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Abstract The increasing access to large social network data has generated substan-
tial interest in the marketing community. However, due to its large scale, traditional
analysis methods often become inadequate. In this paper, we propose a sequential
sampling enhanced composite likelihood approach for efficient estimation of social
intercorrelations in large-scale networks using the spatial model. Given a known
population network, the proposed approach sequentially takes small samples from
the network, and adaptively improves model parameter estimates through learn-
ings obtained from previous samples. In comparison to population-based maximum
likelihood estimation that is computationally prohibitive when the network size is
large, the proposed approach makes it computationally feasible to analyze large net-
works and provide efficient estimation of social intercorrelations among members in
large networks. In comparison to sample-based estimation that relies on information
purely from the sample and produces underestimation bias in social intercorrelation
estimates, the proposed approach effectively uses information from the population
without compromising computation efficiency. Through simulation studies based on
simulated networks and real networks, we demonstrate significant advantages of the
proposed approach over benchmark estimation methods and discuss managerial
implications. We also discuss extension of the proposed approach in the context of an un-
known population network structure, as well as in an alternative form of the spatial model.
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1 Introduction

In the past decades the world has been transformed by the data explosion. The amount
of data collected has increased tremendously with the new technology advancements
and reduced cost in data storage. In particular, with an explosive growth of social
media and social networking sites such as Facebook.com and Linkedin.com, large
amounts of data become available on interactions and associations among individu-
als. The increasing access to social network data has generated substantial interest
in the marketing community. Various modeling approaches have been proposed in
the marketing literature to study the intercorrelations of consumer behavior among
members in social networks (see reviews by Hartmann et al. 2008; Van Den Bulte
and Wuyts 2007). Whereas the simultaneous equations econometric models focus
on the identification of the causal social interactions by addressing issues such as
endogenous group formation, correlated unobservables and simultaneity (e.g., Hart-
mann 2010; Nair et al. 2010; Nam et al. 2010), statistical models treat the networks
as exogenous and provide a reduced-form representation of social interactions (e.g.,
Wang et al. 2013; Yang and Allenby 2003).

A common challenge faced by all aforementioned modeling approaches in the
analysis of large-scale social networks is computation—when the network size gets
large, the analysis of the network in its entirety becomes intractable and impractical.
Although statistical sampling methods can be used to take a small “representative”
sample from the entire network, recent research has found that estimates of social
intercorrelations tend to be biased if samples of the networks rather than the entire
population are used (Chen et al. 2013). In this paper, we aim to address these issues by
proposing a new method for efficient estimation of social intercorrelations in large-
scale social networks.

By definition, a network is a collection of nodes (i.e., network members) in
which some pairs of these nodes are connected by edges and others are not. We
focus on a type of statistical models that have been used for the analysis of net-
work data—the simultaneous autoregressive (SAR) model (Cressie 1993; Anselin
1988). It is a class of spatial models that have been widely adopted in market-
ing (e.g., Aravindakshan et al. 2012; Bradlow et al. 2005; Yang and Allenby 2003;
Bronnenberg and Sismeiro 2002; Bronnenberg and Mahajan 2001). Through the
social intercorrelation parameter ρ, the spatial model effectively captures social
interactions among network members. A key advantage of this model is that it can
capture social interactions among member who are both directly connected or indi-
rectly connected through common neighbors (Chen et al. 2013). Extant research has
demonstrated that accurate learning of the social intercorrelation parameter ρ is cru-
cial to marketers in multiple ways, including the understanding and prediction of
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interdependent choice decisions across consumers (Yang and Allenby 2003), brand
performance across markets (Bronnenberg and Sismeiro 2002), market responses
to promotions (Bronnenberg and Mahajan 2001), and optimal advertising budget
allocation (Aravindakshan et al. 2012). On the other hand, biased social intercorre-
lation estimates can easily result in economic harm to managers who are using the
information for marketing decisions, as discussed in detail by Chen et al. (2013).

To achieve consistent parameter estimates for the spatial model, it has been
advocated to use the likelihood-based approach such as the maximum likelihood
estimation (Ord 1975). The likelihood function for the spatial model contains the
determinant of the matrix I − ρW, where I is the identity matrix, ρ is the social
intercorrelation parameter, and W is the spatial weight matrix of size N × N defined
based on the connections among the N network members. As a result, the maxi-
mum likelihood estimation involves the evaluation of the determinant of the matrix
I − ρW for each new candidate value of ρ, which is of computational complexity
O(N3). For large networks where the network size N easily exceeds tens of thou-
sands, this becomes computationally prohibitive. Bayesian estimation has the same
issue because it is also based on the likelihood function.

Various solutions have been proposed to address this computation problem. One
way is to reduce the computational complexity by assuming a sparse structure of the
spatial weight matrix W where there are few connections among members of the
network. For example, Pace and Zou (2000) assume that only the nearest neighbor-
ing node has a direct effect and provide a closed form solution for the maximum
likelihood estimates of the spatial model. Pace and Barry (1997) assume few direct
relationships among members in the network and provide algorithms for quick com-
putation of the log determinant of I − ρW based on the Cholesky decomposition
under the assumption. Smirnov and Anselin (2001) propose a four-step divide-and-
conquer algorithm by using the characteristic polynomials, which can be truncated
and thus reduce the computational cost to be of linear complexity under a very sparse
structure of the spatial weight matrix W. Similarly, Barry and Pace (1999) propose
to approximate the logarithm of the determinant of I − ρW using the Monte Carlo
simulation; Pace and LeSage (2004) propose the Chebyshev approximation; LeSage
and Pace (2007) propose the matrix exponential spatial specification (MESS) that
relies on the assumption that the matrix I − ρW can be replaced by an exponential
function eαW. While these methods significantly reduce the computational complex-
ity, they all rely on the assumption of a sparse structure of the spatial weight matrix
W which imposes high restrictions on the type and number of connections among
network members that may not be realistic.

An alternative approach to addressing this computation problem is to approxi-
mate the likelihood function directly. This is represented by the pseudo-likelihood
approach proposed by Besag (1975). The pseudo-likelihood is an inference function
defined as the product of the conditional densities of the observation at one site given
those at other sites. It belongs to the general class of composite likelihood (see Varin
et al. 2011 for a review). The composite likelihood is an inference function formed by
multiplying a collection of component likelihoods, where each individual component
is either a marginal or a conditional density. Because the components are multiplied
regardless of the possible dependence between components, the composite likelihood
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is the true likelihood only if different components are independent marginally or con-
ditionally. In general, the composite likelihood serves as an approximation of the true
likelihood.

Recent variants of Besag’s proposal include the use of subsets or blocks of obser-
vations in the conditional densities. For example, in Vecchia (1988), each component
is the conditional density of a single observation given only a subset of the rest
observations chosen by the spatial proximity to improve computational efficiency.
However, for the inference function proposed by Besag or Vecchia, the number of
components in the composite likelihood is the same as the number of observations,
which is still computationally challenging if the network size N is large. In addition,
when the interest is on the social intercorrelations among members in the network, it
is not very informative to use the conditional density of only one observation. Stein
et al. (2004) further develop Vecchia’s proposal by first grouping observations into
blocks and then using blocks of observations instead of a single observation in the
conditional densities. However, when the network size gets large, difficulties arise in
the systematic partition of observations into blocks and the selection of the subsets.
Most recently, Zhou et al. (2017) propose a computationally efficient approach by
using a paired maximum likelihood estimator (PMLE) and approximating the PMLE
with a closed-form expression for a spatial lag model without independent vari-
ables X. The approach focuses only on directly connected pairs of network members
under the assumption that the network is sparse with few members that are indirectly
connected.

In this paper, we propose an alternative approach for efficient estimation of social
intercorrelations in large-scale networks using the spatial error or the spatial lag
model. We call this approach the sequential sampling enhanced composite likeli-
hood approach. Given a known population network, the proposed approach works
by sequentially taking small samples from the network, and gradually improving the
model parameter estimates based on the composite likelihood. Each component of
the composite likelihood is the conditional density of the nodes in the corresponding
sample given all the remaining nodes in the population. The sample points in the next
sample are selected based on the knowledge obtained from the previous sample. The
interplay between the sequential sampling and the composite likelihood estimation
makes it possible for the proposed approach to achieve high computational efficiency
and estimation accuracy at the same time.

