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HVEF [1] among others. Also, they have the potential to 
assure microbial safety and inactivation of spoilage enzymes 
while guaranteeing considerable retention of phytochemi-
cals [2]. Moreover, some of these technologies can induce 
postharvest abiotic stress by favouring the production of 
secondary metabolites [3], as HVEF, HPP, PEF, US, and 
ultraviolet irradiation. For example, US and PEF showed to 
have positive effects in significantly increasing nutraceuti-
cal compounds when applied to entire carrots, as they acti-
vate the biosynthesis of PC) [4] and Car [5], ascorbic acid 
(AsA), and glutathione as in pomegranates [6], mushrooms 
[7], carrot juice [8] and strawberries [9]. These compounds 
have antioxidant capacity and play a protective function in 
health conditions, such as cardiovascular diseases (CVD) 
and diabetes, since they are strongly related to the oxidative 
damage of cells [10]. One of the main advantages of using 
HVEF is that there are no reported increments in foods’ 
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NTPT is a suitable option to traditional thermal processes 
that aid in satisfying the growing demand for high-qual-
ity minimal processed F&V products; these technologies 
include high pressure processing (HPP), pulsed electric 
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Abstract
High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy 
minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits 
various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and 
sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress 
that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), 
lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), β-xylosidase, xyloglucan and 
endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, 
antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and 
browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the produc-
tion of CO2 and H2O2. Additionally, it has been reported that HVEF could be used with other treatments, such as modi-
fied atmosphere packaging (MAP) and acidic electrolyzed water (AEW) treatment, to enhance its effects. Future works 
should deepen on elucidating the activation of the antioxidant systems by applying HVEF of critical enzymes related to 
the synthesis pathways of phenolic compounds (PC) and carotenoids (Car). Holistic approaches to the effects of HVEF 
on metabolism based on systems biology also need to be studied by considering the overall biochemical, physical, and 
process engineering related aspects of this technique.
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temperature and, consequently, this process can success-
fully be applied to temperature-sensitive F&V; moreover, 
during HVEF, the consumption of electric power is kept to 
a minimum [11]. This review aimed to provide an updated 
report on the induced changes in health-promoting com-
pounds and strategies to maintain or increase their contents 
by applying HVEF to fresh F&V to support the production 
of minimally processed products.

Antioxidant Compounds in Human Health

The amount of chemical radicals that an antioxidant mol-
ecule or composite material can eliminate or neutralize 
from the environment is known as the antioxidant capac-
ity [12]. In the last decades, phytochemicals like Car and 
PC have gained attention in human nutrition due to their 
function as biological antioxidants, supporting the organ-
isms’ defence against reactive oxygen species (ROS), thus 
protecting against CVD [10] by disrupting cellular signal-
ling pathways, interference of gene expression, and inhibi-
tion of specific enzymes [10]. Cellular ROS participate in 
signalling cascades as secondary messengers, essential for 
physiological processes, including cell development and 
differentiation, essential for physiological processes, includ-
ing cell development and differentiation but in intracellular 
redox homeostasis, when cells present an imbalanced redox 
rate (ROS > antioxidants), they damage lipids, proteins, and 
DNA, a balanced redox (ROS = antioxidants) rate results in 
proper cell differentiation and growth and overall mainte-
nance of homeostasis; additionally, imbalanced redox rate 
(ROS < antioxidants) reduces metabolic functions like cell 
proliferation and immune response [13].

It has been reported that there is a strong relationship 
between the consumption of Car and PC in the prevention 
or treatment of CVD, cancer, asthma, chronic obstructive 
pulmonary condition, arthritis, neurodegenerative diseases, 
age-related macular degeneration, cataracts, glaucoma 
and diabetes [14]. Also, an optimal supply of antioxidants 
increases dermal defences in the skin against UV irradiation 
and supports long-term protection, contributing to the main-
tenance of skin health and appearance [14].

