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Abstract
With few exceptions, today’s retailers sell products across multiple categories. One
strategic consideration of such retailers is product location, which determines how
easy or difficult different categories are for customers to access. For example, grocery
or department stores determine which products will be located closer to the entrance
of the store versus at the back of it, while online retailers decide which products to
feature on the homepage, and which will require scrolling or keyword search to get to.
In this paper, we study how a retailer should optimally locate products within a store,
when the locations chosen affect consumer search costs. We show that the retailer has
an incentive to prioritize products with lower utility, contrasting with prior work. The
intuition for our result is that the consumer may be willing to search less preferred
products only at the lower cost, while the more preferred products will be searched
even at higher search costs. This strategy benefits the retailer by increasing the num-
ber of products the consumer searches and thus, the ones she may buy. Our finding
is robust to several extensions: (i) a retailer determining not only product locations,
but also prices, (ii) independent (e.g. categories), as well as substitute products, and
(iii) a focal retailer that faces competition. From a managerial perspective, we show
that allocating products in the store without taking into account how this affects con-
sumer search costs, might mean consumers overlook products they would otherwise
purchase.
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1 Introduction

With few exceptions, today’s retailers sell products across multiple categories. Exam-
ples include grocery stores selling products in categories such as dairy, frozen foods,
produce and flowers, or online retailers like Amazon.com selling products across
more than 30 categories. One strategic consideration of such retailers is product loca-
tion, which determines how easy or difficult different categories are for customers
to access. For example, grocery stores must allocate different product categories to
different aisles within a store, such as closer to the entrance of the store or near the
back of it. Even within a single aisle, some products can be placed at eye level, while
others are placed on low shelves near the floor, making the latter more costly for con-
sumers to search. Yet other categories are placed near the checkout, where the cost of
searching them is very low. Similarly, an online retailer can choose some categories
to feature on the homepage, making them relatively easier (less costly) to access than
categories that require scrolling through several menus, or using keyword search to
get to.

In this paper, we study how a retailer should optimally allocate products within
a store, when the locations chosen affect consumer search costs. To this end, we
develop a model in which a retailer sells independent products (e.g. categories), that
are neither complements nor substitutes. Examples include product categories such
as flowers or milk in a grocery store, and perfume or dress shirts in a department
store. The retailer has access to a set of locations within a store, which have differ-
ent, exogenously defined, search costs. The retailer chooses how to display products
within a store to maximize its expected payoff, thereby determining a product’s
search cost. Taking product location and thus search costs as given, a consumer enters
the store with a belief about the potential (expected) utility she can obtain from each
product. For example, she knows whether she values milk or flowers more on a cer-
tain grocery shopping trip, regardless of the product’s location. By paying a cost, the
consumer searches a product, observes its realized utility, and decides whether or not
to purchase it. The goal of the consumer is to maximize her total utility net of search
costs by optimally determining which subset of products to search and whether or
not to purchase a searched product.

In this setting, we derive the optimal solution for the retailer’s product loca-
tion problem. First, we show analytically for the case of two products, that the
retailer has an incentive to prioritize the product with lower expected utility. That
is, to maximize its expected payoff, the retailer will place the lower expected util-
ity product in the lower search cost location, subject to the constraint that both
products’ expected utility is high enough that the consumer will search them in
these locations. The intuition for our result is that the consumer may be willing
to search less preferred products only at the lower cost, while the more preferred
products will be searched even at higher search costs. Thus, the proposed strat-
egy may increase the number of products the consumer searches and then buys,
thereby increasing the expected payoff of the retailer. The stylized fact that most
grocery retailers place milk (a high utility category) in the back of the store, while
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placing less necessary items by the entrance and check out provides validity to this
result.1

Second, we generalize our solution by constructing the optimal allocation algo-
rithm for any number of products. Again, we see that the algorithm prioritizes lower
expected utility products, placing them in locations with lower search costs.

Our findings contribute to and contrast with those in the literature on ranking
algorithms for information retrieval. This literature focuses on the problem faced by
a search engine, which tries to locate the most relevant search result (e.g. a website
URL) at the top of a ranked list. One reason for the contrast is that, while search
engines compete solely on the quality of their ranked lists, retailers may compete on
several other dimensions, such as physical location or product assortment, allowing
them to be strategic about product location. Thus, a retailer can choose the location
of products within the store strategically in order to maximize profits.

In addition to the main analysis, we extend our baseline model in several directions
to show the robustness of our result. First, we show that our result continues to hold
when the retailer chooses optimally not only how to allocate products, but also each
product’s price. In this model, the consumer searches both for a product’s utility and
for its price. The retailer faces a tradeoff: on the one hand, placing the high expected
utility product in a low cost location means being able to charge a higher price for it
(both because of its higher expected utility and because of its lower search cost), but
risking that the consumer will not search the low expected utility product; on the other
hand, placing the low expected utility product in a low cost location might involve
charging a lower price for it, but ensuring that the high expected utility product will
be searched. Once again, we show that the retailer has an incentive to prioritize the
lower expected utility product in the low cost location.

Second, we consider the case where products are substitutes, rather than indepen-
dent, that is the consumer will purchase at most one of the two products (i.e. unit
demand) on a given shopping trip. This setting is the most common one found in
the theoretical search literature (e.g. Weitzman 1979), modeling the case where the
consumer is searching for the best alternative within a product category. In this case,
unlike when products are independent, what the consumer observes while searching
one product affects her decision to search another product, to stop searching, and to
make a purchase decision. We again find that the retailer has an incentive to prior-
itize the lower expected utility product in the low search cost location. This is the
case because by prioritizing the lower expected utility product, the consumer is more
likely to search the other product (if the first search is unsatisfactory), and thus to
purchase one of them, compared to the case where the higher expected utility prod-
uct is prioritized and the consumer might stop after just one product searched. Thus,

1Milk, as well as other products, when on sale, may serve as loss-leader products, encouraging consumers
to enter the store (Johnson 2017). Distinct from this mechanism, we provide a novel rationale for placing
high expected utility items in the back of the store that is unrelated to their price and does not require them
to be sold below cost.
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we show that prioritizing lower expected utility options can benefit the retailer in the
case of product substitutes as well.

Finally, we study the impact of competition on the optimal product location prob-
lem of the focal retailer. We show that when retailers compete solely in their product
allocation, then prioritizing higher expected utility products is optimal. However, in
reality retailers may be differentiated in several dimensions, therefore not compet-
ing directly in their product allocation. For example, retailers may differ in terms of
their physical location (requiring transportation costs to visit multiple retailers), their
product assortments, or other dimensions, such as customer service or loyalty pro-
grams, which increase consumer switching costs between retailers. When this is the
case, we show that the optimal product location solution is still to place the lower
expected utility product in the low search cost location.

Our results emphasize the need to match a product’s expected utility to its search
cost in order to maximize retailer payoffs. As such, our results have managerial impli-
cations for both offline grocery and department stores and online retailers choosing
how to optimally allocate products to locations that affect the ease with which
consumers search these products. Allocating products without taking into account
how their location affects consumer search costs, might mean consumers overlook
products they would otherwise purchase.

The remainder of this paper is organized as follows. The next section reviews
relevant prior work. Section 3 introduces our model, while Section 4 presents our
main results. In Section 5 we describe extensions of the model, while the last section
concludes.

2 Related literature

This paper relates primarily to three strands of the literature: (i) the theoretical con-
sumer search literature, (ii) the literature on in-store product location strategy, and
(iii) prior work on designing optimal ranking algorithms for information retrieval.
In what follows, we describe how our paper relates and contributes to the previous
literature.

