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Abstract
Green	 tea	 possesses	 a	 range	 of	 beneficial	 effects,	 including	 anti-obesity,	 antioxidant,	 and	 anti-inflammatory	 properties,	
owing	 to	 its	 biologically	 active	 components,	 primarily	 catechins	 such	 as	 epicatechin	 (EC),	 epicatechin	 gallate	 (ECG),	
epigallocatechin	(EGC),	and	epigallocatechin	gallate	(EGCG).	However,	few	studies	have	investigated	the	four	catechin	
monomers	 simultaneously,	 and	 the	 molecular	 mechanisms	 of	 their	 anti-obesity	 effects	 have	 not	 been	 fully	 elucidated.	
In	 this	 study,	we	 investigated	 the	 effects	 of	 four	 catechin	monomers	 on	 the	 differentiation	 of	 3T3-L1	 preadipocytes	 of	
mice.	Our	findings	demonstrated	 that	 four	catechin	monomers	EC/ECG/EGC/EGCG	(12,	25,	50	µM)	dose-dependently	
inhibited	 the	differentiation	of	3T3-L1	preadipocytes	and	reduced	 triglyceride	content.	EGCG	exhibited	 the	most	potent	
inhibitory	effect	with	an	optimal	concentration	of	50	µM.	In	addition,	transcriptome	sequencing	and	lipidomic	analysis	of	
EGCG-treated	3T3-L1	preadipocytes	revealed	that	Ptgs2	and	Pim1	were	the	most	differentially	expressed	genes	involved	
in	regulating	adipocyte	differentiation.	The	results	suggested	that	EGCG	up-regulated	the	expression	of	the	Pla2g2e	gene	
and	 down-regulated	 the	 expression	 of	 the	Pla2g4a	 and	Pla2g2a	 genes	 via	 the	 glycerophospholipid	metabolic	 pathway,	
which	 subsequently	 elevated	 lysophosphatidylcholine	 (LPC)	 levels,	 influencing	 the	 differentiation	 process	 of	 3T3-L1	
preadipocytes.
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TNF-α	 	Tumor	necrosis	factor-α

Introduction

Obesity	is	a	metabolic	disorder	that	has	become	one	of	the	
biggest	global	health	crises	[1].	When	the	energy	intake	of	
the	body	is	greater	than	the	energy	consumed,	it	leads	to	the	
transformation	of	excess	energy	in	the	body	into	triglycer-
ides	and	accumulation	in	abdominal	adipose	tissue	or	sub-
cutaneous	 adipocytes,	 resulting	 in	metabolic	 derangement	
and	 triggering	a	series	of	diseases,	 such	as	cardiovascular	
disease,	diabetes	mellitus,	non-alcoholic	fatty	liver	disease,	
and	tumors	[2,	3].	The	estimates	for	global	overweight	and	
obesity	(BMI	≥	25	kg/m²)	from	the	World	Obesity	Federa-
tion	suggest	that	more	than	4	billion	people	could	be	affected	
by	2035,	compared	to	more	than	2.6	billion	in	2020.	This	
reflects	an	increase	from	38%	of	the	world’s	population	in	
2020	to	over	50%	by	2035	[4].	Current	weight	loss	strate-
gies	include	lifestyle	interventions,	medication,	and	surger-
ies,	 but	 these	 treatment	 options	 have	 drawbacks	 such	 as	
difficulties	in	adherence,	gastrointestinal	damage,	and	risks	
of	complications.	Thus,	natural	products	or	new	drugs	with	
potential	therapeutic	effects	for	weight	loss	are	significant.