Through comparative studies based on both simulated networks and real net-
works, we find that the proposed procedure shows significant advantages in terms
of both computing time and accuracy in parameter estimation in comparison to
the benchmark estimation methods. While the benchmark estimation methods are
computationally intensive or even infeasible when the network size is large, the
proposed approach works well on large networks with high estimation efficiency.
For example, in the comparative study based on a large network with 105,938
nodes and over 2 million edges, the proposed approach recovers the true social
intercorrelation parameter, and the mean computation time taken is only thirty
minutes or so. In contrast, the benchmark population-based maximum likelihood
estimation is infeasible computationally, and the benchmark sample-based maximum
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likelihood estimation produces biased social intercorrelation estimate and takes more
than two hours long.

The proposed approach makes the following contribution to the literature. Method-
ologically, it complements existing literature on composite likelihood through a
sequential sampling and estimation procedure that adaptively improves model param-
eter estimates through learnings obtained from previous samples. In particular, the
proposed approach sequentially takes small samples from the network where the
next sample is determined by estimation results and corresponding residuals from
the previous sample. At each stage of the sequential procedure, a set of parame-
ter estimates is obtained by maximizing the composite likelihood function which is
the product of the conditional densities corresponding to the series of small sam-
ples selected so far. The parameter estimates are then gradually improved until
the sequential procedure converges or stops according to a pre-specified stopping
rule.

Substantively, the proposed approach provides a valuable tool to practitioners
and researchers alike in the efficient estimation of social intercorrelations in large-
scale networks. In comparison to population-based maximum likelihood estimation
that is computationally prohibitive when the network size is large, the proposed
approach scales well to large networks while at the same time achieves high estima-
tion accuracy. In comparison to sample-based estimation that relies on information
purely from the sample and produces underestimation bias in social intercorrelation
estimates, the proposed approach effectively uses information from the population
without compromising computation efficiency. It has important managerial implica-
tions for marketing decisions, such as optimal allocation of market spending based
on estimates of social intercorrelations in consumer networks (Chen et al. 2013;
Aravindakshan et al. 2012).

The rest of the paper is organized as follows. We review the spatial error model
of social interactions in Section 2. We propose the sequential sampling approach in
Section 3 in the context of a known population network. Then in Section 4 we exam-
ine the performance of the proposed approach through an extensive simulation study
and provide implementation guidelines based on simulation findings. We compare
the proposed approach with benchmark estimation methods and demonstrate the mar-
keting implication of the proposed approach in Section 5. We discuss extension of
the proposed approach in Section 6 in the context of an unknown population network
structure, as well as in an alternative form of the spatial model. We then conclude the
paper in Section 7.

2 Spatial error model of social interaction

We start with a review of the spatial error model used for the analysis of network
data. Consider a social network with N members. For member i in the network, ni

is the number of edges adjacent to i. For the purpose of this research, we focus on
undirected networks only where edges simply represent presence of connections and
do not convey information on the directions. The N ×N spatial weight matrix W for
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such a network is commonly defined to be the row-standardized adjacency matrix,
that is,

W(i, j) =
{ 1

ni
, if i and j are connected,

0, otherwise.
(1)

Let X denote the model matrix that contains p independent variables, and y denote
the vector of responses. The relationship between the response variable and the
independent variables is captured through the following regression model:

y = Xβ + e, (2)

where y and e are N × 1 vectors, X is an N × p matrix, and β is a p × 1 vec-
tor. The error term ei for member i is allowed to be correlated with the error terms
for other members in the network through the following autoregressive specification
(e.g., Yang and Allenby 2003; Bronnenberg and Sismeiro 2002; Bronnenberg and
Mahajan 2001),

e = ρWe + ε, (3)

where ε ∼ N(0, σ 2I ). Combining Eqs. 2 and 3, the distribution of y is essentially

y ∼ N(Xβ, σ 2(I − ρW)−1(I − ρW′)−1). (4)

With the spatial weight matrix W defined to be the row-standardized adjacency
matrix in Eq. 1, the valid range of the parameter ρ is such that |ρ| < 1 (Kelejian
and Prucha 2010). As discussed in Hartmann et al. (2008), this model provides a
reduced-form representation of the social interactions among members in the network
through the autoregressive error structure in Eq. 3. The parameter ρ captures the
strength of social intercorrelations where higher magnitudes of ρ indicate stronger
social intercorrelations.

It is important to note that the effect of social interactions captured by this model is
not limited to directly connected members (dyads). Instead, it takes into consideration
of the overall network topology through the autoregressive structure in Eq. 3 such
that the errors ei and ej can be correlated even if members i and j are not directly
connected (Chen et al. 2013). This makes the spatial model distinctly different from
models that focus on the study of social interactions in dyads (e.g., Hartmann 2010;
Nair et al. 2010; Yang et al. 2006).

2.1 Maximum likelihood estimation

The maximum likelihood estimates of the model parameters (ρ, β, σ 2) in the spatial
error model (2) can be obtained by maximizing the log likelihood function

l(ρ,β, σ 2) = −N

2
log 2πσ 2 + log(det(I−ρW))− 1

2σ 2
‖(I−ρW)(y−Xβ)‖2

2, (5)

where I is the N ×N identity matrix, det(I−ρW) is the determinant of I−ρW, and
‖.‖2

2 denotes the L2 norm such that

‖(I − ρW)(y − Xβ)‖2
2 = (y − Xβ)′(I − ρW′)(I − ρW)(y − Xβ).
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Given ρ, the maximum likelihood estimates of β and σ 2 can be expressed in closed-
forms as β̂(ρ) and σ̂ 2(ρ) such that

β̂(ρ) = (X̃′X̃)−1X̃′ỹ, (6)

σ̂ 2(ρ) = 1

N
‖ỹ − X̃β̂(ρ)‖2

2, (7)

where X̃ = (I − ρW)X and ỹ = (I − ρW)y. Substituting β and σ 2 in the log
likelihood function (5) with β̂(ρ) and σ̂ 2(ρ), the maximum likelihood estimate of ρ

can be obtained (Ord 1975) by maximizing

l(ρ, β̂(ρ), σ̂ 2(ρ)) = −N

2
log 2πσ̂ 2(ρ) + log(det(I − ρW)) − N

2
. (8)

This function does not have a closed-form solution. Therefore, the maximum like-
lihood estimate of ρ cannot be expressed in a closed form, but it can be obtained
through numerical methods such as grid search. Because the evaluation of the deter-
minant of matrix I − ρW is of computational complexity O(N3), this becomes
computationally prohibitive for networks with large network size N . In addition to
the large amount of time and memory required, the computation is often numerically
unstable. Although various methods have been proposed to reduce the computational
complexity (e.g., Pace and Barry 1997; Barry and Pace 1999; Smirnov and Anselin
2001; Pace and Zou 2000; Pace and LeSage 2004; LeSage and Pace 2007), they rely
on the assumption of a sparse spatial weight matrix W. Such assumption imposes
high restrictions on the connections among network members which may not be
realistic.

2.2 Bias in sample-based estimation

When the network size is large, researchers often resort to sampling to make the
analysis feasible. The basic premise is that if a “representative” sample is taken,
then working with the smaller sample network would provide insights about how
the entire population network would behave. While random sampling has been a
popular sampling method in marketing research, it does not work well in network
settings because a random sample of the nodes from the population does not pre-
serve the topology of the network. Therefore, researchers in sociology and marketing
have used alternative sampling methods such as snowball sampling and forest fire
sampling to obtain a sample from the network (e.g., Ebbes et al. 2016; Henry 2005;
Salganik and Heckathorn 2004; Tepper 1994; Frenzen and Davis 1990). Originally
proposed by Goodman (1961), the snowball sampling procedure starts from a ran-
domly chosen node (called the snowball seeding node), and then sample all nodes
connected to the snowball seeding node. In the next stage, the procedure considers
all nodes just added in the previous stage, and sample all their connections, with the
duplicated nodes excluded. The sampling procedure continues until a desired sam-
ple size is reached. Forest fire sampling method can be considered as a more general
case of snowball sampling in the sense that it starts by selecting one (or more) nodes
at random as the seeding nodes, and then randomly include a certain percentage of
unselected neighbors of the seeding nodes and all edges among them. Regard the
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included neighbors as the new seeding nodes and repeat this process until a desired
sample size is reached.