First, this paper is related to theoretical work on consumer search. Prior work
focuses on characterizing optimal consumer search decisions in different settings, for
example when determining which products to search (Stigler 1961; Weitzman 1979),
which product attributes to obtain information about (Branco et al. 2012, 2016), or
which products to search more intensively than others (Chick and Frazier 2012; Ke
et al. 2016; Ke and Villas-Boas 2017). We contribute to this literature by studying a
new setting in which consumers search optimally across multiple product categories.
Closely related is also work on ordered search where consumers inspect options in
a predetermined order (Arbatskaya 2007; Wilson 2010; Zhou 2011; Rhodes 2011;
Armstrong et al. 2009; Armstrong and Zhou 2011; Haan et al. 2018; Gamp 2017;
Petrikaite 2018). For instance, the work of Gamp (2017) and Petrikaite (2018) relates
to ours in that the authors consider a model where a firm affects product search order
by choosing the magnitude of consumer search costs for a product. In contrast, in
our paper search costs are exogenous, that is they are determined by the layout of the
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store, and the firm chooses which products to allocate to which location. Moreover, in
terms of findings, our paper is also related to models of intermediary search diversion.
Hagiu and Jullien (2011) present a model where an intermediary, who has more infor-
mation than consumers about product matches, may benefit from diverting a consu-
mer away from her preferred option, if this strategy influences the type of consumers
visiting the store or sellers’ pricing decisions. We contribute to this literature by showing
that a similar result arises in a setting where the retailer, with less information about
the consumer, chooses how to allocate products within the store, taking into account
that these locations may affect consumer search costs. Finally, our paper is related
to theoretical work on multi-category search (Burdett and Malueg 1981; Carlson and
McAfee 1984; Anglin 1990; McAfee 1995; Gatti 1999; Shelegia 2011; Zhou 2014).
This research models how a consumer, searching for several products, decides which
subset of them to buy from one of many retailers she visits. In contrast, we consider
the problem of a consumer searching for multiple products at a single retailer.

Second, our paper relates to work on firm in-store product location strategy. One
stream of this work shows that the location of products in the store affects consumer
attention and purchase decisions. For example, Chandon et al. (2009) show that plac-
ing products at the top of a shelf increases attention and choice. Larson et al. (2005)
identified the most common shopping paths in a supermarket and showed that con-
sumers spend most time traveling on the outer ring of the store, making products
placed at the ends rather than the center of an aisle more salient. Similarly, prod-
ucts near the checkout are more salient since almost all consumers pass by that area.
These findings lend support to our core assumption that different locations in the
store have different search costs, affecting how consumers search and what products
they purchase. We contribute to this stream of research by considering the optimal
search problem of the consumer in a store environment and how this affects the
retailer’s product allocation strategy. Work on price obfuscation and retail strategies
to increase search frictions is also related to ours (Ellison and Ellison 2009; Ngwe
et al. 2019). Such work focuses on how obfuscation allows retailers to price dis-
criminate heterogeneous consumers, by discouraging less price sensitive ones from
further search, leading them to buy more expensive products. In contrast, in our paper
the retailer can benefit from prioritizing lower utility options even in the absence of
consumer heterogeneity. In addition, our paper is also related to research studying
the relation between in-store travel distance and unplanned spending. Previous work
has shown that increasing in-store travel distance, either through relocating prod-
ucts (Granbois 1968) or through strategic product promotions (Hui et al. 2013), can
increase unplanned spending. The intuition for this result is similar to that for our
findings: by encouraging consumers to be exposed to more product categories (by
traveling longer distances), they may purchase from more of them. Our contribution
to this literature is the theoretical treatment of the problem of how to allocate products
within the store given optimal consumer search.

Third, by interpreting ranked lists as ordered locations in which products can be
placed, our paper is also related to work on optimal algorithms for ranking a set of
options online. Research in marketing and economics studies the impact of ranked
lists on consumer choices (Ghose et al. 2012a, b; Ghose et al. 2014; Chen and Yao
2016; De los Santos and Koulayev 2017; Ursu 2018). For example, Ursu (2018)
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shows that even when the ranked list is randomly generated, the position of a prod-
uct affects consumer choices. In addition, work in computer science and marketing
studies a search engine’s problem of how to construct product rankings for informa-
tion retrieval (e.g. Liu 2011). Algorithms, such as ‘learning to rank’, score the likely
relevance of a search result for a consumer (e.g. the likelihood of a purchase or a
search, measured using metrics such as normalized discounted cumulative gain) and
then rank the option with the highest score first (e.g. Yoganarasimhan 2018). Such
algorithms are optimal for search engines that compete solely in the quality of their
ranked lists. In contrast, our paper studies the problem of a retailer, that due to higher
product differentiation, on factors such as physical location, product assortments,
customer service, or loyalty programs, may compete on several dimensions other than
just the allocation of products within the store. Also, location mainly affects a prod-
uct’s accessibility, rather than consumer expected utilities. As a result, we show that
this retailer can be strategic about product location and may choose not to prioritize
the highest utility product for a consumer, as in the case of grocery stores choosing
to place milk (a high utility product) at the back of the store.

In addition, our work is related to papers considering the design of sponsored ad
auctions in the presence of consumer search (Varian 2007; Chen and He 2011; Athey
and Ellison 2011). The result of the auction is an ordered list of options consumers
can choose from, and is thus related to our work if we interpret this list as a set of
locations where products can be placed. We differ from this work in several ways,
most importantly in studying the product allocation problem of a retailer, rather than
the bidding strategies of individual advertisers, and in allowing different locations to
have different search costs.

Finally, by studying a multi-category retailer, our paper is related to previous work
on how consumers make multi-category purchases (Ainslie and Rossi 1998; Chinta-
gunta and Halder 1998; Manchanda et al. 1999; Erdem andWiner 1999; Seetharaman
et al. 1999, 2005; Chib et al. 2002; Singh et al. 2005; Hansen et al. 2006; Song and
Chintagunta 2006, 2007; Mehta 2007). We contribute to this literature by studying
not only multi-category purchases, but also multi-category search, as well as optimal
retailer decisions in such settings.

3 Model setup

In this section, we present our baseline model. Then, in Section 5 we show that our
main results are generally robust to several extensions.

A retailer has access to two products j ∈ J = {1, 2}, that are independent (e.g.
categories), that is neither substitutes nor complements. It chooses a location for each
product in the store, indexed by l ∈ L = {1, 2}. Let jl denote the product in location
l. These locations have different, exogenously defined, search costs. A representative
consumer enters the store with a belief distribution about the potential (expected)
utility she can obtain from each product. For example, she knows whether she values
milk or flowers more on a certain grocery shopping trip, regardless of the product’s
location. By paying a cost, the consumer searches a product, observes its realized
utility, and decides whether or not to purchase it. The consumer may purchase several
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products in this setup. In Section 5, we also consider the case of product substitutes,
where the consumer purchases at most one product, and the case where there are
more than two products available.

Consumer search problem A consumer searches the products optimally. Searching a
product j reveals all uncertainty about it, giving the consumer a potential utility εj

assumed to be drawn from a product specific distribution function Fj (·) and defined
on the interval [θj , θj ].2 This utility is the consumer’s match value with a product
and it cannot be observed by the retailer. However, both the consumer and the retailer
know the distribution of match values for all products, and thus have a belief about the
expected utility from a product. Because products are independent, the consumer has
product specific outside options, representing her expected utility from not buying
each product, which we normalize to zero.