Catechins	 have	 been	 widely	 recognized	 as	 the	 main	
functional	components	in	tea	including	mainly	epicatechin	
(EC),	 epicatechin	 gallate	 (ECG),	 epigallocatechin	 (EGC),	
and	epigallocatechin	gallate	 (EGCG)	 [5].	Numerous	 stud-
ies	 have	 shown	 that	 catechins	 have	 anti-hyperlipidemia,	
antioxidant,	 anti-inflammatory,	 and	 cardiovascular	 disease	
prevention	properties,	among	others	[6–8].	The	continuous	
ingestion	of	catechins,	especially	in	high	amounts,	has	been	
shown	to	lower	body	fat	and	cholesterol	levels	in	humans,	
suggesting	that	the	intake	of	a	green	tea	extract	rich	in	cat-
echins	may	act	as	a	preventive	measure	against	obesity	[9].	
EGCG	is	considered	to	be	the	most	abundant	and	important	
functional	 component	 of	 catechins,	which	may	 be	 related	
to	its	chemical	structure,	especially	the	number	of	hydroxyl	
groups	[10].	Several	 in	vivo	experiments	have	shown	that	
EGCG	significantly	reduces	body	weight	gain,	serum	total	
cholesterol,	and	low-density	lipoprotein	in	obese	mice	[11,	
12].There	 are	many	 reports	 on	 the	molecular	 and	 cellular	
bases	 for	 antiobesity	 effects	 of	 green	 tea	 catechins	 [13,	
14].	However,	Most	 experiments	 are	 conducted	 based	 on	
mechanisms	that	operate	through	speculation,	and	few	stud-
ies	utilize	the	combined	application	of	transcriptomics	and	
lipidomics	to	reveal	the	complexity	of	biological	systems	at	
a	more	comprehensive	level.

This	 study	 aims	 to	 integrate	 transcriptomics	 and	 lipi-
domics	methodologies	 in	 order	 to	 obtain	 a	more	 compre-
hensive	array	of	biological	information,	thereby	advancing	
scientific	research	in	related	fields.	Four	catechin	monomers	

were	 selected	 (epicatechin,	EC;	 epicatechin	gallate,	ECG;	
epigallocatechin,	 EGC;	 and	 epigallocatechin	 gallate,	
EGCG)	 to	 compare	 their	 inhibitory	 effects	 on	 the	 differ-
entiation	 of	 3T3-L1	 cells.	 Furthermore,	 a	 comprehensive	
analysis	 of	 transcriptomics	 and	 lipidomics	was	 conducted	
between	the	control	group	and	the	EGCG	treatment	group	
to	delve	deeper	 into	 the	 regulatory	mechanisms	by	which	
EGCG	inhibits	adipocyte	differentiation,	potentially	paving	
new	avenues	in	the	field	of	biomedicine.

Materials and Methods

The	 section	 on	 materials	 and	 methods	 is	 summarized	 in	
supplementary	material.

Results and Discussion

Effects of Catechins on Cytotoxic and Differentiation 
of 3T3-L1 Preadipocytes

To	assess	the	cytotoxicity	of	the	Catechins	in	3T3-L1	cells,	
the	cells	were	treated	with	different	concentrations	of	Cat-
echins	 such	as	1,	3,	6,	12,	25,	50,	100,	200,	and	400	µM	
for	 24	 h.	 Thereafter,	 cytotoxicity	 was	 measured	 through	
the	 CCK-8	 cell	 activity	 assay.	 Consequently,	 the	 signifi-
cant	reduction	in	cell	viability	caused	by	EGC	and	EGCG	
treatment	with	400	µM	represents	a	toxic	effect	on	the	cells	
(Fig.	1-A),	indicating	that	a	high	concentration	of	EGC	and	
EGCG	inhibited	the	proliferation	of	3T3-L1	preadipocytes	
and	not	be	a	safe	concentration.	For	EC	(1,	3,	6,	12,	25,	50,	
100,	200,	and	400	µM),	ECG	(1,	3,	6,	12,	25,	50,	100,	200,	
and	400	µM),	EGC	(1,	3,	6,	12,	25,	50,	100	and	200	µM)	
and	EGCG	(1,	3,	6,	12,	25,	50,	100	and	200	µM),	no	altera-
tions	in	cell	viability	were	observed.

Since	the	high	concentrations	of	EGC	and	EGCG	had	a	
strong	inhibitory	effect	on	the	cells,	three	concentrations	of	
12,	25,	and	50	µM	with	cellular	activity	above	90%	were	
chosen	for	subsequent	experiments.	In	the	present	study,	the	
determination	of	intracellular	triglyceride	content	revealed	
that	the	four	catechin	monomers	had	a	concentration-depen-
dent	tendency	to	reduce	the	triglyceride	content	(Fig.	1-B),	
with	 the	 treatment	of	EGCG	at	a	concentration	of	50	µM	
resulting	in	the	lowest	triglyceride	content.