Minimally Processed Foods and Nonthermal 
Processing Technologies

The FAO encourages the consumption of unprocessed 
or minimally processed F&V since, as mentioned above, 
they maintain most of their overall quality [15]. Minimal 
processing includes technologies that have the potential 
to solve food preservation issues by keeping undesirable 

changes to a minimum and, in some cases, increasing their 
nutritional attributes by the reduction of the thermal load 
during production [16]. Extending the shelf life of F&V is 
a difficult task, but it is possible to achieve this by using 
preservation techniques based on chemical, biological, and 
physical factors [17]. The use of chemicals refers to the 
addition of compounds that have antimicrobial and antioxi-
dant activity that can maintain at minimum levels or destroy 
microorganisms and also inhibit enzymes [18]. Biological 
methods are used by living organisms that negatively affect 
undesirable agents by damaging them or making them less 
abundant [19].

The biological effects of NTPT mainly rely on physi-
cal processes such as HPP, which damage microbial cells 
and induce protein structure modification [20]; high-power 
ultrasound that produces cavitation that harms cell integrity 
[21]; cold plasma, which generates reactive oxygen and 
nitrogen species (RONS) and provokes cell leakage, protein 
denaturation, and DNA damage [22]; pulsed electric field 
that induces the formation of pores in membranes (electro-
poration) followed by cell death [23], and ultraviolet irradi-
ation that disrupts the DNA of microorganisms, modifying 
their metabolism and reproduction [24]. The abiotic stress 
associated with minimal processing and NTPT has raised 
interest since these processes increase the content of health-
promoting compounds such as Car and PC in the tissues 
and, at the same time, aid in maintaining the quality, fresh-
ness, and safety of the products [25]. In particular, HVEF 
has been reported to affect enzyme activity, cell morphol-
ogy and the disruption of cell membranes [21, 22], having 
negative effects on adverse microorganisms [9], and spoil-
age enzymes [26], and increases compounds that promote 
health, like Car and PC [27, 28], that positively influences 
the antioxidant capacity [29].

High Voltage Electrostatic Field Processing

HVEF can preserve the fresh-like quality of the processed 
F&V while ensuring food safety. An HVEF equipment con-
sists of a source of high voltage, a generator and a modu-
lator of frequency (for alternate current), a control unit, 
and a treatment chamber fitted with electrodes (anode and 
cathode) of different shapes and designs [30]. The sample is 
always placed on the cathode. In general, plate-to-plate par-
allel electrodes (Fig. 1A) are often used [11] and, in recent 
years, other configurations as needle plate-to-plate [31] 
(Fig. 1B) and barbed plate-to-plate [9] electrodes (Fig. 1C) 
have been used. The specific effects of nutriments, enzymes, 
and microorganisms using any of these configurations is a 
pending agenda in HVEF research. Besides the nonthermal 
nature of this technology [11], HVEF treated goods can 
also reduce their microbial load [9], inhibit enzymes, delay 
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tissue softening, and modulate cell metabolism [32]. Con-
sequently, any temperature-sensitive food as F&V may be 
subjected to this methodology [11]. It has been reported that 
this process can decrease the respiration rate as observed in 
emblic fruit [33], persimmons [32], and strawberries [26], 
and at the same time, increasing their shelf life.

HVEF also inhibits various spoilage enzymes as PPO 
[7], LOX [28], PME, PG, Cel, β-xylosidase, β-galactosidase 
(β-gal), β-glucosidase (β-Glu) and xyloglucan endotrans-
glycosylase/hydrolase [26], bringing a positive effect on the 
appearance, texture, and cell integrity of F&V, favouring 
their hardness, firmness, colour attributes, microstructure, 
and inhibition of browning, electric conductivity, MDA and 
EL [7, 26]. Inhibition effects of Mycosphaerella tassiana, 
Monilinia laxa, yeast and mould, among others, have also 
been reported [9]. This technique also increases the con-
tents of fructose glucose, sucrose, total soluble solids (TSS) 
and reduces the production of CO2, H2O2, and ethylene [8, 
34, 35]. Due to the increment in simple carbohydrates after 
HVEF, consumers could perceive a sweeter taste in pro-
cessed goods. Table 1 summarises the reported maximum 
effects (except the antioxidant features depicted in Table 2) 
of HVEF on F&V.