Searching a product is costly, and this cost is made up of two components. The first
component, cj0, is the baseline cost of searching the product once the consumer has
arrived at j ’s location. The second component depends on the product’s location in
the store. Some locations are costlier to search than others. We number the locations
in increasing order of search cost, such that the first location is the least costly to
search, and the last location is the most costly to search. For simplicity, we assume
the cost differences between subsequent locations are constant, that is, the location
cost takes value α(l − 1) for product location l. The net cost of searching the product
jl in location l is given by

cjl
= cj0 + α(l − 1). (1)

The locations of the products are chosen by the retailer and cannot be changed by
the consumer. Given the locations of the products, the consumer decides optimally
which products to search by computing the expected utility from searching each prod-
uct. She only searches products whose expected utility of searching exceeds the cost
of searching, or more formally those for which

∫ θjl

0
εdFjl

(ε) − cjl
≥ 0. (2)

Conditional on search, the consumer purchases jl if its realized utility is greater than
the outside option, that is, she buys if εjl

≥ 0. Denote this purchase probability by
φjl

= 1 − Fjl
(0).3

Let γj = ∫ θj

0 εdFj (ε) − cj0 be the expected utility of searching a product net of
baseline search costs. Then, the consumer will search the product located at l if its
expected net utility of searching satisfies

γjl
≥ α(l − 1). (3)

We assume γj ≥ 0, ∀j ∈ J . If ∃j such that γj < 0, then we can restrict our
analysis to the subset of J for which γj ≥ 0. Products for which this inequality does

2If products represent different categories, one can think of εj as the highest utility observed from the
products considered in that category.
3Consistent with the literature, we let Fj (x) = P(εj < x).
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not hold are not candidates for search even when search costs are minimal (i.e. when
placed in the least costly location, l = 1), meaning that the consumer will never find
it optimal to search them. Thus, our assumption is without loss of generality in a
model of consumer search. Under this assumption, the consumer is always willing to
search the product located at l = 1.

Retailer’s location problem The products the consumer seeks to purchase are manu-
factured by third-party sellers and sold through a monopolist retailer. As a result, we
assume the retailer cannot change any product features (including prices), because
these are under the control of each seller. Rather, the retailer chooses whether to pri-
oritize product 1 or 2 in location l = 1, while taking into account the higher search
cost for the product placed in location l = 2. The locations may be physical locations
within a brick and mortar store, such as placing the product near the entrance versus
in the back or by the checkout area. In the context of an online retailer, different loca-
tions may be featuring the product on the homepage, prioritized in a menu, versus
accessible only through keyword search. In Section 5, we relax the assumption that
the retailer cannot change product features, and consider the case where the retailer
chooses both location and product prices, and show that our results continue to hold.

The retailer chooses products to place in each location,
−→
j ∗ = (j∗

1 , j∗
2 ), where

j∗
l represents the option displayed in location l, in order to maximize its expected
payoff. If the consumer does not search a product in location l, the retailer gets no
payoff from that product. If the consumer does search, we assume the retailer gets
a payoff of 1 if the consumer purchases the product, and 0 otherwise (Athey and
Ellison 2011). The model extends easily to accommodate more general payoffs, such
as ones that depend on prices, without changing the solution structure. The case when
the retailer chooses prices as well as locations is more complex and is addressed in
Section 5. In this setting, the retailer’s expected payoff is given by:

(4)

where the first term is equal to 1 if the consumer searches the product in location l,
and 0 otherwise, and the second term gives the probability that the consumer buys
the product conditional on search.

4 Optimizing product location

Maximizing the number of products searched Before solving the general product
allocation problem where the retailer maximizes its payoff given in Eq. 4, we first
consider a simpler objective function, which will help build intuition for the main
problem: maximizing the number of products which the consumer searches, that is
solving

(5)
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Proposition 1 describes where the retailer should allocate products to maximize
the number of products searched by the consumer, while taking her optimal search
decision into account.

Theorem 1 With two products j ∈ {1, 2} and α > 0, prioritizing the product with
lower expected net utility γj in location l = 1 maximizes the number of products
searched.

Proof Depending on the values of γj , there are three cases to consider, depicted in
Fig. 1 below. The dots in the figure represent γj values relative to the value of α. Let
|j : γj ≥ α| denote the number of products satisfying condition γj ≥ α, and recall
that γj ≥ 0 for both products.

• Case 1: |j : γj ≥ α| = 1
In this case, the consumer will search the product with γj ≥ α regardless of
whether it is located in the high or the low cost location. However, the consumer
will only search the other product if it is in the low cost location. Thus, priori-
tizing the product with lower expected net utility, that is the one with γj < α,
by placing it in the low cost location, strictly increases the number of products
searched.

• Case 2: |j : γj ≥ α| = 2
In this case, the consumer will search both products regardless of which locations
they occupy. Thus, any allocation maximizes the number of products searched,
including placing the product with lower expected net utility in the lower cost
location.

• Case 3: |j : γj ≥ α| = 0
The consumer will only search the product in the low cost location. Therefore,
any allocation, including placing the product with lower expected net utility in
the lower cost location, maximizes the number of products searched.

Fig. 1 Illustrating the possible values of γj with two products
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The intuition for this result is simple: when search costs vary by location, the
retailer has an incentive to place the lower utility products in the low cost locations,
because the high utility products are more likely to be searched even at higher costs.
If instead high utility products occupy the low cost locations, lower utility products
might not get searched. Thus, placing lower utility products in the low cost locations
maximizes the number of products searched by the consumer.

Maximizing expected payoffs We now turn to the general product allocation prob-
lem, where the retailer maximizes expected payoffs given in Eq. 4, using the intuition
developed above. Proposition 2 describes our result.

Theorem 2 With two products j ∈ {1, 2} and α > 0, to maximize expected payoffs:

(i) if |j : γj ≥ α| ≥ 1, the retailer will prioritize the product with lower expected
net utility γj in location l = 1;

(ii) if |j : γj ≥ α| = 0, the retailer will prioritize the product with higher purchase
probability φj in location l = 1.

Proof We consider three cases separately. In the first case, only one product has an
expected net utility greater than α, that is |j : γj ≥ α| = 1. In the second case,
both products have expected net utility greater than α, that is |j : γj ≥ α| = 2. The
condition |j : γj ≥ α| ≥ 1 corresponds to these two cases. The third case is when
both γ1, γ2 < α or |j : γj ≥ α| = 0.

• Case 1: |j : γj ≥ α| = 1
In this case, there exists a product allocation under which the consumer will
search both options. As per Proposition 1, this is accomplished by placing the
product with γj ≥ α in the higher cost location, l = 2, that is j∗

2 = argmaxj γj ,
and by placing the remaining product in location l = 1. This strategy leads to an
expected payoff of φ1 + φ2 for the retailer, as both products get searched, which
is greater than the expected payoff if only one product is searched, φj .

• Case 2: |j : γj ≥ α| = 2
The consumer will search both options. Thus, any allocation maximizes the
retailer’s expected payoff, including prioritizing the lower expected net utility
product.

• Case 3: |j : γj ≥ α| = 0
The consumer only searches one product in this case. Therefore, to maximize its
expected payoff, the retailer prioritizes in location l = 1 the product with the
highest purchase probability, or j∗

1 = argmaxj φj .

Our results in Proposition 2 show that, for some search cost parameter values,
the retailer may choose to position the products in increasing order of utility: lower
utility products first, in the easily accessible low search cost locations, and higher
utility products later, in the less accessible, harder to search locations. Therefore, the
retailer’s optimal product location depends not only on product utilities, but also on
the exact values of search costs in different locations.
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It is worth contrasting our results with those in the information retrieval literature.
This literature studies the problem of ordering products faced by search engines that
need to present search results to consumers by means of a ranked list. Search engines
compete with each other primarily on their ability to place the most relevant search
results at the top of the ranking. Thus, information retrieval algorithms are focused on
ranking results in decreasing order of utilities. In contrast, retailers are more differ-
entiated from each other, on factors such as physical location, product assortments,
customer service, loyalty programs, etc. Therefore, what we have shown here is that
retailers do not necessarily order products by utility, and must take the relative search
costs into account when choosing product locations within a store. Recall that the
result applies for the products that have above 0 expected net utility from search
(γj ≥ 0).