The	results	(Fig.	1-C)	revealed	that	the	three	experimen-
tal	groups	of	EGC,	 the	25	µM	and	50	µM	EGCG	groups	
showed	 different	 degrees	 of	 reduction	 in	 the	 stained	 area	
by	microscopic	 observation	 of	 different	 concentrations	 of	
the	 four	catechins	 stained	with	oil	 red	O	dye	 in	 the	 treat-
ment	of	3T3-L1	preadipocytes,	 in	which	 the	areas	stained	
by	25	µM	and	50	µM	EGC,	and	50	µM	EGCG	were	less.	
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The	quantitative	results	of	oil	red	O	staining	are	shown	in	
Fig.	1-D.	The	above	results	suggested	that	EGC	and	EGCG	
could	 reduce	 the	 degree	 of	 differentiation	 of	 3T3-L1	pre-
adipocytes,	thus	reducing	the	accumulation	of	cellular	lipid	
droplets.

The	imbalance	between	energy	intake	and	consumption	
of	the	organism	leads	to	the	occurrence	of	obesity,	and	its	
core	 physiological	mechanism	 is	 that	 there	 are	 too	many	
adipocytes	in	the	body	or	their	size	is	too	large	so	that	the	
mass	 of	 adipose	 tissue	 in	 the	 body	 increases	 [15–17].	By	
inhibiting	the	proliferation	and	differentiation	of	adipocytes,	
promoting	 fat	 decomposition	 in	 adipocytes,	 and	 reducing	
fat	 deposition,	 the	 purpose	 of	 obesity	 prevention	 can	 be	
achieved.	In	this	study,	induced	differentiated	3T3-L1	pre-
adipocytes	were	cultured	in	vitro,	and	high	concentrations	
of	EGC	and	EGCG	were	found	to	inhibit	the	proliferation	of	
3T3-L1	preadipocytes	by	CCK-8	assay	significantly.	Upon	
oil	red	O	staining,	it	was	found	that	25	µM	and	50	µM	of	
EGC,	and	50	µM	of	EGCG	stained	less	area,	suggesting	that	
EGC	and	EGCG	can	reduce	the	degree	of	differentiation	of	
3T3-L1	 preadipocytes,	 thus	 reducing	 the	 accumulation	 of	

cellular	 lipid	 droplets.	Research	 has	 shown	 that	 the	 cyto-
plasmic	 triglyceride	 content	 increased	 significantly	 when	
3T3-L1	 preadipocytes	 were	 induced	 to	 differentiate	 into	
mature	 adipocytes	by	 acylation-promoting	protein	 [18].	 It	
was	demonstrated	that	successful	differentiation	of	mature	
adipocytes	leads	to	an	increase	in	cytoplasmic	triglyceride	
content.	In	this	study,	four	catechin	monomers	were	found	
to	reduce	intra-cellular	triglyceride	content	in	a	concentra-
tion-dependent	 manner	 and	 inhibit	 3T3-L1	 preadipocyte	
differentiation.

Transcriptome Analysis of EGCG-treated 3T3-L1 
Preadipocytes

To	 further	 investigate	 the	 mechanism	 of	 the	 inhibitory	
effect	of	catechins	on	3T3-L1	preadipocytes,	the	treatment	
group	with	the	most	significant	inhibitory	effect	of	50	µM	
EGCG	 intervening	 in	 adipocyte	 differentiation,	 and	 the	
control	group	was	selected	for	transcriptome	sequencing	in	
this	 study.	Using	 Fold	Change	≥	2	 and	 FDR	<	0.05	 as	 the	
screening	 criteria,	 a	 total	 of	 4299	 differentially	 expressed	