Increasing Antioxidant Compounds by HVEF on F&V

The abiotic stress response by the application of HVEF 
occurs by the production of stress-signalling molecules as 
RONS [40] that activates the expression of primary and 
secondary metabolism genes, inducing the production of 
enzyme mediated synthesis of secondary metabolites [41]. 
Also, hormones like ethylene and jasmonic acid trigger the 
activation of defence genes in plants subjected to HVEF 
mediated abiotic stress, modulating primary and secondary 
metabolism [42]. In the biosynthesis of PC, critical enzymes 

involved are coumarate 4-hydrolase (C4H), Phenylalanine 
ammonia-lyase (PAL) and 4-coumarate-CoA ligase (4CL), 
and for Car synthesis, main suggested enzymes are gera-
nylgeranyl diphosphatase synthase (GGPPS), phytoene 
desaturase (PDS), carotene desaturase (ZDS), and phytoene 
synthase (PSY) [25]. Zhang et al. [9] applied HVEF to 
strawberries and found a higher activity in PAL and 4CL 
enzymes and PC content.

Figure 2 illustrates the primary mechanism of HVEF on 
F&V. Firstly, a generation of a high voltage electrostatic 
field produces a plasma discharge by ionizing the air sur-
rounding the anode [43, 44], which leads to the production 
of ions, radicals [45], RONS, and ozone [46] as well as UV 
photons [47], which also form part of the induced abiotic 
stress. The generation of RONS can also affect the incre-
ment of antioxidant compounds, as reported in a work on 
fresh-cut green pepper for which the application of ozone 
and MAP treatments could enhance the activity of antioxi-
dant enzymes such as SOD, PAL, and peroxidase (POD) 
[48]. Also, in a work on organic table grapes, authors 
found that treatments with ozone and MAP gave place to 
an increase in antioxidant capacity, anthocyanin accumula-
tion, and total PC during cold storage [49] and, a research 
on sweet cherry fruit subject to UV irradiation, showed that 
fruits maintained native amounts of total PC, anthocyanins, 
and preserved their antioxidant capacity [50].

Effect of HVEF on Antioxidant Enzymes

Abiotic stress also influences plants’ growth, productivity, 
and development. The homeostasis and ion distribution in 
plant cells are often perturbed by this factor, causing osmotic 
stress and increased accumulation of ROS [51]. The first 
plant defence against oxidative stress is via the endogenous 
mechanism pathways involving enzymes such as ascorbate 

Fig. 1  Electrodes used in HVEF. (A) Plate-to-plate, (B) Needle plate-to-plate, and (C) Barbed plate-to-plate
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Product Inhibition of spoilage 
enzymes and microor-
ganisms (%)

Changes in physical prop-
erties (%)

Preservation of 
cell integrity 
(%)

Effect on the content 
(%) of other molecules

Changes in sensory 
profile (%)

Refer-
ences

Fresh cut 
broccoli

PME (14.3) Hardness (+ 264.2), a* 
(–23.5), b* (+ 11.3)

EL (–509.2), TSS (+ 15.2) –  [36]

Mushroom PPO (68.1), Maintain of white-
ness index (+ 14.2), L* 
(+ 13.7), a* (–24.7), b* 
(–29.1), hardness (+ 42.4)

MDA (–23.2) – –  [7]

Fresh carrot juice – – – Sucrose (+ 7.9), fruc-
tose (+ 10.2), glucose 
(+ 8.9)

–  [8]

Fresh-cut cab-
bage and baby 
corn

Fresh-cut cabbage: 
PME (65.3)

Fresh-cut cabbage: a* 
(–34.2), colour change 
(+ 503.1), hardness 
(+ 112.6)
Baby corn: b* (+ 62.1), 
colour change (–80.8),

– Fresh-cut cabbage: 
CO2 (–88.9), TSS 
(+ 99.9)
Baby corn: CO2 
(–79.1), TSS (+ 33.3)

Fresh-cut cabbage: 
smell (–48.3), 
colour (–15.6), 
texture (+ 18.2), 
overall acceptability 
(+ 50)
Baby corn: smell 
(+ 75), colour 
(+ 68.4), texture 
(+ 93.8), over-
all acceptability 
(+ 44.4)

 [37]

Whole pome-
granate fruit

PPO (5.1) Weight loss (+ 49.2) EL (+ 23.4) H2O2 content (–37.5) –  [6]

Pakchoi PPO (65.1), aerobic 
plate count (28)

Hardness (+ 38.9), 
springiness (+ 11.4), gum-
miness (+ 57), chewiness 
(+ 58.4)

Respiration rate 
(–42.5), electri-
cal conductivity 
(–65.2)

TSS (+ 9.6) Sensory score 
(+ 58.4)

 [31]