Also, it is worth noting how our results thus far compare to the benchmark case
when α = 0, that is when search costs are not a function of a product’s location, as
assumed by most of the consumer search literature. In this case, since her choices
are unaffected by the retailer’s product location decision, the consumer will search
all available products with γj ≥ 0 and will purchase a product if its realized match
value is positive. This leads to retailer expected payoffs that equal

∑
j∈J φj , and to

a consumer total expected utility that equals
∑

j∈J γj . These payoffs are (weakly)
larger than when α > 0, since α = 0 implies search costs are lower, meaning that the
consumer searches more and is more likely to purchase. Thus, the case α > 0 makes
both the retailer and the consumer (weakly) worse off.

5 Extensions

In this section, we tackle several extensions: (i) the retailer chooses both the product
location and each individual product’s price; (ii) there are N ≥ 2 products avail-
able, rather than just two; (iii) products are substitutes and the consumer has unit
demand; (iv) the focal retailer faces competition. We consider these extensions in
sequence.

5.1 The choice of both product location and prices

In the baseline model presented in Section 3, we focused on the case where the
retailer solves an optimal product location problem, abstracting away from other
issues, such as optimal pricing. In this section, we extend the model by allowing the
retailer to choose both a product’s location and its price, and the consumer searches
to reveal both her match with a product and its price. Our setup will mirror that in
Wolinsky (1986) and Anderson and Renault (1999), except that the consumer will
search among two independent products, and the retailer will choose not only prices,
but also product locations.

Suppose a consumer searches for both match values εj and prices pj , where
j ∈ {1, 2}. As before, the retailer cannot observe εj , but it is common knowledge

that match values are distributed according to Fj (·) defined on the interval
[
θj , θj

]
.
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The retailer sets prices and the consumer expects to see the equilibrium price p∗
j

before searching j . Also, the retailer chooses a product’s location, which affects the
consumer’s search cost. Formally, the retailer chooses products to place in each loca-
tion,

−→
j ∗ = (j∗

1 , j∗
2 ) and prices −→

p ∗ = (p∗
j∗
1
, p∗

j∗
2
), where j∗

l represents the product

in location l and p∗
j∗
l
represents its equilibrium price. In this setting, the consumer

makes optimal search decisions by choosing to search product j∗
l if and only if

∫ θj∗
l

p∗
j∗
l

(ε − p∗
j∗
l
)dFj∗

l
(ε) − cj∗

l
≥ 0, (6)

and will purchase product j∗
l if the difference between her realized match value and

the observed price (which may differ from the equilibrium price) is greater than the
outside option, that is if εj∗

l
− pj∗

l
≥ 0.

The retailer maximizes expected payoffs, which are given by

(7)

where γ (pj ) = ∫ θj

pj
(ε − pj )dFj (ε) − cj0.

Equilibrium To maximize expected payoffs, the retailer would set equilibrium prices

according to the first order condition in Eq. 7, that is it would set p∗
j∗
l

=
1−Fj∗

l
(p∗

j∗
l
)

fj∗
l
(p∗

j∗
l
)
,

if at that price the consumer would search j∗
l . However, depending on the value of

α, at price p∗
j∗
l
, the consumer might not be willing to search the product located

at l, that is γ (p∗
j∗
l
) ≥ α(l − 1) might not hold. In this case, the retailer maxi-

mizes expected payoffs by solving for the price that makes the consumer indifferent
between searching and not searching the product located at l, that is by solving for p

from γ (p) = α(l − 1), as long as the resulting price is non-negative; otherwise, the
retailer will prefer not to offer the product. Thus, equilibrium prices depend on the
value of α.

To maximize expected payoffs, the retailer chooses not only equilibrium prices,
but also each product’s location. In this case, it faces a tradeoff. On the one hand,
placing the product with relatively higher expected net utility in the lower cost loca-
tion l = 1, means being able to charge a high price for it (both because of its higher
utility and because of the lower search cost), but risking that the consumer will not
search the other product (both because of its lower utility and because of the higher
search cost in location 2). On the other hand, placing the product with relatively lower
expected net utility in the lower cost location l = 1 might involve charging a lower
price than in location l = 2 for it, but ensuring that both products will be searched.
Depending on the cost (α) of searching the product in location 2, equilibrium prices
and the optimal product allocation will change, and one of these strategies will be
more profitable.

Analyzing jointly the optimal product location and the optimal pricing decision of
the retailer is complex. To make progress, we make the following two assumptions:
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(i) the two products, calledL andH , have match values that are uniformly distributed
according to U(0, L) and U(0, H), where H > L > 0, and (ii) baseline search
costs are zero for both products. Given our distributional assumptions, the expected
net utility from searching product θ = {L, H } when it is placed in location l and
the consumer expects to observe a price p∗

θl
for it before search, equals γ (p∗

θl
) =

(θ − p∗
θl
)2/(2θ). If the consumer were to search the product θ in location l when it

is priced at pθl
, then the retailer’s expected payoff from selling this product would

equal pθl
(θ − pθl

)/θ . In what follows, we study where the retailer should locate L

and H and what it should charge each, taking into account how these choices will
influence the consumer’s optimal search decision.

Consider first the case when the retailer places product L in location l = 1. The
retailer will charge p∗

L = L/2 (the price that solves p = 1−FL(p)
fL(p)

), because at this
price the consumer is willing to search L, that is the expected net utility from search-
ing (L − p∗

L)2/(2L) = L/8 is non-negative. Then, depending on the value of α,
the price of the other product, H , will vary. In particular, for α ≤ H/8, charging
pH = H/2 is optimal, because at this price, the expected net utility from search-
ing H , which equals (H − p∗)2/(2H), (weakly) exceeds the additional cost, α. As
α increases, the retailer will charge a lower price for H to ensure that the consumer
will search it given the larger cost of searching a product in location l = 2. More pre-
cisely, for H/8 < α ≤ H/2, the price of H equals p∗

H = H − √
2Hα (obtained by

solving for p from (H −p)2/(2H) = α), which decreases in α. At some point, when
α > H/2, because there exists no non-negative price at which the consumer would
search H , the retailer will prefer not to offer it. We illustrate this pricing pattern in
Fig. 2a below, assuming L = 1 and H = 2.

The expected payoffs of the retailer when it places product L in location l = 1,
πL, are (weakly) decreasing in α, as illustrated in Fig. 2b. More precisely, when
α ≤ H/8, expected payoffs are constant at πL = (H + L)/4. For H/8 < α ≤ H/2,
expected payoffs equal πL = L/4 + √

2Hα − 2α, decreasing in α over the range.
When α > H/2, the price of H that would make the consumer willing to search H

in location l = 2 is no longer positive, so the retailer will prefer not to offer H , and

Fig. 2 Product prices and retailer expected payoff when the lower expected utility product is placed in the
low cost location
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expected payoffs are constant as a function only of the price of L, equal to L/4. To
summarize, the retailer’s expected payoffs when it places L in location l = 1 are
given by

• If α ≤ H/8, then πL = H+L
4 and retailer offers both products.

• If H/8 < α ≤ H/2, then πL = L
4 + √

2Hα − 2α and retailer offers both
products.

• If α > H/2, then πL = L
4 and retailer only offers product L.

A similar analysis can be performed for the case when the retailer places H in
location l = 1. We illustrate the results of this analysis as a function of α in Fig. 3. In
sum, the retailer’s expected payoffs when H is located at l = 1, πH , are given by

• If α ≤ L/8, then πH = H+L
4 and retailer offers both products.

• IfL/8 < α ≤ L/2, then πH = H
4 +√

2Lα−2α and retailer offers both products.
• If α > L/2, then πH = H

4 and retailer only offers product H.