Fig. 1	 Effects	 of	 catechins	 on	 the	 activity	 of	 3T3-L1	 preadipocytes	
(A);	 changes	 of	 triglyceride	 content	 after	 treatment	with	 EC,	 ECG,	
EGC	and	EGCG	(B);	cells	stained	with	oil	red	O	after	treatment	with	0,	
12,	25,	50	µM	EC,	ECG,	EGC,	EGCG	for	24	h	(C);	quantitative	results	
of	oil	red	O	(D).	Findings	are	displayed	as	the	mean	±	SD	from	three	

replicates.	The	same	small-letter	means	no	significant	difference,	dif-
ferent	small-letter	means	significant	difference.	*	p <	0.05,	**	p <	0.01	
compared	to	the	control	group.	Significant	differences	between	differ-
ent	treatments	are	showed	by	different	letters	(p <	0.05)
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differentiation.	The	 results	 showed	 that	 the	significant	up-
regulated	 differential	 genes	 for	 regulating	 adipocyte	 dif-
ferentiation	 were	 Cmklr1,	 Trib3,	 Ccn4,	 Sort1,	 Dlk1,	 and	
Zbtb7c,	 and	 the	 significant	 down-regulated	 differential	
genes	were	Ptgs2,	Pim1,	 Id2,	 and	Klf5.	 Significantly	 up-
regulated	differential	genes	regarding	positive	regulation	of	
adipocyte	differentiation	were	Cmklr1,	Zbtb7c,	and	signifi-
cantly	down-regulated	differential	genes	were	Ptgs2,	Pim1,	
Id2,	Klf5,	Medag,	Gm26885,	Snai2,	and	Zbtb16.	The	genes	
with	 the	 largest	multiplicity	of	differences	 in	 the	 two	GO	
Terms	were	Ptgs2	and	Pim1.

The	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	
annotation	 analysis	 showed	 42	 pathways	 involved	 in	 up-
regulated	 differential	 genes	 and	 43	 pathways	 involved	 in	
down-regulated	differential	genes	after	EGCG	intervention	
(Fig.	 2D).	 Further	 enrichment	 analysis	 was	 performed	 to	
analyze	the	significance	with	Padjust	<	0.05,	and	the	result	
analysis	 showed	 that	 a	 total	 of	 48	 significant	 differential	
KEGG	pathways	were	 screened,	 and	 the	 top	20	 signaling	
pathways	were	displayed	in	Fig.	2E.	The	figure	shows	that	
the	top	20	significant	signaling	pathways	are	mainly	related	
to	inflammatory	response,	immune	function,	and	cancer.

genes	were	identified,	of	which	2628	were	up-regulated	and	
1671	were	down-regulated	(Fig.	2A).	Functional	annotation	
of	the	differentially	expressed	genes	showed	(Fig.	2B)	that	
the	 differentially	 expressed	 genes	were	mainly	 associated	
with	molecular	 function	 regulators,	 transcriptional	 regula-
tory	activity,	catalytic	activity,	and	binding	in	the	Molecu-
lar	 function	 category.	 In	 the	 Biological	 process	 category,	
they	are	mainly	associated	with	immune	system	processes,	
cellular	 component	 organization	 or	 biogenesis,	 localiza-
tion,	multicellular	 bioprocesses,	 developmental	 processes,	
response	to	stimuli,	metabolic	processes,	bioregulation,	and	
cellular	processes.	In	the	Cellular	component	category,	they	
are	primarily	 related	 to	extracellular	 region	parts,	protein-
containing	complexes,	membranes,	membrane	parts,	organ-
elle	parts,	organelles,	 and	cellular	parts.	The	 top	20	Gene	
ontology	(GO)	entries	were	selected,	which	had	the	highest	
number	 of	 genes	 enriched	 to	 regulation	 of	 adipocyte	 dif-
ferentiation	and	more	genes	enriched	to	positive	regulation	
of	 adipocyte	 differentiation	 in	 GO	 entries	 (Fig.	 2C).	 The	
results	of	GO	enrichment	were	screened	against	significant	
differential	genes	to	identify	the	top	10	genes	with	signifi-
cant	differential	expression	regarding	the	regulation	of	adi-
pocyte	differentiation	and	positive	regulation	of	adipocyte	

