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Abstract Anthocyanins are water soluble pigments which
have been proved to exhibit health benefits. Several studies
have investigated their effects on several types of cancer, but
little attention has been given to melanoma. The phytochem-
ical content of nine different berry samples was assessed by
liquid chromatography followed by electrospray ionization
mass spectrometry (LC-ESI+-MS). Twenty-six anthocyanins
were identified, after a previous C18 Sep-pak clean-up proce-
dure. Chokeberry and red grape anthocyanins rich extracts (C-
ARE and RG-ARE) were selected to be tested on normal and
melanoma cell lines, due to their different chemical pattern. C-
ARE composition consists of cyanidin aglycone glycosylated
with different sugars; while RG-ARE contains glucosylated
derivatives of five different aglycones. Both C-ARE and RG-
ARE anthocyanins reduced proliferation, increased oxidative
stress biomarkers and diminished mitochondrial membrane
potential in melanoma cells, having no negative influence on
normal cells. A synergistic response may be attributed to the

five different aglycones present in RG-ARE, which proved to
exert greater effects on melanoma cells than the mixture of
cyanidin derivatives with different sugars (C-ARE). In con-
clusion, C-ARE and RG-ARE anthocyanins may inhibit mel-
anoma cell proliferation and increase the level of oxidative
stress, with opposite effect on normal cells. Therefore, antho-
cyanins might be recommended as active ingredients for cos-
metic and nutraceutical industry.

Keywords Anthocyanins . Proliferation .MDA . LDH .

Mitotracker . Melanoma

Introduction

Anthocyanins are natural plant pigments, water-soluble, in-
tensely colored in blue, purple or red, and found in fruit, veg-
etables or cereals [1]. So far more than 635 anthocyanins have
been identified, featuring six common aglycones and various
types of glycosylation and acylation. The aglycones are the
free forms of anthocyanins (de-glycosylated or de-acyl-glyco-
sylated), called anthocyanidins (cyanidin, delphinin,
pelargonidin, malvidin, petunidin, and peonidin). Different
sugar components can be attached to an aglycone nucleus
such as glucose, galactose, rhamnose, xylose or arabinose,
which are usually conjugated to the anthocyanidin skeleton
via the C3 hydroxyl group in ring C. In addition, they may
be acylated with different organic acids [2]. Anthocyanins and
anthocyanidins are known to exhibit various biological ef-
fects, such as antioxidant activity [3–5], antidiabetic [6, 7] or
anticarcinogenic potential [8, 9].
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Melanoma is a skin cancer that originates in melanocytes,
with exposure to ultraviolet light as an environmental risk
factor. The potential of anthocyanin to protect the skin from
the adverse biological effects of solar radiation has already
been proved. A topical administration of cy-3-O-gluc
(500 μM) on mouse skin exposed to ultraviolet light reduced
oxidative damage and inflammation [10]. Afaq et al. reported
that delphinidin is able to inhibit apoptosis and markers of
DNA damage if it is applied topically (1 mg/0.1 mL
DMSO/mouse) to SKH-1 hairless mouse skin exposed to
UVB radiation [11]. Anthocyanins from blueberries,
blackcurrants, strawberries and mulberries conferred remark-
able reduction of melanoma cell proliferation, in parallel with
a decrease of other markers involved [8, 12–15].

Here we present data about the structure and content of
anthocyanins from nine different berry sources (blackberries,
blackcurrants, blackthorns, blueberries, chokeberries, cran-
berries, mulberries, red grapes and dwarf elderberries). From
these, chokeberries (C-ARE) and red grapes (RG-ARE)
enriched anthocyanin fractions were selected for assessment
of their effect on normal and melanoma cells due to the dif-
ferences in the anthocyanin composition. C-ARE contains
cyanidin derivatives with various sugars, while RG-ARE con-
tains glucosylated anthocyanins of different aglycones.

Materials and Methods

A detailed description of chemicals and used sample can be
found as supplementary material.

Anthocyanin Rich Extract (ARE) Preparation In order to
extract polyphenols from selected berries, we performed
the extraction according to the protocol published previ-
ously [8]. The semipurification of the obtained extracts
was done by solid-phase extraction (SPE), using C18

Sep-Pak cartridges (Waters Corp., Milford, MA, USA),
based on a recent protocol [16].