Notice that, as in the case where the retailer chooses only the product location
(not prices), the retailer is (weakly) worse off when α > 0 rather than when search
costs are not a function of a product’s location, that is when α = 0. In addition, as α

increases, the retailer’s expected payoff (weakly) decreases.
Given these results, we can now determine the equilibrium product allocation and

each product’s price. Because L < H , the retailer will find it profitable to stop
offering a second product sooner (i.e., for smaller values of α) if it places H rather
than L in location l = 1. Also, when α is small, the retailer is indifferent between
placing L or H in location l = 1. These two facts mean that there are three payoff
relevant ranges of α for the retailer, as illustrated in Fig. 4. First, for relatively low
values of α, when α ≤ L/8, placing either L or H in location l = 1 leads to the
same expected payoffs for the retailer, and the consumer is willing to search both
products. Second, for relatively high values of α (obtained by solving for α when
πH = H/4 and πL = L/4 + √

2Hα − 2α), the retailer will prefer to place H in
location l = 1, making higher payoffs although the consumer would only search one

Fig. 3 Product prices and retailer expected payoff when the higher expected utility product is placed in
the low cost location
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Fig. 4 Retailer expected payoff and the optimal product allocation as a function of α

product. Finally, for intermediate values of α, the retailer will prefer to place L in
location l = 1, and the consumer will search both products.

The result in Fig. 4 shows that when α is not too large to prevent the consumer
from searching the product in location l = 2, the retailer will (at least weakly) prefer
to place L in location l = 1. This encourages the consumer to search both options,
and it maximizes the retailer’s expected payoffs. Only when searching the product
in location l = 2 is prohibitively expensive, then the retailer prefers to place H in
location l = 1, and the consumer will only search one product. This mirrors our
result in Proposition 2 when the retailer chose only the product location. Thus, our
main insight from the baseline model continues to hold when the retailer chooses
both product location and product prices.

In addition, we are able to determine the equilibrium prices that would prevail as a
function of the product allocation chosen. Figure 5 illustrates our result by combining
Figs. 2a and 3a. As can be seen, for most values of α, regardless of the product
allocation chosen, the retailer charges a higher price for H , than for L. The only
exception is in the area between the two bars where the retailer places L in location
l = 1 and the consumer searches both products. In this case, because of the relatively
high value of α, the retailer needs to decrease the price of H sufficiently to encourage
the consumer to search it. In sum, we find that α, the cost of searching a product
when it is located in l = 2, affects not only the retailer’s product location decision,
but also its optimal pricing decision. Thus, taking into account how product location
affects consumer search costs, is of even greater importance when the retailer chooses
product prices in addition to the locations of the products available within the store.
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Fig. 5 Equilibrium prices as a function of α

5.2 Optimal product location with N ≥ 2 products

The baseline model focused on the problem of optimally allocating two products
within a store. We now consider the optimal allocation algorithm for any number of
products j ∈ J = {1, . . . , N}, where N ≥ 2. We assume there are more locations
l ∈ L = {1, . . . , M} available than products (M ≥ N), that is the retailer is not
capacity constrained; otherwise, our results below should be understood as describing
the optimal product allocation for the M products with the highest φj . The following
notation will be useful. Define Lj as the location of product j that satisfies

α(Lj − 1) ≤ γj < αLj , (8)

that is, Lj is the location with the highest search cost in which the consumer would
be willing to search product j , which we refer to as j ’s search cutoff. Also, let

Rl = {j ∈ J |Lj ≥ l} (9)

be the set of products that the consumer would optimally search if located at l. Let S
be the set of products resulting from an algorithm and

−→
j S = {jS

1 , . . . , jS
NS

} be the
resulting allocation of products, where jS

l denotes the product placed in location l

and NS gives the total number of locations where products are placed.
Note that the retailer would only display a product if the consumer is willing to

search it. The consumer is not willing to search a product if the cost of search is higher
than the benefit. Also, after searching a product, all uncertainty about it is revealed,
so the consumer would not be willing to search the same product more than once.
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We capture these restrictions of optimal consumer search behavior on the retailer’s
allocation algorithm by defining a feasible allocation of products as follows.

Definition 1 Let
−→
j S = {jS

1 , . . . , jS
NS

} be a feasible allocation of products if
1. each allocated product is a candidate for search in the suggested location, that is

LjS
l

≥ l for l ∈ {1, . . . , NS};
2. each product occupies only one location, that is if l 
= l′, then jS

l 
= jS
l′ .

Denote by Sl the subset of products placed in lower cost locations than l, and by S̄l

its complement. If the product allocation is feasible for locations of lower cost than
l, note that the consumer will optimally choose to search all j ∈ Sl .

Maximizing the number of products searched We will first derive the algorithm that
maximizes the number of products searched, that is determine how to locate products
to solve

(10)

We will show that, just like in the case of two products, prioritizing options with lower
expected net utility maximizes the number of products searched by the consumer.

Consider the following algorithm that results in a feasible set of product alloca-
tions, S.

In other words, Algorithm 1 places a product in location l that satisfies three
conditions. First, considering locations starting with the lower cost one, the product
located at l must be one that has not yet been been allocated, that is jS

l ∈ S̄l , because
S is feasible. Second, it must satisfy jS

l ∈ Rl . Otherwise, the consumer would not be
willing to search it. Finally, among the set of products that satisfy both conditions,
the algorithm places the product with minimum Lj at l. Note that the resulting prod-
uct allocation may not be unique, because there might be several options in the set
S̄l ∩ Rl at a given l with the minimum search cutoff. In this case, the algorithm will
break ties randomly.
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The next result shows why we introduced Algorithm 1.

Theorem 3 When α > 0, allocating products to locations as per Algorithm 1
maximizes the number of products searched by the consumer.

Proof See Appendix.

Algorithm 1, that maximizes the number of products searched by the consumer,
prioritizes options with lower Lj . This means that the resulting product allocation
prioritizes options with lower expected net utility, γj , since by definition products
with lower Lj have lower γj and vice versa. Thus, our result in Proposition 3 extends
that in Proposition 1 for the case of two products to any number of products.

Example 1 We illustrate our result using the following example. Suppose there are
five products, j ∈ J = {1, . . . , 5} with search cutoffs Lj , as indicated in Table 1
below. Consider locations in increasing order of their search cost. In location l = 1,
S̄1 ∩ R1 = {1, 2, 3, 4, 5} and Algorithm 1 would place the product with the smallest
search cutoff, which is product 1. In location l = 2, S̄2 ∩ R2 = {2, 3, 4, 5}, and
there are two products (2 and 3) with the same minimum search cutoff. Breaking ties
randomly, Algorithm 1 would place product 2 in location l = 2. In location l = 3, the
consumer would not consider searching either product 2 or 3, so S̄3∩R3 = {4, 5}, and
Algorithm 1 would place product 4 because it has the smallest search cutoff, and in
location l = 4, it would place product 5. Thus, the allocation (not unique) that leads
to the maximum number of products searched (which is 4) is given by: [1, 2, 4, 5]. It
is straightforward to check that no other product allocation leads to a strictly higher
number of products searched.

Maximizing expected payoffs In Proposition 3 above, we showed that prioritizing
lower utility products maximizes the number of products searched by the consumer.
We now turn to the general problem of maximizing the retailer’s expected payoff.
The retailer chooses product locations in order to maximize its expected payoff by
solving

(12)

where the first term equals 1 if the consumer searches the product in location l,
and 0 otherwise, and the second term gives the probability that the consumer buys
the product conditional on search. In this setup, we show that the optimal product
allocation still prioritizes products with lower utility.

Table 1 Search cutoffs for
Example 1 j 1 2 3 4 5

Lj 1 2 2 3 5
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The problem of maximizing expected payoffs can be mapped into a version of the
so called “job sequencing with deadlines” or the “task scheduling” problem in com-
puter science, that deals with scheduling jobs to be processed by a machine (Cormen
et al. 2009). Although our setup differs (e.g. the consumer in our model can choose
to search products in a different order than the one in which the retailer locates prod-
ucts in the store, while the machine processes jobs in sequence), the solution to our
problem can be adapted from the greedy algorithm solution to the task scheduling
problem, as we show in Algorithm 2 below.