Fig. 2	 Transcriptomic	analysis	of	3T3-L1	preadipocytes	 treated	with	
EGCG.	The	volcano	plot	of	DEGs	in	the	experimental	group	and	the	
control	 group	 (A);	 GO	 classification	 statistics	 of	 differential	 genes	
between	the	experimental	group	and	the	control	group	(B);	GO	enrich-

ment	analysis	bubble	plot	(top	20)	(C);	the	statistical	chart	of	KEGG	
classification	 of	 differential	 genes	 between	 the	 experimental	 group	
and	the	control	group	(up	and	down)	(D);	KEGG	enrichment	analysis	
bubble	plot	(top	20)	(E).	n = 3
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that	there	was	a	total	of	146	differential	lipids	in	the	experi-
mental	 group	 compared	 with	 the	 control	 group,	 with	 99	
being	up-regulated	and	47	being	down-regulated	(Fig.	3B).	
Significantly	 different	 lipids	 were	 demonstrated	 using	 a	
clustered	heatmap,	with	significant	 lipid	differences	 in	 the	
experimental	 and	 control	 groups	 and	 more	 minor	 differ-
ences	in	lipids	within	the	groups	(Fig.	3C).	KEGG	pathway	
enrichment	analysis	showed	the	highest	enrichment	 in	 the	
glycerophospholipid	metabolism	pathway	(Fig.	3D),	where	
there	were	22	significantly	different	lipids,	16	of	which	were	
lysophosphatidylcholine:	 LPC	 (15:0),	 LPC	 (16:0),	 LPC	
(16:1),	LPC	 (17:0),	LPC	 (18:1),	LPC	 (18:3),	LPC	 (20:0),	
LPC	 (20:3),	 LPC	 (20:4),	 LPC	 (20:5),	 LPC	 (22:0),	 LPC	
(22:4),	LPC	 (22:5),	LPC	 (22:6),	LPC	 (24:0),	LPC	 (18:0);	
2	phosphatidylcholines:	PC	(20:4/20:4),	PC	(22:0/20:4);	1	
phosphatidylserine:	PS	(18:0/20:4);	1	lysophosphatidic	acid:	
LPA	(18:0)	expression	was	up-regulated,	and	the	expression	
of	2	phosphatidylcholines:	PC	(16:0/14:0),	PC	(18:1/18:1)	
were	down-regulated.	It	is	speculated	that	the	glycerophos-
pholipid	metabolic	pathway	 is	 a	closely	 related	metabolic	
pathway	 to	 the	 inhibition	 of	 3T3-L1	 preadipocyte	 differ-
entiation	by	EGCG	in	this	experiment.	Some	studies	have	
shown	a	strong	negative	correlation	between	lysophosphati-
dylcholine	and	BMI,	the	expression	of	lipid	LPC	(20:4(8Z),	
11Z,	14Z,	17Z)	is	significantly	reduced	in	obese	people.	To	
further	 investigate	 the	relationship	between	LPC	and	obe-
sity,	the	experimenter	tested	the	plasma	of	normal	and	obese	
adolescents	 and	 found	 that	LPC	 (18:2),	LPC	 (18:1),	LPC	
(20:1),	LPC	(20:2),	LPC	(20:0)	were	significantly	decreased	
in	the	obese	group	as	compared	to	the	normal	group	[27].	
LPC	 can	 increase	 the	 expression	 of	 PPAR	 and	 GLUT4,	
thereby	regulating	blood	glucose	and	cholesterol	 [28,	29].	
Lipidomic	analysis	in	this	study	showed	that	there	were	16	
LPCs	in	the	glycerophospholipid	metabolic	pathway	in	the	
EGCG	experimental	group:	LPC	(15:0),	LPC	(16:0),	LPC	
(16:1),	LPC	 (17:0),	LPC	 (18:1),	LPC	 (18:3),	LPC	 (20:0),	
LPC	 (20:3),	 LPC	 (20:4),	 LPC	 (20:5),	 LPC	 (22:0),	 LPC	
(22:4),	LPC	(22:5),	LPC	(22:6),	LPC	(24:0),	and	LPC	(18:0)	
expression	were	elevated.	In	addition,	four	significantly	dif-
ferent	lipid	PCs.	LPA	are	fundamental	precursors	in	the	bio-
synthetic	pathway	of	phospholipids,	particularly	during	the	
early	stages	of	eukaryotic	cellular	development.	They	play	
a	crucial	role	in	modulating	numerous	biological	processes	
including	cellular	growth,	development,	proliferation,	dif-
ferentiation,	and	signal	transduction	[30].