Strawberry PG (26.9), PME 
(23.8), Cel (43.2), 
β-xylosidase (14.2), 
Xyloglucan endotrans-
glycosylase/hydrolase 
(7.2)

Weight loss (–29.9), firm-
ness (+ 17.3),

MDA (–22.4), 
protopectin 
(+ 25.4), water 
soluble pectin 
(–14), electrical 
conductivity 
(–36.8)

H2O2 (–54.1), O2 
(–37.9)

Decay index (–45.8)  [26]

Cherry tomatoes Aerobic plate count 
(12.6)

Weight loss (–23.1), hard-
ness (+ 14.2), L* (+ 16.8)

– TSS (+ 6.8), pH (–1.7) –  [29]

Huping jujube – Weight loss (–27.2) Respiration rate 
(–40)

TSS (+ 13.6), total 
soluble sugar (+ 17.8), 
reducing sugar 
(+ 18.9), titratable 
acidity (+ 30.3)

Decay index 
(–88.3), redden-
ing index (–39.5), 
L* (+ 29.2), a* 
(–82–4), b* (–29.2),

 [35]

Jujube fruit PG (18.7), β-Gal 
(20.5), Cel (24), β-Glu 
(12.3), LOX (9.3),

Firmness (+ 20%), EL (–23.1), 
MDA (–16.2)

H2O2 (–16.2) –  [38]

Tomato PME (49.2), PG 
(63.7), Cel (56.8), 
PPO (56.3)

L* (+ 16.2), a* (+ 55.1), 
b* (+ 9.4), browning 
degree (–31), weight loss 
(–33.9), hardness change 
(–39.3)

Electrical 
conductivity 
(–69.7%)

TSS (–53.7), organic 
acid content (+ 46), 
CO2 (–65.1), ethylene 
(–33.3)

–  [34]

Table 1  Effects of HVEF on general features of F&V by its combined or single application*

1 3

263



Plant Foods for Human Nutrition (2024) 79:260–269

containing health-promoting agents by controlled stress [19, 
23, 24, 41], carried out by a series of immediate, early, and 
late responses that activate antioxidant systems and accu-
mulation of health-promoting compounds [53].

Table  2 depicts works on HVEF and its effects on the 
antioxidant system of F&V as from 2018. Notably, HVEF 
can enhance the production and liberation of Car, PC, and 

peroxidase (APX), superoxide dismutase (SOD), catalase 
(CAT), guaiacol peroxidase (GOPX), glutathione reductase 
(GR) and, glutathione peroxidase (GPX), among others 
[52]. Also, this pathway includes non-enzymatic defences 
as those mediated by AsA, Car and PC, among other anti-
oxidant compounds [52]. Several publications on this 
subject have been directed to develop fresh-like products 

Fig. 2  Pathway related to the biosynthesis of antioxidant compounds in F&V by abiotic stress due to HVEF

 

Product Inhibition of spoilage 
enzymes and microor-
ganisms (%)

Changes in physical prop-
erties (%)

Preservation of 
cell integrity 
(%)

Effect on the content 
(%) of other molecules

Changes in sensory 
profile (%)

Refer-
ences

Strawberries M. tassiana (42.1) 
and lesion diameter 
(88.3), M. laxa (28.6) 
and lesion diameter 
(82.9), total bacteria 
count (62.7), yeast and 
mould count (55.1)

L* (+ 14.8), – – Decay index (–74.8)  [9]

Plum fruit PPO (25.2) Firmness (+ 23.9), weight 
loss (–25.5)

MDA (–20.1), 
electrical 
conductivity 
(–16.5)

TSS (+ 32), titratable 
acidity (+ 23.1)

–  [39]

* All figures presented are with respect to control sample

Table 1  (continued) 
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above 8 kV cm− 1, it was necessary to use a dielectric bar-
rier to reach the required field strength of 20 kV cm− 1, as in 
fresh carrot juice [8].

