48

2 0.5 5.27 4.83 0.05 0.27 3.65 3.30 0.17 1.08
13.37 11.26 0.25 0.56 9.39 7.70 0.83 2.23

1 5.82 5.39 0.04 0.14 5.20 4.88 0.14 0.54
14.61 12.57 0.19 0.28 12.95 11.38 0.70 1.12

2 6.88 6.46 0.03 0.07 8.27 7.97 0.11 0.27
17.06 15.08 0.13 0.14 20.04 18.60 0.57 0.56

expected number of customers in the queue for each low priority subclass E[ql
i ], the

expected number of the postponed customers for each low priority subclass E[P Sl
i ] and

the expected number of preemption events per each low priority customer entering the

system λ
ps
i

λl
i

.

From Table 1 we draw the following conclusions:

• The number of customers in the postponed state increases with the utilization rate
of the high priority customers ρh (this is not a trivial result since ρ = ρh + ρl is
constant, hence increasing of ρh means decreasing of ρl).

• The total number of postponed customers hardly depends on the ratio µl
1

µl
2
.

• The dependence of the total number of low priority customers in queue on the ratio µl
1

µl
2

is remarkable. Namely, the numbers of customers in queue (hence, the waiting times)
are lower when the service times of low priority customers are equal (µl

1 = µl
2) than

when the service times are different. This can be interpreted as a sort of Pollaczek-
Khintchine effect [15], i.e. the average waiting time is increases when the variability
of the service time increases.
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• The number of low priority customers in the queue (hence, the waiting times) is lower
when the service rate of high priority customers is higher ( µl

µh is smaller).

• The number of low priority customers in the queue decreases with the utilization rate
of high priority customers (ρh) when the service rate of the high priority customers
is bigger than or equal to the average service rate of the low priority customers ( µl

µh ≤
1) and it increases when the service rate of the high priority customers is smaller than
the average service rate of the low priority customers ( µl

µh > 1).

It is also possible to derive from this table the waiting times in the queue and in the
postponed state and the total time spent in the system. This can be done using Little’s
law as was shown in Section 4.4.

6.3. Comparison between priority and non-priority queues

To conclude this section, we give a sketch of the effect of applying a priority queueing
rule. Therefore, we vary ρ in the experiment with N h = 1, Nl = 2, k = 3, µl

1/µ
l
2 = 0.5,

µl

µh = 0.5 and ρh = 0.6ρ, ρl = 0.4ρ. We compare the total numbers of customers in the
system for cases with and without priority rules (figure 2).

The picture shows not only the fact that the introduction of priority rules increases
(decreases) the total number of low (high) priority customers in the system, but also
the scale of this increase (decrease). We see that there is already a significant impact of
priority rule usage on the number of customers in the system if the utilization is only
moderate (0.6–0.8). This confirms that the appropriate use of priority rules may provide
an opportunity for efficiency gain in spare part networks. We will address this issue in
our further research.

Figure 2. Relative increase (decrease) of the total number of low (high) priority customers caused by
introduction of priority rules.
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7. Conclusions and generalizations

In this paper, we derived a method to analyze multi-class M/M/k priority queues with
preemptive priority and two priority groups (high and low). Each group of priority can
contain several classes of customers with different arrival and service rates. The proposed
method is based on the solution of the stationary state equations. It is similar to other
existing methods for priority queues [10], where it was shown that these systems can be
analyzed as QBD systems in the areas with qh > 0 and as M/G/1 type systems in the
areas with qh = 0. However, using the generating functions along the ql axis allowed
us to reduce the cut-off error appearing normally in analysis of such two-dimensional
semi-infinite processes. So, we do not need too many iteration steps to analyze the
system (see figure 1). Moreover, the multi-class queueing system presented here is more
general than other priority queueing models existing in the literature.

The computational effort to find accurate results depends also on the number of
customer types, the number of servers and the utilization rates of high and low priority
customers (since higher utilization rates require more iterations). For example, system
with 4 subclasses, 4 servers and a utilization rate of 95% needs O(20) matrix operations,
where the dimension of each matrix is 238 × 238. Due to the increase of the size of
matrices, the computational effort increases rapidly for large k, N h and Nl . For example,
in case of k = 5, N h = 2 and Nl = 3, we have to deal with a state space (and matrices) of
dimension 1782 × 1782. Approximations are necessary then. As an approximation, we
replace groups of customers with similar characteristic by one customer with average
service properties. Other approximations for large systems, applying the method from
this paper as basis, are discussed in Van der Heijden et al. [17].

This method can in principle be extended to solve problems with more priority
groups. This is possible iteratively due to the preemption property. That is, we can
estimate performance estimators for each priority group ignoring all classes with lower
priorities and aggregating all classes with high priorities into one high priority group.
However, in this case the dimension of the state space becomes extremely large.

Also, our algorithm can in principle be used for multi-class, multi-server priority
queues where customers have hyperexponential (Hx ) service times. We can deal with
these cases by representing each class as x classes with exponential distributed service
time and adopting the performance estimators for the total number of customers in the
system among these x classes.