Analysis of Integrated Lipidomics and 
Transcriptomics

Combined	 with	 transcriptome	 sequencing	 results,	 it	 was	
found	 that	 Pemt,	 Pld3,	 Mboat2,	 Plpp1,	 Pla2g2e,	 Plpp5,	
Dgki,	Plpp2,	and	Plaat3	gene	expression	was	significantly	

The	most	effective	experimental	group	of	50	µM	EGCG	
was	selected	for	transcriptomic	sequencing	analysis,	which	
revealed	that	the	expression	of	Ptgs2	and	Pim1	genes	were	
significantly	 reduced.	 Pim1	 is	 the	 gene	 encoding	 serine/
threonine	kinase,	which	has	the	role	of	regulating	cell	pro-
liferation,	 apoptosis,	 and	 tumorigenesis.	During	 precursor	
adipocyte	 differentiation,	 the	 transcription	 factors	 PPARγ,	
C/EBPα,	and	SREBP-1c	facilitate	the	development	of	adi-
pocytes,	the	synthesis	of	lipids,	and	the	maturation	of	adi-
pocytes	via	 triglyceride	accumulation	 [19,	20].	One	 study	
indicated	 that	Pim1	 knockout	 in	 senescent	mice	 revealed	
that	Pim1	 reduced	 intramuscular	 fat	 content	 in	 senescent	
mice	by	inhibiting	the	expression	of	C/EBPδ	[21].	AZD1208	
functions	as	a	Pim	kinase	inhibitor,	leading	to	a	significant	
reduction	in	triglyceride	levels	in	3T3-L1	adipocytes	treated	
with	 AZD1208.	 Furthermore,	 this	 treatment	 resulted	 in	
diminished	expression	levels	of	C/EBPα,	PPARγ,	FAS,	and	
ACC	[22].	The	Ptgs2	gene	mainly	encodes	COX-2,	which	is	
involved	in	the	regulation	of	cholesterol	transport	leading	to	
hepatocyte	 lipid	 accumulation	 and	 inflammatory	 response	
[23].	 Studies	 have	 shown	 that	 tea	 polyphenols	 reduce	
hepatic	 fat	 content	 in	a	high-fat	dog	model	by	decreasing	
the	expression	of	COX-2	and	inflammatory	factors	such	as	
TNF-α	and	IL-6	[24].	The	above	studies	are	consistent	with	
the	results	of	the	present	experiment.	KEGG	pathway	analy-
sis	enriched	to	MAPK	signalling	pathway	and	FoxO	signal-
ling	pathway.	MAPK	signalling	pathway	plays	a	key	 role	
in	 the	process	of	 lipidogenic	differentiation	 [25].	 In	 terms	
of	metabolic	regulation,	the	activation	of	the	FoxO	signal-
ling	pathway	can	inhibit	the	expression	of	the	mitochondrial	
respiratory	 chain	 complex	 and	 oxidative	 phosphorylation,	
resulting	 in	 reduced	ATP	 content	 and	 metabolic	 level	 of	
cells,	 while	 simultaneously	 promoting	 the	 level	 of	 fatty	
acid	oxidation	and	glucose	glycolysis,	 thus	mitigating	 the	
development	the	occurrence	of	metabolic	diseases	such	as	
obesity	and	diabetes	[26].