HPLC-PDA-ESI/MS Analysis of Anthocyanins HPLC
analysis was performed on a Shimadzu HPLC-PDA system
following a previously published protocol [8]. A more de-
tailed description of the HPLC-PDA-ESI/MS method can be
found as supplementary material.

Cell Culture A375 human melanoma, B16-F10 murine mel-
anoma and Hs27 human fibroblast cells purchased from
American Type Culture Collection (ATCC) were maintained
in DMEM media, supplemented with FBS (10%), 1 mM glu-
tamine, 1% antibiotics, in standard conditions.

Cell Proliferation Assay Cell proliferation was measured by
MTT assay. The results were expressed as percent survival

relative to the untreated control. Each treatment was repeated
three times and each repetition had five experimental wells for
each concentration. A more detailed description of the HPLC-
PDA-ESI/MS method can be found as supplementary
material.

Measurement of LDHRelease LevelLDH release assay was
performed according to kit instructions (Pierce LDH
Cytotoxicity Assay Kit, Rockford, lL 61,105 USA) and the
results were expressed as percentage variation of LDH release
normalized to control. A more detailed description of the used
method can be found as supplementary material.

Measurement of Mitocondrial Membrane Potential To as-
sess the mitochondrial activity in live cells by MitoTracker
(MitoTracker™ Red CMXRos) was used. The images were
acquired on a Zeiss LSM 710 confocal laser scanning unit
(Oberkochen, Germany) equipped with argon and HeNe laser
mounted on an Axio Observer Z1 Inverted Microscope.
Fluorescence was quantified by using ImageJ Analysis 1.46r
software according to a method published by McCloy et al.
[17]. A more detailed description of the used method can be
found as supplementary material.

Assessment of Malondialdehyde Level In order to evaluate
the levels of lipid peroxidation as malondialdehyde (MDA)
was quantified by HPLC using a previously published proto-
col [18]. Data were expressed as μMMDA and were normal-
ized to the protein concentration of cell lysates. A more de-
tailed description of the used method can be found as supple-
mentary material.

Statistical Analysis Data were expressed as mean ± standard
error of mean (SEM) for each sample, analyzed three times.
Analysis of variance (ANOVA) and Dunnett’s multiple com-
parisons test were used to determine significant differences
between values (p < 0.05).

Results and Discussion

Anthocyanin Content of Berries Anthocyanin identification
and peak assignments were done based on their retention
times, comparison of UV-VIS spectra with those of standard
compounds and with literature data (Table 1, suplementary
data). A total of 26 different individual anthocyanins have
been identified and quantified from all berries: derivatives of
cyanidin (8), malvidin (5), delphinidin (4), petunidin (4),
peonidin (3) and pelargonidin (2). Five anthocyanins were
detected in blackberries (Fig. 1). The major compound peak
1 ([M]+, m/z 449; fragment ion, m/z 287) was assigned as Cy-
3-O-glu. Wu et al. (2005) reported the presence of nine antho-
cyanins in blackberries: Cy-3-O-glu; Cy-3-O-ara; Cy-3-O-rut;
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Pel-3-O-glu; Cy-3-O-xyl; Cy-3-(6′′-malonoyl)-glu and Cy-3-
O-dioxaloylglucoside [19]. According to obtained MS data,
blackthorns contain four anthocyanins: Cy-3-O-glu ([M]+,
m/z 449; fragment ion, m/z 287), Cy-3-O-rut ([M]+, m/z
595; fragment ion, m/z 287), Peo-3-O-glu ([M]+, m/z 463;
fragment ion, m/z 301), Peo-3-O-rut ([M]+, m/z 609; fragment
ion, m/z 301). Our results regarding the blackthorn extracts are
in agreement with the literature data reporting the presence of
the same anthocyanins with similarly distributed concentration
levels [20]. Blueberries represent a complex matrix having the
highest number of anthocyanins (12). The profile and content
of anthocyanins in blueberries is similar to that reported in our
previous study [8]. Five anthocyanins were identified in red
grapes (RG-ARE), the major compounds being Pet-3-O-glu
(peak 4 [M]+, m/z 479; fragment ion, m/z 317) and respec-
tively Pel-3-O-glu (peak 5 [M]+, m/z 433; fragment ion, m/z
271). Kallithraka et al.) analyzed 46 red grape samples from 6
common varieties fromGreece, and reported that Mal-3-O-glu