Consider the following algorithm that produces a feasible set of allocated
products, S.

Note, as in the case of Algorithm 1, that the resulting product allocation may
not be unique, because several options might have the same purchase probability
and search cutoff. In this case, we break ties randomly. Also, note that the resulting
product allocation may contain gaps, that is locations where no product is placed,
equivalent to the retailer removing shelves from the store. This algorithm maximizes
the retailer’s expected payoff.

Theorem 4 When α > 0, allocating products to locations as per Algorithm 2
maximizes the retailer’s expected payoff.

Proof See Appendix.

Example 2 We illustrate this result using the following example. Suppose there are
five products, j ∈ J = {1, . . . , 5}, with probability of purchase φj and search cutoffs
Lj , as indicated in Table 2. We sorted options by their purchase probability φj . Now
we can use Algorithm 2 to characterize the optimal product allocation that maximizes
retailer expected payoffs. We start with product 1, because it has the highest purchase

Table 2 Purchase probabilities
and search cutoffs for Example 2 j 1 2 3 4 5

φj 0.20 0.15 0.10 0.05 0.01

Lj 5 3 1 5 2
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Table 3 The final product
allocation based on Algorithm 2
for Example 2

Location 1 2 3 4 5

j 3 5 2 4 1

φj 0.10 0.01 0.15 0.05 0.20

probability, φ1 = 0.20. Given that the consumer would be willing to search this
product even when placed in the higher cost location (its search cutoff is L1 = 5),
we place it in location 5. We then consider product 2 with φ2 = 0.15. Because the
consumer would search this product in all of the first three locations, and no other
product is placed at its search cutoff, we place product 2 in location 3. Similarly, we
place product 3 in location 1. Product 4 would be searched by the consumer in all
of the first five locations, but since location 5 is occupied, we place it in the highest
search cost location available, location 4. Finally, we place product 5 at its search
cutoff, location 2, since it is available. The final product allocation is [3,5,2,4,1],
leading to expected total payoffs of 0.51. We illustrate this final product allocation in
Table 3. It is straightforward to check that no other allocation will lead to a strictly
higher payoff.

It is worth noting that in the product allocation that maximizes the retailer’s
expected payoffs, options are not ordered by purchase probabilities, φj . For example,
the product with the highest purchase probability (product 1) is placed in the last loca-
tion. Furthermore, any attempt to place the product with the highest purchase proba-
bility in the first location would decrease the retailer’s expected payoff.

Rather, as we demonstrate below (see Proposition 5), products are placed in loca-
tions such that those with lower search cutoffs Lj are prioritized in lower search
cost locations. For instance, in the example we just discussed, in the final product
allocation, the search cutoffs of the products allocated are [1,2,3,5,5]. By definition,
products with a lower search cutoff Lj also have a lower expected net utility γj .
Thus, just like in the case of two products, prioritizing options with lower expected
net utility maximizes the retailer’s expected payoff. We now show more formally that
in the optimal product allocation, products with lower expected net utility are prior-
itized among those allocated. We focus on the case where the consumer is willing
to search at least two products in the optimal product allocation, because if not, it is
futile to think about comparing products on any criterion.

Theorem 5 Let S be the set and
−→
j S be the product allocation resulting from Algo-

rithm 2 that maximizes retailer expected payoffs. Suppose the consumer is willing to

search at least two products under this optimal product allocation. Then
−→
j S priori-

tizes products with lower expected net utility, γj , or can be rearranged in such a way
while preserving the same maximum expected payoff.

Proof See Appendix.
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In sum, what we have shown is that when the retailer chosen product locations
affect consumer search costs, prioritizing products with lower utility, as per Algo-
rithm 2, maximizes the retailer’s expected payoff. This finding demonstrates that our
main result for the case of two products in Proposition 2, extends to any number of
products.

5.3 Product substitutes

In this section, we extend our model and consider the case where products are sub-
stitutes, rather than independent. This setting is the most common one found in the
theoretical search literature (e.g. Weitzman, 1979), modeling the case where the con-
sumer is searching for the best alternative within a product category, making at most
one purchase (i.e. unit demand). For this setting, we derive the optimal product allo-
cation that maximizes the retailer’s expected payoff, while taking into account how
the allocation created affects the consumer’s optimal search decision.

Consider a retailer selling two products j ∈ {1, 2}. Products are substitutes and the
consumer seeks to purchase at most one product, or choose the outside option of not
purchasing with expected utility normalized to zero. Searching a product j reveals
all uncertainty about it, giving the consumer a potential match utility εj assumed to
be drawn from a product specific distribution function Fj (·) defined on the interval
[θj , θj ]. Both the consumer and the retailer know the distribution of match values.

The payoff of the retailer from a purchase made by the consumer equals 1. As
before, the retailer chooses whether to prioritize product 1 or 2 in location l = 1, tak-
ing into account the higher search costs of the product located at l = 2. We continue
to consider only products for which γj ≥ 0, because those with negative expected net
utility are not candidates for search even when search costs are minimal (i.e. when
placed in location l = 1). Under this assumption, the consumer is willing to search
the product in location l = 1.

Unlike the case considered in the baseline model where products are independent,
when products are substitutes, what the consumer observes while searching one prod-
uct affects her decision to search another product, to stop searching, and to make a
purchase decision. Thus, her optimal search decision depends additionally on which
products she has already searched. Before searching any product, the consumer’s best
utility observed so far is the outside option with expected utility normalized to zero,
so the consumer will search the product in location l if

∫ θjl

0
εdFjl

(ε) − cjl
≥ 0. (13)

After searching product jl , the consumer observes a utility εjl
, and will search

product kl′ in location l′ if
∫ θk

l′

zjl

(ε − zjl
)dFkl′ (ε) − ckl′ ≥ 0, (14)

where zjl
= max{0, εjl

} gives the best utility observed so far.
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In this setting, we now consider the optimal product allocation when the retailer
maximizes its expected payoff. Proposition 6 below shows our result for the case of
product substitutes. This result is the equivalent of the one in Proposition 2, that dealt
with independent products.

Theorem 6 With two product substitutes j ∈ {1, 2} and α > 0, to maximize expected
payoffs

(i) if |j : γj ≥ α| ≥ 1, the retailer will prioritize the product with lower expected
net utility γj in location l = 1;

(ii) if |j : γj ≥ α| = 0, the retailer will prioritize the product with higher purchase
probability φj in location l = 1.

Proof If |j : γj ≥ α| ≥ 1, then there are two cases to consider: either |j : γj ≥ α| =
1 or |j : γj ≥ α| = 2. The case |j : γj ≥ α| = 0 corresponds to the scenario in
which both products have expected net utility lower than α. We now consider each
case separately, to prove the claim.

• Case 1: |j : γj ≥ α| = 1
Suppose, without loss of generality, that γ1 ≥ α, γ2 < α. If the retailer places
product 1 in location l = 1, the consumer searches it and reveals a match value
of ε1, which leads to a maximum utility observed so far of z1 = max{0, ε1}. The
consumer will then not search product 2, because γ2 = ∫ θ̄2

0 εdF2(ε) − c20 < α,

meaning that
∫ θ̄2
z1

(ε − z1)dF2(ε) − c20 < α. Thus, the retailer’s expected payoff
equals φ1 = 1 − F1(0).
Suppose instead that the retailer places product 2 in location l = 1. Now both
products are eligible to be searched when the best utility observed up to that
point is zero. Thus, if the first product searched reveals a negative reward, the
consumer will search the remaining product and buy if εj ≥ 0. Otherwise, if the
first searched product reveals a positive reward, the consumer will certainly buy
(regardless of whether she searches the other product or not). This means that
the consumer will only not purchase if both products reveal a negative reward,
making the expected payoff of the retailer equal to 1−F1(0)F2(0). Because this
value is greater than 1 − F1(0), that is the expected payoff from placing product
1 in location l = 1, the retailer will prefer to prioritize the product with lower
expected net utility (product 2 in this case) in location l = 1.