To estimate the parameters in the spatial error model (2) using a sample s, let
(Xs, ys) denote the independent and response variables from the |s| = n sampled
nodes of the network. The maximum likelihood estimate based on the sample is
obtained by maximizing the likelihood

l(ρ,β, σ 2) = −n

2
log 2πσ 2+log(det(I−ρWs))− 1

2σ 2
‖(I−ρWs)(ys−Xsβ)‖2

2, (9)

where Ws is an n by n matrix defined by

Ws(i, j) =
{

1
nsi

, if i and j are connected in the sample,

0, otherwise

and nsi is the number of connections that node i has in the sample.
Note that the information on the network structure as reflected through Ws is only

based on the sample where some members’ connections in the network are excluded
from the sample, such as those members that are randomly excluded in forest fire
samples, or those that are on the last stage of snowball samples. The network struc-
ture based on the sample thus would deviate from the true structure based on the
population. As demonstrated in detail by Chen et al. (2013), this results in estimation
bias of the social intercorrelation parameter ρ in the spatial model. Although sam-
pling methods that better preserve the network structure (e.g., snowball sampling)
perform better than other sampling methods (e.g., random sampling), they all lead to
underestimated social intercorrelations, especially in networks where the number of
connections of network members are characterized by the scale-free power-law dis-
tribution, commonly observed in many large networks such as the network of people
connected by e-mail (Barabási and Albert 1999).

3 The proposed SEQ-MCLE approach

We propose a sequential sampling enhanced composite likelihood approach that
makes it computationally feasible to analyze large networks using the spatial model
and obtain efficient estimates of social intercorrelations. We call this the SEQ-MCLE
approach for simplification. Next we briefly review the definition of composite
likelihood and then introduce our proposed SEQ-MCLE approach.

3.1 Definition of composite likelihood

The composite likelihood is an inference function defined as a product of a collec-
tion of component likelihoods, where each individual component is either a marginal
or a conditional density (see Varin et al. 2011 for a review). It is used to approxi-
mate the true likelihood function in the case of computational complexity. In general,
consider an N-dimensional random vector y with probability density function (p.d.f)
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fθ (y), where θ ∈ � is the unknown parameter. Let {A1, A2, . . . , AB} denote a set of
marginal or conditional events with associated likelihoods Li(θ; y) ∝ fθ (y ∈ Ai),
for i = 1, 2, . . . , B. A composite likelihood Łc(θ; y) is defined as follows

Łc(θ; y) =
B∏

i=1

Li(θ; y). (10)

It has been shown that the parameter estimate obtained by maximizing the com-
posite likelihood function (MCLE) is consistent and asymptotically normal under
standard regularity conditions (Lindsay 1988; Varin et al. 2011). The mean of
the asymptotic normal distribution is the true parameter vector, and the variance-
covariance matrix is the inverse of the Godambe information matrix (Godambe
1960). In comparison to the maximum likelihood estimate (MLE) from the true or
full likelihood function, MCLE is less efficient but the efficiency loss is generally
small (Xu and Reid 2011; Varin et al. 2011). On the other hand, MCLE is more robust
than MLE to model misspecification and missing data (Varin et al. 2011). MCLE also
has the computational robustness (Renard et al. 2004) in the sense that the composite
likelihood surface is much smoother and easier to maximize than the full likelihood
(Liang and Yu 2003).

The pseudo-likelihood function proposed by Besag (1975) for the analysis of spa-
tial models is one of the first examples of composite likelihood where each individual
component is the conditional density of a single observation given the rest. Note that
the total number of components in the pseudo-likelihood function equals the network
size N . Therefore it is still computationally challenging to make inferences based on
the pseudo-likelihood function if the network size N is large. Moreover, there is infor-
mation loss on the social intercorrelation among members in the network because
each conditional density in the pseudo-likelihood is only on one single node which
ignores the dependence between the node and its connections in the network.

3.2 The proposed sequential sampling enhanced composite likelihood

Given a known population network, the proposed SEQ-MCLE approach works by
sequentially taking small samples from the network where at each stage of the
sequential procedure, parameter estimates are obtained and a new sample is deter-
mined by the estimation results and corresponding residuals from the previous
sample. The parameter estimates are obtained by maximizing the composite likeli-
hood function which is the product of individual components corresponding to the
series of small samples selelcted so far. The estimates are gradually improved until
the sequential procedure converges or stops according to a pre-specified stopping
rule.

Each component in the composite likelihood function is defined as the conditional
density of one sample given all the remaining nodes in the population. Specifically,
let s denote the index of a sample drawn from the total of N network members,
that is, s is a subset of {1, . . . , N} and let sc denote the complement of s. Let Q =
(I−ρW)′(I−ρW). Then for the spatial error model (2), the conditional distribution of
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the observations in the sample ys given the rest of the observations in the population
ysc is

ys|ysc ∼ N(Xsβ − Q−1
ss Qssc (ysc − Xscβ), σ 2Q−1

ss ), (11)

where Qss is a submatrix of Q with row and column indices from s and Qssc is the
submatrix of Q with row indices from s and column indices from the complement
set sc. Note that the calculation of matrix inverse and determinant in the likelihood
function of Eq. 11 only occurs on Qss which can be quickly computed given that
the size of the sample s is small. In addition, the evaluation of the matrix-vector
multiplication Qssc (ysc − xscβ) in the mean of the conditional distribution (11) only
depends on a subset of sc such that the corresponding elements in Qssc are nonzero.
That is, it only depends on the subset of nodes in sc that are either directly connected
to the nodes in the sample s or indirectly connected through common neighbors.
Hence, given that the size of the sample s is small, the evaluation of the conditional
density is computationally fast even when the population size N is large.

Each sample in our proposed approach contains k seeding nodes and at most n of
their randomly chosen neighbors, where k and n are pre-specified small numbers. We
discuss in more detail the choices of k and n in Section 4. The initial seeding nodes
j1 can be chosen randomly. The nodes in the next sample are selected based on the
knowledge obtained from the previous sample. Specifically, let s1 be the first sample

with the seeding nodes j1, and let θ̂
(1)

denote the parameter estimates obtained by
maximizing the conditional likelihood using the first sample, that is, L(θ , ys1 |ysc1),
where L(θ , ys1 |ysc1) = fθ (ys|ysc ) which is the p.d.f. of the conditional Normal dis-

trubution in Eq. 11 for s = s1 and θ = (ρ, β, σ 2). Note that according to Eq. 11, the
variance and the mean of the conditional distribution are V ar(ys1 |ysc1 , θ) = σ 2Q−1

s1s1
,

and E(ys1 |ysc1 , θ) = Xs1β − Q−1
s1s1

Qs1sc1
(ysc1 − Xsc1

β). If the estimates obtained are
close to the true values of parameters, then based on the normal distribution (11),
the standardized residuals rs1 approximately follow a standard multivariate normal
distribution, where

rs1 = V ar[ys1 |ysc1 , θ = θ̂
(1)]−1/2(ys1 − E[ys1 |ysc1 , θ = θ̂

(1)]). (12)

Let j2 contain the top k nodes in the sample s1 that have the largest absolute stan-
dardized residuals |rs1 |, excluding the initial seeding nodes j1. We then select j2 as
the seeding nodes and form the next sample s2 by taking at most n neighbors of j2
that have not been included in the previous sample. The rationale for this selection
is that the nodes with the largest absolute standardized residuals have the highest fit-
ting errors and require further examination. Therefore, we take these nodes as the
seeding nodes for the next sample so that more information can be obtained on these
nodes. This selection criterion is similar in nature to active learning in the machine
learning literature where new training sample points are selected at places where
predictions from the current model have the highest uncertainty (Cohn et al. 1996;
Schein and Ungar 2007; Settles 2010). While the focus is on a classification prob-
lem and the uncertainty of prediction is measured by the misclassification rate such
as 1 − ̂Prob(y = 1|x) (Settles 2010) in active learning, we focus on a regression
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problem here and use the absolute standardized residual to measure the uncertainty
of prediction.

Next we update the parameter estimates to θ̂
(2)

by maximizing the updated com-
posite likelihood L(θ , ys1 |ysc1)L(θ , ys2 |ysc2) = ∏2

i=1 fθ (ysi |ysci ). Similarly, we find
the k nodes in s2 based on the absolute standardized residuals |rs2 | and use them as
the seeding nodes j3 for the next sample s3. To avoid duplicated seeding nodes, the
previous seeding nodes are excluded in the selection of the seeding nodes for the next
sample. The sequential procedure continues until the parameter estimates converge,
or the number of samples reaches a pre-specified number B. Formally, the flow of
the sequential procedure is summarized as follows.

For sample t = 1, 2, . . . , B, do the following steps:

• Use jt as the seeding nodes and sample at most n of their neighbors that have not
been included in previous samples {s1, . . . , st−1}.