Moreover, HVEF, in combination with other processes 
such as MAP and AEW treatment, increased antioxidant 
capacity and the presence of antioxidant compounds in 

chlorophyll (Chl) with the concomitant increment of the 
antioxidant capacity. It can also be noted that HVEF condi-
tions were within 0.005 kV cm− 1 to 20 kV cm− 1, and it was 
pointed out that mild HVEF in the range of 0.005 to 1.0 kV 
cm− 1 was applied during the storage of plum fruit [39], 
mushroom [7], baby corn, and cabbage [37]. For HVEF 

Table 2  Effects on antioxidant characteristics of F&V by the combined and single application of HVEF*
Maximum increase of antioxidant characteristics (%)

Product Technology Treatment conditions Antioxidant com-
pounds content

Antioxidant 
capacity

Antioxidant 
enzymes activity

Refer-
ences

Fresh cut 
broccoli

HVEF 0.5–4 kV cm− 1

5–40 min
– – SOD (30.1)  [36]

Mushroom HVEF During storage: 0.097 kV cm− 1

50 Hz
For 12 days

PC (27.9) – SOD (23.9) and 
CAT (48.6)

 [7]

Fresh carrot juice HVEF cold 
plasma

20 kV cm− 1

4 min
Car (25.5), lycopene 
(107.8), lutein (14.2), 
and chlorogenic acid 
(25)

– –  [8]

Fresh-cut cab-
bage and baby 
corn

HVEF 
assisted MAP

During storage: 1 kV cm− 1 for 60 days 
for cabbage and 0.94 kV cm− 1 for 48 
days for baby corn

For fresh-cut cab-
bage: total PC (50.5)
For baby corn: total 
PC (7.8)

– For fresh-cut cab-
bage: SOD (69.5)
For baby corn: 
SOD (12)

 [37]

Whole pome-
granate fruit

HVEF 1.5 and 3 kV cm− 1

Treatment was replicated from the second 
week and continued every week under the 
same conditions for 2 h

PC (22.3) and AsA 
(15.4)

– SOD (25.3), APX 
(12.2) and CAT 
(36.8)

 [6]

Pakchoi HVEF 
assisted MAP

1, 2, 4, and 8 kV cm− 1

Once every 5 days for 2 h
AsA (255.2) and Chl 
(152.78)

– SOD (30)  [31]

Strawberry Low voltage 
electrostatic 
field

0.45 kV cm− 1 during storage AsA (3.1) and gluta-
thione (23.3)

– SOD (47.3), CAT 
(20.5), and APX 
(29.5)

 [26]

Cherry tomatoes HVEF 1.5 kV cm− 1

50 Hz
30,60, 90 and 120 min

PC (120) and AsA 
(15.9)

DPPH 
radicals-
scavenging 
(23.2)

–  [29]

Huping Jujube AEW and 
HVEF

2 kV cm− 1 for 3 h Flavonoids (6.2) and 
Chl (27.4)

ABTS 
radicals-
scavenging 
(14.5)

GR (80.9)  [35]

Jujube fruit AEW and 
HVEF

2 kV cm− 1 for 3 h AsA (12.2) and total 
PC (17.8), glutathi-
one (12.1), and total 
flavonoids (36.5)

– SOD (46.6) and 
CAT (83.6), APX 
(40.8), and POD 
(64.9)

 [38]

Tomato Direct and 
alternating 
current elec-
tric field

2.5 kV cm− 1, 50 Hz for 30, 60, 90, and 
120 min

AsA (284.9) – SOD (114.2), and 
CAT (52.8)

 [34]

Strawberries Intermit-
tent HVEF 
and static 
magnetic 
field assisted 
to MAP

1.5, 3 and 4.5 kV cm− 1

2, 5 and 8 mT (respectively) for 120 min
PC (67) – PAL (109) and 

4CL (152.4)
 [9]

Plum fruit HVEF During storage: from 0.005 to 0.008 kV 
cm− 1 and from
0.012 to 0.015 kV cm− 1

For 49 days

PC (20.1) – POD (37.25)  [39]

* All figures are with respect to control sample
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Since phytochemicals play an essential role in human 
health, it is convenient to maintain or increase their content 
during the product’s shelf life. In this respect, HVEF repre-
sents a promising technology since it allows the preserva-
tion of sensorial characteristics and maintains or increases 
the content of phytochemicals.