• Case 2: |j : γj ≥ α| = 2
In this case, regardless of the product allocation, both products are eligible to be
searched when the best utility observed up to that point is zero. Using similar
logic as in case 1 above, the consumer will only not purchase if both products
reveal a negative reward, making the expected payoff of the retailer equal to
1 − F1(0)F2(0). Thus, prioritizing the product with lower expected net utility in
location l = 1 maximizes the retailer’s expected payoff.

• Case 3: |j : γj ≥ α| = 0
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The consumer will only search one product, regardless of the product allocation.
Thus, prioritizing the product with the highest purchase probability in location
l = 1 maximizes the retailer’s expected sales.

In sum, we find that, as in the case of independent products, when products are
substitutes, the retailer has an incentive to prioritize the product with lower expected
utility in location l = 1. This result reinforces the importance of accounting for the
impact of product location on consumer search costs when studying how to optimally
locate products.

5.4 Retailer competition

So far, we have focused on the optimal product location problem of a single retailer.
In this section, we study how the presence of competition affects our results. In par-
ticular, we show that when retailers compete solely on their product allocation, then
our results do not hold anymore and prioritizing higher utility products is optimal.
This mirrors the result obtained by algorithms designed for search engine information
retrieval. However, in reality retailers may be differentiated in several dimensions,
therefore not competing directly on their product allocation. For example, retailers
may differ in terms of their physical location (e.g. one of the few grocery or depart-
ment stores in a given neighborhood), allowing them to enjoy a certain degree of
market power since transportation costs may prevent consumers from visiting multi-
ple retailers. Also, retailers may differ in their product assortment, as is the case for
grocery stores such as Whole Foods or Safeway. Or retailers may provide value to
consumers through customer service or loyalty programs that make it costly for them
to switch retailers. Finally, retailers may compete on all these and other dimensions
at the same time. When this is the case, we show that the optimal product loca-
tion solution is still to prioritize the lower utility products in the lower search cost
locations.

Suppose there are two retailers {A, B} that differ in their product allocation, that is
they choose to place products differently in the store. The consumer chooses not only
which product to search/purchase after visiting a retailer, but also which retailer to
visit. We assume the cost to visit both retailers exceeds the benefit, so the consumer
will only visit one retailer, allowing us to identify which one she prefers.

In this setting, we consider two extreme cases. First, suppose there are two prod-
ucts j ∈ {1, 2} available, with γ1 > γ2 ≥ 0, that both retailers sell them, and that
they differ only in their product allocation: retailer A places product 2 in location
l = 1, while retailer B places product 1 in location l = 1. So A allocates products
as per our solution, while B allocates the higher expected net utility product in loca-
tion l = 1. Then, retailer B will be (weakly) preferred by the consumer. To see this,
consider again all possible cases determining the relation between the expected net
utility and α. For example, if |j : γj ≥ α| = 1 and, without loss of generality, γ1 ≥ α

and γ2 < α, then by visiting A the consumer’s expected benefit equals γ1 + γ2 − α,
which is less than her benefit from visiting B, γ1, so the consumer prefers retailer
B. Also, if |j : γj ≥ α| = 2, the consumer is indifferent between the two retailers.
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Finally, if |j : γj ≥ α| = 0, then by visiting A the consumer expects a benefit of γ2,
which is lower than her benefit from visiting B, γ1.

Second, suppose retailers differ not only in their product allocation, but also in
their product assortment. For example, suppose that there are four products j ∈
{1, 2, 3, 4} available, with γ1 > γ2 > γ3 > γ4 ≥ 0, and that A sells products {1, 2},
and places 2 in location l = 1, while B sells products {3, 4} and places 3 in loca-
tion l = 1. In other words, A allocates products as per our solution, while B places
the higher expected net utility product in location l = 1. There are several cases
determining the relation between the expected net utility and α, but the relevant ones
involve how γ1 and γ4 relate to α. We analyze all possibilities below.

• If both γ1 ≥ α and γ4 ≥ α (implying that γj ≥ α, ∀j ∈ {1, 2, 3, 4}), then the
consumer prefers to visit A, expecting a benefit of γ1 + γ2 − α, to B, where she
would obtain only γ3 + γ4 − α.

• If γ1 ≥ α, but γ4 < α, then regardless of how γ2 and γ3 relate to α, since γ2 > γ3,
the consumer prefers to visit A, since she expects a benefit of γ1 +γ2 −α, which
is greater than the benefit of γ3 from visiting B.

• If both γ1 < α and γ4 < α (implying that γj < α, ∀j ∈ {1, 2, 3, 4}), then the
consumer prefers to visit A, where the expected benefit equals γ2, to B, where
her expected benefit would only be γ3, since γ2 > γ3.

As just analyzed, regardless of the relation between the expected net utility and
α, the consumer prefers visiting retailer A to B, even though A prioritizes the lower
expected net utility product in location l = 1. This happens because A’s product
assortment is superior to that of B (i.e. γ2 > γ3).

In sum, we expect that when retailers enjoy the high degree of differentiation
observed in many real life examples, our results will continue to hold even in the
presence of competition.

6 Discussion

This article addresses the problem of how a multi-category retailer should optimally
locate products within a store, when the locations chosen affect consumer search
costs. We show that the retailer has an incentive to prioritize products with lower util-
ity. This result is robust to various modifications of the baseline model and continues
to hold when the retailer chooses not only product locations, but also prices, when
products are substitutes rather than independent, as well as when the focal retailer
faces competition. Nevertheless, few issues deserve further study.

Our model considers the optimal location problem of a retailer for a given con-
sumer, that is we focus on the case where consumers visiting the store have similar
preferences and search costs (e.g. representative consumer), or where the retailer can
adjust the allocation of products to each visiting consumer (e.g. by personalizing
the e-commerce website). In reality, heterogeneous consumers with different match
value distributions and search costs, may simultaneously enter a store and have to be
accommodated by a single product allocation. In these cases, issues such as the per-
cent of each type of consumer in the store and the value of promoting niche products,
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will determine the optimal allocation of products. We leave these issues to future
research.

Also, in our model, the retailer knows both the distribution of match values and
consumers’ search costs. These assumptions are common in the literature, and are
meant to represent the large amounts of data retailers nowadays have access to on
consumers searching in their stores. However, in absence of such data, the optimal
product location solution might differ from the one we presented in this article.

Our paper does not study how a retailer would allocate complementary products.
Instead, we focus on independent and substitute products. There are several reasons
for this choice. First, we are not aware of papers describing how consumers would
search for complementary products. Rather, complementary products are defined in
terms of joint purchase decisions. Second, for certain representations of consumer
search for complementary products, our results continue to hold. More precisely,
suppose the consumer searches for two complementary products, and will only buy
if she finds good matches for both. One possible way to model search for comple-
mentary products is then to assume that the observed utility at the first searched
product is correlated with the probability of searching its complement. For example,
observing a good match when searching for pasta increases the probability that the
consumer searches for tomato sauce as well, while a poor match decreases this prob-
ability. In this case, the consumer will only buy if she searches both products, and the
probability of searching both products is maximized by our solution.