• Update the parameter estimates by maximizing the composite likelihood, that is,

θ̂
(t) = arg max

θ

t∏
i=1

L(θ , ysi |ysci ). (13)

Specifically, for θ = (ρ, β, σ 2) in the spatial error model, first obtain the MCLE
estimate ρ̂(t) of the social intercorrelation parameter ρ by maximizing the com-
posite likelihood function

∏t
i=1 L(ρ,βc(ρ), σ 2

c (ρ), ysi |ysci ) through numerical

methods such as grid search, where βc(ρ) and σ 2
c (ρ) are the following closed-

form expressions of the estimates to β and σ 2 which maximize the composite
likelihood function under given ρ.

βc(ρ) =
(

t∑
i=1

X̃′
siQsisi X̃si

)−1 (
t∑

i=1

X̃′
siQsisi ỹsi

)
, (14)

σ 2
c (ρ) = 1∑t

i=1|si |
t∑

i=1

(ỹsi − X̃si βc(ρ))′Qsisi (ỹsi − X̃si βc(ρ)), (15)

|si | is the size of sample si , ỹsi = ysi + Q−1
sisiQsisci

ysci , and X̃si = Xsi +
Q−1

sisiQsisci
Xsci

. After ρ̂(t) is obtained, the MCLE estimates to β and σ 2 are then

given by βc(ρ̂
(t)) and σ 2

c (ρ̂(t)) using the above expressions with ρ = ρ̂(t).

• If θ̂
(t)

has reached convergence based on the definition such that for a pre-
specified b (e.g. b = 20), the absolute difference between the maximum and the
minimum estimates of the last b consecutive estimates does not exceed 0.01, then
stop the procedure. Otherwise select the seeding nodes jt+1 for the next sample as
the top k nodes in the sample st that have the largest absolute standardized resid-
uals |rst |, where rst = V ar[yst |ysct , θ = θ (t)]−1/2(yst − E[yst |ysct , θ = θ (t)]).
Avoid duplication with previous seeding nodes.
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3.3 Convergence of the proposed SEQ-MCLE procedure

The estimates of the parameters obtained by the proposed SEQ-MCLE are asymp-
totically consistent (details of the proof are provided in Appendix C). Thus, as
the number of sequential samples increases in the proposed approach, the resulting
estimates θ̂ converge to the true parameters θ in probability.

We end the section by noting that the active learning nature of the sequential sam-
pling contributes to estimation accuracy by adaptively selecting the next sample and
improving model parameter estimates based on estimation results and corresponding
residuals from the previous sample. On the other hand, the use of the composite like-
lihood estimation at the same time enhances computational efficiency. With the small
size of each sequential sample, it is computationally fast in the proposed approach to
evaluate each component of the composite likelihood function and update the MCLE
estimates each time a new sample is selected until convergence. Thus, the interplay
between the sequential sampling and the composite likelihood estimation makes it
possible for the proposed SEQ-MCLE approach to obtain accurate parameter esti-
mates with high computational efficiency. In comparison to the population-based
maximum likelihood estimation that becomes computationally prohibitive when the
network size gets large, the proposed SEQ-MCLE approach makes it computationally
feasible to analyze large networks and provide accurate estimation of social intercor-
relations. In comparison to the sample-based estimation that relies on information
purely from the sample and produces underestimation bias in social intercorrela-
tion, the proposed approach effectively uses information from the population without
compromising computation efficiency.

4 Simulation study

In this section, we investigate through an extensive simulation study the perfor-
mance of the proposed SEQ-MCLE approach over different network structures with
different magnitudes of social intercorrelations. Based on the findings, we provide
guidelines on the choices of parameters for the proposed approach, including the
number of seeding nodes k and the maximum number of neighbors n for the sequen-
tial samples, as well as the maximum number of sequential samples B for the
stopping rule.

4.1 Simulation design

We begin with simulated networks encompassing three types of network topology
that have been studied extensively in the literature: the power-law networks (Barabási
and Albert 1999), the small-world networks or the “WS” networks (Watts and Stro-
gatz 1998), and the power-cluster networks (Holme and Kim 2002). For each of
the three network types, we generate 2 × 2 = 4 representative networks with two
network sizes (N = 10000, 50000) and two different settings of parameters that
give rise to different network characteristics. Hence we have 3 × 2 × 2 = 12
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simulated networks, where the details of the generation algorithms are provided in
the supplemental online Appendix.

4.1.1 Power-law network

Many real large networks exhibit the property of power-law networks where the num-
ber of connections of network members follows a scale-free power-law distribution.
These include the web pages connected by the hyperlinks in the World Wide Web,
the network of people connected by e-mail, and the network of scientific papers con-
nected by citations (Barabási and Bonabeau 2003; Katona and Sarvary 2007). In
particular, the probability that any node is connected to d other nodes in a power-
law network is proportional to d−γ with γ > 0. In practice, γ is found to be usually

We generate the power-law networks following the models in Barabási and Albert
(1999, “BA”) and Krapivsky and Redner (2001, “KR”). Whereas the BA model leads
to power-law networks with γ ≈ 3 in the degree distribution, the setting in the KR
model gives us power-law networks with γ ≈ 2.1708. We use “PL1” and “PL1L” to
denote the two power-law networks generated by the BA model with network sizes
N = 10000 and N = 50000, and use “PL2” and “PL2L” to denote the power-law
networks generated by the KR model.

4.1.2 WS network

Introduced by Watts and Strogatz (1998), a WS network exhibits a small-world prop-
erty where members in the network form subclusters but at the same time any two
members of the network can reach each other within a small number of edges regard-
less of the size of the network. It is usually generated from a regular network by
rewinding the connections randomly with a given probability. We generate the WS
networks by following the algorithm in Watts and Strogatz (1998). We use “WS1”
and “WS1L” to denote the two WS networks respectively of sizes N = 10000
and N = 50000 that are generated with the low rewinding probability, and use
“WS2” and “WS2L” to denote the WS networks generated with the high rewinding
probability.

4.1.3 Power-cluster network

The power-cluster network is another type of network topology that mimics real
networks. Specifically, it has the power-law degree distribution with clustering at
the same time. We generate the power-cluster networks by following the steps pro-
posed by Holme and Kim (2002). We use “PC1” and “PC1L” to denote the two
power-cluster networks respectively of sizes N = 10000 and N = 50000 that are
generated with the low clustering coefficient, and use “PC2” and “PC2L” to denote
the power-cluster networks generated with the high clustering coefficient.

between 2 and 3 (Saramaki and Kaski 2004). As a result, most nodes have just a few
connections with the exception of some nodes that have a tremendous number of con-
nections. In that sense, such a network with the power-law degree distribution has no
“scale”, and thus has the property of being scale-free.
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4.1.4 Scientific collaboration network (“Colla”)

In addition to the simulated networks, we also examine two real networks available
through Stanford Large Network Dataset Collection. The first real network is the
Condense Matter Physics collaboration network from the e-print arXiv. It covers sci-
entific collaborations between authors for papers submitted to the Condense Matter
Physics category. If an author i co-authored a paper with author j , the network con-
tains an edge between i and j . The network covers papers in the period from January
1993 to April 2003 (124 months). It contains a total of 23,133 authors with 93,497
connections.

4.1.5 Flickr image-sharing network (“Flickr”)

The second real network that we examine is the Flickr image-sharing network. It is
an online network of images from Flickr.com, the photo-sharing website. Links are
formed between images from the same location, submitted to the same gallery, group,
or set, with common tags, etc. The network contains 105,938 nodes and 2,316,948
edges.

Table 1 summarizes the characteristics of the twelve simulated networks as well
as the two real networks. Altogether they provide a good representation of networks
with varying network structures and characteristics. For example, among these net-
works the clustering coefficient varies from 0 to 0.6969, the characteristic path length
varies from 3.6462 to 9.0023, and the average degree varies from 2.0002 to 43.7416.
The definitions of these network characteristics are described below.