Appendix A: Proof of Lemma 1

We will prove this lemma by induction
For n = 0, equation (11) can be written as

D1,0Pqh ,0 = �hPqh−1,0 + B Pqh+1,0
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This equation is similar to the multi-class multi-server equilibrium equation having
a solution of the form Pqh ,0 = (Z−1)qh−1C [16], where Z with all eigenvalues >1 should
satisfy the equation

D1,0 = �hZ + B Z−1, (29)

similar to equation (12) with ξ = 0. So we have that the solution in the form (13)
is the solution of the equation (11) for ql = 0.

For ql > 0, we first define P̃qh (ξ ) as the solution of:

D1,0P̃qh (ξ ) = �hP̃qh−1(ξ ) + �lξ P̃qh (ξ ) + BP̃qh+1(ξ ) (30)

with ξ ∈ [0, 1], being just a parameter.
It follows that P̃qh (ξ ) = (Z(ξ )−1)qh−1C̃(ξ ). By differentiation of (30) with respect

to ξ , we find

D1,0
dP̃qh (ξ )

dξ
= �h dP̃qh−1(ξ )

dξ
+ �lξ

dP̃qh (ξ )

dξ
+ B

dP̃qh+1(ξ )

dξ
+ �l P̃qh (ξ )

Hence
dP̃qh (ξ )

dξ
|ξ=0 satisfies equation (11) for ql = 1.

Using the general property ( d
dx )n(x f (x)) = n( d

dx )n−1 f (x) + x( d
dx )n f (x), we find

by differentiation of (30) ql -times with respect to each parameter ξ that:

D1,0

(
d

dξ

)ql

P̃qh (ξ ) = �h

(
d

dξ

)ql

P̃qh−1(ξ ) + �lξ

(
d

dξ

)ql

P̃qh (ξ )

+ B1,0

(
d

dξ

)ql

P̃qh+1(ξ ) + �lql

(
d

dξ

)ql−1

P̃qh (ξ )

Transforming this expression back to the Pqh ,ql yields

Pqh ,ql = 1

ql

(
d

dξ

)ql

(Z−1(ξ ))qh−1C(ξ )

∣
∣
∣
∣
ξ=0

Finally, it is easy to see that:

∑

ql

1

ql!

(
d

dξ

)ql

(Z−1(ξ ))qh−1C(ξ )

∣
∣
∣
∣
∣
ξ=0

= (Z−1(ξ ))qh−1C(ξ )|ξ=1

as a well-known Taylor series expansion of (Z(ξ )−1)qh−1C(ξ ) around ξ = 0, where the
value of Z(ξ ) is found from

D1,0 = �hZ + �lξ + B Z−1.
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with all eigenvalues Z(ξ ) in absolute value larger than 1. This leads to convergence of
the Taylor series, assuming analyticity of C(ξ ) for |ξ | < 1 + ε for some ε > 0. As we
have mentioned above, this equation can be solved as in the case of the non-priority
multi-class queue [16]. So the solution has the form (13).

Appendix B: Derivation of the relations in (23)

From (17), it follows by differentiating t > 2 times with respect to ξ that:
(

t

0

)

H(0)
dt

dξ t
v(0) +

(
t

1

)

H′(0)
dt−1

dξ t−1
v(0) + · · · +

(
t

t

)
dt

dξ t
H(0)v(0) = 0.

We can also write this in the form

t∑

i=0

hi Pt+1−i = 0

where Pi+1 = 1
i!

di

dξ i v(0) and hi = 1
i!

di

dξ i H(0).

Now let us show recursively for t∗ = t , t−1, . . . , 2 that Θt∗
0 Pt+1+

∑t∗
i=1 Θt∗

i Pt∗+1−i

= 0.
For t∗ = t , it is clear from the equation for Pt+1 that we can take Θt

i = hi .
For t∗ < t, we have the equation derived in the previous induction step and also

the original equation for Pt∗+1:

Θt∗+1
0 Pt+1 + Θt∗+1

1 Pt∗+1 + · · · + Θt∗+1
t∗+1P1 = 0

h0Pt∗+1 + · · · + ht∗P1 = 0

Multiplying the first equation by h0(Θt∗+1
1 )−1 and taking the difference, we can

eliminate the term Pt∗+1. We obtain

h0(Θt∗+1
1 )−1Θt∗+1

0 Pt+1 + (h0(Θt∗+1
1 )−1Θt∗+1

2 − h1)Pt∗

+ · · · + (h0(Θt∗+1
1 )−1Θt∗+1

t∗+1 − ht∗)P1 = 0

or in other terms

Θt∗
0 Pt+1 + Θt∗

1 Pt∗ + · · · + Θt∗
t∗P1 = 0

where the matrices Θt∗
i are equal to

Θt∗
0 = h0

(
Θt∗+1

1

)−1Θt∗+1
0

Θt∗
i = (

h0
(
Θt∗+1

1

)−1Θt∗+1
i+1 − hi

)
, i = 1, . . . t∗

Herewith, the relations in (23) are shown.
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