It is worth noting that a special case of our model is one where a consumer walks
through the store in a particular order, deciding whether or not to examine encoun-
tered product categories, and the retailer decides the order in which the consumer
is exposed to the different product categories. For example, stores of the furniture
retailer IKEA are often designed in a way that guides customers through a partic-
ular path through the store.4 As the consumer evaluates more products, her search
costs may increase due to fatigue, as shown in the consumer behavior literature (Red-
den 2008) and empirical search literature (Koulayev 2014). Thus, the later within a
shopping trip the consumer is exposed to a category, the higher will be the cost of
searching that category. Prior work showed that the presence of increasing search
costs means that changing the order in which product options are presented can affect
the final option chosen by the consumer (Levav et al. 2010) and that search fatigue
can influence firm’s pricing decisions in equilibrium (Carlin and Ederer 2018). By
thinking of the retailer’s product order decision in the presence of search fatigue as
choosing which products will have higher search costs, one observes the similarity
of this problem and the product allocation problem studied in our paper.

Finally, our results can be connected to recent reports that online companies, such
as Facebook and Netflix, may prioritize less valuable content to consumers. For
example, Facebook orders the sizable amount of content created by a user’s friends
in her news feed such that less preferred items are ranked at the top (among those the

4A heat map describing navigation patterns at Ikea and showing that consumers’ path through
the store mirrors the store plan can be found at http://www.dailymail.co.uk/femail/article-1349831/
Ikea-design-stores-mazes-stop-shoppers-leaving-end-buying-more.html.

Retailers’ product location problem with consumer search 149

http://www.dailymail.co.uk/femail/article-1349831/Ikea-design-stores-mazes-stop-shoppers-leaving-end-buying-more.html
http://www.dailymail.co.uk/femail/article-1349831/Ikea-design-stores-mazes-stop-shoppers-leaving-end-buying-more.html


user is interested in reading).5 On Netflix, in order to continue watching a show a user
started, she will first have to scroll through other categories, such as “featured con-
tent”, “Netflix originals”, or “trending now” shows, which she is likely less interested
in watching next than the show she is currently in the middle of watching.6 By pri-
oritizing lower utility options, Facebook and Netflix encourage consumers to search
more, which in turn benefits them as our proposed strategy suggests (in the case of
Facebook through more time spent on the site which may attract more advertisers,
and in the case of Netflix through product discovery which might serve to increase
long term revenues for the company).
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Appendix

Before proving Proposition 3 that Algorithm 1 maximizes the number of products
searched by the consumer, we first demonstrate Lemma 1 below, which requires the
following notation. Consider locations in increasing order of their search cost. Let
Cl({Lj , j ∈ Sl}) be the maximum number of products that can be searched starting
with location l, given the set of products not yet allocated Sl and their search cutoffs
Lj .

Lemma 1 For any l, Cl({Lj , j ∈ Sl}) ≥ Cl(Lj , j ∈ Sl \ {a} ∪ {b}) if La ≥ Lb.

In other words, swapping a yet-to-be-allocated product for a different product with
weakly smaller search cutoff cannot increase the total number of products searched.

Proof of Lemma 1 Any allocation of products that maximizes the number of products
searched from the set Sl \ {a} ∪ {b} can also be used to generate an equal number of
products searched from Sl , if it does not place product b in any location. If the search
maximizing product allocation does place product b in a location, it can be swapped
for product a, because La ≥ Lb.

Using the result in Lemma 1, we can now prove Proposition 3.

Proof of Theorem 3 Let S and Q be the sets of products resulting from Algorithm
1 and the optimal solution, respectively. If S = Q, then S is optimal and we have

5For more details, see http://www.slate.com/articles/technology/cover story/2016/01/how facebook s
news feed algorithm works.single.html.
6See https://www.addictivetips.com/web/get-continue-watching-on-top-in-netflix/ for details on where
the “continue watching” content is displayed on Netflix.
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proven the claim. Suppose instead that S 
= Q. If Q ⊂ S, then Q cannot be optimal,
because S results in more searches. The case S ⊂ Q is also not possible. Any j ∈
Q ∩ S must have Lj ≥ Lk , ∀k ∈ S, because Algorithm 1 always selects products
with the lowest Lj . So any such j could always be appended to S at the end. Because
Algorithm 1 stopped, it means there are no such products. Finally, if |S| = |Q|, even
though S 
= Q (given that Algorithm 1 does not produce a unique allocation), then
the claim is also proven.

Then there must be at least one element in S that is not in Q and vice versa.
Consider locations in increasing order of their search cost. Let l be the first location
in which

−→
j S differs from

−→
j Q, i.e. jS

l 
= j
Q
l . It must be that LjS

l
≤ L

j
Q
l

, because

Algorithm 1 chose to allocate jS
l . Then for location l, the set of products not allocated

as per Algorithm 1, Sl is equal to the set of products not allocated as per the optimal
algorithm, Ql except that the product jS

l was swapped for j
Q
l , that is Sl = Ql \

{jS
l } ∪ {jQ

l }. Because LjS
l

≤ L
j

Q
l

, we can apply Lemma 1 to show that Cl({Lj , j ∈
Sl}) ≥ Cl({Lj , j ∈ Ql}). Therefore, by allocating jS

l and discarding j
Q
l in the

optimal solution, we obtain a solution
−→
j Q′

that results in NQ′ ≥ NQ products being

searched, and which differs from
−→
j S by one less product. By repeatedly applying

this transform,
−→
j Q can be transformed to

−→
j S with no decrease in total number of

products searched. This shows that S is optimal.

Proof of Theorem 47 Suppose Algorithm 2 produces a set of allocated products S,
while the optimal algorithm produces a set Q. If S = Q, then S is optimal and
we have proven the claim. It is also clear that neither Q ⊂ S (contradicts Q being
optimal), nor S ⊂ Q (could append any j ∈ Q∩S to S at the end) are possible. Then
there must be at least one element in S that is not in Q and vice versa.

We first show that there exist feasible product allocations
−→
j S and

−→
j Q, such that

all products that are included in both S and Q are placed in the same location. Let j
be placed in location l in

−→
j S and in location l′ in −→

j Q. If l < l′, then replace j in l′ in−→
j S . Now, j is placed in the same location in the two allocations. If l > l′, the same
transformation can be applied to

−→
j Q. Therefore, we can transform any two feasible

product allocations into allocations for which all common products are placed in the
same location.

Denote by φj the expected payoff of a product j . Let a be the highest expected
payoff product that is included in S and not in Q, that is a ∈ S, a 
∈ Q. Then, it must
be that φa ≥ φb, ∀b ∈ Q, b 
∈ S. Otherwise, if φb > φa , Algorithm 2 would consider
product b before product a, and include it in S.

Consider now the location at which product a is placed in
−→
j S . Let c be the product

placed in the same location in
−→
j Q. Because all common elements are placed in the

same location under both algorithms, we know that a ∈ S, a 
∈ Q and c ∈ Q, c 
∈ S.
Swapping c with a in Q cannot decrease the total payoff from Q because φa ≥ φc,

7Our proof is adapted from Cormen et al. (2009)
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and it cannot increase the total payoff from Q because Q is optimal. Thus, swapping
c with a, gives a feasible product allocation that differs from the set S in one less
product than did Q. Through repetition, the set Q can be transformed to S with no
decrease in payoff. Therefore, the set S was optimal.

Proof of Theorem 58 If
−→
j S has allocated products with lower expected net utility to

lower search cost locations, then the claim has been proven. Suppose instead that this
does not hold. Then ∃j, k ∈ S, such that γj < γk , but k was located in a lower cost
location than j . Without loss of generality, suppose k is located at l and j at l + h,
where h > 0. Because γj < γk , then it follows that Lj ≤ Lk . Product j is located at
l + h, which means that Lj ≥ l + h. Because Lj ≤ Lk , then it must also hold that
Lk ≥ l + h. Thus, we can swap j and k in S. The resulting allocation is still feasible,
because the consumer would be willing to search both products in their new locations.
Also, this cannot increase the retailer’s expected payoff, because S is optimal. Thus,
if

−→
j S has not allocated products with lower expected net utility to lower search cost

locations, it can be arranged in such a way, while preserving optimality.
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