Table 1 Characteristics of representative simulated and real networks

Type Label N L CC Degree

Min Med. Avg. Max

PL PL1 10,000 3.6462 0.0074 5 7 9.9970 413

PL1L 50,000 4.0930 0.0020 5 7 9.9994 964

PL2 10,000 3.6884 0.0000 1 1 2.0010 2262

PL2L 50,000 3.9888 0.0000 1 1 2.0002 9544

WS WS1 10,000 7.3065 0.6969 20 20 20.2030 23

WS1L 50,000 9.0023 0.6969 20 20 20.2027 24

WS2 10,000 4.4102 0.5994 20 22 21.7990 27

WS2L 50,000 5.2044 0.5992 20 22 21.7998 28

PC PC1 10,000 3.9011 0.0688 3 4 6.0030 576

PC1L 50,000 4.3694 0.0598 3 4 6.0006 1449

PC2 10,000 4.8049 0.6080 3 4 6.0030 361

PC2L 50,000 5.4579 0.6072 3 4 6.0006 1071

Real Colla 23,133 5.3521 0.6331 1 5 8.0834 281

Flickr 105,938 4.3346 0.0891 1 7 43.7416 5425
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• The characteristic path length L: This is the number of links on the shortest
path between two members, averaged across all pairs of members of the network
(Watts and Strogatz 1998). A smaller L suggests that two randomly selected
members of the network are more likely to be directly connected.

• The clustering coefficient CC: This is defined as follows (Watts and Strogatz
1998). Suppose a member i has ni linked neighbors. Then at most ni(ni − 1)/2
edges can exist between them. Define Ci as the fraction of the ni(ni − 1)/2
links that actually exist for network member i, and the clustering coefficient
CC is defined as the average of Ci across all members in the network. A high
CC indicates that the corresponding network tends to consist of clusters, where
members in each cluster are highly interconnected.

• Degree Summary Statistics: Degree for a network member is defined as the
number of connections that the member has in the network. We include in
the table the median and the average, as well as the minimum and maximum
degrees.

Given the total of 14 networks with varying network characteristics, we generated
data for each network according to the spatial error model (2), with true parame-
ter values β = (β0, β1) = (1, 1)′, σ = 2, and covariates xi = (1, ri), where

ri
iid∼ N(0, 1) for i = 1, . . . , N . For the magnitude of the social intercorrela-

tion parameter ρ which is the focus of our study, we consider 5 possible scenarios:
{0.1, 0.3, 0.5, 0.7, 0.9}, ranging from low to high, for each network. Hence, in total
we generated 14 × 5 = 70 datasets.

For each generated dataset, we then investigate the performance of our proposed
approach. Note that with k seeding nodes and n of their neighbors in each sequential
sample of the proposed approach, the evaluation of the conditional likelihood func-
tion for each sample is of computation complexity O((n + k)3). This implies that
the choices of n and k should be small for computational feasibility. In the simula-
tion studies we focus on two choices of k (k = 1 or k = 2), and three choices of n

(n = 10, n = 30 or n = 50). To assess the convergence of the proposed approach,
we fit each dataset using the proposed sequential procedure with different choices of
k and n, and repeat the procedure 30 times, each time with different seeding nodes
for the initial sample. Thus, we conducted a total of 70 × 2 × 3 × 30 = 12, 6001

estimations for the simulation study.
For purposes of illustration and comparison, we let the proposed sequential pro-

cedure run for the maximum B = 200 samples for all estimations, even though
the procedure may converge well before it reaches 200 sequential samples. The
mean estimates of the social intercorrelation parameter ρ̂(t) are calculated over 30
replications of the proposed procedure. All time-series plots of the mean estimates

1 The 4 × 5 × 30 = 600 simulation results of the WS networks under the setting of k = 1 and n = 50
turn out to be exactly the same as those under k = 1 and n = 30. This is because the maximum number
of degree in the WS networks does not exceed 30. Thus, the effective number of estimations for our
subsequent analysis are 12,000.



424 Y. Chen et al.

ρ̂(t) for different networks and parameter settings are provided in the supplemental
online Appendix.

4.2 Simulation findings

In this section, we summarize the findings and provide implementation guidelines
based on regression analysis of the simulation results in Section 4.1. We start by
examining the absolute error |ρ̂ − ρ|, where ρ is the true social intercorrelation and
ρ̂ is the estimate from the proposed approach. We find that the mean of all absolute
errors from the simulation study is 0.022 and 80% does not exceed 0.03, demon-
strating good overall performance of the proposed approach in recovering true social
intercorrelations.

To understand how the performance of the proposed approach varies with the dif-
ferent networks and parameter settings, we use the absolute error as the response
variable and fit a regression model using the following predictor variables: the type
of the network (“PL”, “WS”, “PC”, “Real”), network characteristics N, L, CC, and
Average Degree (AvgDeg) as shown in Table 1, settings of k (“k = 1”, “k = 2”) and
n (“n = 10”, “n = 30”, “n = 50”) used for the proposed approach, and the magni-
tude of the social intercorrelation ρ in the simulated data. For the three discrete factor
variables, the levels “PL”, “k = 1” and “n = 10” are chosen as the reference levels
respectively.

Since high correlations exist among the predictor variables (e.g., WS networks are
associated with high Clustering Coefficients), we use the LASSO regression (Tib-
shirani 1996) which works better than the standard regression method in discovering
truly significant variables in the presence of highly correlated predictors. Note that
in LASSO regression, the insignificant effects are shrunk to zero.

The results from the LASSO regression using the absolute error as the response
variable, as summarized in Table 2 on the left, reveal several interesting findings.

Table 2 Results from the
LASSO regression analysis Coefficients Estimates in absolute Estimates in convergence

error model rate model

(Intercept) 1.59 × 10−2 58.56

WS 1.14 × 10−2 27.72

PC 0 0

Real 0 0

k = 2 0 0

n = 30 −1.80 × 10−3 0

n = 50 −3.00 × 10−3 −2.00

N 0 0

L 4.45 × 10−4 0

CC 8.11 × 10−3 16.29

AvgDeg 1.43 × 10−4 0.62

ρ −4.48 × 10−3 0
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First, there is no significant difference between the choices of k = 1 and k = 2 seed-
ing nodes for the proposed approach, while the choice of n = 50 yields the smallest
estimation errors in comparison to the other two choices (n = 10 and n = 30). Sec-
ond, the network size N has no significant influence, while networks with smaller L,
CC and AvgDeg resulted in smaller estimation errors from the proposed approach.
Third, the performance of the proposed approach is slightly worse (i.e., with slightly
higher estimation errors) on WS networks than on other types of networks. Fourth,
the proposed approach performs better in data with higher social intercorrleation
ρ.

Next, we focus on the convergence rate. The convergence rate is defined as the
first time that the estimates of ρ become stable in the last 20 consecutive iterations,
that is, when the absolute difference between the maximum and minimum estimates
from the last 20 iterations does not exceed 0.01. If the estimates never become stable,
we let the convergence rate be 200, the maximum number of iterations used in our
simulation study. We find that the mean of all convergence rates from our simulation
study is 77.91 and 81% of the convergence rates does not exceed 120. This indicates
that the proposed procedure is capable of recovering the true social intercorrelation
fairly quickly. Results from the LASSO regression using the convergence rate as the
response variable are reported on the right of Table 2 and they reveal the following
findings. First, there is no significant difference between the choices of k = 1 and
k = 2 seeding nodes for the proposed approach, while the choice of n = 50 yields
the fastest convergence rate. Second, the network size N and the characteristic path L

have no significant influence, while networks with smaller CC and AvgDeg are asso-
ciated with faster convergence rates from the proposed approach. Third, the proposed
approach has a slightly slower convergence rate on the WS network than on other
types of networks. Fourth, the magnitude of ρ has no influence on the convergence
rate of the proposed approach.

The above findings help shed light on the implementation guidelines of our pro-
posed approach. First, regarding the number of seeding nodes, either k = 1 or k = 2
can be used. Next, regarding the maximum number of neighbors n to be included in
each sequential sample, n = 50 is recommended and we advise against going beyond
50 due to the high computational cost in the evaluation of the composite likelihood
function at each iteration. In practice, one can also use a smaller n to reduce the com-
putational cost. In addition, for networks where the maximum number of connections
for each network member is less than 50 (such as the small world networks in our
study), no sample taken will reach size 50 and therefore a smaller n should be used.
Third, we recommend using the dynamic stopping rule as described in Section 3.2,
that is, stopping the procedure when the absolute difference between the maximum
and the minimum estimates from the last 20 consecutive estimates does not exceed
0.01. If the maximum number of sequential samples needs to be set as an alternative
stopping rule, then, B = 200 can be used in general based on the simulation finding
that the proposed procedure generally converges well before 200 iterations (average
= 77.91). For networks other than the WS networks, a smaller B = 100 can be used.
Finally, we recommend leveraging parallel computing to run the SEQ-MCLE mul-
tiple number (e.g., 30) of times in parallel to take the mean estimate of ρ. This also
allows for the approximation of confidence intervals of the estimates.
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5 Comparison with benchmark approaches

In this section, we compare the proposed SEQ-MCLE approach with the following
benchmark methods: the population-based MLE, and the sample-based MLE. For the
sample-based MLE, the snowball sampling method is used to obtain the sample based
on recommendations from Chen et al. (2013). Note that the population-based MLE is
only computationally feasible when the network is of small or moderate size. When
the network size is large, only the sample-based MLE and the proposed SEQ-MCLE
approach are feasible.