was the most prevalent anthocyanin [21]. In blackcurrant
berries, cyanidin and delphinidin having rutin or glucose as a
sugarmoietywere identified; data which are in agreementwith
the literature [22]. Based on molecular weight cations (M+)
and fragmentation pattern, monoglycosylated cyanidins with
hexose (glucose and galactose) or pentose (arabinose, xylose)
at the 3-position were identified in chokeberries (C-ARE). A
similar profile was previously reported [7]. Seven anthocya-
nins were identified in cranberries by comparing their MS data
with those of anthocyanins discussed above. The major antho-
cyanins are represented by: Cy-3-O-gal, Cy-3-O-ara, Pet-3-O-
ara, Peo-3-O-gal and the total anthocyanins content was close
to that of blackberries. Prior et al. reported that cranberries
contain Cy-3-O-ara, Cy-3-O-gal, Peo-3-O-ara Peo-3-O-gal as
major compounds and Cy-3-O-glu and Pet-3-O-gal as minor
constituents [23]. Additionally, in the present study, we have
identified three malvidin derivatives. Cy-3-O-gal, Cy-3-O-
samb and Pel-3-O-sam were the three anthocyanins identified

Fig. 1 Separation of individual anthocyanins from nine different berries. HPLC chromatograms recorded at 520 nm (Peak assignment is shown in
Table 1)
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in dwarf elderberries. Cy-3-O-gal (Peak 1 [M]+, m/z 449;
fragment ion, m/z 287) is the major compound with 309 mg/
100 g FW from total anthocyanin of 320.2 Mikulic-Petkovsek
et al. identified a total of 16 anthocyanins in four different
elderberry species and eight interspecific hybrids [24]. The
major compounds in mulberries are Cy-3-O-glu ([M]+, m/z
449; fragment ion, m/z 287) and Cy-3-O-rut ([M]+, m/z 595;
fragment ion, m/z 287). Other studies reported the presence of
cyanidin and pelargonidin derivatives (Cy-3-O-glu, Cy-3-rut
and Pel-3-glu) as major anthocyanins in mulberries [20, 25].
The chemical composition of two samples, C-ARE and RG-
ARE, were considered to have considerable relevance, and
were selected to be further evaluated in vitro for their potential
on normal and melanoma cells. As seen in Table 1, C-ARE
composition consists of cyanidin derivatives with different
sugars, while RG-ARE contains glucosylated derivatives of
five different aglycones.

Cell Proliferation was assessed by measuring the mito-
chondrial succinate dehydrogenase activity in normal (Hs27)
and melanoma (A375, B16-F10) cells treated with AREs.
Both C-ARE and RG-ARE stimulated proliferation of Hs27
cell line for the entire concentration range. In the case of the
most resistant melanoma cell line A375, AREs reduced cell
proliferation with 25% for C-AREs, respectively with 50% for
RG-ARE for the highest concentration tested (400 μg/mL)
(Fig. 2a). Both AREs decreased the proliferation of melanoma
murine cell line B16-F10 in a dose dependent manner (Fig.
2a). C-ARE, containing only cyanidin derivatives, showed a
lower growth inhibition than that of RG-ARE, which contains
3-O-glucosides with different aglycones. The IC50 of C-ARE
was 352 μg/mL, while the IC50 of RG-ARE was 183 μg/mL.
These data suggest that the antiproliferative effects of RG-
ARE are twice that of C-ARE, when administrated to A375
or B16-F10 melanoma cells.
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Detection of LDHActivity Lactate release into the cell culture
medium was determined as an indicator of a damaged cell
membrane. In normal Hs27 cells, the treatment with AREs
induced an insignificant release of LDH, suggesting no damage
of the cell membrane. Conversely, in melanoma cells treated
with AREs, substantial LDH release was recorded. For exam-
ple, the LDH release from A375 cells treated with the highest
concentration of the extract (300 μg/mL) was approximately
71% for RG-ARE and 37% for C-ARE (Fig. 2b). In the same
way, the LDH release increased dose-dependently after RG-
ARE treatment of B16-F10 cells, exceeding the level of LDH
released after C-ARE treatment (Fig. 2b). Therefore 3-O-glu-
coside anthocyanins (containing different aglycones) found in
RG-ARE is more efficient in both melanoma cell lines.