For future works, it is suggested to study the kinetics of 
HVE effects on biochemical and physical changes of diverse 
F&V and to deepen studies on the induced impact of this 
technique when used in combination with other preservation 
methodologies. In particular, the possible activation of the 
antioxidant systems by key enzymes as PAL, C4H, and 4CL 
as well as GGPPS, PSY, PDS, and ZDS involved in the syn-
thesis pathways of PC and Car respectively. Also, it would 
be important to deepen the holistic approaches to applica-
tions of this procedure as those based on systems biology 
[73] by considering the overall cellular and molecular bio-
chemical, physical, and process engineering related aspects 
of this technique. It is recommended to study extracts from 
the different matrices mentioned in this work to assess if the 
increment of antioxidant compounds enhances the above 
mentioned in vitro and in vivo effects.

Conclusions

Several human health related effects of HVEF within 
0.005 kV cm− 1 to 20 kV cm− 1 on F&V have been reported 
in this review, and most of them, as a consequence of the 
induced abiotic stress that stimulates the primary and sec-
ondary metabolism and, consequently increases the avail-
ability of simple carbohidrates as glucose, fructose and 
sucrose and antioxidant compounds as PC, Car, and vari-
ous antioxidant enzymes, and diminishes production of CO2 
and H2O2. This treatment also causes inhibition of spoilage 
enzymes as, for example, PPO, PME, PG and Cel, bring-
ing positive effect on hardness, firmness, colour attributes, 
microstructure and decreasing electric conductivity, EL 
and MDA. All of thse changes also brings modification 
of sensorial characteristics of the treated foodstuffs. It has 
been reported that HVEF may be used in combination with 
other treatments as MAP and AEW, to enhance its positive 
effects towards health. The impact of this methodology var-
ies depending on the applied conditions and food matrix. 
Thus, it is necessary to direct future research to a broader 
range of F&V for which no published information exists. 
Also, the molecular mechanisms related to the antioxidant 
response and production of varied metabolites that promote 
human health against some conditions like CVD should be 
further studied including more in vivo and in vitro studies. 
For future works, it is also suggested to study the kinetics 
of HVEV effects on biochemical pathways and to deepen 

fresh-cut cabbage and baby corn [37], pakchoi [31], jujube 
fruit [38], and strawberries [9]. Most MAP use O2, N2, and 
CO2, which have antimicrobial effects [54]. When HVEF 
is applied in a rich O2 and N2 medium, RONS can be pro-
duced [55] and, as earlier mentioned and shown in Fig. 2, 
these molecules can induce abiotic stress in F&V. Addition-
ally, it has been reported that the exposure to CO2 can affect 
the secondary metabolism pathways [56] as well as those 
related to fermentation [57] and respiration [56]. Further-
more, the MAP with CO2 can maintain some antioxidant 
compounds, including antioxidant enzymes, such as fresh-
cut lotus root [58] and sweet cherry [59]. The mixture of 
O2, N2, and CO2 also gave place to these effects, as reported 
for pakchoi [60], apricot fruit [61], and fresh-cut amaranth 
leaves [62].

HVEF combined with a pretreatment using AEW gave 
place to a synergistic effect related to the decrement of anti-
oxidant enzymes like APX, CAT, SOD and POD as well 
as with the increment of cell-wall degrading enzymes as 
PG, β-gal, Cel and βGlu [38]. During electrolysis for the 
production of AEW, the redox potential of the medium 
is increased by the presence of Cl− and Na+ and, conse-
quently, pH is reduced to values < 2.8 [63, 64] and an abiotic 
stress is induced [65] with the concomitant enhancement or 
reduction of the loss of antioxidant compounds, including 
enzymes, as observed in longan fruit [64] and jujube fruit 
[66].

PC directly impact the accepted quality attributes of 
F&V, such as bitterness, color, and flavor [67]. Also, Car are 
associated with the colours orange and red, and Chl is corre-
lated with the green colour in F&V [68]; with the increment 
of these compounds after HVEF, quality attributes can be 
perceived as more intense than those of untreated samples. 
An example of the application of HVEF on the progression 
of spotting in bananas (Musa paradisiaca var. sapientum) 
was reported by Valdez-Miranda et al. [69]. Fruits presented 
spotting on day 4, while untreated samples showed it on day 
2; also, the HVEF group showed less surface spotting than 
the untreated ones on days 4 and 6. In these fruits, the yel-
low colour of the peel is related to Car accumulation [70]. 
Vu et al. [71] showed that when fruits turned from green 
to yellow, the Chl content decreased while Car, total PC, 
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holistic approaches based on systems biology by consider-
ing the overall biochemical, physical and process engineer-
ing related aspects of this technique.
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