For a thorough comparison, we take an example from each network type outlined
in Table 1 and generate 30 sets of response data for each of the five magnitudes
of ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} based on the spatial error model (2). Then, for each
dataset, we obtain model parameter estimates using the following three methods:
(1) the proposed SEQ-MCLE with k, n and B chosen according to the guidelines
discussed in Section 4.2; (2) the sample-based MLE with a snowball sample of size
Bn; and (3) the population-based MLE (if computationally feasible).

5.1 On simulated networks

We start the comparison using PL1 as an example of the simulated power-law net-
works. The network characteristics of this power-law network are summarized in
Table 1. The true parameter values used for the spatial error model are β = (1, 1)′,
σ = 2, and ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 1 shows the boxplots of the social
intercorrelation parameter estimates over the 30 replications for each estimation

Fig. 1 Boxplots of ρ̂ for different estimation methods and under different parameter settings
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method and each true value of ρ. The circles and the lines inside the boxes represent
the means and the medians of the ρ estimates. The mean and standard deviation (in
parentheses) of the computation time for each method are reported in Table 3.

The boxplots of ρ̂ clearly show an underestimation bias from the sample-based
MLE. This is consistent with findings in Chen et al. (2013). The underestimation bias
becomes more prominent when the magnitude of social intercorrelation increases
from low to high. In contrast, our proposed SEQ-MCLE approach with k = 2, n = 50
and B = 100 can recover the true values of the social intercorrelation parameter
for this power-law network. So does the population-based MLE, but it is computa-
tionally intensive. As shown in Table 3, the mean CPU time (in seconds) taken by
the population-based MLE is around 30 to 50 times of that taken by the proposed
approach.

Results on the other two types of simulated networks are consistent with those
from the power-law network, as shown in Appendix D for the small world network
example WS1L and the power-cluster network example PC1L, both with network
size N = 50000. Note that the population-based MLE is no longer feasible compu-
tationally and thus the comparison is only between the sample-based MLE and the
proposed SEQ-MCLE approach.

In regards to the other parameters in the spatial error model, we find that the
proposed SEQ-MCLE approach can recover the true values of β and σ , just like
the population-based MLE when it is computationally feasible. In contrast, the esti-
mates obtained from the sample-based MLE start to deviate from the true values
when the magnitude of the social intercorrelation increases from low to high, as
shown in Appendix E. This makes intuitive sense because the estimates of β and
σ are dependent on the ρ estimate, as shown in Eqs. 6 and 7. Thus, as the bias of
the ρ estimate from the sample-based MLE gets larger when the magnitude of the
social intercorrelation increases, the biases in the estimates of β and σ become more
pominent.

The key message from the comparative study based on the three types of simu-
lated networks is the following: there are significant advantages of using the proposed
SEQ-MCLE approach over benchmark estimation methods—it is computationally
efficient and at the same time achieves high estimation accuracy. This makes the pro-
posed SEQ-MCLE approach a good choice for the analysis of large social networks,
as we will demonstrate next using real networks of large size.

Table 3 Mean and standard
deviation of the computation
time (in seconds) under five
choices of ρ

Method ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

MLE 9271 9019 9281 9368 9209

(232) (226) (417) (502) (433)

MLE-sample 1233 1243 1206 1202 1196

(49) (29) (34) (27) (38)

SEQ-MCLE 191 188 187 189 261

(12) (16) (11) (10) (22)
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Fig. 2 Boxplots of ρ̂ for the two real networks—Colla (left) and Flickr (right)

5.2 On real networks

We report in Fig. 2 and Table 4 the results from the comparative study based on the
two real networks. As described in Table 1, the Colla network is a scientific collab-
oration network with size N = 23, 133 and 93,497 edges, and the Flickr network
is an image sharing network with network size N = 105, 938 and over 2 million
edges. The population-based MLE is not feasible computationally and we focus on
the comparison between the proposed SEQ-MCLE approach and the sample-based
MLE. For the proposed SEQ-MCLE approach, we follow the guidelines discussed
in Section 4.2 and use k = 2, n = 50, B = 100 for the Colla network, and k = 2,
n = 50, B = 200 for the Flickr network. Correspondingly, we take snowball samples
of size Bn for the sample-based MLE under comparison.

The results on these real networks clearly demonstrate the benefit of using the
proposed SEQ-MCLE approach for the social intercorrelation estimation. It recov-
ers the true social intercorrelation parameter within a relatively short amount of time.
In contrast, the sample-based MLE significantly underestimates the strength of the
social intercorrelation. Consistent with the findings on the simulated networks, the
underestimation bias is intensified when the true social intercorrelation is high. For

Table 4 Mean and standard
deviation of the computation
time for Colla (top) and Flickr
(bottom)

Method ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

MLE-sample 1191 1151 1187 1146 1188

(53) (19) (27) (31) (28)

SEQ-MCLE 176 162 359 368 258

(52) (33) (86) (106) (85)

MLE-sample 9030 8726 8721 8793 8745

(536) (922) (938) (809) (908)

SEQ-MCLE 1434 2407 1637 1310 1587

(475) (974) (464) (441) (351)
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example, when the true social intercorrelation ρ is 0.9, the estimate produced by the
sample-based MLE has a mean of 0.3627 for the Flickr network, which is signifi-
cantly lower than the true value. Such a bias can easily result in economic harm to
managers using the information to make marketing decisions, which we will discuss
in more detail in the next section.

5.3 Marketing implications

The proposed SEQ-MCLE approach provides a valuable tool to marketing
researchers and practitioners, with important managerial implications. It enables
managers to make better business decisions that are based on accurate estimates
of social intercorrelations, such as market promotions (Bronnenberg and Maha-
jan 2001), brand management (Bronnenberg and Sismeiro 2002), and allocation
of advertising spending (Aravindakshan et al. 2012). On the other hand, biased
social intercorrelation estimates can easily result in wrong decisions with material
consequences (Chen et al. 2013).

To see the important role that an accurate estimate of the social intercorrelation
plays, note that the estimates of the regression coefficients β and the variance param-
eter σ all depend on the estimate of the social intercorrelation parameter ρ. This can
be seen clearly in Eqs. 6 and 7 for the MLE estimation, and in Eqs. 14 and 15 for the
MCLE estimation. Consequently, any prediction ŷ given a new X is also dependent on
the social intercorrelation estimate ρ̂. Therefore, accurate learning of social intercor-
relation is critical to managers in making business decisions based on these estimates
or predictions. For example, if a pricing decision is to be made based on the estimate
of βprice, then a biased ρ estimate would lead to a biased estimate of the price coef-
ficient, resulting in suboptimal pricing decisions. Similarly, if an investment decision
is to be made based on the predicted responses ŷ, then a biased ρ estimate would lead
to inaccurate predictions that would steer the investment decision to the wrong way.

For further illustration, take the “PL1” network in our simulation study with
ρ = 0.8 and let it represent the network of stores available to a brand. For simplic-
ity, let x represent the magnitude of brand promotion and the brand sales y follow a
spatial model with a single predictor variable x and parameters β = (0, 0.5)′, σ = 2.
Suppose the brand manager is trying to decide if it is a good investment to increase
the magnitude of its promotion by 1 unit at the top 100 stores with the most number
of connections. Based on the model parameter estimates obtained from previous sales
responses, the return on investment (ROI) can be predicted as the increment in brand
sales minus the cost (100 × 1 = 100), then divided by the cost. An accurate estimate
of social intercorrelation from the proposed approach helps managers make better
predictions on brand sales increase and subsequently the ROI. In contrast, an under-
estimated social intercorrelation from the sample-based MLE can result in wrong
predictions which have material consequences. This can be seen in Fig. 3 where the
predicted ROI is plotted against the bias in the estimate of ρ. As shown in the plot,
while the ROI based on the true value of ρ is positive and approximately 1.75, it is
predicted to be negative when the bias in ρ̂ is larger than 0.2. The wrong negative
prediction would clearly lead managers to the wrong decision and result in financial
losses.
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Fig. 3 The effect of the bias in ρ̂ on the predicted return on investment

6 Extensions of the proposed approach

So far we have assumed a known population network or the analyst has the firm’s
permission to access the entire network (e.g., Trusov et al. 2010; Katona et al. 2011).
However, it is not always practical to have such knowledge. In this section, we dis-
cuss how the proposed approach can be applied when the structure of the population
network is unknown. We also discuss how the proposed approach can be extended to
an alternative form of the spatial model—the spatial lag model.