Determination of Mitochondrial Membrane Potential In
order to assess the function of mitochondria after AREs treat-
ment, MitoTracker CMXRos, a cell-permeant dye that pas-
sively diffuses across the plasma membrane and accumulates
in active mitochondria was used to monitor the changes of the
mitochondrial membrane potential (ΔΨm). A decrease of

ΔΨm indicates an inhibition of the mitochondrial respiration
which occurs as a consequence of cellular stress and can be
used as a marker for the antiproliferative efficiency of antho-
cyanin treatment on melanoma cells. AREs did not reduce
ΔΨm in normal Hs27cells but decreased it significantly in
A375 melanoma cell, especially in the case of RG-ARE
(Fig. 3). This collapse of membrane potential could be asso-
ciated with a similar decrease in cell respiration, ultimately
followed by cytochrome c release, inducing a swelling and
rupture of the mitochondrial outer membrane and initiating
apoptosis [26]. Although melanoma B16-F10 cells were ex-
pected to have a decrease of ΔΨm, no depolarization after
AREs treatment occurred. We find that there are in literature
other studies which reported an increase inΔΨm after a death
stimulus, but a decrease of ΔΨm occurred later in the death
process [27, 28]. A human amelanotic melanoma cell line
A375, carrying the BRAFmutation seems to be more resistant
than B16F10 murine melanoma cell line.

Assessment of Malondialdehyde Level It is already known
that reactive oxygen species (ROS) are generated primarily in
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the mitochondria of the cell exposed to a stress stimulus. ROS
generated in A375 and B16-F10 melanoma cells after AREs
treatment (300 μg/mL), produced toxic free radicals resulting
in lipid peroxidation in the form of malondialdehyde (MDA).
Therefore, MDA can be used as an indicator of lipid peroxida-
tion and of cellular oxidative stress. RG-ARE was the only
extract to cause an increase of MDA level in the A375 cell line,
from 68.9 μM in the control to 92.57 μM in treated cells. In the
case of the B16-F10 cell line, the RG-ARE treatment had no
significant effect but the treatment with C-ARE increased
MDA level from 88.23 μM in control to 108.5 μM in treated
cells. However in normal cells (Hs27), AREs treatment re-
duced lipid peroxidation acting as antioxidants (Fig. 2c).

Conclusions

In summary, all the berries tested in this study are rich sources
of anthocyanins and their effects on melanoma cells are de-
pendent on their structure and quantity. Therefore, it is obvi-
ous that on normal Hs27 cells anthocyanins from C-ARE and
RG-ARE do not have any negative effect. Conversely, when
delivered to melanoma cells, anthocyanins are able to reduce
cell proliferation, diminished mitochondrial membrane poten-
tial and to induce oxidative damage. RG-ARE proved to be
more effective at inducing these effects than C-ARE, and this
may be attributable to either to the presence of different agly-
cones (delphinidin, cyanidin, malvidin, petunidin,
pelargonidin) acting in a synergisic way or to the differences
in the structure of sugar moieties. It is known that cancer cells
require high levels of sugars, which are utilised for either fast
energy production through the glycolytic pathway, or via the
pentose 5-phosphate pathway [29]. Melanoma cells most like-
ly obtain energy only from glucose, as it is an easier and faster
way than using the aforementioned four carbohydrates as
sources.

Our findings that AREs are effective on melanoma cells at
concentrations similar to those achieved by food intake (μM
concentrations) but with no toxicity on normal skin cells are
very encouraging and these compounds may be utilized as
anti-cancer therapies in the future. A very recent study that
used a multistable-isotope labeled Cy-3-O-gluc demonstrated
a significantly a higher relative bioavailability of anthocyanin
(about 12%) than previously reported [30]. Anthocyanins ab-
sorption could be more efficient locally, for example at gas-
trointestinal or skin level. Literature data contain few studies
about the efficacy of some anthocyanins applied topically [11,
31]. As far as we known there is no other study about the
antiproliferative effect of anthocyanins from chokeberries
and red grapes on melanoma cells. Our data provide not only
a new perspective in the development of novel strategies for
melanoma treatment, but also wishes to encourage the

population to consume anthocyanin rich food as a part of an
appropriate diet for cancer prevention.
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