Lipidomic Analysis of EGCG-treated 3T3-L1 
Preadipocytes

Based	 on	 the	 results	 of	 oil	 red	 O	 staining	 and	 triglycer-
ide,	the	50	µM	EGCG	dose	group	with	the	best	effect	was	
selected	 for	 the	 lipidomic	 study.	 Partial	 least	 squares	 dis-
criminant	analysis	(PLS-DA)	and	Orthogonal	Partial	Least	
Squares	Discriminant	Analysis	 (OPLS-DA)	showed	a	sig-
nificant	 separation	 of	 metabolite	 distribution	 between	 the	
experimental	group	and	 the	control	group	(Fig.	3A),	 indi-
cating	that	the	two	groups	were	classified	significantly,	and	
there	were	a	high	number	of	different	metabolites	between	
the	groups.	p <	0.05	and	VIP	value	>	1	were	used	as	the	cri-
teria	to	further	screen	the	EGCG	experimental	and	control	
groups	for	differential	metabolites,	and	the	results	revealed	

1 3



Plant Foods for Human Nutrition

to	 LPC,	 which	 indicates	 that	Pla2g2e	 plays	 a	 regulatory	
role	in	LPC	modulation	[32].	Another	Pla2g2e	is	associated	
with	 lipid	 metabolism,	 and	 Pla2g2e-knockout	 mice	 have	
severely	elevated	blood	lipids	and	a	considerable	accumula-
tion	of	cholesterol	occurs	in	their	macrophages,	resulting	in	
foam	cells	 [33].	This	 aligns	with	our	findings	 that	EGCG	
enhances	 the	 expression	 of	 the	 Pla2g2e	 gene,	 thereby	
reducing	 lipid	 accumulation	 in	 adipocytes.	 Additionally,	
Pla2g2a	 participates	 in	 regulatory	mechanisms	 associated	
with	obesity	and	type	II	diabetes.	An	increase	in	the	expres-
sion	of	Pla2g2a	is	observed	in	rats	fed	with	a	high-fat	diet,	
suggesting	a	positive	correlation	between	lipid	biosynthesis	
and	the	expression	of	the	Pla2g2a	gene.	[34].	Meanwhile,	
Pla2g4a	is	associated	with	non-alcoholic	fatty	liver	disease,	

up-regulated	 in	 glycerophospholipid	metabolism	pathway,	
and	 Pla1a,	 Lpgat1,	 Lpin2,	 Pla2g4a, Etnk1,	Dgke,	Dgkh,	
Pla2g2a,	 Gm37988,	 and	 Abi3	 gene	 expression	 was	 sig-
nificantly	 down-regulated.	 These	 genes	 are	 involved	 in	
the	 expression	 of	 phospholipid-related	 enzymes,	 and	 it	 is	
speculated	that	the	mechanism	of	EGCG	inhibition	of	adi-
pocyte	differentiation	may	be	related	to	its	induction	of	the	
activity	 of	 LPC-related	 enzymes,	 such	 as	 phospholipase	
A2	(PLA2).	PC	can	produce	LPC	in	the	presence	of	PLA2,	
and	 the	Pla2g2e,	Pla2g4a,	 and	Pla2g2a	 genes	 all	 belong	
to	 the	 phospholipase	A2	 family,	 which	 is	 one	 of	 the	 key	
enzymes	 in	 biochemical	 reactions	 and	 cellular	 metabolic	
processes	in	vivo	[31].	Among	them,	Pla2g2e	encodes	LPC	
acyl	hydrolase,	which	 is	 involved	 in	 the	hydrolysis	of	PC	

Fig. 3	 Lipidomics	 analysis	 of	 3T3-L1	 preadipocytes	 treated	 with	
EGCG.	 PLS-DA	 and	OPLS-DA	 analysis	 of	 the	 experimental	 group	
and	the	control	group	(A);	differential	lipid	volcano	plot	(B);	signifi-

cant	difference	 lipid	molecule	heat	map	(C);	bubble	chart	of	KEGG	
enrichment	analysis	(D).	n = 4
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construct	 animal	 models	 to	 determine	 the	 lipid-lowering	
effect	and	dosage	of	EGCG	in	vivo.	In	addition,	catechins	
have	a	generally	low	bioavailability,	and	we	will	design	in	
vitro	simulated	digestion	experiments	to	explore	the	degree	
of	digestion	of	EGCG.	This	study	provides	a	basis	for	the	
application	of	EGCG	to	functional	foods	with	weight	loss	
and	lipid-lowering	properties.
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