6.1 When the structure of the population network is unknown

In the context of an unknown population network, we can first take a sample network
(“approximation sample”) that approximates the structure of the population network
and then apply the proposed SEQ-MCLE approach on the approximation sample.
The performance of the proposed SEQ-MCLE approach thus heavily depends on
how good the approximation sample is in preserving the structure of the population
network.

To obtain a good approximation sample that works well with the proposed SEQ-
MCLE approach, we make the following three recommendations: First, use the
multiple-seeds snowball sampling method to take the approximation sample because
it better preserves the population network structure (Chen et al. 2013). Second, to
work well with the SEQ-MCLE estimation, the number of nodes in all but the last
two stages of the approximation sample needs to be at least Bn, such that the max-
imum B sequential samples {s1, . . . , sB} of the SEQ-MCLE approach will be taken
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from all nodes except those in the last two stages of the approximation sample. Third,
to control computational cost, one may need to set an upper bound for the number
of nodes in all but the last two stages of the approximation sample. This is neces-
sary especially when the average degree of the network is so large that the number of
nodes in the last two stages may explode if no upper bound is set.

To better understand the second recommendation above, note that the evaluation
of the term Qssc (ysc − xscβ) in the conditional distribution (11) only depends on a
subset of sc such that the corresponding elements in Qssc are nonzero. That is, it only
depends on the subset of nodes in sc that are either directly connected to the nodes in
the sequential sample s or indirectly connected through common neighbors. Hence,
if all B sequential samples {s1, . . . , sB} of the SEQ-MCLE approach are restricted
to the nodes in the m − 2 stages of the approximation sample with m stages, then
we can approximate the conditional distribution well because we have access to all
nodes that are directly connected to the sequential samples and a good portion of the
nodes that are indirectly connected.

We give an illustration example using the data on the Flickr network in Section 4
for the case where ρ = 0.1. Suppose the structure of this large network is unknown.
To take the approximation sample which works well with the SEQ-MCLE approach
with the setting k = 2, n = 10 and B = 100, we follow the recommendation pro-
vided above. Once we reach the stage in snowball sampling where the total number
of nodes exceeds Bn = 1000, we keep sampling for two additional stages before
stopping to obtain the approximation sample. To avoid explosion of the number of
nodes, we also set the upper bound to be 1500 for the number of nodes in all but the
last two stages of the approximation sample. As a result, an approximation sample
is obtained with five seeding nodes, five stages of snowball sampling and a total of
35153 nodes. We then apply the SEQ-MCLE approach on the approximation sam-
ple and report in Fig. 4 the time-series plots of the average estimates of ρ over 30
replications of the proposed approach (blue solid line), as well as the 90% and 10%
quantiles of the estimates (blue dashed line). The plots demonstrate that when the
population network structure is unknown, the proposed SEQ-MCLE approach can
work with a good approximation sample in recovering the true social intercorrelation
parameter (red line).

6.2 Extension to the spatial lag model

An alternative form of the spatial model used in marketing is the spatial lag model
that captures the lagged effects of the dependent variable (see review by Bradlow et
al. 2005), with the following expression

y = ρWy + Xβ + ε, (16)

where y and ε are N × 1 vectors, X is an N × p matrix, β is a p × 1 vector and ε ∼
N(0, σ 2I). The expressions of the likelihood function and corresponding maximum
likelihood estimates for the spatial lag model can be found in Appendix A.

The proposed SEQ-MCLE approach can be similarly applied to the spa-
tial lag model. The only difference is that the conditional distribution of the
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Fig. 4 Estimates of ρ When Structure of the Population Network is Unknown

observations in the sample ys given the rest of the observations in the population ysc
becomes

ys|ysc ∼ N(X̃sβ − Q−1
ss Qssc (ysc − X̃scβ), σ 2Q−1

ss ), (17)

where X̃ = (I− ρW)−1X. Details of the derivation can be found in Appendix B. For
computational efficiency, we approximate (I−ρW)−1 by I+ρW or I+ρW+ρ2W2

(Petersen and Pedersen 2008). According to Theorem 4.20 at Page 55 of Stewart
(1998), such approximations work well given that |ρ| < 1.

To examine the performance of the proposed approach on the spatial lag model,
we conduct a simulation study using the same simulation design as described in
Section 4.1 except that the spatial error model is replaced with the spatial lag model.
We find similar simulation results. The proposed approach works well in general
across all types of networks in recovering the true spatial lag effect ρ. The time series
plots of the estimates are provided in the supplemental online Appendix.

7 Discussion and conclusion

In this paper, we have proposed SEQ-MCLE, a sequential sampling enhanced com-
posite likelihood approach for efficient estimation of social intercorrelations in
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large-scale networks. In the proposed SEQ-MCLE approach, small samples are
sequentially taken from a given known population network. At each stage of the
sequential procedure, a composite likelihood function is formed based on the samples
obtained so far where each component of the likelihood function is the conditional
density of one sample given the rest of the population. A set of parameter estimates
is then obtained by maximizing the composite likelihood function. The parameter
estimates are gradually improved until the sequential procedure converges or stops
according to a pre-specified stopping rule.

Through comparative studies based on both simulated networks and real net-
works, we have demonstrated the superior performance of the proposed approach
over benchmark estimation methods. In comparison to population-based MLE that
becomes computationally prohibitive when the network size gets large, the proposed
approach scales well to large network data. In comparison to sample-based MLE that
relies on the information from the sample only and thus produces biased estimates of
social intercorrelations, the proposed approach effectively uses information from the
population without compromising computational efficiency.

When the structure of the population network is unknown, the proposed SEQ-
MCLE approach can be extended to work well with a carefully selected sample of
the network that approximates the structure of the network, as discussed in Section 6.
We have also shown in Section 6 the extension of the SEQ-MCLE approach to the
spatial lag model for the estimation of the overall lagged effect on the dependent
variable.

We have focused on the scenario where the interest is in the learning of the over-
all social intercorrelation, or the effect of the overall/global network topology on the
social interactions among network members. If there are reasons to believe that a
large network consists of multiple communities with different magnitudes of social
intercorrelations, then the proposed SEQ-MCLE approach can be applied separately
to obtain a social intercorrelation estimate for each community of the network. This
is a straightforward extension if the communities are known in advance, such as the
communities formed by geographic locations. In circumstances where the communi-
ties are latent, community-detection algorithms can be used first to group the nodes
of the network into different communities. Then the SEQ-MCLE approach can be
applied to obtain a separate social intercorrelation estimate for each community.

There are several limitations of our research that call for further investigation.
First, all samples are currently given the same weight in the composite likelihood in
the proposed approach. To further improve computational efficiency, it is worth con-
sidering allocating more weights to the more influential samples through mechanisms
such as sample reweighting (Bradlow and Zaslavsky 1997).

Second, we have focused on a static model that does not take into account of
the time variation. For evolving networks with evolving social intercorrelations, the
SEQ-MCLE approach can be applied at different time points to gain understandings
of how the social intercorrelations change over time. The social intercorrelation esti-
mate from the previous time point can be used to narrow the range of the grid search
and speed up computation at the new time point. However, a big drawback is that
temporal dependence is not accounted for in the underlying model. To address this
issue, the SEQ-MCLE approach needs to be modified for the spatio-temporal model
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that accounts for both spatial and temporal dependence. This creates considerable
computational complexity and we leave it for future research.

Finally, the independent variable x in the spatial model investigated in our study
is assumed to be exogenous to the network structure. When x is dependent of the
network structure (e.g., when x for a network member is defined to be the number of
connections the member has), the representativeness of x should also be considered
in each sequential sample of the proposed approach. Without the consideration of the
representativeness of x, there may not be enough variation for the efficient estimation
of the regression coefficient β. For example, if all nodes in a sample have an equal
number of connections, then there is not any variation in x and it would be prob-
lematic to estimate β. To ensure the representativeness of x, methodologies from the
experimental design literature (see Atkinson et al. 2007 for a review) can be used to
help with the optimal selection of nodes for each sequential sample in the proposed
approach.
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Appendix A: Maximum likelihood estimates of the spatial lag model

The maximum likelihood estimates of the model parameters (ρ, β, σ 2) in the spatial
lag model (16) can be obtained by maximizing the log likelihood function

l(ρ,β, σ 2) = −N

2
log 2πσ 2 + log | det(I−ρW)|− 1

2σ 2
‖(I−ρW)y−Xβ‖2

2. (18)

Given ρ, the maximum likelihood estimates of β and σ 2 can be expressed in closed-
forms as β̂(ρ) and σ̂ 2(ρ) such that

β̂(ρ) = (X′X)−1X′ỹ, (19)

σ̂ 2(ρ) = 1

N
‖ỹ − Xβ̂(ρ)‖2

2, (20)

where ỹ = (I − ρW)y. Substituting β and σ 2 in the log likelihood function (18)
with β̂(ρ) and σ̂ 2(ρ), the maximum likelihood estimate of ρ can be obtained by
maximizing

l(ρ, β̂(ρ), σ̂ 2(ρ)) = −N

2
log 2πσ̂ 2(ρ) + log | det(I − ρW)| − N

2
. (21)

Appendix B: SEQ-MCLE of the spatial lag model

To find the parameter estimates that maximize the composite likelihood function
(13), note that when t samples have been collected, the estimate on the social
intercorrelation parameter ρ̂(t) based on the composite likelihood is the one that
maximizes:

t∏
i=1

L(ρ,βc(ρ), σ 2
c (ρ), ysi |ysci ), (22)
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where βc(ρ) and σ 2
c (ρ) are the closed-form expressions of the estimates to β and σ 2

which maximize the composite likelihood function
∏t

i=1 L(θ , ysi |ysci ) given ρ. After

ρ̂(t) is obtained, the estimates to β and σ 2 are given by βc(ρ̂
(t)) and σ 2

c (ρ̂(t)).
For the spatial lag model, we have

βc(ρ) =
(

t∑
i=1

˜̃X′
siQsisi

˜̃Xsi

)−1 (
t∑

i=1

˜̃X′
siQsisi ỹsi

)
, (23)

σ 2
c (ρ) = 1∑t

i=1 |si |
t∑

i=1

(ỹsi − ˜̃Xsi βc(ρ))′Qsisi (ỹsi − ˜̃Xsi βc(ρ)), (24)

where |si | is the size of sample si , ỹsi = ysi +Q−1
sisiQsisci

ysci , ˜̃Xsi = X̃si +Q−1
sisiQsisci

X̃sci
and X̃ = (I − ρW)−1X.

Appendix C: Proof of the consistency of the SEQ-MCLE estimates

The SEQ-MCLE estimates are obtained by solving

S(y, s, θ) =
B∑

i=1

∂ log L(θ , ysi |ysci )
∂θ

= 0, (25)

where S(y, s, θ) is the estimating function, and s = (s1, s2, . . . , sB), with si being
the ith sample in the proposed approach. To prove the consistency of the SEQ-
MCLE estimates, we need to prove that this estimating function is unbiased such that
Eθ [S(y, s, θ)] = 0. This is because that according to Desmond (1997), Bera et al.
(2006), the unbiasedness of the estimating function S(y, s, θ) implies the consistency
of the estimates obtained by solving the estimating function. Note that the estimating
function S(y, s, θ) is a (p + 2)-dimensional vector and now let us focus on one com-
ponent of S(y, s, θ), for example, the component corresponding to ρ. Given a known
population network and under standard regularity conditions such that the integrals
and derivatives are exchangeable, let fθ represent the p.d.f. or conditional p.d.f. of
the corresponding variables, let �s = (s1, s2, . . . , sB), then we have

Eθ

[
B∑

i=1

∂ log L(θ , ysi |ysci )
∂ρ

]

= Eθ

[
B∑

i=1

∂ log fθ (ysi |ysci , si )
∂ρ

]

=
B∑

i=1

∫ ∫
∂ log fθ (ysi |ysci , si)

∂ρ
fθ (y, �s)dyd�s

=
B∑

i=1

∫ ∫
∂fθ (ysi |ysci , si)

∂ρ

fθ (y, �s)
fθ (ysi |ysci , si)

dyd�s
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which can be expanded as

∫ ∫
∂fθ (ys1 |ysc1 , s1)

∂ρ

fθ (ys1 |ysc1 , s1)fθ (ysc1 , s1)fθ (s2|y, s1)fθ (s3|y, s1, s2). . . fθ (sB |y, s1,. . . , sB−1)

fθ (ys1 |ysc1 , s1)
dyd�s +

∫ ∫
∂fθ (ys2 |ysc2 , s2)

∂ρ

fθ (ys2 |ysc2 , s1, s2)fθ (ysc2 , s1, s2)fθ (s3|y, s1, s2). . . fθ (sB |y, s1, . . ., sB−1)

fθ (ys2 |ysc2 , s2)
dyd�s +

∫ ∫
∂fθ (ys3 |ysc3 , s3)

∂ρ

fθ (ys3 |ysc3 , s1, s2, s3)fθ (ysc3 , s1, s2, s3). . . fθ (sB |y, s1,. . . , sB−1)

fθ (ys3 |ysc3 , s3)
dyd�s +

. . .∫ ∫
∂fθ (ysB |yscB , sB)

∂ρ

fθ (ysB |yscB , s1, s2,. . . , sB)fθ (yscB , s1, s2,. . . , sB)

fθ (ysB |yscB , sB)
dyd�s

Note that

fθ (ys2 |ysc2 , s1, s2) = fθ (ys2 |ysc2, s2)

. . .

fθ (ysB |yscB , s1, s2, . . . , sB) = fθ (ysB |yscB , sB)

and that for i = 1, . . . , B − 1,

fθ (si+1|y, s1, . . . , si ) = fθ (si+1|ysi , ysci , s1, . . . , si )

Because the seeding nodes ji+1 for the sample si+1 are obtained deterministically
given ysi , ysci , s1, . . . , si . Thus,

fθ (si+1|ysi , ysci , s1, . . . , si ) = Pθ (Si+1 = si+1|ji+1)

Let Ni+1 denote the number of neighbors of ji+1 that have not been included in
the previous samples. If it is less than the recommended sample size n (30 or 50)
in the proposed SEQ-MCLE approach, then Pθ (Si+1 = si+1|ji+1) = 1 because all
neighbors are deterministally included in the sample. Otherwise, n neighbors out of
the total Ni+1 are randomly selected and the above probability equals 1

(Ni+1
n )

. Hence,

fθ (si+1|y, s1, . . . , si ) is a constant and

∫
fθ (si+1|y, s1, . . . , si )dsi+1 = 1.

The above expansion therefore simplifies to

B∑
i=1

∫ ∫
∂fθ (ysi |ysci , si)

∂ρ
fθ (ysci , s1, . . . , si)dysi dysci ds1 . . . dsi

=
B∑

i=1

∫ ∫ [∫
∂fθ (ysi |ysci , si)

∂ρ
dysi

]
fθ (ysci , s1, . . . , si)dysci ds1 . . . dsi
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=
B∑

i=1

∫ ∫ [
∂

∂ρ

∫
fθ (ysi |ysci , si)dysi

]
fθ (ysci , s1, . . . , si)dysci ds1 . . . dsi

= 0, because
∫

fθ (ysi |ysci , si)dysi = 1.

Similarly, one can show the above fact holds for all the other components of S(y, s, θ)

proving

Eθ [S(y, s, θ)] = 0.

Appendix D: Comparative study on “WS1L” and “PC1L”

Fig. 5 Boxplots of ρ̂ for different estimation methods under “WS1L” (left) and “PC1L” (right)

Table 5 Mean and standard
deviation of the computation
time for “WS1L” (top) and
“PC1L” (bottom)

Method ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

MLE-sample 6123 4832 4636 5906 5510

(776) (183) (57) (640) (658)

SEQ-MCLE 1089 1315 1107 1277 953

(446) (339) (235) (262) (268)

MLE-sample 3746 3934 3822 3687 4040

(69) (108) (126) (43) (48)

SEQ-MCLE 320 188 315 223 227

(41) (183) (59) (9) (321)
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Fig. 6 Boxplots of β̂1 and σ̂ with ρ = {0.1, 0.3, 0.5, 0.7, 0.9} under “PL1” for the spatial error model

Appendix E: The estimation of β1 and σ in the simulation study
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